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Nonbosonic Moiré Excitons
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Optical excitations in moiré transition metal dichalcogenide bilayers lead to the creation of excitons, as
electron-hole bound states, that are generically considered within a Bose-Hubbard framework. Here, we

demonstrate that these composite particles obey an angular momentum commutation relation that is

generally nonbosonic. This emergent spin description of excitons indicates a limitation to their occupancy
on each site, which is substantial in the weak electron-hole binding regime. The effective exciton theory is
accordingly a spin Hamiltonian, which further becomes a Hubbard model of emergent bosons subject to an
occupancy constraint after a Holstein-Primakoff transformation. We apply our theory to three commonly
studied bilayers (MoSe,/WSe,, WSe,/WS,, and WSe,/MoS,) and show that in the relevant parameter
regimes their allowed occupancies never exceed three excitons. Our systematic theory provides guidelines
for future research on the many-body physics of moiré excitons.
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Introduction.—Quantum simulation of the paradigmatic
Bose-Hubbard (BH) model has recently become a powerful
approach to investigate the many-body physics of interact-
ing bosons, including incompressible states, superfluidity,
and spatial coherence [1-4]. These phenomena are believed
to exist in different parameter regimes of the model
Hamiltonian, and their study requires the ability of the
platform to scan over large ranges of energy and filling
fractions. One of the candidate simulators is exciton
(electron-hole bound state) degrees of freedom in moiré
transition metal dichalcogenide (TMD) bilayers [5-13],
owing to their high tunability in tunneling and interaction
strengths via twisting angle [14,15], and in filling by pump
power [16-21]. These composite particles have recently
been theoretically studied in the BH framework to inves-
tigate various many-body phenomena [15,22-24].

However, a fundamental assumption of this agenda is
that moiré excitons are bosonic degrees of freedom. This is
not always true since (generically) two-fermion states can
differ from elementary bosons via their nontrivial commu-
tation relations [25-29]. This difference results from the
process illustrated in Fig. 1(a), where electrons from two
excitons exchange without swapping their holes [30].
Excitonic bound states thus inherit Pauli blockade from
such exchange processes, limiting their occupation [31—
33]. This effect is referred to as phase space filling (PSF)
and becomes more important as the filling of the
(composite) excitons increases. Two limiting scenarios of
PSF for excitons are (a) nearly bosonic Wannier-Mott
excitons in large systems where excitons are dilute
[34,35] and (b) quantum dots [35] and Frenkel excitons
[36] in organic semiconductors [37,38] where the exciton
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wave functions overlap significantly and therefore deviate
largely from simple bosons.

In this work, we highlight the importance of PSF for
moiré excitons and show that the currently main moiré
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FIG. 1. (a) Diagram for the charge exchange scattering between
two excitons . The strength is captured by the exchange integral
A. In such a process, two incoming excitons (purple shaded)
swap their electrons (¢ and ¢’, blue dots) while keeping their
holes (v and ¢/, red dots). Note that the hole-exchanged diagram
is topologically equivalent. (b) Disconnected diagram for a two-
exciton process reminiscent of two free bosons. (c) Illustration of
moiré excitons on top of a superlattice potential (yellow) when
charge exchange is suppressed (A = 0), allowing for arbitrary
exciton occupation. This situation occurs at ay, > ag, where ay,
is the center-of-mass width of the exciton Wannier orbital (green)
and ap is the Bohr radius. ay is the superlattice constant.
(d) Moiré excitons with the strongest charge exchange
(A = 1), occurring at ay < ag. Double occupancies (per super-
site and valley) are prohibited in this case.
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TMDs platforms are in the regime of intermediate exciton
statistics (between the two limiting scenarios noted above).
Specifically, we find that PSF forbids the lowest exciton
state at a supersite R and valley pseudospin 7 from having
an occupancy of more than v,,,. This occupancy bound
Umax 18 smaller for composite particles with stronger charge
exchange, which competes with the four-fermion processes
that keep the composite objects fully intact (thus as if they
are elementary particles), as shown in Figs. 1(a) and 1(b),
respectively. The strength of the charge-swapping process
is captured by the exchange integral A, which depends
primarily on the ratio of the Bohr radius ay and the size of
exciton Wannier orbital aj,. The limit ap < ay, yields
A — 0, allowing generic occupation and nearly bosonic
statistics [see Fig. 1(c)]. The other limit ap > ay, gives
A — 1, blocking double occupancy at a given (R, 7) [see
Fig. 1(d)]. We refer to these limits as the strong Coulomb
and deep moiré regimes, respectively. All of this is made
possible by the moiré potential, which generates a large
lattice spacing a,; > ag, aj, so that both limiting behaviors
can occur inside a single supercell. Meanwhile, competi-
tion between the electron-hole correlation and the moiré
potential tunes the ratio ag/ay,.

Utilizing the experimentally relevant parameters from
R-stacked MoSe,/WSe,, WSe,/WS,, and WSe,/MoS,
over a range of realistic twisting angles, we find 1/3 <
A < 1, corresponding to 3 > vy, > 2 (see Fig. 2). Such a
restrictive occupation demonstrates the presence of strong
PSF for moiré excitons and is consistent with recent
experimental observations in WSe, /WS, [17].

Moreover, we find an emergent spin description of
exciton that captures their nonbosonic features. In particu-
lar, as the Hilbert space of angular momentum operators is
truncated, a spin model as the effective exciton theory
naturally incorporates the occupancy constraint. We derive
this Hamiltonian explicitly, using the exciton wave func-
tions obtained from the solution of the two-body electron-
hole Schrodinger equation, with parameters being in the
experimentally relevant regimes.

These emergent spins are further mappable into
(Umax + 1)-order hard-core bosons [48-55] utilizing the
Holstein-Primakoff (HP) transformation. Transforming the
effective Hamiltonian accordingly, we find these effective
bosons interact through a two-body repulsion and an
infinite (v, + 1)-body interaction, which captures their
hard-core nature. Such a high-order repulsion between
bosons can lead to exotic many-body effects in various
systems. For instance, three-body interaction could yield
fractional Chern physics such as Pfaffian states in one-
dimensional lattice [48] and non-Abelian anyons in two
dimensions [53,54]. Together with two-particle attraction,
it is predicted to give stable dropletlike condensates with
scale-invariant density [56,57] and pair (dimer) superflu-
idity [50,52,55]. Even higher-order interactions could
emerge from spin models [53]. These exotic hard-core

particles have not been realized in experiments (to the best
of our knowledge), and our work points to moiré excitons
as a more natural platform to explore them.

