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An interesting problem in the field of quantum error correction involves finding a physical system that
hosts a “passively protected quantum memory,” defined as an encoded qubit coupled to an environment that
naturally wants to correct errors. To date, a quantum memory stable against finite-temperature effects is
known only in four spatial dimensions or higher. Here, we take a different approach to realize a stable
quantum memory by relying on a driven-dissipative environment. We propose a new model, the photonic-
Ising model, which appears to passively correct against both bit-flip and phase-flip errors in two
dimensions: a square lattice composed of photonic “cat qubits” coupled via dissipative terms which tend to
fix errors locally. Inspired by the presence of two distinct Z2-symmetry-broken phases, our scheme relies
on Ising-like dissipators to protect against bit flips and on a driven-dissipative photonic environment to
protect against phase flips. We also discuss possible ways to realize the photonic-Ising model.
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Quantum error correction remains one of the biggest
challenges toward building a practical quantum computer
[1,2]. One of the leading candidates for realizing fault
tolerance is the family of quantum stabilizer codes [3],
including the surface code [4–6] and the Gottesman-
Kitaev-Preskill code [7]. These error-correcting schemes
are based on fast error recovery controlled by the feedback
from repetitive syndrome measurements.
A prominent alternative is the finite-temperature quan-

tum memory: Certain thermal environments naturally
evolve arbitrary initial states into a qubit subspace of
interest at low temperature, thus eliminating the need for
active measurements and correcting operations. Many
recent studies have investigated thermal self-correcting
properties [6,8–20]. To date, the only known models that
host a passive quantum memory via this mechanism are
topological codes in four dimensions (4D) and higher, e.g.,
the 4D toric code [6,19].
A separate line of research aims to uncover a passively

protected quantum memory via engineered “driven-dissi-
pative” systems [21–41]. Such passive protection includes
but is not limited to the finite-temperature case, since a
thermal-equilibrium steady state is not required. The
memory is dynamically protected against certain noise
channels by (local) Markovian dissipation. This has led to a
number of new ideas for passive error correction, such as
the autonomously corrected cat qubit [42,43] and the
dissipative Toom’s rule [6,28,44]. Unfortunately, none of
these models can protect a quantum memory for an
exponentially long time as a function of the system size
(in less than four dimensions).

In this work, we study a model with engineered
dissipation which appears to protect against both bit flips
and phase flips and lives in two spatial dimensions. Instead
of relying on topological order, we suggest that the model
should belong to a phase that spontaneously breaks two
different Z2 symmetries. Each Z2-symmetry-broken phase
protects a “classical bit,” which together form a robust
qubit. The proposed model provides an example of a robust
quantum memory which, at low temperature, can be
exponentially long-lived in system size parameters, albeit
with challenging physical requirements.
Quantum memory.—Consider a Hilbert space H, and

define two encoded, logical states j0̄i; j1̄i∈H that span the
code space C. We assume the system is always initialized in
the code space: ρi ¼ jψihψ j, where jψi∈ C.
A local continuous-time Markovian generator L in

Lindblad form is defined by

dρ
dt

¼ LðρÞ ¼ −i½H; ρ� þ
X
j

�
LjρL

†
j −

1

2
fL†

jLj; ρg
�
; ð1Þ

where H is the Hamiltonian of the system and Lj are local
dissipators which arise due to the system-environment
coupling [45]. We consider a dynamical process that can
be decomposed into two parts, an “error” generator and a
“recovery” generator: L ¼ Le þ Lr. The error generator
describes the main channels of physical noise which move
the initial state out of the code space. The recovery
generator stabilizes the code space: LrðρiÞ ¼ 0; i.e., any
state in the code space is a steady state of the recovery. We
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allow for this noisy process to occur for a time t, which
generically sends ρi to a mixed state ρmðtÞ ¼ eLtðρiÞ.
Finally, we employ a “single-shot” decoding quantum

channel Er which sends every state in the Hilbert space
back to the code space [46]. The final state is

