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Quantum information science offers a remarkable promise: by thinking practically about

how quantum systems can be put to work to solve computational and information processing

tasks, we gain novel insights into the foundations of quantum theory and computer science.

Or, conversely, by (re)considering the fundamental physical building blocks of computers and

sensors, we enable new technologies, with major impacts for computational and experimental

physics.

In this dissertation, we explore these ideas through the lens of three different types of

quantum hardware, each with a particular application primarily in mind: (1) networks of quan-

tum sensors for measuring global properties of local field(s); (2) analog quantum computers for

solving combinatorial optimization problems; and (3) digital quantum computers for simulating

lattice (gauge) theories.

For the setting of quantum sensor networks, we derive the fundamental performance lim-

its for the sensing task of measuring global properties of local field(s) in a variety of physical



settings (qubit sensors, Mach-Zehnder interferometers, quadrature displacements) and present

explicit protocols that achieve these limits. In the process, we reveal the geometric structure of

the fundamental bounds and the associated algebraic structure of the corresponding protocols.

We also find limits on the resources (e.g. entanglement or number of control operations) required

by such protocols.

For analog quantum computers, we focus on the possible origins of quantum advantage

for solving combinatorial optimization problems with an emphasis on investigating the power of

adiabatic quantum computation with so-called stoquastic Hamiltonians. Such Hamiltonians do

not exhibit a sign problem when classically simulated via quantum Monte Carlo algorithms, sug-

gesting deep connections between the sign problem, the locality of interactions, and the origins

of quantum advantage. We explore these connections in detail.

Finally, for digital quantum computers, we consider the optimization of two tasks relevant

for simulating lattice (gauge) theories. First, we investigate how to map fermionic systems to

qubit systems in a hardware-aware manner that consequently enables an improved parallelization

of Trotter-based time evolution algorithms on the qubitized Hamiltonian. Second, we investigate

how to take advantage of known symmetries in lattice gauge theories to construct more effi-

cient randomized measurement protocols for extracting purities and entanglement entropies from

simulated states. We demonstrate how these protocols can be used to detect a phase transition

between a trivial and a topologically ordered phase in Z2 lattice gauge theory. Detecting this

transition via these randomized methods would not otherwise be possible without relearning all

symmetries.
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Dedication

To Kara, who we lost too soon

Gonna lay down my sword and shield
Down by the riverside
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Down by the riverside
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Down by the riverside
Ain’t gonna study war no more
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cb) without any conflict, hence a lower chromatic number compared with the
weak coloring scheme. This corresponds to enumerating the edges of vertex e as
{ea, ed, eb, ec} 7→ {1, 2, 3, 4}. (b) Corresponding circuit diagrams for ordering
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coloring problems. Here eL and eR label the left and right internal qubits of ver-
tex e of the system graph, respectively. Colors match those in the corresponding
conflict graphs and gates of the same color are implemented simultaneously. . . . 193
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in Tab. 11.1 and depicted in Fig. 11.3. . . . . . . . . . . . . . . . . . . . . . . . 195

11.3 Examples of the internal qubits of vertex u (enumerated top to bottom as u1, u2, u3)
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11.4 Examples of the optimal procedure to parallelize two-mode interactions via strong
coloring for the star graph for (a) N = 8 and (b) N = 7. In the top of the fig-
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(inactive) with red (gray) lines indicating induced (no) Jordan-Wigner strings.
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give the number of interactions corresponding to that Jordan-Wigner string. This
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11.5 An illustration of the conflict graph for the weak-coloring problem with a system
graphKN withN = 4. The vertices of the system graph are labeled as {a, b, c, d}
(e.g., as in Fig. 11.6), and the vertices of the resulting conflict graph are labeled by
the corresponding interaction. The conflict graph consists of N = 4 interlocking
complete subgraphs each associated with one of the system-graph vertices, as
described in the main text. One such complete subgraph is shown. . . . . . . . . 204

11.6 A minimal example of K4 that shows a complete system graph can have its edges
enumerated such that a Hamiltonian cycle of two-mode interactions can be im-
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edges, red denotes active qubits, and red arrows from u to v for u, v ∈ VΣ denote
the implementation of an interaction of the type ÃuvB̃v. . . . . . . . . . . . . . . 205
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coloring. The physical vertices are divided into two complete subgraphs KN/2
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11.8 Numerical results for the chromatic number from the weak (blue circles) and
strong coloring (red diamonds) problems for (a) star and (b) complete system
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see Eqs. (11.27)-(11.29) and Eq. (11.30), respectively. For the complete graph,
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obtaining these results requires a highly fine-tuned vertex ordering for the greedy
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qubits are represented by black dots and are grouped into system-graph vertices as
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Chapter 1: Introduction