Microscopic model.—Stacking two monolayers at a
distance d, with a twist angle or a lattice mismatch leads
to a bilayer with an enlarged periodicity a,; compared to
those of the monolayers. Accordingly, in addition to the
band energies, charges therein feel emergent superlattice
potentials, which are invariant under translation with super-
lattice vectors a,,. Incorporating Coulomb interactions in
addition to single-charge dynamics, we have the micro-
scopic two-body electron-hole Hamiltonian A, =A% + V.
The noninteracting sector is

i) = Z/ "‘///17
AT

where A € {c, v} labels the bands, 7 € {+, —} denotes the
valley pseudospin (spin index is absent due to spin-valley
locking in TMDs [5]), and r is the position variable. .. . (r)
and y, . (r) are the annihilation operators for conduction
band electrons and valence band holes, respectively.
hy(r) = —(A2V2/2m,) + A,(r) is the energy operator
describing a single A-band charge with mass m; moving
within moiré potential A,(r). These charges interact
through interaction V, which we model by the following
density-density interaction:
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with electric charge e and dielectric constant €, character-
izing the Coulomb potential. p,;(r) =>_. y?jl'.r(r)y?,u(r)
captures the charge density at A band. The displacement
between layers d. e, is present in the electron-hole attraction
because opposite charges localize at different layers.
Finally, note that we neglect intervalley scattering [5,58]
for simplicity [58].

Single exciton states.—A conduction band electron can
bind to a valence band hole and form an exciton. To find the
corresponding two-particle energies and eigenfunctions,
we perform the ladder-diagram calculation [39] from H,.
Summation of these diagrams corresponds to the single
exciton states described by the following Schrodinger
equation:

{Zhﬁ r)

2
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where r, and r, are the positions of the electron and hole,
respectively, and r; =r. —r, is the relative coordinate.
ne{0,1,2,...} labels all internal states such as the
excitonic moiré bands and levels from the relative motion.
Q is the total superlattice momentum. ¢, ¢(r..r,) is the

En,Q:| ¢n,Q(rc’ rv) = O’ (3)
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corresponding exciton Bloch wave function (valley index
suppressed for simplicity) with energy E, . Note that

h,(r;) includes the moiré potential, making this two-body
Schrodinger equation distinct from the one for hydrogenic
excitons [25]. Fourier transforming the Bloch wave func-
tions gives the Wannier orbitals:

1 .
Wn,R (rc, rzz) - \/—NZe_ZQ'Rqﬁn’Q (rm rv>’ (4)
o

where N denotes the number of supersites in the system.
R is any of the (periodically spaced) minima of the over-
all moiré potential [39] for the center-of-mass position
ro = (myr, +myr,)/M, where M = m, + m,. We work
with these localized orbitals instead of Bloch wave functions
to capture correlations within a moiré unit cell and focus on
the lowest state wg(r.,r,) = Wog(r.,r,) for simpli-
city (see Supplemental Material [39] for justification).
The corresponding exciton creation operator is

Ho= [ dredrnlrer 0L GORLAR). ()

Exciton statistics.—With these composite operators in
hand, we proceed to their commutation relations, starting
with the states with distinct 7 or R labels. Excitons at
opposite 7 commute by definition, whereas rigorously
speaking, this is not the case for those at different R.
Nevertheless, off-site statistics are negligible because of the
suppressed orbital overlap [59], due to the typically large
ay; compared to the Wannier orbital size ay,, defined as
root mean square of r, —R computed with probability
density |wg(r.,r,)|%>, and Bohr radius az = (e,hA%/ue?)
(with reduced mass y = (m.m,/M)) [10,17]. Combining
these arguments, we find [ch;R,fc:,;R,] x 6, /ORR'-

In contrast, the equal-site-valley commutator is nontrivial.
In particular, we evaluate [% g, )%:; z] — 1 in the charge basis
and find it nonzero but an operator, which further yields
(following Combescot and co-workers [26-28])

R iR] ] = _2/\)51,12’ (6)

when higher orbitals are dropped (which leads to a self-
consistent treatment, justified in the Supplemental Material
[39]). The exchange integral A has the following expression
(denoting d®r = dr dr ,dr.dr)),

Az/%%mnwmemmm%mh»<n

which captures the strength of charge exchange processes
between two excitons [see Fig. 1(a)]. Notably, |A|> < 1 from
completeness of the orbitals [27] and becomes smaller with
wider orbitals until A ~ 0, which yields a bosonic commu-
tation relation for % .g.

Emergent spins and bosons.—Equation (6) yields the
standard relations for angular momentum operators

[S:Rasr_de} = ZS‘i;R and [3§;R731_;R}
lowing substitution:

= —S’;R upon the fol-

oF 2
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We note that the largest eigenvalue of ST x> (2A)71, does
not have to be integer multiples of 1 5 because these emergent
angular momentum operators are not generators of rota-
tions. Besides this spin representation, the HP trans-
formation [60] indicates the following emergent boson
description a,.p for Xg .

Rog = 0(1 — Adl g g)\/1 — NG i gieg. (9

where 6(x) is the step function. We refer to the
Supplemental Material [39] for the derivation of these
representations.

Phase space filling.—Both Egs. (8) and (9) suggest a
limit for the exciton Hllbert space size. To obtain such

P ~t
XoR> Xy ~
5, Demiwl_g )

2A

bound, we compute C® = |(il,)|vac)|> for generic
positive integer v, which becomes
v—1
C¥ =0(1 = Alv = 1)t J](1 = Aj). (10)
j=0

The physical condition C*) > 0 suggests exciton occu-
pancy per (R, 7) not exceed an upper bound v,,,,, where

U = Cell(A7), (o)t =0, (1)
with ceil(x) denoting the least integer not smaller than x.
Such a restriction exists as long as excitons deviate from
bosons (A # 0), and the extreme case v, = 1 corresponds
to A=1[61].

Effective models.—We derive an effective exciton
Hamiltonian ﬂeff from ﬂeh in both the emergent spins
and boson representations (see Supplemental Material [39]
for the spin representation). For generic A [62], such a
model has the following expression in terms of ag ,:

Hesr = EOZQTRQTR tZ A'Rra & +Hec)

(R'R)
T3 Za Ra’R ay.RA:R
R‘rr
+ llm U ymdx+l ymax+1. 12
100 Z Qrr) (12)

Note that higher excitons are neglected, which is strictly
valid only when their energy separation from E|, (the single
exciton occupation energy) is larger than the on-site two-
body repulsion U. In addition, the hopping ¢ is assumed to

186202-3



PHYSICAL REVIEW LETTERS 132, 186202 (2024)

satisfy |t|/U < 1 (otherwise, the off-site exciton commu-
tator plays an essential role in the hopping). See the
Supplemental Material for details of these assumptions
and the expressions of E, ¢, and U [39].