ρfðtÞ ¼ EreLtðρiÞ: ð2Þ

We wish to find systems where the difference between
the initial and final states is exponentially small in the
system size:

1 − Tr½ρiρfðtÞ� ¼ Oðe−γMÞ as M → ∞; ð3Þ

where γ > 0 is a time-independent constant and M is some
system size parameter. A system described by L hosts a
passively protected quantum memory for any finite time t if
Eq. (3) holds as the thermodynamic limit is approached.
The bit-flip and phase-flip errors of a two-level system

are generated via the Pauli operators X and Z, respectively.
A good quantum memory should, thus, protect against both
sources of noise. Recent work [20,40] has described the
connection between Z2 symmetry breaking and error
correction: A symmetry-broken phase protects quantum
information against X or Z errors but not both. This leads to
a protected classical bit, which can be viewed as a quantum
bit experiencing biased noise [47].
In this work, we attempt to glue two different classical

bits together to form a robust qubit. Our strategy involves
studying a system that passively corrects against bit flips
due to Ising-like dissipators which tend to align qubits
locally. Furthermore, phase flips will passively correct due
to driven-dissipative stabilization of the photonic cat code.
We begin by describing spontaneous symmetry breaking in
the cat code and in the Ising model separately. We then
describe a model which inherits both protecting features.
Photonic cat code.—Let us briefly review Z2 sponta-

neous symmetry breaking in the photonic cat code [29,48].
(For a detailed analysis, we refer to Ref. [40].) Consider a
driven-dissipative photonic cavity in the presence of two-
photon drive and two-photon loss. The rotating-frame
Hamiltonian and dissipator read H ¼ λ

�
a2 þ ða†Þ2� and

L2 ¼ ffiffiffiffiffi
κ2

p
a2, respectively. Here, a is the annihilation

operator for a cavity photon, λ is the drive strength, and
κ2 is the two-photon loss rate. While the model has Z2

symmetry ½H;Q� ¼ ½L2; Q� ¼ 0 generated by parity
Q ¼ eiπa

†a, the steady state can violate this symmetry:

ρss ¼ jψihψ j; jψi ¼ c0jαei þ c1jαoi; ð4Þ

for jc0j2þjc1j2¼1, where jαei ∼ jαi þ j − αi, jαoi ∼ jαi−
j − αi, and jαi is a coherent state with amplitude α ¼
e−iπ=4

ffiffiffiffi
N

p
and N ≡ λ=κ2 photons. The even and odd cat

states jαe=oi represent logical 0 and 1, respectively.

The cat code is protected against phase-flip errors
generated by photon dephasing Ld ¼ ffiffiffiffiffi

κd
p

a†a. Indeed,
the phase-flip logical error rate scales as e−γN , where γ

is a constant [29]. The symmetry-broken states j � αi ≈
ðjαei � jαoiÞ=

ffiffiffi
2

p
have an exponentially long lifetime in

the limit of large N, ensuring that logical phase flips are
unlikely.
The dominant decoherence mechanism for the cat qubit

stems from the bit flip, generated via single-photon loss
L1 ¼ ffiffiffiffiffi

κ1
p

a: ajαe=oi ∼ jαo=ei, which reduces the qubit
steady state structure to a classical bit: ρss ≈ cj þ αihþαjþ
ð1 − cÞj − αih−αj, c∈ ½0; 1� [40]. More generally, pertur-
bations that commute with photon parity (e.g., ½Ld;Q� ¼ 0)
are expected to be passively corrected, while terms which
explicitly break the symmetry (e.g., fL1; Qg ¼ 0) are not.
2D Ising model.—We now turn our attention to a system

that has the opposite problem: Z2 symmetry breaking will
protect against bit flips but not phase flips. We consider the
2D Ising model on an M ×M square lattice with periodic
boundary conditions. The Hamiltonian reads