If we suppose that we know all the physical laws perfectly, of

course we don’t have to pay any attention to computers.1

Richard Feynman

1.1 Overview and Motivation

Traditionally, our understanding of the structure of the physical universe has come from

the symbiotic interplay of experiments and theory, with the former providing observations of the

physical world and the latter providing a cohesive mathematical description of those observa-

tions in such a way that suggests both the design and interpretation of future experiments. In the

past century, however, digital computers have provided a third leg to the pursuit of formulating

and understanding physical laws. As the field of computational physics has matured, it has ex-

tended, to great effect, V. I. Arnold’s domain of “cheap experiments” from analytic mathematics

to numerical “experiments.”2

From the very first computers—whose early development proceeded in tandem with the
1This quote comes from the same lecture [1] as a much more popular quotation, which has been used to kick off

many a quantum computing talk. Perhaps due to its novelty, I find this quote more compelling.
2The full quote [2]: “Mathematics is a part of physics. Physics is an experimental science, a part of natural

science. Mathematics is the part of physics where experiments are cheap.” V. I. Arnold is perhaps best known to
physicists for a superb textbook on classical mechanics, but his writings on the teaching of mathematics this quote
is taken from are also entertaining and thought-provoking reading.
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Manhattan project and was accelerated by the subsequent need for numerical simulations of nu-

clear processes for the design of the hydrogen bomb [3]—each advance in computational technol-

ogy has gone hand-in-hand with novel scientific discoveries and their application to new tasks.

Continuing this trend,3 in the past several decades, the theoretical, experimental, and numeri-

cal groundwork has been laid for a new class of computational technologies—namely, quantum

computers, as well as related quantum devices, such as sensors and simulators. Such devices are

exciting because they differ not just in degree, but also in kind from traditional, classical tech-

nologies. Of course, quantum physics has been behind many important technological advances

before, but these new devices promise to make use of the exotic and “genuinely quantum” fea-

tures of many-body quantum systems, such as entanglement, to further extend the purview of

computational and experimental physics to new, previously inaccessible, regimes.

This dissertation is organized around three important classes of such quantum technologies—

quantum sensors, analog quantum computers, and digital quantum computers. Within each of

these classes, we focus primarily on how to optimally realize a particular set of applications of

those technologies—estimation of global properties of fields, combinatorial optimization, and

simulation of lattice gauge theories, respectively. Thus, one might reasonably suspect that my

driving motivation4 for the work contained in this dissertation is guided by a very practical ques-

tion: how can we get quantum technology out into the “real world” to measure gravitational or

electromagnetic fields, solve important optimization problems, and teach us about physical phe-

nomena hidden beyond the computational horizon of classical computers? Certainly, achieving

3Although, I sincerely hope, with less violent applications than bomb design. The evidence, so far, seems to
suggest we may be safe on that particular front.

4This initial statement of motivations is the one place in this dissertation I will use “I” or “my” instead of “we” or
“our” as the broad motivations I choose to emphasize are my own. My hope is to provide a cohesive understanding
of why I, personally, chose to work on the wide variety of topics covered in this dissertation.
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these goals is an important motivation for working on these problems, but studying the uses of

quantum technology offers something much more than just technological improvements in the

service of existing modes of research.

To understand the impact of this “something extra,” it is helpful to take a brief journey

back to the origins of modern (classical) computer science and its relationship to physics. In

1936, Alan Turing published “On Computable Numbers, with an Application to the Entschei-

dungsproblem,”5 which, while not immediately obvious at the time, allowed one to construct

the foundations of modern theoretical computer science around the ideas of an abstract universal

computing machine, now known as a Turing machine. A Turing machine operates on an un-

bounded memory tape, divided into discrete cells, on which a “head” can write and erase using

a finite set of symbols. The head has an internal state, also from amongst a finite set. Given

some set of rules as to how the head moves, writes, erases, or updates its internal state based on

its current state and the symbol at its current location, this abstract mechanical device provides a

simple model for computation. Remarkably, it appears to be true that any computable function

can be computed by this simple device, a statement known as the Church-Turing thesis.

In fact, as the theory of computer science developed throughout the 20th century, a stronger

conjecture, known as the extended Church-Turing thesis, came into being: Any “realistic” model

of computation can be efficiently simulated by a (probabilistic) Turing machine [emphasis added].

For our purposes, the exact details of this statement do not particularly matter:6 the point of these

ideas is that at the highest level of abstraction, one does not have to worry too much about the

5This problem, posed by David Hilbert and Wilhelm Ackermann in the late 1920s, asks whether there exists an
”algorithm” that for every mathematical statement can decide if it is true or false. Answering this question requires
a well-defined notion of what, exactly, an algorithm is. Providing a robust and general definition, and then using it
to demonstrate the unsolvability of the Entscheidungsproblem is the core of Alan Turing’s contributions.

6There are some undefined terms here—the interested reader is suggested to consult Ref. [4], for instance.
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physical hardware of a computer when thinking about the broad strokes of algorithm design or

the complexity of algorithmically solving particular types of problems.