Besides U, there is an infinite high-order interaction U
which results from the highly nonlinear transformation
Eq. (9) and is a manifestation of the bound v,,,,. Such an
inaccuracy of a two-body interaction could lead to a
qualitative change in optical spectra when the exciton
occupancy Crosses Vp,,- Below this critical filling, energy
differences between v- and (v + 1)-boson states (valley
polarized) are roughly E;+ vU, and the corresponding
transitions provide a series of peaks in optical spectra
separated by a splitting U [17]. In contrast, adding additional
excitons onto a v, -filled site would populate higher-
energy states such that this splitting is generally not U.

Finally, we note that PSF also affects light-matter
interaction in moiré TMDs. More specifically, under dipole
approximation [34], photons hybridize linearly with %,z
because the absorption of each photon generates an addi-
tional electron-hole pair. Accordingly, the transition matrix

element from |v) = (1/VCW)(&z)"|vac) to |v+1) is

(Cc¥+1)/C®), which is
suppressed compared to that from a bosonic quasiparticle
(v/v 4+ 1). Such an effect from nonbosonic excitons has not
been considered in the state-of-the-art models (to the best of
our knowledge) for optical properties of moiré excitons
[22-24,63], in which photon couples linearly with bosonic
degrees of freedom.

Numerical results.—We compute A and v, from the
numerical solution to Eq. (3) [39]. Therein, we assume the
moiré potentials for both charges to be the same,
A.(r) = A,(r), with their strength and shape characterized
by the magnitude and phase of a complex number Z,
respectively (see Supplemental Material [39] for details).
We focus on interlayer excitons, with parameters taken
from the literature for MoSe,/WSe,, WSe,/WS,, and
WSe,/MoS, (all materials R stacked) [39].

Figure 2 shows A and v,,,,, for different bilayers at various
superlattice spacings. They generally give A > 1/3, and
thus, v < 3.

In addition, A systematically decreases with wider a,,.
Qualitatively, a larger superlattice corresponds to smaller
charge moiré band gaps, allowing Coulomb binding to mix
more charge states to form an exciton. Accordingly, PSF is
weaker for larger a,;, corresponding to a smaller A.

Comparison between length scales provides an alter-
native explanation. An exciton with its center-of-mass
fluctuation ay, more significant than ap possesses a strong
electron-hole correlation. As a consequence, charge
exchange processes [see Fig. 1(a)], the rate of which are
captured by A, are weaker. In contrast, aj, << ag implies
negligible Coulomb binding, giving a nearly uncorrelated
fermion pair. In this situation, the amplitudes for processes
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FIG. 2. Exchange integral A and the corresponding occupancy
upper bound v,,, for interlayer excitons in several R-stacked
TMD bilayers at various twisting angles (see Supplemental
Material [39] for details of the derivation based on parameters
of Refs. [6,8,10,17,46,47]). Dashed vertical lines correspond to
twisting angles realized in literature [8,10,17].
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FIG. 3. Exchange integral A at various ap/aj, for interlayer

distance d, = 0O (or equivalently intralayer excitons). ayy is tuned
by |Z|, considered as a free parameter in this plot. Data shown
utilize parameters (except |Z|) from WSe,/WS, [39] at
ay = 8 nm. Red and blue curves are from perturbative wave
functions in the strong Coulomb and deep moiré regimes,
respectively [39], with values in their regimes of validity
(indicated by opacity) perfectly matching the numerics.
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Fig. 1(c) and 1(d) are comparable such that A ~ 1. We
confirm this understanding with Fig. 3 (in which we set
d, = 0 to focus on the length scales mentioned above),
showing A for a broader range of aj,/ap (achieved by
manually tuning |Z|). Thus, as larger a), provides wider
ayy, A drops, as confirmed in Fig. 2 for the more realistic
d, # 0 setting.

Finally, we benchmark our numerical results for d, = 0
with perturbation theories in the strong Coulomb and deep
moiré regimes [39]. In the strong Coulomb regime,
electron-hole attraction dominates over moiré potential in
the relative motion, whereas such binding interaction is
perturbative in the deep moiré limit. As Fig. 3 shows, our
numerical results reproduce the analytical solutions in these
regimes.

Conclusion and outlook.—We have demonstrated that
moiré excitons in TMD bilayers can be very nonbosonic.
Because of their composite nature, they can experience a
strong PSF from their constituent fermionic charges. In
particular, the occupancy of the lowest bound states cannot
exceed vy, Which depends on their commutation relation.
Nevertheless, we have shown they can be mapped to
effective spin and bosonic operators, which leads the
microscopic electron-hole Hamiltonian to an interacting
spin model and an occupancy-constrained BH description,
respectively, for moiré excitons. Thus, we anticipate these
composite particles being platforms for BH physics below
the critical filling but not above it.

We expect this restriction to manifest in power-varying
optical measurements, offering exciton filling tunability
[17,21]. These experiments have demonstrated spectral
jumps with increasing pumps, interpreted as Hubbard
energy [15-19]. Yet our results suggest this understanding
is invalid at occupancy above v,,,,. Optical pumping above
the corresponding critical power would introduce higher
exciton states rather than adding the original ones, leading
to distinct spectral jumps from those at lower power. For
instance, for nearly untwisted WSe,/WS,, our theory
predicts the absence of the transition with energy
Ey+ 3U because v, =3 (which is not contradictory
to experimental results so far [17]).

We have also shown that v,,,, is smaller for a narrower
exciton Wannier orbital or larger Bohr radius. In particular,
ay, < ap implies weak electron-hole correlation such that
the fermionic nature of the constituent charges leads to a
strong PSF. Thus, the BH description is more constrained at
deeper and narrower moiré potential and larger dielectric
constant. Notably, it also suggests a more restrictive bound
for higher states in the relative degrees of freedom.

Such an occupation bound for excitons could be even
more restrictive when the system involves doped charges
[16-19,58]. This is qualitatively because these fermions
already fill up a fraction of the phase space, which limits the
available states for excitons. This exciton-fermion PSF
results microscopically from their charge exchange, leading

to a nontrivial commutation relation between the two
species. We anticipate the presence of this in recent
experiments aiming at optical signatures for the underlying
electronic correlations [16—19], as excitons and doped
charges coexist in these setups.

