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We propose that excitons in moiré transition metal dichalcogenide bilayers offer a promising
platform for investigating collective radiative properties. While some of these optical properties
resemble those of cold atom arrays, moiré excitons extend to the deep subwavelength limit, beyond
the reach of current optical lattice experiments. Remarkably, we show that the collective optical
properties can be exploited to probe certain correlated electron states. Specifically, we illustrate
that the Wigner crystal states of electrons doped into these bilayers act as an emergent periodic
potential for excitons. Moreover, the collective dissipative excitonic bands and their associated Berry
curvature can reveal various charge orders that emerge at the corresponding electronic doping. Our
study provides a promising pathway for future research on the interplay between collective effects
and strong correlations involving moiré excitons.

Introduction. — The collective behavior of optical
emitters in two-dimensional lattices driven by dipole-
dipole interaction has generated considerable interest.
Emitters in such arrays display a range of intriguing
properties, including perfect reflection and transmission,
dressed lineshift, enhanced and suppressed radiation, and
even topological attributes such as collective Chern bands
and protected edge states [1–4]. Recently, this system has
been experimentally realized using cold atoms in optical
lattices [5], providing a promising avenue for the study
of these coherent phenomena.

On the other hand, excitons (electron-hole bound
states) in transition metal dichalcogenide (TMD) bilay-
ers [6–11] can form in a moiré lattice, providing an in-
teresting platform to study collective optical properties.
Moreover, the bilayers can host Wigner crystal (WC)
states of doped electrons [12–21], which can modify the
excitonic properties.

In this work, we investigate the collective optical prop-
erties of moiré excitons in TMDs at incompressible states
of doped electrons for various fractional fillings νe. In
these cases, the localized charges provide an additional
superpotential, which effectively modifies the lattice for
excitons (see Fig. 1) and their collective optical prop-
erties. Consequently, distinct spectral and topological
properties of the excitons emerge at different WCs, offer-
ing optical signatures of these charge orders (see Table I).
Notably, such filling fractions can be easily accessed in
gate-tunable experiments. Such tunability, combined
with adjustable twist angles, further allows for the ex-
ploration of subwavelength emitter-array physics within
different lattice configurations.

We find strong cooperative effects for all emergent lat-
tice structures considered in this work as these arrays are

FIG. 1. (a) Illustration of tunneling driven by dipole-dipole
interaction (green arrow) of an exciton, as indicated by a
pair of red and light blue dots, in a moiré potential (yellow)
with period aM in the absence of doped electrons (νe = 0).
(b) At certain finite dopings (here νe = 1

3
), doped electrons

(dark blue dots) form a Wigner crystal state. Due to exciton-
electron repulsion, the exciton cannot populate the sites oc-
cupied by electrons (indicated by the crossed-out path). The
remaining available sites form the emergent lattice.

deeply subwavelength. More specifically, the radiative
decay rate of excitons within the light cone (LC) can ex-
perience a substantial enhancement that scales with the
number of supersites within the resonant wavelength of
exciton λex [2, 3]. This increase could possibly bridge the
discrepancy between the experimental values of exciton
linewidths (∼ 1meV [13, 14]) and their estimations via
Wigner-Weisskopf theory [22] (∼ 10−6 − 10−3meV [23]).
In addition, we find that (the overall trend of) the radia-
tive linewidth of the lowest energy exciton within charge-
ordered states decreases with νe, which serves as a signa-
ture for different Wigner crystal (WC) states. Interest-
ingly, we further find the emergence of nontrivial Berry
curvature for certain lattice structures in the absence of
time-reversal symmetry. The dependence of Berry curva-
ture on the emergent lattice at different νe offers a poten-
tial new probe for experimentally characterizing various

ar
X

iv
:2

40
7.

19
61

1v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
8 

Ju
l 2

02
4



2

Emergent arrays νe Superradiant Λ CLC

Triangular 0, 2
3
, 3
4
, 6
7

0, 1 −1, 1

Rectangular 1
2

0, 1 0, 0

Honeycomb 1
3

0, 1 −1, 1

Kagome 1
4

0, 1, 3, 4 −1, 1, 1,−1

TABLE I. Emergent lattices and collective emission properties
of interlayer excitons at various filling fractions (νe), which
form complementary lattices of charge orders in zero-twist
WSe2/WS2 [14, 25]. The third column lists the collective
band indices (in energy order) Λ with enhanced radiative de-
cay (within the light cone) compared to the bare dipole tran-
sition rate γ. CLC denotes the corresponding Berry curvature,
summed over the light cone, upon an out-of-plane magnetic
field with Zeeman splitting µBB = 20γ.

WCs (see Table I). Finally, we demonstrate that both the
collective radiative linewidth and the Berry curvature can
be extracted from polarization- and momentum-resolved
reflection measurements [24].

Two-band model. — We consider the lowest conduc-
tion (CB) and the highest valence (VB) bands of two
TMD monolayers. Each band is labeled by the valley
pseudospin, which is locked to the real spin degrees of
freedom for energy scales lower than the corresponding
spin-orbit splittings [26]. Stacking these layers with a
tunable twist angle or (for heterobilayers) lattice mis-
match generally leads to interlayer coupling with an en-
larged spatial periodicity aM . We specifically consider
heterobilayers [27], as the band offsets therein allow us
to capture the effect of interlayer tunneling by emergent
superlattice potentials, which split the original electronic
dispersion into moiré bands [28]. In addition, we consider
doping electrons into the first conduction moiré band and
focus on the regime with dilute electron-hole pairs [6, 29],
generated via weak optical excitation. Note that within
such a dilute regime, the emission properties are captured
by the single excitation subspace, which can be described
by a non-Hermitian Hamiltonian [30]. While our formal-
ism can be straightforwardly generalized, for simplicity,
all (doped and optically excited) electrons are assumed
to be in the same layer.

We start with the following two-band model in the ab-
sence of an external drive (see its microscopic origin in
Ref. [31]):

Ĥ =
∑

n=c,v

∑

τ

∫
d2sψ̂(n)†

τ (s)hn(s)ψ̂
(n)
τ (s)+ V̂e+ V̂d. (1)

Here, n labels the (monolayer) band index with c and v
indicating CB and VB, respectively; τ ∈ ± represents the
valley pseudospin, and s is the in-plane continuous posi-

tion variable. ψ̂
(c)
τ (s) and ψ̂

(v)
τ (s) denote the correspond-

ing annihilation operators for CB electrons and VB holes,

respectively. hn(s) =
p̂2
n,τ

2mn
+∆n(s)+(δn,c−δn,v)(E0

n+µ)
is the energy operator describing the non-interacting sec-

tor of the charge dynamics on top of the superlattice
potential ∆n(s), with p̂n,τ , mn, E

0
n, and µ being the

momentum operator relative to the valleys, the effective
mass, energy offset at the valley momentum, and chem-

ical potential, respectively. V̂e = e2

8πϵ

∫
s,s′

:ρ̂c(s)ρ̂c(s
′):

|s−s′| −
2ρ̂c(s)ρ̂v(s

′)√
(s−s′)2+z2

cv

is the interaction between fermion densities

ρ̂n(s) =
∑

τ ψ̂
(n)†
τ (s)ψ̂

(n)
τ (s) [36] with

∫
s,s′ =

∫
d2sd2s′

and the colons indicating normal-ordering of the opera-
tors in between. −e, ϵ, and zcv are the electron charge,
static electric permittivity, and the out-of-plane distance
between CB electrons and VB holes [37], respectively.
In addition to V̂e, electron-hole pairs can also interact
through their dipoles, yielding:

V̂d =
ω2
p

c2ϵ0

∫

s,s′
P̂ †(s) · G (ωp, s− s′) · P̂ (s′), (2)

where c is the speed of light and ϵ0 is the vacuum electric

permittivity [38]. P̂ †(s) =
∑

τ d
cv
τ ψ̂

(c)†
τ (s)ψ̂

(v)†
τ (s) is the

pair creation operator [39], where dcv
τ is the transition

dipole matrix element between the CB and VB at valley
τ . G (ωp, s− s′) is the dyadic Green’s tensor evaluated
at the frequency of the target pair state ωp [31]. In the

following, we use the two-band model Ĥ to construct
the superlattice Hamiltonian for optical excitations in the
lowest energy manifold and doped electrons.
Zero doping. — At νe = 0, optical excitations from

Eq. (1) are given by excitons. To capture the lowest
composite particle, we employ the tight-binding approx-
imation to the two-particle Hamiltonian operator from
Ĥ, whose eigenfunctions in the tight-binding limit can
be approximated by moiré-Wannier orbitals [31]. The
lowest energy orbital at each supersite R, denoted as
wR(sc, sv) with sc and sv being the coordinates of the
electron and hole, respectively, defines the corresponding
exciton creation operator:

x̂†R,τ =

∫
d2scd

2svwR(sc, sv)ψ̂
(c)†
τ (sc)ψ̂

(v)†
τ (sv). (3)

Projecting Ĥ onto these basis states, the superlattice
Hamiltonian becomes [40]:

Ĥ =

(
ωex −

iγ

2

)
n̂ex −

∑

R ̸=R′

∑

τ,τ ′

tτ,τ
′

R,R′ x̂
†
R,τ x̂R′,τ ′ , (4)

where n̂ex =
∑

R,τ x̂
†
R,τ x̂R,τ . ωex and γ denote the exci-

ton frequency and decay rate (we set ℏ = 1 hereafter), re-
spectively, in a unit supercell problem, whereas the true
excitation spectrum in the superlattice is renormalized
by the tunneling:

tτ,τ
′

R,R′ = tintR,R′δτ,τ ′ − ω2
ex|d|2
c2ϵ0

e∗τ · Gex (R−R′) · eτ ′ , (5)

which incorporates the sector from charge dynam-
ics (denoted as tintR,R′) and the dipole-dipole inter-
action from the in-plane components of dcv

τ [41],
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FIG. 2. Collective excitonic lineshifts ∆Q (solid lines) and
linewidths ΓQ (dashed) emerging from charge-ordered zero-
twist WSe2/WS2 with electron fillings νe = 0 (a) and νe = 1

3
(b). The vertical axes are displayed in units of γNνe , with Nνe

defined in Eq. (6). The horizontal axes show Bloch momenta
Q at high symmetry points, which follow a piecewise-linear
path in the Brillouin zone, as depicted by the dashed hexagon
in the inset of (a). Momenta within the light cone are indi-
cated by the green shaded area (size enlarged for clarity).
Different colors label distinct single-particle exciton bands.
The parameters used are: aM = 8.25nm, ωex = 1.55eV, and
aW = 2nm [18, 31].

denoted as de∗τ with eτ =
ex+iτey√

2
(ex and

ey are in-plane unit vectors) [42, 43]. Here,
Gex (R−R′) =

∫
s,s′ w

∗
R(s)G (ωex; s− s′)wR′(s′) where

wR(s) ≡ wR(s, s) is approximated as a Gaussian with
width aW for simplicity. We refer to the supplementary
material for details of Ĥ [31].

Finite doping with charge order. — We can gener-
alize Eq. (4) to finite νe, where doped electrons form
WCs. These charge orders could emerge from a gener-
alized Hubbard model [44, 45], which naturally appears
by projecting Eq. (1) onto the first moiré band of doped
charges [31]. Assuming that the electronic states being
stable against the dynamics of dilute optical excitations,
we can treat the WC as a spatially periodic detuning
with strength characterized by ωt − ωex, where ωt is the
energy of the lowest three-body state (one doped electron
together with the excited electron-hole pair) within a su-

percell. In particular, in the regime |ωt − ωex| ≫ |tτ,τ
′

R,R′ |,
the low-energy optical excitations are either within the
∼ ωex or∼ ωt manifold, depending on the sign of ωt−ωex.
We focus specifically on the case ωex ≪ ωt, which is real-
izable by interlayer excitons [31], to study the collective
behavior of these emitters. In this subspace, these exci-
tons are still described by the Hamiltonian Eq. (4) [46],
except that now {R} lies in the emergent lattices, which
are complementary lattices of the WCs. Accordingly, dif-
ferent emergent lattices can be realized simply by access-
ing distinct WCs in moiré TMD bilayers, which can be
tuned by the electron filling fraction νe (doped electrons
per supercell) [14, 25, 44]. We list a few possible emer-
gent lattices observed in WSe2/WS2 in Table I.

Collective bands. — We proceed to study the Liouvil-
lian spectrum incorporating tunneling driven by coherent
and incoherent dipole-dipole interactions. To capture the

FIG. 3. Dependence of collective lineshifts and linewidths at
Q = 0 (a) on νe for all states at zero twist and (b) on twisting
angle θ and νe, whose effects manifest in the combined factor
Nνe(θ), see Eq. (6). Dashed lines in (b) indicate linear fits
with slope 1. Here we set δ = 0.04 [18], and aW (θ) = (1 +

θ2/δ2)−
1
4 aW (0) [48]; all other parameters are the same as in

Fig. 2.

relevant physics, we set tintR,R′ = 0 in Eq. (5) through-
out this work [47]. Diagonalization of the Hamiltonian
Eq. (4) yields the emitter spectrum ωex + ∆Q − i

2ΓQ

characterized by the center-of-mass Bloch momentum Q.
Note that, if the excitonic states at all R constructively
interfere, ΓQ should scale with γNνe

(θ) [1], where:

Nνe
(θ) = (1 + θ2/δ2)Nνe

, Nνe
= λ2ex/Aνe

, (6)

with Aνe
denoting the emergent unit cell area at electron

filling νe and zero twist, δ defining the lattice mismatch
between the two monolayers [18]. As such, we present the
collective spectrum in units of γNνe(θ) hereafter to indi-
cate the extent of constructive interference of the exciton
eigenstates.

In Fig. 2, we illustrate the collective lineshifts ∆Q and
linewidths ΓQ for the untwisted WSe2/WS2 bilayer at
νe = 0 and 1

3 , corresponding to triangular and honey-
comb lattices, respectively. The cases with Kagome and
rectangular lattices can be found in the supplementary
materials [31]. For all νe of interest, both quantities vary
on scales of Nνeγ with Nνe ∼ 104. Qualitatively, this is
because emissions from supersites much closer than the
exciton wavelength λex can constructively interfere.

The collective behavior is qualitatively distinct within
and outside of the LC. For all νe, ΓQ is significantly
greater than γ within the LC but is suppressed outside,
consistent with the fact that only emitters in the LC cou-
ple to light and radiate due to momentum conservation.
Note also that such a large decay rate in the LC indicates
that an emitter tends to radiate before it hops to other
supersites, which is also reflected by the relatively flat
∆Q (with respect to Q) therein.