Quantum computers are an interesting computational platform because they are expected

to violate the extended Church-Turing thesis. That is, a computer that takes advantage of quan-

tum mechanical effects seems to be a reasonable model of computation, and, furthermore, it

appears that such devices can efficiently perform tasks, such as factoring [5], that classical,

Turing-equivalent, machines cannot perform efficiently.7 Therefore, it appears that we should,

at least, care if our computer is a quantum computer or not. From the perspective of a computer

scientist this fact, in and of itself, is important and somewhat surprising. From the perspective of

a physicist, this fact reminds that there are deep connections between computation and physics

and that today’s “second quantum revolution” is not just a source of new tools—it also suggests

a new, or underappreciated, perspective from which to think about the fundamental differences

between classical and quantum mechanical systems.

Beyond the birds-eye view of the extended Church-Turing thesis, which draws a distinction

between quantum and non-quantum, anyone familiar with classical high performance computing

knows that it can be extremely important to worry about lower levels of abstraction. In broad

strokes, the physical task of computing requires the process of mapping one description of a

physical system to another (description and physical system). At lower levels of abstraction, we

must care deeply about the precise details of such mappings. This is especially important for

quantum devices, which, currently, are relatively small and error-prone. Beyond the practical

benefits, an emphasis on optimizing the algorithms we employ on quantum hardware can draw

attention to regimes and features of quantum physics that a physicist might not otherwise be

7Up to some plausible conjectures. Factoring has not been proven to be outside the complexity class P.
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drawn to study.

Thus, whether quantum technologies reach their full potential as technology or not, the

associated information-theoretic view of physics, obtained via an exploration of how information

can be encoded and processed in a physical system, will be an important and lasting legacy of the

“second quantum revolution.” In this dissertation, I seek to provide a collection of specific exam-

ples to support the power of these ideas. Along the way, by considering mappings from problems

to devices at various levels of abstraction, I will also lay the groundwork for some important

practical applications of quantum technology in the guise of sensing protocols, optimization al-

gorithms, and simulation algorithms.

1.2 Outline of Dissertation

1.2.1 Part I: Quantum Sensing

Quantum sensors are well known to offer greater sensitivity and improved spatial resolution

over their classical counterparts. For instance, precise control of the quantum states of individual

atoms form the technological basis for the most precise clocks. Their precision floor is set by

the so-called standard quantum limit, which holds for unentangled sensors. The theory of how

to use entanglement to surpass this limit has been well-established, but is extremely challenging

to achieve in practice, with only two examples to date: the LIGO and HAYSTAC experiments

which use squeezed states to enhance sensitivity to gravitational wave [6] and (possible) axion

dark matter [7] signals, respectively. Therefore, enabling entanglement-enhanced metrology in

other scenarios and physical settings is an important and timely area of focus.

In Part I of this dissertation, we will consider the theoretical limits in such a multi-particle

5



scenario: in particular, we consider the problem of measuring global functions of local parame-

ters (i.e. local scalar fields) in a network of quantum sensors. This problem, first introduced in

Refs. [8, 9], lies at the boundary of single and multiple parameter quantum metrology, and, as

we shall see, inherits features from both sorts of problems. In particular, we find that one can

use single parameter performance bounds to understand the precision limits of measuring a sin-

gle global function of interest, subject to saturability conditions that depend on multi-parameter

bounds.

Chapter 2 sharpens and clarifies this understanding of the problem for the case of mea-

suring a linear function of local, independent parameters coupled to qubit sensors, providing a

rigorous algebraic framework to design entire families of optimal sensing protocols that saturate

the ultimate precision bounds. In addition, we prove several theorems regarding the minimum

amount of entanglement needed by any optimal protocol for this problem.

In Chapter 3, we extend the algebraic approach of the previous chapter to understand pho-

tonic sensors—in particular, local parameters coupled via either a number operator (as in a Mach-

Zehnder interferometer) or a quadrature operator. While this is a similar problem to the case of

qubit sensors, in this setting the relevant resource is the (average) number of photons, as opposed

to the time spent coupled to the local parameters. Critically, unlike time, photon number is not a

“parallel” resource—using some photons to gain sensitivity to one parameter necessarily requires

not using those same photons for another parameter. This distinction leads to different bounds and

different protocols, as well as different entanglement requirements. In the process of performing

this analysis, we prove a long-standing conjecture [9] about the ultimate performance limits for

measuring a linear function of local phases in a network of Mach-Zehnder interferometers.

Finally, we consider certain generalizations of the function estimation problem in networks
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of quantum sensors. In Chapter 4, we relax the requirement that the local parameters be inde-

pendent, and, in Chapter 5, we consider protocols for estimating multiple global functions. In

both cases, we see that the problem gains structure that we can exploit to better leverage en-

tanglement for enhanced sensing.8 Another generalization worth noting: the case of analytic

functions reduces, asymptotically, to the case of linear functions primarily considered in this

dissertation [10]. In these pages, this reduction is considered explicitly only in the context of

dependent local parameters (Chapter 4).