His ¼ −
XM
x;y¼1

ðZx;yZxþ1;y þ Zx;yZx;yþ1Þ; ð5Þ

where Zx;y is the Z Pauli operator on site ðx; yÞ. The
ferromagnetic states are the ground states of this model and
span the code space: j0̄i≡ j↓↓↓…i; j1̄i≡ j↑↑↑…i, with
Zj↓i ¼ j↓i and Zj↑i ¼ −j↑i.
We define local dissipators that describe the thermal-

ization of the Ising Hamiltonian. (For simplicity, we set the
Hamiltonian in the master equation to zero.) Consider
dissipators that are a product of a spin flip (X) with a
projector onto a particular domain-wall configuration.
These jumps will cause a spin to flip sign according to a
local “majority rule,” i.e., only if more than two of the
neighboring spins are misaligned. Specifically,

Lð4Þ
x;y ¼

ffiffiffi
κ

p
Xx;yP−

x;y;→P−
x;y;↑P

−
x−1;y;→P

−
x;y−1;↑;

Lð3Þ
x;y ¼

ffiffiffĩ
κ

p
Xx;yPþ

x;y;→P−
x;y;↑P

−
x−1;y;→P

−
x;y−1;↑; ð6Þ

where κ̃¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔκþΔ2

p
−Δ and P�

x;y;→¼ð1�Zx;yZxþ1;yÞ=2
and P�

x;y;↑ ¼ ð1� Zx;yZx;yþ1Þ=2 are projectors onto par-
ticular local configurations of spins. The superscripts
indicate the number of domain walls which the projector
is checking for, and we neglect to write jumps related by
rotational invariance (i.e., there are four different Lð3Þ
operators per site) [49]. We also consider an error process
in the form of a uniform bit flip rate on each lattice
site: L0

x;y ¼
ffiffiffiffi
Δ

p
Xx;y.

We have chosen our dissipators above such that the
steady state of the model is the thermal state of the 2D
classical Ising model:
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ρss ¼
e−βHis

Tr½e−βHis � ; β ¼ 1

8
ln

�
κ þ Δ
Δ

�
; ð7Þ

with the effective temperature set by the relative ratio of the
correction rate to the bit-flip rate. Within the quantum jump
picture [50,51], the rates of transitioning between different
classical configurations respect detailed balance. (See,
e.g., Fig. 1.)
While the thermal state (7) is always a steady state of the

model, it is not unique. All dissipators commute with the
parity operator Q ¼ Q

M2

i¼1 Xi: ½Lj;Q� ¼ 0. This means that
the dynamics preserves the parity of the state (called a
“strong Z2 symmetry” [52]). In the thermodynamic limit of
the low-temperature (symmetry-broken) phase, a qubit can
be stored in the steady state [40].
We can confirm this picture via numerical simulations.

Suppose we initialize our system in a ferromagnetic state:
jψi ¼ j0̄i ¼ ðjEþ

0 i þ jE−
0 iÞ=

ffiffiffi
2

p
, where jE�

0 i are ground
states in the different parity sectors [53]. We then quench
the system with the noisy Lindbladian for a time T much
larger than the inverse of the dissipative gap, so that the
system settles into its steady state. Finally, we apply a
single-shot decoder which brings the state back to the code
space by measuring all domain walls in the system then
flipping all bits in the smaller domain. Our results are
summarized in Fig. 2. In the low-temperature phase, the
overlap starts to approach the ideal value of 1 exponentially
fast in M. Qualitatively different behavior occurs in the
high-temperature phase [β > βc ¼ lnð1þ ffiffiffi