Aside from these common properties, collective bands
exhibit several distinct features at different νe. We specif-
ically illustrate how ∆0 and Γ0 vary with νe in Fig. 3(a),
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as these quantities are directly accessible via reflection
measurements at normal incidence [1]. First, different
emergent lattices provide a distinct number of levels [49].
Although this serves as the most direct signature to dis-
tinguish emergent lattices at each νe, we note that states
other than the lowest one possess a suppressed decay rate
(except at νe = 1

4 and 1
2 ), such that we expect they

barely contribute to optical measurements. In contrast,
the lowest state at each νe, which is typically the most
radiative one, could respond nontrivially to optical probe
light; their collective properties — the overall increasing
∆0 and decreasing Γ0 with νe — could serve as charac-
teristics of the corresponding emergent lattices.

Finally, these spectral properties can also be tuned via
twisting angle θ. Fig. 3(b) illustrates the dependence of
∆0 and Γ0 on Nνe

(θ). Crucially, for the same type of
lattice geometry, the collective linewidths scale inversely
with the emergent unit cell area, which can be confirmed
by the analytic expression of the Green’s tensor atQ = 0.
These scalings provide an indirect probe for the emergent
lattice geometry: for instance, all triangular arrays (e.g.,
νe = 0, 23 ) belong to the same line in Fig. 3(b).

Berry curvature. — Topological features can also
emerge in these collective excitonic bands. To see this,
we break time-reversal symmetry by adding an out-of-
plane external magnetic field B, which (together with
the magnetic dipole µB) introduces a Zeeman splitting

Ĥ → Ĥ ′ ≡ Ĥ + µBB
∑

τ=±,R τ x̂
†
R,τ x̂R,τ between the

valley-degenerate doublets, and compute the Berry cur-
vature Ω(Q) = i∇Q × ⟨Q|∇Q|Q⟩ for each band at sev-

eral νe, where |Q⟩ are right eigenstates of Ĥ ′ [50]. We
specifically focus on Ω(Q) of (directly) optically accessi-
ble states (i.e., within the LC) and compute the numeri-
cal results for νe = 0 and 1

2 in Fig. 4(a), evaluated under
a standard momentum discretization scheme [51].

At νe = 0, both collective excitonic states (labeled with
respect to their energies by Λ = 0, 1) exhibit nontrivial
and opposite Ω(Q) centered at Q = 0. Notably, the sum-
mation of Ω(Q) in LC, CLC, for these bands takes integer
values ∓1. Such a property results from the phase wind-
ing of the light-mediated coupling between the valley-
doublets, which appears as the off-diagonal terms in the
effective low momentum approximation of Ĥ ′, denoted
as ĥ(Q) [31]. With Q = Q(cosϕex+sinϕey), where ϕ is
the polar angle of Q, we have:

ĥ(Q) ≃ ωex +∆0 −
iΓ0

2
+

[
µBB iJQ2e−2iϕ

iJQ2e2iϕ −µBB

]
, (7)

where J is a (generally complex) coefficient character-
izing the band curvature around Q = 0. We find that
Eq. (7) can approximately capture Ω(Q), particularly the
sharp feature at Q =

√
|µBB/J |.

In contrast, CLC from generic arrays (see table I) may
be trivial if the low-Q model of the target band is dif-
ferent from Eq. (7). For instance, both collective exci-

FIG. 4. Comparison between properties of topological and
non-topological collective bands from νe = 0 and νe = 1

2
,

respectively, with Zeeman splitting µBB = 20γ. (a) Berry
curvature (Ω) distribution in Bloch momentum magnitude Q
for the two bands at each νe (labeled by colors and Λ), with
solid and dashed lines indicating results from the full model
Ĥ ′ and the low-momentum model Eq. (7), respectively. The
vertical axis is in units of J/γ, where J is fit from ΓQ in
Fig. 2(a) using a momentum sample withinQ ≤ π/25λex. The
gray vertical line indicates the momentum satisfying JQ2 =
µBB. The inset shows that the dependence of Ω on the polar
angle of Q is negligible. (b) The phase of S−+ at k = 2π

λex

and k|| = kxex + kyey for each νe. All other parameters are
the same as in Fig. 2.

tonic bands from the rectangular lattice at νe = 1
2 give

zero Berry curvature, as shown in Fig. 4(a), and hence
CLC = 0. This is due to the absence of C3 rotational
symmetry, leading to nonzero off-diagonal terms in the
corresponding Hamiltonian at Q = 0, which indicates a
gap separating two topologically trivial bands [31].
Similar arguments also apply to Berry curvatures of

higher collective states. More specifically, the suppressed
J for Λ = 2, 3 at νe = 1

3 and Λ = 2, 5 at νe = 1
4 (c.f. the

flat real and imaginary spectra in Fig. 2 and Supple-
mentary Material [31]) is consistent with the fact that
CLC = 0 in these bands (not shown). In contrast, the
Λ = 3, 4 states at νe = 1

4 exhibit a nonzero curvature in
ΓΛ
Q such that they sustain nonzero Ω in the LC.
Extracting band properties via optical reflectivity.— Fi-

nally, we discuss optical experiments to probe the afore-
mentioned collective excitonic properties. More specifi-
cally, we illustrate that information about Ĥ ′ can be ob-
tained by measuring the reflection sector of the far-field
scattering matrix for plane-wave incident light (near exci-
ton resonances). For Bravais lattices (e.g., triangular and
rectangular arrays), components of this matrix satisfy:

Sτ,τ ′′(k) =
3πcγ

ωex

∑

τ ′

gτ,τ ′(k,k||)Dτ ′,τ ′′(ck,k||), (8)

where k|| is the in-plane component of k and τ (τ ′)
stands for the (circular) polarization of light here (which
is locked to the valley index of electrons in TMDs [6]).

gτ,τ ′(k,Q) = − i
2Aνe

k2δτ,τ′−(e∗
τ ·Q)(eτ′ ·Q)

k2
√

k2−Q2
is the Fourier
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transform of the Green’s tensor [31]. Dτ,τ ′(ω,Q) =

⟨x̂Q,τ (ω − Ĥ ′)−1x̂†Q,τ ′⟩ describes the collective response
susceptibility of the exciton, evaluated in the vacuum
state, with x̂Q,τ denoting the Fourier transform of x̂R,τ .
As shown in Eq. (8), measurements of Sτ,τ ′(k) can help

us determine Ĥ ′ and the corresponding excitonic prop-
erties within the LC. In particular, in addition to stan-
dard spectral properties such as collective lineshifts and
linewidths, we find that CLC can be extracted from (half
of) the winding number of phase of Sτ,−τ with respect to
the polar angle of k||, as shown in Fig. 4(b).

For non-Bravais lattices, however, Sτ,τ ′(k) can only
provide partial information about the exciton Hamilto-
nian because far-field measurements cannot resolve the
sublattices. More specifically, (ω − Ĥ ′)−1 in Dτ,τ ′(ω,Q)
has to be sublattice-symmetrized in this situation [31].
Therefore, measuring Sτ,τ ′(k) generally cannot uniquely
determine all the excitonic properties within the LC. One
special case where such a scheme is still applicable is the
honeycomb lattice, where sublattice symmetrization se-
lects the Λ = 0, 1 doublet such that their ∆Q, ΓQ, and
Ω(Q) are still fully recoverable from reflection experi-
ments [52]. A complete reconstruction of the excitonic
band structures would require additional measurements
beyond Sτ,τ ′(k), which we leave for future work.