In Chapter 6, we will make concluding remarks on the topics in Part I and turn our attention

forward to a few open questions.

1.2.2 Part II: Quantum Optimization

Optimization problems are ubiquitous. Ranging from linear programming problems to

combinatorial optimization problems, they find application in many real-world tasks like path

routing, scheduling, and compilation, to list but a few examples. Given that many of the optimiza-

tion problems that are of the greatest interest are NP-hard (consider, for instance, the prototypical

example of the Traveling Salesman problem), in practice, one seeks effective heuristics to find

approximate solutions on particular problem instances. One might hope that quantum computers

could provide a boost to such heuristics, finding better solutions more efficiently than classical

algorithms.

The jury is still out on whether we can expect this to be a meaningful use case for quantum

computers [11], but, in pursuit of understanding this potential application, a number of interest-

8Chronologically, these papers were actually published before the papers in Chapters 2 and 3, but in the context
of this dissertation, these chapters seem to be a better entry point.
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ing questions arise regarding the possible origins of quantum advantage over classical devices.

In Part II of this dissertation, we will consider the resources leading to quantum advantage for

analog quantum computers. Specifically, we will focus, primarily, on adiabatic quantum com-

puting [12]. One should keep in mind, however, that adiabatic algorithms can be digitized via

Trotterization for use on digital quantum computers.9

In adiabatic quantum computation, one begins with the system in some easy-to-prepare

ground state of an initial Hamiltonian H0 and then adiabatically (slowly) changes the Hamilto-

nian to some H1, so that, at the end of this process, the state of the system is the ground state

of H1. This ground state should encode the solution to the computational problem of interest.

For general sparse qubit Hamiltonians, this procedure is a universal model of quantum compu-

tation [13], and, thus, if quantum computers offer any advantage over classical computers in the

digital setting, they do here as well. However, the universality construction is not an immedi-

ately practical one due to its reliance on non-geometrically local 3-body terms. Thus, often one

considers a reduced set of Hamiltonians tailored to a problem class of interest.

For instance, when solving a combinatorial optimization problem, H1 is a diagonal Hamil-

tonian whose entries encode the cost function one seeks to minimize. Oftentimes, H0 is taken

to be a transverse field H0 =
∑n

j=1Xj where n is the number of qubits and Xj is the Pauli-X

operator. This has theoretical justification—the ground state of H0 is then an even superposition

over all bit strings and, thus, corresponds to a uniform prior of sorts10—and a practical one—

this is exactly the sort of Hamiltonian to which the quantum computing company D-WAVE has

access.11

9Trotterization will be discussed in the context of quantum simulation algorithms in Chapter 11
10If we truly perform adiabatic evolution the initial state is irrelevant. However, once one considers the evolution

time required to guarantee negligible transitions out of the ground state the notion of a prior becomes important.
11D-WAVE produces a “quantum annealer,” as opposed to a full-blown quantum computer. The Hamiltonians
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What is not clear is whether such Hamiltonians allow for any quantum advantage. In par-

ticular, these sorts of Hamiltonians are k-local (i.e. consist of k-body interactions for some

constant k), stoquastic Hamiltonians. Stoquastic Hamiltonians are those with real, non-positive

off-diagonal elements; the k-locality constraint is a physical one, as realized, for instance, in

the D-WAVE hardware. Crucially, when attempting to simulate adiabatic quantum computation

with stoquastic Hamiltonians via quantum Monte Carlo (a classical algorithm) one does not face

a sign problem. The sign problem, which arises when attempting to sample from a quasiprob-

ability distribution, leads to exponential slowdowns for quantum Monte Carlo. Therefore, by

avoiding this problem it is conceivable that classical algorithms can efficiently simulate adiabatic

quantum computation with k-local stoquastic Hamiltonians. That is, one might suspect that non-

stoquasticity is an essential ingredient for quantum advantage in adiabatic quantum computation.

Definitively verifying or ruling out such suspicions is the ultimate goal of the work contained in

Part II of this dissertation.

A first approach to understanding the role of stoquasticity in quantum advantage via adi-

abatic quantum computing (including work done by the author [14]) consisted of constructing

examples of exponential separations between the performance of adiabatic quantum computation

with stoquastic Hamiltonians and particular quantum Monte Carlo algorithms [14, 15]. Such

results are fine-tuned, however, and require leveraging heavy amounts of symmetry to enable

rigorous analysis. Furthermore, while suggestive, such examples are not proofs of obstructions

for any classical algorithm.

that they can implement consist of a global transverse field and diagonal Ising-like interactions. Such Hamiltonians
are not universal, but, optimistically, could still provide speed-ups compared to classical algorithms for solving
certain optimization problems. Understanding what, if any, quantum advantage these Hamiltonians can provide has
historically been influential in determining the sorts of theoretical questions the quantum annealing and adiabatic
quantum computing community has sought to address.
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In Chapter 7, we present work aimed at extending the class of problems whose adiabatic

performance could be efficiently analyzed. Our new class of problems still rely on symmetries to

accomplish this task, but they provide a much broader set of examples, including more realistic

ones with many local minima.