Finally, we discover that moiré excitons could serve as
another platform for (v, + 1)-order constrained particles.
For example, valley-polarized moiré excitons at A — 1
correspond to typical hard-core bosons, widely used to
describe qubits. Thus, we anticipate the corresponding
TMDs being a platform for two-dimensional arrays of two-
level emitters [64—66]. At a lower A, moiré excitons
become high-order constrained particles, providing
many-body effects such as pair (dimer) superfluidity
[50,52,55] and fractional quantum Hall physics
[48,53,54]. With these potential applications, we expect
moiré excitons to broaden the scope of hard-core bosons.
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I. TWO-BODY SCHROEDINGER EQUATION FOR A SINGLE EXCITON

This section reviews the derivation for the two-body Schroedinger equation (SE) [1], giving the eigenvalue problem
for a single exciton. We start from the microscopic electron-hole Hamiltonian He, = H, gh + V used in the main text.
HY, is the sector with non-interacting charges, which we reproduce below:

A= 3 [ arelmhelr)en () + L), )= ~VE A, ) = A, )

ch 2mv

with valley pseudospin 7 and position r. ¢, (7) and 0. (r) are annihilation operators of conduction band electron and
valence band hole (shorthand notation of ¢ -(r) and ¥, ,(r) used in the main text). m. and m, are effective masses
of the corresponding charges, and A.(r) and A,(r) are their moiré potentials. We also reproduce the interaction
between fermions as follows:

VGQ/MM{mmmwwwmwmw 20.(r)pu(r)

2€r |’l" - ’r‘l| B |T‘ — '+ dzez|:| ’ ﬁc(r) - Zéj-("')ér(’l’), ﬁv(r) - Zﬁi(r)o‘r(”')v
(2)

with e, €., and d,e, being the electron charge, the dielectric constant, and the displacement between the two layers
(e, denotes the unit vector perpendicular to the layers), respectively. Note that although we utilize the simple
1/|r — r'| potential characterized by a simple dielectric constant for simplicity, a more material-realistic calculation
should include nonlocal dielectric screening in TMDs that could modify the electrostatic interaction [2-5].

To describe the two-body bound state, we consider the two-particle Green’s function following Hey:

G (r,7" E) = — /dteiEt (vac|efent (r')e, (r)e " Hent |cp), (3)
where E represents the total energy of the two particles, and ¢ denotes time. |vac) and |cv) label the vacuum and
a state with one electron-hole pair, respectively. We consider the two charges to be at the same pseudospin 7 as
it is more relevant to moiré excitons [6]. Within the ladder approximation [1] and assuming E is away from the
particle-hole continuum, we find:

Gr(r.v/ E) = > / dfdf'<vac|@7(w)@7(r)maﬁ(%)@;(mvmgf(ﬁf’, E), (4)
7 eh

which holds when the Kernel equals the product of delta functions in positions. This condition could occur if E is an

eigenvalue of the matrix (vac|i,(ry)é, (rc)ffehé;('lzc)@l(?v)\vac), or equivalently:

62

€r (rc - rv)2 + dz - EmQ ¢n’Q(Tc’ T‘U)

where HS, and V yields the first two and the third terms, respectively. ¢, q(Te, ) = (vac|iy (1,)ér (1) |Pn.Q) is
the eigenfunction corresponding to energy E, ¢ and eigenstate |¢, ), which are labeled by total momenta Q (since
A.(r) and A, (r) are invariant under translation over moiré periods) and internal state index n.

[wre) () ~0, )

II. MOIRE POTENTIAL

In this section, we discuss details of the moiré potential used in the main text, which we reproduce below:

3
) 27 e 41e 27 e
A(r) = Ay(r) = A(r) = Re ZE:e“"GJ , G —(ezy>,G =—4 G —<em+y>, 6
() () (r) = T an V3 ? V3an 3 an (©)



where e, and e, are in-plane Cartesian unit vectors and a,s is the moiré period. The complex number Z characterizes
this potential, with its argument determining the profile, e.g., extremum, of A(r) (while |Z| only controls the depth).
In particular, local minima of A(r), R, appear as superlattice translations of:

f%ey, if 0° < arg(Z) < 120°
0, if 120° < arg(Z) < 240° » C R. (7)
ey, i 240° < arg(Z) < 360°

Note that when arg(Z) is an integer multiple of 120° the corresponding superlattice is hexagonal rather than triangular.
We do not focus on those values in this work.

Next, we elaborate on expansion of A(r) near R to quadratic order of a&l(r — R). This treatment is legitimate
within the large-ays approximation, which assumes ming |r — R| < ays for all positions 7 of interest and yields:

A" 1672 _ 2 if0° < arg(Z) < 120°
A(r)|per ~ A(R) + —=—(r — R)?, A’ =——2"Re(Ze""), 9=10, i£120° < arg(Z) < 240° . (8)

2
M —2nif 240° < arg(Z) < 360°

In addition, the quadratic expansion on moiré potential simplifies the two-body SE Eq. (5). Performing the following
Fourier transformation into the supersite representation (with N denoting the total number of supersites):

bnqrerrs) = Tlﬁ SRR, p(re,r), (9)
R

and assuming the orbitals W, r(r¢,7,) are local (i.e., |W, r(r.,r,)| is negligible at |r. — R| and |r, — R| greater
than aps), we find:

RVZ RPVZ A o2
- < — = 5 c R 2 v R 2 - - En n ey Tw) = 1
o It [(re — R)? + (r, — R)?] P W g(re,m) ~0,  (10)

where the large-aj; approximation suppresses the total momentum dependence of E, g — FE, (shifted such that
2A(R) is aborbed). We will perform perturbation analysis on this equation in Section V.

III. DETAILS ON MANY-BODY FORMULATION OF EXCITONS

In this section, we elaborate on the derivation for exciton commutation relation, its emergent boson, and the effective
Hamiltonian from the microscopic electron-hole model. We focus on the lowest exciton %, g with the definition
reproduced below:

il = [ drdrown(re ) (r)ilr.). (11)

where wgr(re,my) = Wo,r(r¢, 7). More specifically, we aim at a many-body formulation for excitons within the
following subspace [7]:

yriR

V = Span H m|vac>, Wrr € {012, p, OV = (vac|(irr)" (@], )" lvac). (12)

T7

For this purpose, a systematic approach to project a generic operator in terms of fermions, denoted as O(é, 0), into
V is required. Direct implementation of such projection might be complicated as it involves high-order expectation
values such as <Vac|iZ:R0(é, @)ii';R|Vac>.

We can proceed with an alternative approach, which utilizes the fact that @(:2), an operator in terms of excitons,
faithfully represents O(é, 0) in V if the following relation holds:

0(2), 31 5] = [0(6,0), 3 glv,  O(#)|vac) = O(¢,9)[vac) = Olvac), (13)
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FIG. 1. Mutual exchange integral A%z r between the lowest and higher orbitals on the same site. The parameters used for the
three materials are elaborated in Section IV C.

where projection of the commutator into V is indicated by the subscript and O is the eigenvalue of both @(5:) and

O(¢, 0) for vacuum state. We illustrate the above statement with the following example:
v—1
(vac|, gO(é,0)& 1 glvac) = Y " (vac|#¥ g lig0(¢, ), &1 )t P vac) + O(vac|#¥, g2 1" plvac), (14)
k=0

suggesting the expectation value on the left-hand side be uniquely determined by [O(é, 0), i:i; rlv and O. Therefore,
@(fc) is an equivalent representation of O(é, 0) if it reproduces these quantities. In principle, one can construct @(:T:)
from [O(é,ﬁ),a%i; g} (together with O) if this commutator has a simple expression in terms of 50; r and Z-,r (while

O(é, 0) itself may not be as simple). In the following sections, we will utilize this method to derive the exciton
commutation relations and Hamiltonian.