2
p Þ=2 ≈ 0.44;

red dots], where the success rate stays at 50% for a wide
range of M.
Unfortunately, the stored qubit is unstable to noise that

violates the strong symmetry. In particular, the presence of
dephasing Li ∼ Zi (phase flips) reduces the strong Z2

symmetry to a “weak Z2 symmetry” [defined at the level
of the superoperator: ½L;Q� ¼ 0, where QðρÞ ¼ QρQ†],
such that only a classical bit can be stored in the steady
state. In this case, the steady state at low temperature has
the structure ρss ≈ cj0̄ih0̄j þ ð1 − cÞj1̄ih1̄j, for c∈ ½0; 1�. In
analogy with the cat qubit in the presence of single-photon
loss, Z dephasing destroys the coherence between Ising
ferromagnetic states.
2D photonic-Ising model.—We see that the cat code

passively corrects against phase flips but not bit flips and

that the 2D Ising model passively corrects against bit flips
but not phase flips. Is it possible to combine the protecting
features of both models to construct a system that passively
corrects against both sources of noise?
Consider an M ×M square lattice of photonic cavities.

Each cavity undergoes a two-photon drive process and a
two-photon loss process:

Hx;y ¼ λ
�
a2x;y þ ða†x;yÞ2

�
; L2;x;y ¼

ffiffiffiffiffi
κ2

p
a2x;y; ð8Þ

where ax;y is the annihilation operator on site ðx; yÞ. Next,
let us consider a parity-parity interaction between neigh-
boring cavities: HS ¼ −

P
hiji QiQj, where Qj is the

photon parity operator at site j. Similar to the Ising model,
at low temperatures, such interaction will tend to align the
parities of neighboring cavities via the following local
dissipators (for a microscopic derivation of the dissipators,
see Supplemental Material [54]):

Lð4Þ
x;y ¼ ffiffiffiffiffiffiffi

κnn
p

ax;yP−
x;y;→P−

x;y;↑P
−
x−1;y;→P

−
x;y−1;↑;

Lð3Þ
x;y ¼

ffiffiffiffiffiffiffi
κ̃nn

p
ax;yPþ

x;y;→P−
x;y;↑P

−
x−1;y;→P

−
x;y−1;↑; ð9Þ

where ax;y is the annihilation operator for the cavity at site

x, y, κ̃nn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1κnn þ κ21

p
− κ1, κ1 is the single-photon loss

rate (corresponding to the dissipator: L1;x;y ¼ ffiffiffiffiffi
κ1

p
ax;y),

P�
x;y;→¼ð1�Qx;yQxþ1;yÞ=2, P�

x;y;↑ ¼ ð1�Qx;yQx;yþ1Þ=2,
and Qx;y ¼ eiπa

†
x;yax;y . The following states are the steady

states of the model in the absence of errors (κ1 ¼ 0) and
span the code space:

jψi ¼ c0jαeijαeijαei…þ c1jαoijαoijαoi…; ð10Þ

for jc0j2 þ jc1j2 ¼ 1.

FIG. 1. The total rate of transitioning from a configuration with
four domain walls to a configuration with zero domain walls
satisfies detailed balance: κ4→0=κ0→4 ¼ e8β.

FIG. 2. (a) The overlap between the initial and final states for
the protocol given in the main text, for a Lindbladian in the high-
temperature phase (red dots) and in the low-temperature phase
(black and blue dots). As linear system sizeM grows, the overlap
approaches one only in the low-temperature (symmetry-broken)
phase corresponding to β > βc ≈ 0.44. (b) The same black data
points on a log plot; the overlap tends to one exponentially fast in
M. In both (a) and (b), the quench time is T ¼ 800=κ, i.e., long
enough to reach the steady state. The simulation employs the
quantum jump approach by averaging over 105 trajectories.
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For thermal systems, the existence of a passively cor-
recting quantum memory is related to the presence of an
extensive energy barrier which local errors must overcome
in order to create a logical bit-flip or phase-flip operation
[68]. In the model described above, a logical bit-flip
operation can be created via local single-photon lossL1;x;y ¼ffiffiffiffiffi
κ1

p
ax;y only by passing through a configuration with an

extensive number of domain walls, which is exponentially
unlikely in the limit of large lattice sizeM → ∞. Similarly, a
phase-flip error can be generated only by taking the state
jαei � jαoi to jαei ∓ jαoi for any of the cavities. However,
such a process is also unlikely to occur via dephasing
perturbations Ld;x;y ¼ ffiffiffiffiffi