Outlook. — Our formalism can be further general-
ized to describe the collective behavior of moiré exci-
tons involving other strong correlations to study their
interplay. For instance, going beyond the single excita-
tion subspace, nonlinearities inherent in these emitters
can lead to a variety of interesting physical phenomena,
including Dicke superradiance [53, 54], optical bistabil-
ity [55], leaky condensation [56], and phase space fill-
ing [57–59]. Another intriguing problem is whether the
spin correlations that emerge near half-filling νe = 1, such
as the magnetic polaron effect [60, 61] and kinetic mag-
netism [62], could play a role in the cooperative excitonic
properties.

In addition to WCs where the doped electrons only
act as an effective lattice potential to the excitons, it
is natural to ask about their collective behavior at gen-
eral νe. At fillings slightly away from the ones provid-
ing WCs, metastable frozen charge configurations could
emerge and play the role of a random potential to emit-
ters that breaks the translation symmetry [45]. We an-
ticipate this randomness to suppress the degree of con-
structive interference, indicating weaker radiative decay.

Another possible outlook for moiré excitons is to sim-
ulate topological physics in two-dimensional dipolar spin
systems [57]. In particular, their tunneling driven by
dipole-dipole interaction could provide relatively flat col-
lective bands with nontrivial Berry curvature within the
light cone. These ingredients allow for the emergence
of topological phases such as fractional Chern insulators
and spin liquids [63–65]. We therefore anticipate these

optical excitations in TMD bilayers to act as a platform
for these phases of matter.
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idence for moiré excitons in van der waals heterostruc-
tures, Nature 567, 71 (2019).
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I. DERIVATION OF THE TWO BAND MODEL FROM MICROSCOPIC HAMILTONIAN

In this section, we present the derivation of the two band Hamiltonian starting from the following microscopic
model within the Coulomb gauge (we set ℏ = 1 throughout the Supplementary Material for simplicity) [1]:

Ĥ = Ĥ0+ ĤL+ ĤT , Ĥ0 =

∫
d3rψ̂†(r)

[
− ∇2

r

2m0
+ Vat(r) + µ

]
ψ̂(r), ĤL =

e2

2ϵ0

∫
d3rd3r′

ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)
|r − r′| , (1)

where m0, −e, and ϵ0 are the free electron mass, the electron charge, and the vacuum permittivity, respectively. ψ̂(r)
is the electron field operator at the three-spatial-dimensional coordinate r. Vat(r) is the potential from the atoms of

the two TMD layers, and µ is the chemical potential of electrons. ĤT includes the Maxwell Hamiltonian and minimal
light-matter coupling with respect to transverse electromagnetic fields (see Section IB), whereas the longitudinal

sector is packed into ĤL within the Coulomb gauge.
To further simplify this microscopic model, we decompose the electron field operator in terms of Bloch states states

of two (decoupled) monolayers, which are respectively labeled by their orbitals, valley pseudospins (denoted with
τ ∈ ±), spins, and Bloch momenta. We aim at the low energy version of the microscopic model, where spin and valley
indices are locked due to spin-orbit coupling in TMDs and only the lowest conduction and the highest valence orbitals
of each layer are relevant (denoted as c and v respectively). In addition, we assume that all (doped and optically
generated) conduction electrons are within the same layer for simplicity (and similarly for valence holes) such that
the layer label is locked to the band index. With these considerations, we express:

ψ̂(r) ≃
∑

τ

∑

pc

ψc
τKc+pc

(r)ĉτKc+pc
+
∑

pv

ψv
τKv+pv

(r)v̂†−τKv−pv
, (2)

where ĉτKc+pc
and v̂†−τKv−pv

are the conduction electron annihilation and valence hole creation operators (hence

momentum of the latter is flipped), with their corresponding electronic Bloch wavefunctions being ψc
τKc+pc

(r) and

ψv
τKv+pv

(r). We focus on the momenta near the Brillouin zone corners τKn (n ∈ {c, v}) with pn being the momentum
relative to them. At small twist and lattice mismatch such that the monolayer lattice vectors can be expressed as
ā+ δan with |δan| ≪ |ā|, and with the further assumption that the bilayer of interest is R-stacked, Kn ≃ K̄ ≡ 4πā

3ā2 .

A. Non-interacting matter Hamiltonian

We first utilize Eq. (2) to simplify Ĥ0. By definition, the sector of each monolayer in Ĥ0 is diagonalized by the

Bloch states but leaves an interlayer coupling V̂IL, giving:

Ĥ0 =
∑

pc,τ

Ec(τKc + pc)ĉ
†
τKc+pc

ĉτKc+pc
+

∑

pv,τ

Ev(τKv + pv)v̂−τKv−pv
v̂†−τKv−pv

+ V̂IL, (3)

where Ec(τKc + pc) and Ev(τKv + pv) are the conduction and valence electron dispersion, respectively. At low
energy, we can expand these bands near the valleys τKn to quadratic order in pn, indicating:

Ĥ0 ≃
∑

τ

∫
d2sĉ†τ (s)

[
p̂2
c,τ

2mc
+ E0

c + µ

]
ĉτ (s) + v̂†τ (s)

[
p̂2
v,τ

2mv
− E0

v − µ

]
v̂τ (s) + V̂IL, p̂n,τ = −i∇s − τKn, (4)
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where ĉτ (s) and v̂τ (s) are Fourier transform of ĉτKc+kc
and v̂−τKv−kv

to the (monolayer) Wannier basis, with the
in-plane site positions treated as a continuous two-dimensional variable s because we only care about length scales
much larger than |ā|. Here mc and mv are the effective masses of conduction electron and valence hole, respectively,
and E0

n ≡ En(τKn) is the energy offset of each band and layer.
Further progress requires details of the interlayer coupling term. For simplicity, we will consider heterobilayers such

that an offset exists between bands of the two layers, which renders the interlayer coupling perturbative. In other
words, in these situations such coupling simply introduces moiré potential ∆c(s) and ∆v(s) to the charges, giving:

Ĥ0 =
∑

n,τ

∫
d2sψ̂(n)†

τ (s)hn(s)ψ̂
(n)
τ (s), hn(s) =

p̂2
n,τ

2mn
+∆n(s) + (δn,c − δn,v)(E

0
n + µ), (5)

where we use the short-hand notation ψ̂
(c)
τ (s) = ĉτ (s) and ψ̂

(v)
τ (s) = v̂τ (s). This expression reproduces the non-

interacting term in Eq. (1) of the main text.

B. Interactions

We proceed to express the interactions ĤL and ĤT with the degrees of freedom at each band. Before implementing
Eq. (2) on these terms, we note that the low energy physics of TMDs lies at momenta near the valleys, implying that
we can implement approximations based on small pn and small δKn ≡ Kn − K̄. More specifically, this consideration
allows for the k · p approximation [2], which brings the Bloch function unτKn+pn

(r) = e−i(τKn+pn)·rψn
τKn+pn

(r) to
the following expression:

unτKn+pn
(r) ≃ unτK̄(r) +

i

e
(τδKn + pn) ·

∑

n′

dn′,n
τ un

′

τK̄(r), dn,n′
τ ≡ −e(1− δn,n′)

∫
d3rψn∗

τK̄(r)rψn′

τK̄(r), (6)

where the (1− δn,n′) factor in the transition dipole matrix elements dn,n′
τ results from the parities of conduction and

valence electronic wavefunctions at valley τ , which corresponds to |dz2⟩ and |dx2−y2⟩ + iτ |dxy⟩ orbitals [3]. In the
following, we utilize Eq. (2) and Eq. (6) to simplify the interactions.