A. The large moiré period limit

We begin with a superlattice in the large-ay; limit for its simplicity in analytics. More specifically, negligible
overlapping between off-site Wannier orbitals would lead to commuting excitons at different sites and suppressed
tunneling. Thus, the many-body problem of excitons reduces to evaluating on-site statistics and Hamiltonian, which
we discuss in the following.

1. On-site exciton commutator and the effective boson representation
In this section, we aim at an equivalent representation of:
b= b ] 19
in V utilizing the approach discussed above, which requires (§,,r — 1)|vac) = 0 and the knowledge of [§:.r, ‘%1; r)- The

former follows from direct computation in the fermion basis and always holds regardless of exciton statistics, and the
latter is evaluated (again in the fermion basis) as:

[?JT;RaQE:;R] =2 Z AYIL{,R’XI;H,R” (16)
n,R’

where A% g/ is the exchange integral generalized to involve higher orbitals:

App = /drcdrvdT’cdr;W;,R,(rc,r’v)wR(rc,rv)wR(ré,r;)w}}(ré,rv), (17)



and excited states at internal state n are described by the following exciton operator:
Xi nR = /chdrUWmR(rc,rv)éi(rc)@i(rv). (18)

Note that CCT R = XT o.r- For simplicity, we assume A = A% R.r to dominate over all other A, g, with R # R’ or
n # 0. The former is consistent with the large-a s approximation, and the latter is justified in Flg 1. Dropping minor
corrections, we find:

[irir, &1 gly ~ —2A31 g, (19)

T

which, together with Eq. (15), become commutation relations for angular momentum operators (Sj R,S; R,Sj; R)

{SjR,S ] — 28 {S;E;R,S;R} ~ 8 (20)
provided the following scaling:
irr=VAS p il p=VASh, Gnr=2ASip (21)

Combining the above relations, Sj rlvac) =0, and S?, .rlvac) = (2A)~!|vac), we find the excitons behaving as spin-
(2A)~1! operators. Note that (2A)~! does not have to be multiple of % because these fictitious spins are not generators
of rotations.

Finally, the similarity between exciton and angular momentum operators suggests the following Holstein-Primakoff
(HP) transformation for these composite particles:

. 1—2Aa! parg
rr~ 0(1 — Adl parp)\/1 — Aal parg arp. Sip=0(1- AaL;RaT;R)Q—XRT, (22)

with the emergent bosonic operators a,.r and &1; r- Note that the step function 6(1 — A&I; RrOr;r) is implemented

because (&, Rﬁci; r) > 0 for any state, giving an occupancy bound.

2. On-site exciton Hamiltonian below occupancy bound

We proceed to derive the equivalent description of H,, in V, f[eff, in the large-ap; limit utilizing the aforemen-
tioned approach. Before proceeding, we note that the negligence of higher excitons in this derivation is strictly valid
only when all E,o — Ey are higher than the interaction energy between excitons (which we later denote as U). A
faithful comparison between these scales requires further numerical calculation to capture the exciton spectrum and
eigenfunctions more accurately, which is beyond the scope of this work as we make several assumptions, such as
A (r) = A,(r). However, experiments have already demonstrated this separation of scales in some TMD bilayers,
such as R-stacked WSey/WSs [8], and we are therefore comfortable making this approximation here.

The method mentioned above requires ﬁeh|vac> =0 and:

[Heh7 jj’,R] ~ EO'%I;R - Z tR’,R:i'j—;R/ + FT;R7 (23)
R'#R

where we dropped higher orbitals as in section IIT A 1. The first term captures the single exciton occupation energy:

2

. . e
Ey = | dridroywg(re,vy) |he(re) + hy(ry) — WRr(re, Ty). 24
o=/ i >[ (1) () = e L wn(resm) (24)

The second term contains the hopping integral for the lowest exciton:
~ ~ 62

trr=— [ dredrywi (T, my) | he(re) + hy(ry) — WR(Te, To)- 25
rn = [ drdriy (e ) ot +hutro) = — e wnr ) (25)




We drop tg/ g in this section (and discuss this term in section IIIB) because it involves overlap between off-site
orbitals and thus are negligible in the large-ay; limit. The last term results from the Coulomb interaction [9]:

FT;R = /drcdrva(rc,rv)éi(rc)zﬁ( )/dr [U(re, 131, 00)pe(r) + U(Te, 7500, 7) P (T)] (26)
e? 1 1 1 1

¢y T ) - - 27

Utre,r T'C 7“1)) |:|7'p’r’| 7y — 7] |re — 7, +d. e7| Ty — 7.+ d.e.] (27)

whose equivalent representation in ) is not straightforward. Thus, we obtain such description by repeating the
aforementioned procedure, which requires [F, R,i’i,; gl (and Fr.g|vac) = 0). In the large-aps limit, this commutator
becomes:

o I¢—1¢ 4
[F‘I‘;R7 xi/;R]V =~ 57’,7” 1_ A :Ei?R + (]- - 57,7/)Idxi;inT;R7 (28)

where 1% and I¢ are the direct and exchange Coulomb integrals:

= /drcdrvdrédr;u(rc,rv,rc,rv) |wR(rc,rv)wR(rC,rv)|2 (29)

I° = /drcdrvdrédrgw}}(rc,r;)wR(rmrv)U(rc,'rv,rc,ry)wR(rc,rv)w}'}(ré,rv). (30)
With these expressions, we find the equivalent representation of FT; R InV as:

. If—1° (1 1
_ AT e A d -~ _ &z
FT;R|V_xT;R|: 1—A <2A TR) +I (2A S >:|7 (31)

which directly yields the effective Hamiltonian in the large-ay; limit:

2 2 'rT’ 52 1 . Id —I¢
Hch|v = Her ~ —Ep Z ~RT Z < ST;R) <2A - T/;R) ’ UT,T = 1—A° UT,—T =1 (32)
R,T

R,T, 7'

This Hamiltonian can be further simplified by considering approximations on I¢, which becomes the following expres-
sion utilizing the completeness relation of the Wannier orbitals:

¢ — Z(AZ’)* /drcdmd”’ dro Wy g(Te, o) WR(Te, T )U(Te, Tos T, 7 )wR (T, T )W g (T, T), (33)

where Aﬁ/ is the exchange integral between different on-site orbitals:
Al = /drcdrvdrédr;W;,R(rc, T WR(Te, Ty )WR (T, 7 )W g(Te,T0). (34)

Similar to the derivation in section IITA 1, we assume A = A) dominating over all other Aﬁl, yielding:
I° ~ AT, (35)

which is benchmarked for different materials and twisting angles in Fig. 2. We find Eq. (35) a good approximation for
MoSes /WSes and WSes /MoSs, but rather fragile for WSeo /WS,. This observation is consistent with Fig. 1, suggesting
|A%| with n # 0 is generally more significant for such a material. With Eq. (35), we obtain U, , ~ ¢ = U and:

Z Z U
eﬁ‘ — 750 SZR + - SZ ‘R Z/;R, 50 - E() + A, (36)
R,T, T’

up to a constant shift.