κd
p

a†x;yax;y which perturb states
locally in phase space, since the states j � αi ≈ jαei �
jαoi are well separated in phase space and an unstable fixed
point sits between them [69]. The logical phase-flip errors
are again exponentially unlikely as N → ∞.
The single-photon loss and the dephasing lead to terms

proportional to a†a and ða†aÞ2 in the Lindbladian, which
result in leakage out of the effective two-level code space
for each cavity into other states of the cavity. This leakage
poses a challenge for numerical simulation, since (unlike
the Ising model) we need to keep track of more than two
degrees of freedom per lattice site. Nevertheless, we shall
provide evidence for a stable quantum memory by employ-
ing a variety of approximations.
First, let us consider an approximation that allows us to

map the dynamics of the photonic-Ising model directly to
the classical-Ising model studied above. Specifically, we
introduce an idealized model by replacing the single-
photon loss dissipator L1 ¼ ffiffiffiffiffi

κ1
p

a with E1 ¼ ffiffiffiffiffi
κ1

p
b, where

b ¼ aV and V is the projector onto the code space:
V ¼ jαeihαej þ jαoihαoj. We also assume an absence of
dephasing errors, i.e., κd ¼ 0. This allows us to treat each
site as an effective two-level system j0i ¼ jαei, j1i ¼ jαoi,
avoiding any leakage out of the code space. We similarly
replace a → b in the nearest-neighbor coupling dissipators
(9) (except in the definition of Q). The operator b can be
regarded as an “idealized bit flip” since, for N ≫ 1, it takes
the form b ≈ αðjαeihαoj þ jαoihαejÞ. The idealized model
maps exactly to the Ising model studied above, with an
effective bit-flip error rate of Nκ1, an effective Ising-
correction rate of Nκnn, and an inverse temperature
β ¼ ln ½ðκnn þ κ1Þ=κ1�=8. We, therefore, find that this
model passively corrects against bit flips in the limit
M → ∞ of the low-temperature phase. In the limit of large
driving strength and small single-photon loss, we expect
the photonic-Ising model to be well approximated by the
idealized model, since the state rarely leaves the code
space. We provide quantitative evidence for this in
Supplemental Material [54].
Dephasing, single-photon loss, and bit-flip recovery

jumps (Lð3Þ
x;y and Lð4Þ

x;y) cause leakage out of the code space
which is neglected within the idealized model. It is natural
to ask whether this leakage is detrimental to the passively

protected memory when the idealized model is no longer a
good approximation. We provide evidence that this is not
the case by studying a toy model which resembles the 2D
model. Consider a single cavity coupled to a spin-1=2
particle (described by Pauli operators X, Y, and Z), leading
to two logical states j↓ijαei and j↓ijαoi. The Hamiltonian
and jump operators read h ¼ λ

�
a2 þ ða†Þ2�, l2 ¼ ffiffiffiffiffi

κ2
p

a2,
l1 ¼ ffiffiffiffiffi

κ1
p

Xa, ld ¼ ffiffiffiffiffi
κd

p
a†a, and lnn ¼ ffiffiffiffiffiffiffi

κnn
p 1

2
Xð1 − ZÞa.

The model assumes that single-photon loss is accompanied
by a spin flip, while two-photon drive and dephasing are
not. The flip-recovery jump lnn is triggered by a flipped
spin state j↑i, similar to the bit-flip recovery jump caused
by a parity misalignment in 2D. Importantly, leakage
caused by the noise processes l1 and ld, and the flip-
recovery jump is captured by this model. In Supplemental
Material [54], we analyze this model numerically and
analytically. We find that the initial state can always be
perfectly restored via a decoder (up to corrections expo-
nentially small in N).
Finally, the stability of the memory can also be under-