While the new class of toy problems developed in Chapter 7 could reasonably find broader

application,12 for the purposes of understanding the quantum advantage (or lack thereof) for

k-local stoquastic Hamiltonians, Chapter 7 is subsumed by the work in Chapter 8, where we

prove that a broad class of examples that leverage polynomial-sized symmetric subspaces to

create a potential quantum advantage for adiabatic quantum computation with k-local quantum

Hamiltonians, can, in fact, be classically simulated in quasi-polynomial time. This includes all

previous examples of separations and leaves us, to date, with no known examples of possible

exponential separations.13

The proof in Chapter 8 crucially depends on k-locality as well as stoquasticity. This is

particularly interesting when one compares to the result by Hastings [18], that came out shortly

after the paper Chapter 8 is based on. In Ref. [18] and the follow-up work in Ref. [19], the au-

thors prove a super-polynomial separation between adiabatic quantum computation with sparse,

12For instance, I expect such toy models to be worth investigating in relation to my recent work [16], not included
in this dissertation, on quantum speed limit-based lower bounds on quantum annealing times. See Chapter 10 for
some further discussion.

13The separation between Shor’s factoring algorithm and the best known classical algorithm for factoring is sub-
exponential time, so one might wonder if our result can similarly be interpreted as still leaving room for a relevant
separation between classical and quantum algorithms for these highly symmetric examples. The answer is likely no.
For one, at a technical level, there is still a separation between the sub-exponential cost of factoring, with running
time 2o(n) for problem size n, and the quasi-polynomial cost of our algorithm, with running time O(n)2polylog(n).
Second, the quasi-polynomial feature of our classical symmetry finding algorithm comes from mapping the problem
to graph isomorphism. While both factoring and graph isomorphism belong to the small set of problems believed
to be NP-intermediate, graph isomorphism seems to be qualitatively different from factoring from the perspective
of both classical and quantum computation. For example, while graph isomorphism, like factoring, can be reduced
to an instance of the Hidden Subgroup Problem, the relevant instances provably do not admit efficient solutions via
quantum algorithms in the same way that the instances corresponding to factoring do [17].
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stoquastic Hamiltonians and classical computation. The construction is manifestly not k-local,

however, which, when coupled with our work, suggests that both k-locality and stoquasticity are

important ingredients for (possibly) limiting quantum advantage.

In Chapter 9, we consider a related mathematical problem. As is clear from the definition,

stoquasticity is a basis dependent feature of a Hamiltonian. Therefore, presented with a Hamil-

tonian one can seek to (efficiently) find a basis that makes it stoquastic. There is a rich literature

on the complexity theory of this problem in the case of a single Hamiltonian. In this chapter,

we consider the problem of whether a collection of Hamiltonians admits a basis such that all

Hamiltonians are simultaneously stoquastic. This work is relevant to adiabatic quantum com-

putation, where one interpolates between Hamiltonians—and possibly uses additional “catalyst”

terms during the interpolation. In particular, to apply quantum Monte Carlo to simulate quantum

adiabatic computation without a sign problem one, at least naively, needs the problem presented

in a fixed basis such that all relevant Hamiltonians are stoquastic.

Clearly, a number of interesting questions remain open. Can we, in fact, prove that adi-

abatic quantum computation with k-local Hamiltonians is efficiently classically simulable? In

Chapter 10, we discuss the outlook for answering this question and other directions of interest.

Of particular note, we briefly summarize some promising recent work on rigorous analysis of

quantum annealing beyond the adiabatic regime [16, 20].

1.2.3 Part III: Quantum Simulation

In the long term, fault-tolerant digital quantum simulation is the most exciting use case for

a quantum computer—at least for a physicist. Quantum systems exhibit a number of features
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that make them, generically, intractable to simulate on classical computers. For instance, (1)

quantum systems have an exponentially large state space, which, at least for naive representations

(and/or generic states), leads to exponential storage and simulation costs; (2) as discussed in the

previous section, classically simulating quantum systems often leads to sign problems, e.g. when

computing equilibrium properties of fermionic or frustrated spin systems, or when attempting to

simulate time-evolution. Quantum computers offer a natural solution to such problems: simply,

simulate quantum systems with other quantum systems—using either a general purpose quantum

computer or a more limited quantum simulator.