Twisting angle Twisting angle Twisting angle

3° 1° 2° 1 0° 2° 0°
“ '(a) MoSe, /WSey! (b) WSey /WS, 1 [ (c) WSey/MoS,
e 41 i ; i i
E R i !
= : Ry i ! L
g 21 : : i
= G . | '“ﬂﬂﬂlﬂﬂﬂnmu“
g . Ry . :::::n:::::n::nmi
O 7 91113151719 6 7 86 7 8
aps(nm) ap/(nm) aps(nm)

erhz

2 . .
I = MMy ig the reduced mass and ag = A the

2‘“7‘28 (‘u T ometmy
Bohr radius) for three bilayers. The parameters used are elaborated in Section IV C.

FIG. 2. Coulomb integrals in units of Rydberg constant Ry =

Finally, utilizing the HP representation Eq. (22), we find the following expression for the large-ay; effective Hamil-
tonian:

N R . U . R A R
Heg ~ Ey Z a:;RaT;R + Z §ai;Rail;RaT,;Ra/T;R7 (37)
R,T R,T, 7’

provided that exciton occupancy at each (R, 7) does not exceed A~!. Notably, the angular momentum algebra of
exciton operators, which possess limited Hilbert space, leads to a (vmax + 1)-body interaction (Vmay is the number of
eigenstates of Sf gr)- Besides this contribution, there is only two-body interaction in H_.g. This term microscopically
originates from the Coulomb interaction Eq. (2), which is two-body in terms of charges and therefore contributes only
to two-body interactions between electron-hole pairs.

Finally, while Eq. (22) leads to C*) ~ (1 — A(v — 1))1/! H;’;&(l — Aj), indicating that putting excitons into the
system becomes more difficult as v gets closer to vyax, phase space filling does not play a significant role in the energy
penalty of adding one extra boson. This is because the interaction energy of a many body state at a specific (R, 7),
denoted as |¥), only cares about the number of electron-hole pairs in the system, counted as (lI/|di; rirr|Y). In

contrast, the probability of adding an extra exciton is measured by <\I/|£I ri~R|Y).

B. Beyond the large moiré period limit: Exciton tunneling

In this section, we incorporate tunneling term H, as a correction to the effective exciton Hamiltonian ﬁcﬁ, which
requires a finite aps. This situation is nevertheless complicated because (strictly speaking) excitons at different sites
would not commute. To make analytical progress, we will still assume commuting off-site excitons and derive fIt,
which satisfies:

[Hy, il gl == Y troril g, (38)
R'#R

which directly implies [ﬁt, >R ii: rErr] = 0. This condition divides all tunneling processes into two categories based
on whether they conserve ) p ii RrrR, Or equivalently > p Aj; R(Sj; r+1). To be more specific, we consider hopping
of a T-valley exciton from site R to R', which couples |v,v")r r/;r and |v — 1,0/ + 1)g r'.. These states and the
corresponding tunneling matrix element are defined as:

/ _ (il;R)V(i‘l;R’)ul Ry —v/+1 _ 1,V +1|H !
e = R o), I = L (39)

with |®) being a state containing generic excitons at sites and valleys other than (R,7) and (R',7). From these
expressions, we find that the processes with v' = v — 1 conserves »_ p 87 g(SZ.z + 1), while the others do not.



Tunneling matrix elements of the former category follow directly from Eq. (38) as

Ta 5 = —vtr r, (40)

which can be captured by the following tunneling Hamiltonian in the emergent boson representation:

Hy=- > trp.rilgir (41)
,R#R/
We nevertheless note that Eq. (41) is insufficient to capture Tg VoV With o # v — 1. More specifically, the

v—r—1
description of these processes is beyond the assumption of commutmg off-site excitons (and hence the emergent boson
representation), which leads to a contradiction: [Ht, ERJ) R r] = 0 implies Tr. V:;“&“ ~ Oy
with v/ # v — 1 are generally non-zero according to direct computation within the charge basis. This indicates
the necessity of off-site exciton commutators (which are beyond the scope of this work) to capture these tunneling
processes.

Such complexity can nonetheless be neglected in the presence of a large on-site repulswn U > |TR VV e +1| which

v v—1, but the ones

—v—1
provides a significant energy separation ~ (v — v/ — 1)U between |v,V') g, RYir and v — 1,V +1)gp r.r with v/ # v —1.
Thus, although the tunneling process between them is captured by 7'1? V’:jylﬂ ~ tr/ R, they only contribute as a

second order perturbation ~ t%, p/U at low energy (close to that of initial state) [10]. With this consideration, we
can neglect the tunnelings with 1/ # v —1 and focus on the ones with v/ = v —1 provided U > |tg gr/|, which suggests
the validity of the following model in this regime:

U
Heg —EOZGT ROmR —1 Z TR’aTR+a RlrR) + Z 56‘1 RaT'RaT ;ROT;R, (42)
(R',R R,T,7’

where we include only the nearest-neighbor hopping ¢ among all tg r/. We note that all these energy scales in He.g
could vary with different bilayers and twisting angles because they are integrals involving Wannier orbitals.

Finally, we note that H.g generally possesses a rather complicated expression in terms of emergent spins when the
hopping term is incorporated, which can nevertheless be simplified under various conditions. For instance, in the
dilute limit where occupancy of emergent bosons per (R, 7) is at most one (or equivalently, the expectation value of
Sf;R is close to 5% ), the HP transformation becomes a ;g =~ \/KS;F;R such that:

_&)Z R+— N SRSt —th Y (S pSiptHe). (43)
R,T, T/ (R',R)

Another simphﬁcatlon can be achieved near A ~ 0, where the large-spin expansion for the HP representation gives
irr~ (5 - 582 R)fS+R such that:

A 5 Aa ) a
>~ —EOZ R+ e Z RS /R—tA Z |: R < QST;R’> <4 - 2ST;R) S::R—FHC:| . (44)
R,T, T’

Note that Eq. (43) is recovered by replacing S:'f;R and Sf;R, with ﬁ in the above expression.