stood as the coexistence of two order parameters: hQi ¼
heiπa†ai ≠ 0 indicates the ferromagnetic phase and, there-
fore, suppression of bit-flip errors, while ha2i ≠ 0 indicates
that the cat states are stabilized, implying suppression of
phase-flip errors. We use a product-state mean-field ansatz
ρ ¼⊗M

x;y¼1 ρx;y, where each ρx;y is a density matrix for a
two-level system in the basis of j � αMFi for some mean-
field coherent parameter αMF. A nontrivial dissipative phase
of the system is identified by nonzero fixed points of hQi
and ha2i. The mean-field solutions suggest that, for small
κ1 and κd, the memory is protected against both phase- and
bit-flip errors. When κ1 or κd exceeds a threshold, the order
parameters undergo two second-order phase transitions and
the quantum memory is no longer stable (see Supplemental
Material [54]). The mean-field phase diagram is sketched
in Fig. 3.
Implementing the photonic-Ising dissipators.—The key

ingredients for our proposal are the microscopic dissipators
defined in Eq. (9). A direct approach to achieve such terms
involves engineering an Ising-like interaction between
cavity modes: HS ∝ −

P
hiji QiQj. The natural system-

bath interaction of the form
P

iðai þ a†i Þ ⊗ Bi (where Bi

acts on bath degrees of freedom) would then give rise to the
model described above (within the standard Born-Markov
approximation) [54]. The parity-parity interaction HS can
be engineered from coupling between high-impedance
cavity modes and Josephson junctions [70,71], as we
review in Supplemental Material [54].
Inspired by the microscopic dissipators Eq. (9), an

alternative approach to protect the memory involves dig-
itally implementing a stochastic local error decoder. In
Supplemental Material [54], we provide an explicit descrip-
tion of how to achieve such a local decoder autonomously
without the need of measurements; however, it requires that
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the local error decoding should be carried out at a rate that
scales linearly in the photon number N of each cavity. The
implementation can be achieved simultaneously with the
dephasing protection Eq. (8), making it fault tolerant [69].
Note that this is different from the active repetition cat code
in 1D [69] as we avoid the processing of nonlocal
syndrome information.
Discussion and outlook.—We proposed a photonic-Ising

model that hosts robust quantum memory under both
single-photon loss and dephasing noise. We can estimate
the logical error rates in the photonic-Ising model as
follows. While the bit-flip error rate becomes extensive
[∼OðNÞ] in the limit of a large cavity photon number, the
Ising-type interaction gives rise to an exponentially sup-
pressed error rate Oðe−γMÞ with γ > 0 [72–74], resulting in
a logical bit-flip error rate of OðNe−γMÞ. Similarly, a single
cavity yields a phase-flip error rate ofOðe−γ0NÞwith γ0 > 0,
while this is made extensive by the spatially extended
lattice configuration, resulting in a logical phase-flip error
rate of OðM2e−γ

0NÞ. Harmonic oscillators with small non-
linearities and outstanding coherence properties—and,
thus, with large achievable N—can be found in a variety
of photonic and phononic systems (e.g., [39,75]).
The realization of the parity-parity coupling based on

Josephson junctions and a high-impedance cavity mode is
experimentally challenging. The effective dynamics stud-
ied in this work can potentially be achieved via other
qubits, e.g., by constructing Ising interactions between
superconducting qubits with intrinsic T1 protection (see
Supplemental Material [54] for more details). This may
lead to more amenable experimental constructions within
circuit QED platforms (and potentially beyond). The
photonic-Ising model can be generalized to adapt the
Toom’s rule [44] or to higher dimensions [76] for a more
robust perturbative stability. The full perturbative stability
of the model remains an interesting open question.
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