We start by analyzing ĤL, which are weighted integral of (normal-ordering of) ψ̂†(r)ψ̂(r)ψ̂†(r′)ψ̂(r′). For simplicity,
we focus on only two contributions from this interaction, depending on whether the two fermions in the local electron

density operator ψ̂†(r)ψ̂(r) belong to the same or different bands after substituting Eq. (2).

We begin with the situation where the two fermions in ψ̂†(r)ψ̂(r) are intraband. Such term would contain only the
zeroth order term in Eq. (6) because the intraband transition dipole matrix elements are vanishing. The remaining
terms can be straightforwardly simplified by utilizing the orthogonality relation and (approximate) discrete transla-
tional invariance (at small twist and lattice mismatch) of Bloch wavefunctions. Together with a transformation from
Bloch to the Wannier states and treating the monolayer sites as a continuous variable, we find that the target con-

tributions in ψ̂†(r)ψ̂(r) eventually become ∼ ρ̂n(s) =
∑

τ ψ̂
(n)†
τ (s)ψ̂

(n)
τ (s). We therefore find the following expression

for the corresponding sector of ĤL:

V̂e =
e2

8πϵ

∫
d2sd2s′

: ρ̂c(s)ρ̂c(s
′) :

|s− s′| − 2ρ̂c(s)ρ̂v(s
′)√

(s− s′)2 + z2cv
, (7)

where zcv is the distance between the two layers and the colons indicating normal-ordering of the operators in between.
Note that here we replace ϵ0 with the static permittivity of the material ϵ to account for dielectric screening.

In constrast, for the situation where the two fermions in ψ̂†(r)ψ̂(r) are interband, the contribution from zeroth
order term in Eq. (6) vanishes because

∫
d3rψc∗

τK̄
(r)ψv

τ ′K̄(r) = 0, whereas the first order corrections (which involves
transition dipoles) are generally non-vanishing. Dropping only higher order corrections and repeating the procedures

in calculating intraband contributions, we find the target terms in ψ̂†(r)ψ̂(r) eventually becomes ∼ 1
e∇s · P̂ †(s) and

its Hermitian conjugate, where P̂ †(s) =
∑

τ d
cv
τ ĉ

†
τ (s)v̂

†
τ (s) is the electric polarization operator. The resulting operator

from ĤL is the longitudinal dipole-dipole interaction, which has the following expression:

V̂d,L =
1

ϵ0

∫
d2sd2s′P̂ †(s) ·

[
∇s ⊗∇s′

1

|s− s′|

]
· P̂ (s′). (8)

We proceed with analyzing ĤT , which could be turned into the following form after a canonical transformation [4]:

ĤT ≃ −
∫
d2s

[
P̂ †(s) · ÊT (s) + H.c.

]
+ ĤR

T , ĤR
T =

ϵ0
2

∫
d3rÊ†

T (r)ÊT (r) + c2B̂†(r)B̂(r), (9)
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where c is the speed of light, and ÊT (r) and B̂(r) are the transverse electric and magnetic field operators, respectively,
evaluated at position r. To obtain a quartic fermion interaction from this coupling, we integrate out the gauge fields
following standard diagrammatic technique [5]. This requires the propagator of transverse electric field such that
the target vertex involves retardation effect. We address this by assuming that the relevant photon fluctuations are
near-resonant to the target pair state, whose energy is denoted as ωp. The resulting interaction has the following
transverse dipole-dipole form:

V̂d,T = (−i)
∫
d2sd2s′P̂ †(s) ·

∫ ∞

−∞
dt⟨ÊT (s)e

i(ωp−ĤR
T )tÊ†

T (s
′)⟩vac · P̂ (s′), (10)

where ⟨...⟩vac denotes the vacuum expectation value of the operator in between.
The longitudinal and transverse dipole-dipole interactions can be combined into [1, 6]:

V̂d = V̂d,L + V̂d,T =
ω2
p

c2ϵ0

∫
d2sd2s′P̂ †(s) · G (ωp, s− s′) · P̂ (s′), (11)

where Gα,β(ck, r) denotes the (α, β ∈ x, y, z components of) dyadic Green’s tensor:

Gα,β(ck, r) = −e
ikr

4πr

[(
1 +

i

kr
− 1

(kr)2

)
δα,β +

(
−1− 3i

kr
+

3

(kr)2

)
rαrβ
r2

]
+
δα,βδ

(3)(r)

3k2
. (12)

Note that unlike the static interaction, here we neglect the dielectric screening at frequency ωp such that the permit-
tivity here is still ϵ0. This is valid if ωp is off-resonant with other excitations (except the target pair).

Before moving on, we comment on a few subtleties regarding the interlayer terms in the dipole-dipole interaction.
First, renormalization from the interlayer coupling should also be considered in the transition dipole matrix elements
on top of its expression in Eq. (6). More specifically, contributions from a two-step process in which interlayer cou-
pling occurs after a (virtual) creation of intralayer electron-hole pair is non-negligible [7]. Therefore, for interlayer
transitions, we will not compute dcv

τ using Eq. (6) but instead quote the results in literature [7, 8]. Second, taking
the continuum limit of the monolayer lattice positions in the dipole-dipole interaction is nontrivial because, strictly
speaking, the displacement vector between the sites at different layer is position dependent due to twisting or lattice
mismatch [9], which could lead to a position-dependent dipole matrix element [10]. Nevertheless, here we assume
that the spatial fluctuations of electron-hole states of interest is small compared to the scale at which such dis-
placement becomes non-negligible (which is characterized by the moiré period aM ) [10–12], validating our continuum
approximation.

II. THE EFFECTIVE MOIRÉ SUPERLATTICE MODEL

In this section, we derive the superlattice model for optical excitations in the lowest energy manifold and for doped
electrons from the two band Hamiltonian described in the main text, starting from the simple case without electron
doping.

A. Undoped bilayers

In the absence of doping, the optical excitations are given by electron-hole pairs. We specifically focus on the lowest
energy pairs in the dilute regime, which allows us to project the two band model Ĥ into the single excitation basis

x̂†R,τ |vac⟩, where |vac⟩ denotes the vacuum state and the creation operator of a pair in the lowest energy moiré-Wannier
basis is:

x̂†R,τ =

∫
d2scd

2svwR(sc, sv)ĉ
†
τ (sc)v̂

†
τ (sv). (13)

Here wR(sc, sv) is the Wannier orbital centered at supersite R, with sc and sv being the electron and hole in-plane
coordinates, respectively. Note that wR(sc, sv) takes the functional form f(sc − R, sv − R) due to superlattice
periodicity, and at this point we assume it is valley independent. This projection yields:

Ĥ → Ĥ =

(
ωex −

iγ

2

)∑

R,τ

x̂†R,τ x̂R,τ + ξ
∑

R,τ

x̂†R,τ x̂R,−τ −
∑

R ̸=R′

∑

τ,τ ′

tτ,τ
′

R,R′ x̂
†
R,τ x̂R′,τ ′ , (14)
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where the on-site energy integrals are:

ωex =

∫
d2scd

2svw
∗
R(sc, sv)hex(sc, sv)wR(sc, sv) +

ω2
ex|d|2
c2ϵ0

e∗τ · Re[Gex (0)] · eτ , (15)

γ = −ω
2
ex|d|2
c2ϵ0

e∗τ · 2Im[Gex (0)] · eτ , ξ =
ω2
ex|d|2
c2ϵ0

e∗τ · Re[Gex (0)] · e−τ , (16)

where we use dcv
τ = de∗τ as well as the shorthand notations hex(sc, sv) =

∑
n hn(sn)− e2

4πϵ
√

(sc−sv)2+z2
cv

and:

Gex (R−R′) =
∫
d2sd2s′w∗

R(s, s)G (ωex; s− s′)wex
R′(s′, s′). (17)

In addition, there are tunneling terms from the intrinsic charge dynanics tintR,R′ and from the dipole-dipole interaction.
Combining the two terms gives:

tτ,τ
′

R,R′ = tintR,R′δτ,τ ′ − ω2
ex|d|2
c2ϵ0

e∗τ · Gex (R−R′) · eτ ′ , tintR,R′ = −
∫
d2scd

2svw
∗
R(sc, sv)hex(sc, sv)w

ex
R′(sc, sv). (18)

To further simplify the model, we consider the regime where aM is controlled (by twisting angle) to be sufficiently
large, allowing for the approximations below. First, this consideration implies the width of wR(s, s) in s, denoted
as aW , is also large. Under this circumstance, the on-site term given by the Green’s tensor, which roughly scale

with ∼ d2

ϵa3
W
, is suppressed compared to the center-of-mass sector of

∫
d2scd

2svw
∗
R(sc, sv)hex(sc, sv)wR(sc, sv), which

scales with ∼ 1
2(mc+mv)a2

W
[13]. This comparison indicates that ξ and γ only appear as high order corrections to the

eigenvalues of the model. Second, a large aM indicates the validity of tight-binding approximation, suggesting that
off-site terms are perturbative compared to on-site ones. Combining these considerations, the zeroth order energy
from Ĥ is simply ωex, and the functional form of wR(sc, sv) can therefore be determined by this quantity (as by
definition it is the wavefunction of the lowest energy manifold), subject to the constraint that it only depends on
sc−R and sv −R. The resulting wavefunction is independent of τ , consistent with the assumption made at the very
beginning of this section. In addition, it is a representation of C3 rotation, suggesting that the first order eigenvalue
correction from ξ vanishes, and therefore, one can neglect its contribution in Ĥ and recover the superlattice model
presented in the main text.

1. Details of the dyatic Green’s tensor

Before moving on to doped bilayers, we elaborate on details of Gex (R−R′), which depends on the moiré-Wannier
function of exciton wR(s, s). Simplification of this Green’s tensor therefore requires the analytical form of this
wavefunction, which we assume to be the following form for simplicity [14]:

wR(sc, sv) =
2
√
2

πaBaW
exp

[
− (sex −R)2

2a2W
− 2|sc − sv|

aB

]
, sex =

mcsc +mvsv
mc +mv

, (19)

where aB characterizes the electron-hole relative distance (and recall that aW is the center-of-mass spatial fluctuation).
This expression is strictly valid if (a) aW ≪ aM such that quadratic expansions to the center-of-mass potential terms
are applicable, and (b) the coupling between center-of-mass and relative coordinates provided by the moiré potentials
are suppressed. Utilizing this expression, the integrated Green’s tensor becomes:

Gex
α,β (R−R′) =

32a2W
a2B

∫
d3p

(2π)3
eip·(R−R′)e−p2a2

W
k2δα,β − pαpβ
k2(k2 − p2)

∣∣∣∣
k=ωex

c

, (20)

where an ultraviolet regulator to p is introduced naturally by aW . This yields the following on-site contribution:

Gex
α,β (0) = δα,β

16ka2W
3πa2B

[
erfi(kaW )− i

ek
2a2

W

− (kaW )2 − 1
4√

π(kaW )3

] ∣∣∣∣
k=ωex

c

, erfi(kaW ) =
2√
π

∫ kaW

0

dy exp(y2), (21)
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which directly indicates:

γ ≃ 32a2W
a2B

γcv, γcv =
|d|2ω3

ex

3πϵ0c3
, (22)

where we take the approximation ek
2a2

W ≃ 1 as the array is subwavelength. Note that here γcv is the Wigner-Weisskopf
spontaneous emission rate for conduction-valence band (of monolayers) transition that is independent of aW and aB .

In contrast, γ is the bare radiative decay rate of a moiré exciton, which is corrected by a prefactor
32a2

W

a2
B

set by length

scales of the pair wavefunction. Notably, aW generally depends on aM , indicating that γ varies with twisting angle.
Finally, for later convenience, we discuss two different Fourier transforms of the Green’s tensor, which brings Gex (R)

and G (ck, r −R) into the center-of-mass Bloch momentum space labeled by Q. Note that Q is Fourier conjugate of
the emergent lattice vectors, denoted as L, which is different from R if {R} defines a non-Bravais lattices. The first
transformation reads:

∑

L̸=b′−b

Gex(L+ b− b′)e−iQ·(L+b−b′) =
1

A
∑

G

eiG·(b−b′)G̃ex
(Q+G)− δb′,bGex(0), (23)

where we replace R = L+ b with b being sublattice vectors for non-Bravais lattices. Here A is the unit emergent cell
area, G denotes reciprocal lattice vectors, and:

G̃ex
α,β(q) =

32a2W
a2B

(
δα,β − c2qαqβ

ω2
ex

)
I(ωex, q), ∀α, β ̸= z, q · ez = 0, (24)

with:

I(ck, q) =
e−k2a2

W

[
erfi

(√
k2 − q2aW

)
− i

]

2
√
k2 − q2

, (25)

where
√
k2 − q2 has non-negative real and imaginary parts. This type of Fourier transformation is useful upon

evaluation of the low-Q Hamiltonians in Section III. In contrast, the second transformation reads:

∑

L

G(ck, s+ zez −L− b)eiQ·(L+b) ≃ g(k,Q)eiQ·s−i
√

k2−Q2z, ∀z < 0, |z| ≫ aM , (26)

gα,β(k,Q) = − i

2A
1√

k2 −Q2

[
δα,β − QαQβ

k2

]
. (27)

where only zeroth order diffraction is kept as others are exponentially suppressed by a factor ∼ exp(−|z|/aM ), which
are negligible in the far-field limit. This type of transformation is utilized to evaluate the scattering matrix of light
in Section IV.

B. Doped bilayers

We proceed by generalizing the superlattice model to bilayers with Wigner crystals consisting of doped electrons.
Before doing this, we briefly review how those charge orders emerge from the two band model. To begin with, the
doped electrons fall into the first conduction moiré-Wannier state (which is split from the conduction band by moiré
potential) given by the following creation operator:

f̂†R,τ =

∫
d2swc

R(s)ĉ†τ (s), wc
R(s) =

1√
N

∑

Q

e−iQ·RϕcQ(s), hc(s)ϕ
c
Q(s) = Ec,Qϕ

c
Q(s), (28)

where R labels the supersites and N =
∑

R 1. Here wc
R(s) and ϕcQ(s) are the lowest moiré-Wannier and moiré-Bloch

wavefunctions, respectively. The latter is labeled by superlattice momentum Q because the corresponding eigenvalue
problem (with eigenvalue Ec,Q) has moiré periodicity. Projecting the two band model into this fermionic degrees of
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freedom and include only terms depending on f̂†R,τ f̂R,τ in the interaction, we find the following superlattice model
for doped electrons:

Ĥf = Ef

∑

R,τ

f̂†R,τ f̂R,τ −
∑

τ

∑

R,R′

tfR′,Rf̂
†
R′,τ f̂R,τ +

1

2

∑

τ,τ ′

∑

R,R′

Uf (R−R′)f̂†R,τ f̂
†
R′,τ ′ f̂R′,τ ′ f̂R,τ , (29)

where Ef =
∫
d2swc∗

R (s)hc(s)w
c
R(s), tfR′,R = −

∫
d2swc∗

R′(s)hc(s)w
c
R(s), and Uf (R−R′) =

∫
d2sd2s′

e2|wc
R(s)wc

R′ (s
′)|2

4πϵ|s−s′| .