In Part III of this dissertation, we consider two problems relevant for the simulation of lat-

tice (gauge) theories on a digital quantum computer. In Chapter 11, we consider the problem of

mapping fermionic operators to qubit operators, with an emphasis on the interplay between the

choice of mapping and the underlying qubit architecture. In particular, we demonstrate how to

select fermion-to-qubit mappings to enable parallelization of a Trotter-based Hamiltonian simula-

tion algorithm. This is done by treating the problem of finding a good fermion-to-qubit mapping

as a path coloring problem on a certain graph, which depends on both the physical hardware and

the abstract fermion-to-qubit mapping. These results are particularly relevant for implementation

on near-to-intermediate term digital quantum simulators where circuit depth is a key bottleneck

and working at the lower levels abstraction in the computational stack are of prime importance.

In Chapter 12, we consider the problem of extracting information from the output state of

a quantum simulation. While such a quantum state may encode exponential information, only a

minuscule amount of this information is typically revealed by a single measurement. Thus, it is

important to be able to efficiently extract relevant quantities of interest. Randomized measure-

ment protocols, including classical shadows [21], are one approach to this problem. In this work,
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we demonstrate how one can enhance the randomized measurement toolbox [22] by making use

of known symmetries in the system of interest. While the approach holds for general symmetries,

we especially focus on Z2 lattice gauge theory. A key application is the study and verification of

topologically ordered phases in synthetic quantum materials.

Finally, in Chapter 13, we briefly discuss some other related work [23], and provide sug-

gestions for future explorations.
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Quantum Sensing
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Chapter 2: Minimum Entanglement Protocols for Function Estimation

2.1 Introduction

Entanglement is a hallmark of quantum theory and plays an essential role in many quantum

technologies. Consider single-parameter metrology, where one seeks to determine an unknown

phase θ that is independently and identically coupled to d sensors via a linear Hamiltonian Ĥ .

Given a probe state ρ̂, evolution under Ĥ encodes θ into ρ̂ where it can then be measured. If

the sensors are classically correlated the ultimate attainable uncertainty is the so-called standard

quantum limit ∆θ ∼ 1/
√
d [24], which can be surpassed only if the states are prepared in an

entangled state [25, 26]; if O(d)-partite entanglement is used, the Heisenberg limit ∆θ ∼ 1/d

can be achieved [27–29]. The necessity of entanglement for optimal measurement has also been

explored in numerous other contexts [30, 31]; for instance, in sequential measurement schemes

(where one may apply the encoding unitary multiple times) [32, 33], in the presence of decoher-

ence [34–37], when the coupling Hamiltonian is non-linear [38–40], or in reference to resource

theories for metrology [41–44].

In this [chapter], we consider the amount of entanglement required to saturate the quantum

Cramér-Rao bound, which lower bounds the variance of measuring an unknown quantity [45–48],

in the prototypical multiparameter setting of a quantum sensor network, where d independent,

unknown parameters θ (boldface denotes vectors) are each coupled to a unique quantum sensor.
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Specifically, we revisit the problem of optimally measuring a single linear function q(θ) [9, 49–

57], which is a crucial element of optimal protocols for more general quantum sensor network

problems (the case of measuring one or multiple analytic functions [10, 58] and the case where

the parameters θ are not independent [59] reduce asymptotically to the linear problem considered

here). Therefore, we focus on measuring a single linear function of independent parameters for

ease of presentation while emphasizing that our results generalize.

Given the similarity of measuring a single linear function to the single-parameter case and

the fact that such functions of local parameters are global properties of the system, one might

expect (provided all the local parameters non-trivially appear in q) that d-partite entanglement

is necessary. This intuition is reinforced by the fact that all existing optimal protocols for this

problem do, in fact, make use of d-partite entanglement [9, 49, 54].

We show that such intuition is faulty and only holds in the case where q is approximately

an average of the unknown parameters. In particular, we derive a family of protocols that saturate

necessary and sufficient algebraic conditions to achieve optimal performance in this setting, and

we prove necessary and sufficient conditions on q for the existence of optimal protocols using at

most (k < d)-partite entanglement. The more uniformly distributed q is amongst the unknown

parameters, the more entanglement is required. We also consider other resources of interest,

such as the average entanglement used over the course of the protocol, as well as the number

of entangling gates needed to perform these protocols, and discuss optimizing them within our

scheme.

Finally, we address the impracticality of certain assumptions that have typically been made

in the more theoretically-focused literature on function estimation protocols. Specifically, we

show that so-called probabilistic protocols fail to achieve the Heisenberg limit except for a narrow
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class of functions.