IV. NUMERICAL DETAILS
A. Eigenfunctions of the two-body Schroedinger equation

We start by rewriting the two-body Schroedinger equation in center-of-mass (COM) and relative coordinates (which
we denote as 7, = ﬁ(mcrC + myTy) and 7, = 7. — 7, respectively, with total mass M = m. + m,):

h2V3,m hQV% K2
2M 2p papy/rTi + d?
where p = ™<7 is the reduced mass, ap = 6/;522 is the Bohr radius, an,Q(Tzv 1) = ¢ (¢, Ty), and the total moiré
potential is just the sum of the two:

+ A(rra Irl) - En,Q J)n,Q(rxa rl) = 07 (45)

Arg,r) = Ac(re) + Ay(1y). (46)



We now show how we solve this equation numerically with the spectral method.

The exciton wavefunction is periodic in 7, so we use Bloch’s theorem, ¢, q(7s, 7)) = 9" u, g(r;,r), where
Un,@(Tg, ™) has the periodicity of the triangular lattice in 7,. Therefore, we consider only one primitive unit cell as
the domain of 7., which is a parallelogram. For r;, we choose another domain, which we take to be a square with
size a;. Furthermore, since for any finite ap the exciton wavefunction decays exponentially in |r;|/ap, if we take a
large enough a;, the wavefunction at the boundary of the domain will vanish, and we can take the wavefunction to
be periodic with the periodicity of the domain (a; ~ 5ap is large enough for the parameters we run, while arbitrarily
accurate results can always be obtained by approaching the limit of a;/ap — o0). This allows us to use a Fourier
decomposition in r; as well.

The new SE for a given @ is now given by:

—h*(V,, +iQ)?> h*V} K2 A
z - - + A(re, )| Un.o(re, ) = En.QUn.o(Te, 7). 47
i % pap /i T & (T2, 71) | Un,@(Tz,71) Q Un,Q (T2, 71) (47)

The wavefunction’s periodicity is given by:

Un,@(Te + aner, r) = Uun,g(Ts + anmer, 1) = Un (72, 71),

48
Un,Q(Ta, Tt + Wey) = Un Q(Ta; 11 + A1€y) = Un,Q(T2,T1), s

where e; = e, ey = %ez + ?ey are the two primitive translation vectors for the COM coordinate on the triangular

lattice. These periodicities allow us to define the wavefunctions in the Fourier basis a( k?zn (in terms of four integer

variables j, k,[,m) from Bloch functions u, q(rs,7;) via:

(oo}

Z a(%Q) ei(leJrng)-rz6277(17“1@4-””7,11)7 (49)

Up, (T, 1) = Jik,lm

7,k,l,m=—o0
where we express r; = 1y z€5 + 1 y€y.
Now we turn to evaluate the matrix elements of the Hamiltonian operator in Eq. (47) in the Fourier basis, starting
with the moiré potential:

dry dry ,dry, i ri o+ (m—m')r
A( i k1 m), (G, kL) = / q / / ) MA(T ,r1)e i[(—5")Gr+(k—=k") G2l -y , 3 (=104 b Iy}’ (50)
Qu SiM a

where Q) = @cﬁw, Q = a} are the unit cell volumes. Evaluating the integrals, we find:
3
A 1 m?), Gk lim) = Z Z Z A(B D) (= 1) iarg(2) [(1 - 55,251,1/)77[]\,1,1/((?5,9;) + 05,2001 77(}\,,11,,,1/(6'5,?,)7 (51)
=1g=0 A=c,v
where:
ALY = 84.0185,10;, 1080 + 05,205,000k, —1 + 05.381.10k,1] + 4.1 [08,10,10%.0 + 85,2000k + 05307 —10%,-1] . (52)
(1)t sin(mgp ) (-1t sin(rgf ) ~ ay o~ -
¢ = v = Gg=Gs— =Gg e, +G . (53
nq,l(x) = (_1)ql+%ﬁx7 nq,l(x) T (= )q+ll+ me a0 B Bor gu€r + Gpyey. (53)

an

Importantly, the matrix A(j/’k/,l/,m/)’(j’k’l’m) is 4d Toeplitz and can be fast multiplied via a 4d FFT. Next, we compute
the matrix elements for the Coulomb potential term in Eq. (47), which becomes:

. 225, g [F B cos(2m[(l =V )rl o+ (m—mr))
UG v it om),Gikdym) = —————— dry . dryy :
it Yo

These integrals can now be computed numerically. To simplify matters, we note that they are symmetric under both
-1 = —l+1"and m —m' — —m + m/. Finally, the matrix elements of the kinetic terms are:

R2(Ve, + Q)% kv m)(Gobeom) D285 1000 k00 10 | (2 22 2k °
PV, +9Q) )G Gokitm) BP0 0k 00 10, <7T]+Qr) +<’/T(j+)+Qy) . (55)

(54)

[N

2M 2M am V3 V3

e N Y RSV T N A (277) ) (56)

2 2u a



We note that @ lives in the BZ of the triangular lattice, which is a hexagon, and therefore Q, € (—22% 227) apd

Q, € (—Lz2n 1 2m)
Y V3anm’ \/3an’®

Putting everything together, the SE now becomes a matrix equation. We now truncate the sums over j, k,l, m to
Nx for j, k and N; for [, m:

Nx N 2/ .\ 2 2v72
W (Ve, +iQ)°  WVE, o A (n.Q) (n.Q)
Z Z a oM o 24 —U+A Ak tm) = QA kr 1 mry (57)
Jk=—Nx l,m=—N, (7K1 m?),(5,k,1m)
The problem is now reduced to an eigenvalue problem with a finite 4d Toeplitz matrix. This is solved using the
LOBPCG algorithm, running on a GPU, and matrix-vector multiplication being done with FFTs. We increase
Ny, N; until we see convergence and find that Nx = N; = 20 is large enough in all the parameter regimes we study.

B. Wannier orbitals and the resulting integrals

The Wannier orbitals are FT of the Bloch wavefunctions:

1 )
Wn,R(rca rv) = ﬁ Z elQ'(rliR)un,Q (Tx; 7‘1), (58)
Q

with u,,q(ry, 7) given by Eq. (49) together with the solution of Eq. (57). N denotes the number of moiré sites (note
the difference from Nx and N;).

First, we note that the phase of u, g(r,, ) is arbitrary and cannot be determined by the two-body Schroedinger
equation. Moreover, a generic choice of the phase would not give localized orbitals near R as it affects the Q
summation. To address this issue, we assume that the Wannier orbitals are concentrated within a moiré unit cell (or
alternatively, corrections to the orbitals from inter-site tunneling are negligible due to the flat exciton moiré bands),
which is consistent with the large-ay; approximation utilized in our analytics. This approximation leads the inverse
of Eq. (58) to:

e QT g(re, ) = \/%elQ'RWmR(rC, ry), Vir.— R| |r, — R| < ayr, (59)
which gives Wannier orbitals that are independent of phase of w, q(rs, ;). If the approximation is valid, orbitals
obtained from distinct @ should only differ by a phase. We confirm this by computing the orbitals from a set of Q
and checking their overlap within a moiré unit cell.