It has been shown that this superlattice model with parameters from TMD bilayers could realize Wigner crystal states
at certain fractional fillings of doped electrons [15].

Next, we consider adding electron-hole pairs into these charge orders. We again stick to the large aM assumption
such that the zeroth order eigenvalues of the full model can be determined by an unit supercell problem. In this
situation, the coexistence of one pair with localized fermions provides two possibilities, depending on whether the
pair lies in a cell with a doped electron, giving a three-particle and two-particle intra-cell state, respectively. Their
energies (ωt and ωex) possess a difference of which sign depends on whether the generated electron-hole pair is
intralayer or interlayer [16, 17]. We specifically focus on the interlayer scenario, giving ωt − ωex ≃ 30meV for zero
twist WSe2/WS2 [17]. This offset is large enough to suppress the coupling between these sectors [18], suggesting that
the lowest energy pairs are simply the ones living in supercells without doped electrons. The superlattice Hamiltonian
discussed in the previous section therefore applies even in the presence of Wigner crystal state of doped electrons,
except that {R} preoccupied by these charges have to be projected out.

III. LOW MOMENTUM HAMILTONIANS NEAR THE MOIRÉ BRILLOUIN ZONE CENTER

In this section, we discuss the low-Q Hamiltonians for different lattice structures. We specifically focus on Bravais
lattices (triangular and rectangular arrays) where sublattice indices are trivial such that the low-Q Hamiltonian matrix
elements can be denoted as hτ,τ ′(Q).

We begin by evaluating the Bloch Hamiltonian exactly at Q = 0, which reads:

hτ,τ ′(0) =
(
ωex + τµBB − i

γ

2

)
δτ,τ ′ +

|d|2ω2
ex

2c2ϵ0
[δτ,τ ′ (hxx + hyy) + (1− δτ,τ ′) (hxx − hyy − 2iτhxy)] , (30)

where µBB denotes the Zeeman splitting from out-of-plane magnetic field and hα,β ≡ ∑
L ̸=0 Gex

α,β(L). Notably, if

{L} = {ǑL} and Gex
α,β(L) = Gex

α,β(ǑL), where Ǒ denotes the operations of C3 point group, we find hxx = hyy and

hxy = 0, indicating that hτ,τ ′(0) ∼ δτ,τ ′ . This holds for triangular lattice but is not applicable for rectangular lattice,
which is consistent with the fact that the former is doubly degenerate while the latter are split at µBB = 0 (see Main
text and Section VI).

With the zeroth order correction established, we proceed to the first order perturbation Q · ∇Qhτ,τ ′(Q). Notably,

all terms therein are associated with the summation
∑

L̸=0 LGex
α,β(L), which vanishes if {L} = {Ǒ′L} and Gex

α,β(L) =

Gex
α,β(Ǒ

′L), where Ǒ′ denotes the operations of C2 point group. Both triangular and rectangular lattices satisfy these
conditions and therefore their first order corrections are zero.

Next, we discuss the second order corrections, which reads:

hτ,τ ′(Q)− hτ,τ ′(0) ≃ |d|2ω2
ex

2c2ϵ0

[
δτ,τ ′

(
δ2hxx + δ2hyy

)
+ (1− δτ,τ ′)

(
δ2hxx − δ2hyy − 2iτδ2hxy

)]
, (31)

where:

δ2hα,β =
1

A
∑

γ,δ

QγQδ

∑

G

[∂qγ∂qδ G̃ex
α,β(q)]q→G. (32)

Rigourously speaking, one needs to evaluate the second derivative and perform the full G summation to get this
correction. Nevertheless, the G summand is exponentially suppressed with GaW ∼ aW

aM
because it contains I(ωex, G),

see Eq. (25), such that one only needs to include terms with GaW ≪ 1. Here we proceed with simply the G = 0 term,
which yields:

hτ,τ ′(Q) ≃ hτ,τ ′(0) + iJ(1− δτ,τ ′)(e∗τ ·Q)2, J =
3πc4

Aω4
ex

γ. (33)

Using the fact that hτ,−τ (0) = 0 for triangular lattice and going to polar coordinates for Q, we recover the low-Q
model presented in the main text.
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IV. SCATTERING THEORY OF LIGHT

In this section, we review the scattering theory of light incident upon a two-dimensional lattice [19], and apply it
to obtain the reflection coefficient dressed by the collective properties of moiré excitons. We start with the following
integral solution to Maxwell equation for monochromatic electric field at frequency ck, E(r)e−ickt:

∇×∇×E(r)− k2E(r) =
k2

ϵ0
P (r) → Eτ (r) = E0,τ (r)−

k2

ϵ0

∑

τ ′

∫
d3r′Gτ,τ ′(ck, r − r′) · Pτ ′(r′), (34)

where Eτ (r) is the eτ component ofE(r),
∑

τ eτE0,τ (r)e
−ickt is the input field, Gτ,τ ′(ck, r−r′) = e∗τ ·G(ck, r−r′)·eτ ′ ,

and P (r) ≡ ⟨P̂ (r)⟩ = ∑
τ eτPτ (r) is the (classical) electric polarization. Upon suppression of the spatial extension

of the pair wavefunction in the out-of-plane direction, projection to the lowest excitonic manifold, and dropping of

the counter-rotating term ∼ ⟨x̂†R,τ ⟩, the polarization vector becomes P (s+ zez) ≃ δ(z)d∗
∑

R,τ eτwR(s, s)⟨x̂R,τ ⟩.
Further progress requires evaluation of ⟨x̂R,τ ⟩, whose dynamics are described by the following equation of motion

in the weak drive limit (c.f. Eq. (4) in the main text):

ck⟨x̂R,τ ⟩ =
∑

R′,τ ′

Hτ,τ ′

R,R′⟨x̂R′,τ ′⟩ − 4
√
2daW
aB

E0,τ (R), Hτ,τ ′

R,R′ =

(
ωex + τµBB − iγ

2

)
δR,R′δτ,τ ′ − (1− δR,R′)tτ,τ

′

R,R′ ,

(35)

where Hτ,τ ′

R,R′ is the matrix element of the superlattice Hamiltonian presented in the main text (with magnetic field).
As we assume the drive does not vary significantly at the scale of zcv and aW , we set its z and s arguments as zero

and R, respectively. We also utilize Eq. (19) to set
∫
d2sw∗

R(s, s) = 4
√
2aW

aB
. The above equation can be simply solved

by matrix inversion:

⟨x̂R,τ ⟩ = −4
√
2daW
aB

∑

R′,τ ′

Dτ,τ ′

R,R′(ck)E0,τ ′(R′),
∑

R1,τ1

[
ckδR,R1δτ,τ1 −Hτ,τ1

R,R1

]
Dτ1,τ2

R1,R2
(ck) = δR,R2δτ,τ2 , (36)

where Dτ,τ ′

R,R′(ck) is the exciton propagator. Plugging this expression back to Eq. (34) yields an expression of E(r)

involving the integral
∫
d2s′G(ck, r−s′)wR(s′, s′). To simplify it, we assume that the field E(r) is eventually detected

at far out-of-plane distance, indicating that G(ck, r−s′) ≃ G(ck, r−s′−δs′) for small δs′, which validates the following
approximation:

∫
d2s′G(ck, r − s′)wR(s′, s′) ≃ 4

√
2aW
aB

G(ck, r −R). (37)

Further assuming that incident light is near resonant such that | ck
ωex

− 1| ≪ 1, we find:

Eτ (r) ≃ E0,τ (r) +
3πcγ

ωex

∑

R1,τ1

∑

R2,τ2

Gτ,τ1(ck, r −R1)D
τ1,τ2
R1,R2

(ck)E0,τ2(R2). (38)

To proceed, we specifically consider plane-wave incident field E0(s + zez) = E0e
ik·(s+zez) with kz ≡ k · ez > 0.

We are particularly interested in the far-field limit |z| → ∞, which allows for the approximation Eq. (26). Combining
this with the following relations:

Dτ,τ ′

L+b,L′+b′(ck) ≡
1

N

∑

Q

eiQ·(L+b−L′−b′)Dτ,τ ′

b,b′ (ck,Q),
∑

L′

ei(k−Q)·(L′+b′) = Nδk−(k·ez)ez,Q, N =
∑

L

1, (39)

where b again denote sublattice vectors for non-Bravais lattices, we find the following scattering formula:

Eτ (s+ zez) ≃
[
E0,τe

ikzz + e−ikzz
∑

τ ′

Sτ,τ ′(k)E0,τ ′

]
eik·s, z → −∞. (40)

Here the (reflection sector) of scattering matrix reads (expressing k = k|| + kzez):

Sτ,τ2(k) =
3πcγ

ωex

∑

τ1

gτ,τ1(k)Dτ1,τ2(ck,k||), gτ,τ1(k) = e∗τ · g(ck,k||) · eτ1 , Dτ1,τ2(ck,k||) =
∑

b1,b2

Dτ1,τ2
b1,b2

(ck,k||). (41)

Note that all sublattices are symmetized in Dτ1,τ2(ck,k||). For Bravais lattices, we recover the scattering formula
presented in the main text.
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V. PARAMETERS

In this section, we summarize the parameters discussed utilized for numerical calculation. We consider the values
from WSe2/WS2 [12], which gives moiré period aM = 8.25nm and exciton Wannier orbital center-of-mass localization
length aW = 2nm at zero twist. At small but finite twisting angle θ, the moiré period scale as aM (θ) = aM (0) δ√

θ2+δ2
,

where δ = 0.04 is the lattice mismatch, and aW (θ) = aW (0)
√

aM (θ)
aM (0) [20]. Interlayer excitons therein with bare

frequency ωex = 2πc
λex

= 1.55eV are considered. The exciton Bohr radius aB and the transition dipole d are packed into
the bare radiative decay rate γ, which acts as an unit for energy variables and therefore is set as one in the numerical
computation. Finally, Zeeman splitting from the out-of-plane magnetic field are either set as zero or µBB = 20γ.

VI. SUPPLEMENTARY DATA FOR COLLECTIVE EXCITONIC BANDS

FIG. 1. Collective excitonic lineshifts ∆Q and linewidths ΓQ emerging from charge ordered zero-twist WSe2/WS2 with electron
fillings (a,b) νe = 1

4
and (c,d) νe = 1

2
. The vertical axes are displayed in units of γNνe . The horizontal axes show Bloch momenta

Q at high symmetry points, which follow a piecewise-linear path in the Brillouin zone, as depicted by the dashed hexagon and
rectangle in the insets of (b) and (d), respectively. Momenta within the light cone are indicated by the green shaded area (size
enlarged for clarity). Different colors label distinct single-particle exciton bands. Parameters are chosen to be the same as
Fig. 2 of the main text.

In this section, we present numerical results for various lattices. As mentioned in the main text, we label the
collective bands ∆Q − i

2ΓQ in energy order as Λ = 0, 1, 2..., and scale the eigenvalues by Nνe
= λ2ex/Aνe

, where

λex = 2πc
ωex

and Aνe denotes the emergent unit cell area at electron filling νe and zero twist.

Fig. 1(a) and (b) show the collective excitonic bands from Kagome lattice at νe = 1
4 . There are six bands due to

two coupled valleys and three sublattices within an emergent unit cell. Four of them exhibit enhanced cooperative
decay rate (compared to γ), and the lowest doublet (Λ = 0, 1) possesses a larger Γ0 than the other one (Λ = 3, 4).
Notably, these four bright states are compressed into two valley components of the scattering matrix Eq. (41) upon
sublattice symmetrization of the exciton propagator, indicating that Sτ,τ ′(k) only contains partial information of the
excitonic collective states. In contrast, the states Λ = 2, 5 do not show a significant radiative decay rate, and unlike
others, they are non-degenerate at Q = 0.

Fig. 1(c) and (d) demonstrate the exciton eigenvalues from rectangular lattice at νe =
1
2 . There are two bands due to

two coupled valleys. Both of them exhibit enhanced cooperative decay rate (compared to γ), which are non-degenerate
at Q = 0 unlike the ones from triangular, honeycomb, and kagome lattices.

Fig. 2 shows the collective excitonic bands for triangular lattice at νe = 0 in the presence of out-of-plane magnetic
field, which splits the valley degeneracy at Q = 0. Similar splitting also occurs for honeycomb and Kagome lattices
(not shown). In contrast, for rectangular lattice, the two collective bands are non-degenerate even in the absence of
magnetic field, indicating that the Zeeman term does not quanlitatively modify the spectrum.

The Berry curvatures (Ω) of the states with collectively enhanced radiation from triangular, honeycomb, and
Kagome lattices are plotted in Fig. 3(a), (b), and (c,d), respectively (all the states with ΓQ ≪ γ yield suppressed
Ω and hence are not shown). Note that here we add an out-of-plane magnetic field to split the degeneracies at the
Brillouin zone center (such that Ω is well-defined). These states generally appear as doublets; each one contains two
states with opposite Berry curvatures ±Ω. Among these emergent lattice structures, Λ = 0, 1 yield similar Ω(Q). In
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FIG. 2. Collective excitonic bands in the presence of Zeeman splitting µBB = 20γ, denoted as ∆B
Q − iΓB

Q

2
for triangular lattice

at νe = 0. The vertical axes are shifted with respect to the zero-magnetic-field spectrum at zero momentum ∆0 − iΓ0
2

and are
scaled by γ. Other parameters are the same as Fig. 2 of the main text.

FIG. 3. Berry curvatures Ω(Qx, Qy) of collective bands with ΓQ ≫ γ from emergent arrays at various electron doping in the
presence of Zeeman splitting µBB = 20γ. Other parameters are the same as Fig. 2 of the main text.

contrast, the states Λ = 3, 4 at νe =
1
4 give much broader distributions of Berry curvature.
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(2020).
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