2.2 Problem Setup

We first briefly review the problem of measuring a linear function of unknown parameters

in a quantum sensor network [9, 49, 51–54]. Consider a network of d qubit quantum sensors

coupled to d independent, unknown parameters θ ∈ Rd via a Hamiltonian of the form

Ĥ(s) =
d∑

i=1

1

2
θiσ̂

z
i + Ĥc(s), (2.1)

where σ̂x,y,zi are the Pauli operators acting on qubit i and Ĥc(s) for s ∈ [0, t] is any choice of

time-dependent, θ-independent control Hamiltonian, potentially including coupling to an arbi-

trary number of ancilla. That is, Ĥc(s) accounts for any possible parameter-independent contri-

butions to the Hamiltonian, including those acting on any extended Hilbert space with a (finite)

dimension larger than that of the network of d qubit sensors directly coupled to the unknown pa-

rameters.1 We encode the parameters θ into a quantum state ρ̂ via the unitary evolution generated

by a Hamiltonian of this form for a time t. Given some choices of initial probe state, control

Ĥc(s), final measurement, and classical post-processing, we seek to construct an estimator for a

linear combination q(θ) = α · θ of the unknown parameters, where α ∈ Rd is a set of known

coefficients. Throughout this [chapter], we assume without loss of generality that ∥α∥∞ = |α1|.

Ref. [49] established that the fundamental limit for the mean square errorM of an estimator for

1Thus, the Hilbert space under consideration is a (d+ na)-qubit Hilbert space of dimension 2d+na , where na is
the number of ancilla.
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q is

M≥ ∥α∥
2
∞

t2
, (2.2)

where t is the total evolution time.

Eq. (2.2) is derived via the single-parameter quantum Cramér-Rao bound [38, 45–48]. This

is somewhat surprising: while we seek to measure only a single quantity q(θ), d parameters

control the evolution under Eq. (2.1), so we do not a priori satisfy the conditions for the use

of the single-parameter quantum Cramér-Rao bound. However, we can justify its validity for

our system: consider an infinite set of imaginary scenarios, each corresponding to a choice of

artificially fixing d − 1 degrees of freedom and leaving only q(θ) free to vary. Under any such

choice, our final quantum state depends on a single parameter q, and we can apply the single-

parameter quantum Cramér-Rao bound. While this requires giving ourselves information that we

do not have, additional information can only reduceM, and, therefore, any such choice provides

a lower bound on M when we do not have such information. To obtain the tightest possible

bound there must be some choice(s) of artificially fixing d − 1 degrees of freedom that gives us

no (useful) information about q(θ). We will derive algebraic conditions that characterize such

choices.

Thus, we may apply the single-parameter quantum Cramér-Rao bound

M≥ 1

F(q) ≥
1

t2∥ĝq∥2s
, (2.3)

where F is the quantum Fisher information, ĝq = ∂Ĥ/∂q (the partial derivative fixes the other

d − 1 degrees of freedom), and the seminorm ∥ĝq∥s is the difference of the largest and smallest
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eigenvalues of ĝq [38]. For our problem, the best choice of fixing extra degrees of freedom—

in the sense of yielding the tightest bound via Eq. (2.3)—gives ∥ĝq∥2s = 1/∥α∥2∞, yielding

Eq. (2.2) [49]. The proof of this fact is provided in Appendix A.6 for completeness.

2.3 Conditions for Saturable Bounds

While the argument above justifies applying the single-parameter bound in our multipa-

rameter scenario, it offers no roadmap for constructing optimal protocols. The quantum Fisher

information matrix F(θ) provides an information-theoretic solution to this issue. When calcu-

lating F(θ) we restrict to pure probe states, as the convexity of the quantum Fisher information

matrix implies mixed states fail to produce optimal protocols [60, 61]. For pure probe states and

unitary evolution for time t under the Hamiltonian in Eq. (2.1), it has matrix elements [61]

F(θ)ij = 4

[
1

2
⟨{Ĥi(t), Ĥj(t)}⟩ − ⟨Ĥi(t)⟩⟨Ĥj(t)⟩

]
, (2.4)

where {·, ·} denotes the anti-commutator and

Ĥi(t) = −
∫ t

0

dsÛ †(s)ĝiÛ(s), (2.5)

with ĝi = ∂Ĥ/∂θi = σ̂zj /2 and Û the time-ordered exponential of Ĥ . The expectation values in

Eq. (2.4) are taken with respect to the initial probe state.

Choosing d − 1 degrees of freedom to fix in hopes of using the single-parameter bound

then corresponds to a basis transformation θ → q, where we take q1 = q to be our quantity of

interest, and the other arbitrary qj>1 are the extra degrees of freedom. This basis transformation
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has a corresponding Jacobian J such that F(q) = J⊤F(θ)J . To obtain the bound in Eq. (2.2)

and have no information about q(θ) from the extra degrees of freedom qj>1, F(q) must have the

following properties:

F(q)11 =
t2

α2
1

, (2.6)

F(q)1i = F(q)i1 = 0 (∀ i ̸= 1) (2.7)

(recall |α1| = ∥α∥∞ without loss of generality). Via the inverse basis transformation q → θ, we

find Eqs. (2.6)-(2.7) are satisfied if and only if

F(θ)1j = F(θ)j1 =
αj
α1

t2, (2.8)

where we assume here and for the rest of the [chapter] that |α1| > |αj| ∀j > 1 for ease of

presentation. Our main result (see Theorem 2.5.1) is unchanged by this assumption, although its

proof and that of several other results becomes more tedious. The explicit derivation of Eq. (2.8),

along with the generalization of our results beyond this assumption, is provided in Appendix A.6.