With such a way to obtain the Wannier orbitals, we sample the following set of discretized r. and 7, to compute
integrals such as A:

ans
Te, Ty € {

2Ny +1 2 2

3
(Xl + &> e, + fX?6?;| ‘ le,Q S {7NX5 7NX + 17"'7NX - 17NX}} . (60)

It is rather complicated to calculate A with a collection of 7, and 7r;, because the notion of CM and relative coordinates
are messed up after charge exchange. Nevertheless, it is {r,,r;} that yields directly as the reciprocal lattice of the
momentum set used in the previous section, and that normalization of the orbitals is guaranteed only with such a set
of r; and ;. Owing to this issue, we normalize the wavefunctions afterward such that summation of |W,, r(r., r,)|?
over {r.,r,} equals one before computing the integrals.

C. Parameters

For MoSes/WSey, we set the charge masses as (me, m,) = (0.49,0.35)mg [11] with mg being free electron mass,
the Bohr radius ap = 1Inm, and moiré potential parameters arg(Z) = m and 2|Z| = 18meV [12]. For WSey/WSs, we
use (me,my) = (0.33,0.3)mq [13], ap = 2nm [8], and arg(Z) = 2 [14]. For WSes/MoSs, (mc, m,) = (0.7,0.42)my,
ap = 2nm [15], and arg(Z) = 220° [14].

For the last two materials, we estimate |Z| from the exciton Wannier orbital size afj,, as they are provided in the
literature — af;, = 2.8nm for WSey /WS, with ap; = 8nm [8] and af}, = 0.9nm for WSey/MoSs with aps = 6nm [15].
afy and |Z| ~ |A”| are (approximately) related as:

h2 1/4
ajy = /drcdrv\wR(rc,rv)P(rw —R)? >~ (WA”) , (61)
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which originates from approximating A.(r.) + A, (r,) following Eq. (8) and dropping all 7;-dependent terms therein
for simplicity.

V. PERTURBATION APPROACHES FOR EIGENVALUE EQUATION OF MOIRE EXCITON

In this section, we will discuss perturbation schemes within the large-ay; limit, which simplifies the two-body SE
to Eq. (10). We will explore different approximations to this equation under the strong Coulomb and deep moiré
regimes. In the strong Coulomb limit, the relative motion of an exciton depends mainly on Coulomb attraction rather
than moiré potential, whereas the opposite scenario occurs in the deep moiré regime. In the following sections, we
will elaborate on these two situations but restrict our analysis to d, = 0 for simplicity.

A. Strong Coulomb regime

We start by expressing the approximated two-body SE as:

v n*v3 h? ;
_ QMT —+ A”(T‘w — R)Q — Tl — M + 5h%c(rw, ’I"l) — En Wn7R(Tc7 TU) ~ O7 (62)

with the coupling between COM and relative degrees of freedom treated as perturbation:

mg + mg
S N (63)

ShEC = %A”(rz ~R)-r +

Exciton wavefunctions to generic order correction follow directly from standard perturbation theory. Here we consider
only the unperturbed states (as they already contain electron-hole correlation). The lowest orbital is then:

2v/2 . —R)? 2
wR(TCa TU) = f exXp |:_(TQ) - ﬂ 9 (64)
Tapafy, 2(a¥y,) ap
which gives the length scales:
/dr dro[wp (e, 7o) [2r? = 2B /dr dr o wr(re, o) 2(rs — R)? = (afy)? = —— (65)
c v cytv l 8 ) c v cy v xT w \/W

~ 2 2
Accordingly, the two terms in 5hf{0 scale as ~ %‘%f)a and ~ I\f(ai%f)“’ respectively, which are required to be smaller

Thus, together with the large-ap; assumption, we find that this perturbation

than the Coulomb binding ~ T
B
scheme is valid when ap < ajy, < apr.

B. Deep moiré regime

In the deep moiré regime, we treat the Coulomb interaction in Eq. (10) as a perturbation. Accordingly, the zeroth
order wavefunction is the product state of 2-dimensional harmonic oscillators from the two charges. The lowest
unperturbed orbital is then:

.—R)? w—R)?
exp |:7 (;‘(agv))z - (g(a"jv))z :| ¢ h2 1/4 v hz 1/4
wR{Te Po) = oy o= Gpar) W= nar) (66)

which gives the following length scales:

m2(afy)? + m3(afy )
M2

/ drodrowp (e, mo) 1 = (afy)? + (aly )2, (afy)? = / dredry [wr(re, 7)) 2(re — R)? = . (67)

telling that af, is comparable to afy, and af), (for comparable charge masses) and that the relative separation does
not scale with ap (unlike in the Strong Coulomb case).
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Such a zeroth order wavefunction is insufficient to describe an exciton because it lacks electron-hole correlation.
Thus, we seek for the wavefunction to first order correction:

Ty

wR(Te,Ty) = \ﬁ D M one (€) @y (Ye) Pns (€0)Pny (o), Te = Te€s + Yely, Ty = Ty€s + Yoey, (68)

N,y

where n. = (n¥,n¥) and n, = (n¥,n¥) are non-negative integers labeling the harmonic ladders. ¢, (x) are eigenfunc-

v

tions of one-dimensional harmonic oscillator with energy ladders labeled by n. N'=3"_  “|y7v|" is the normalization
constant with:
1, ifn.,n, =0, h h
Yny = { Vaiin, 1 y W = ma(as, )2 Wy = (@l )2’ (69)
hlwe (nZ+nd) 4w, (nE+ni)]’ e e\vrw 4

where V,? On are matrix elements of the Coulomb attraction in the 2-dimensional harmonic ladder basis. Following

standard procedure [16], we obtain the expression below when n? + n¥ and n¥ + n¥ are both even numbers:

orn Rezhy c v ctng+l etng+l
0,0 — _h2 2m (_1) 2 (a'%/V)n (ailjv)n F(n ;L )1—\(” ;L )F (nt2+1) (70)
e mhas /nzndnzndl [(ag,)? + (ab, )] 2 (% +1) ’
and V,: On’ = 0 otherwise. We denote the total level for each respective charge as n. = n? +n¥ and n, = nf +n¥, and

define n; = Ne+ny. T'(2) is the gamma function. Assuming afy, ~ aj}, and me >~ m,, these expressions 1mp1y that the
first order corrections scale with ~ afj,/ap. Together with the large-ap; assumption, we find that this perturbation
theory is valid when ajj, < ap < ap.
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