Finally, we remark that the problem of function estimation is mathematically equivalent to

the concept of nuisance parameters in the literature on classical (c.f. [62]) and quantum estimation

theory [63–65]. One finds similarly derived bounds in these contexts.2 However, the protocols

we now describe, and especially their entanglement features, are new to this work.

2For instance, the conditions in Eqs. (2.6)-(2.7) are equivalent to the so-called global parameter orthogonality
condition discussed in Sect. 5.5 of Ref. [65].
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2.4 A Family of Optimal Protocols

We now derive a family of protocols that achieve Eq. (2.8). A particular protocol consists of

preparing a pure initial state ρ̂0 = |ψ(0)⟩⟨ψ(0)|, evolving ρ̂0 under the unitary generated by Ĥ(s)

for time t, performing some positive operator-valued measurement, and computing an estimator

for q from the measurement outcomes. Given ρ̂0 and Ĥ(s), F(θ) can be computed via Eq. (2.4).

The protocols we propose will use Ĥc(s) to coherently switch between probe states with

different sensitivities to the unknown parameters θ, thereby accumulating an overall sensitivity

to the unknown function of interest q. In particular, we consider the following set T of N = 3d−1

one-parameter families of cat-like states:

|ψ(τ ;φ)⟩ = 1√
2

(
|τ ⟩+ eiφ|−τ ⟩

)
, (2.9)

where each family of states is labeled by a vector τ ∈ {0,±1}d such that

|τ ⟩ =
d⊗

j=1





|0⟩, τj ̸= −1

|1⟩, τj = −1
, (2.10)

and φ ∈ R parameterizes individual states in the family. We require that τ1 = 1, as any op-

timal protocol must always be sensitive to this most important parameter; see Lemma A.1.1 in

Appendix A.1. Each of the probe states described in Eqs. (2.9) and (2.10) is a superposition of

exactly two states in the σ̂z basis (which we call “branches”). Note that these states use no ancilla.

Our protocols proceed in three main stages: a state initialization stage, a parameter en-
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coding stage, and, finally, a measurement stage. In the state initialization stage, we prepare the

probe state |ψ(τ ; 0)⟩ that is then coupled to the parameters in the parameter encoding stage via

a Hamiltonian of the form of Eq. (2.1). During this parameter encoding stage, we use the con-

trol Hamiltonian to coherently switch between families of probe states at particular (optimized)

times, such that the relative phase between the branches is preserved during the switches (that is,

Ĥc(s) changes τ , but not φ). This can be done using finitely many CNOT and σ̂x gates. We stay

in the family of states |ψ(τ (n);φ)⟩ for time pnt, where pn ∈ [0, 1] such that
∑

n pn = 1. Here

n indexes some enumeration of the families of states in T . There are three possibilities for the

relative phase that qubit j induces between the two branches due to the time spent in family n.

If τ (n)j = 0, then no relative phase is accrued because qubit j is disentangled. If τ (n)j = 1, the

relative phase imprinted by σ̂zj /2 is pnθjt, while if τ (n)j = −1, the relative phase is −pnθjt. Thus,

the j-th qubit always induces a relative phase of pnτ
(n)
j θjt. Accounting for all qubits, being in

family n for time pnt induces a relative phase

ϕn =
∑

j

pntτ
(n)
j θj. (2.11)

Given some time-dependent probe |ψ(t)⟩ which is in each family |ψ(τ (n);φ)⟩ for time pnt, the

total phase ϕ accumulated between the branches over the course of the entire parameter encoding

stage of the protocol is

ϕ =
∑

n

ϕn =
∑

n

∑

j

pntτ
(n)
j θj =

∑

j

(Tp)jθjt, (2.12)

where we implicitly defined p = (p1, · · · , pN)⊤ and the d × N matrix T with matrix elements
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Tmn = τ
(n)
m . If p is chosen such that Tp ∝ α this total phase is ∝ qt. More formally, choosing p

such that

Tp =
α

α1

(2.13)

achieves the saturability condition in Eq. (2.8). Algebraic details of this calculation are provided

in Appendix A.2.

Any nonnegative solution (in the sense that pn ≥ 0 ∀n) to Eq. (2.13) specifies a valid set

of states and evolution times satisfying Eq. (2.8). Because the system in Eq. (2.13) is highly

underconstrained, such protocols do not necessarily use all 3d−1 families of states in T . As an

illustrative example, consider the solutions to Eq. (2.13) for two qubits. The available families of

states are described by

T =

(
τ (1) τ (2) τ (3)

)
=



1 1 1

1 −1 0


 . (2.14)

By Eq. (2.13), the fraction of time spent in each family of states must satisfy

p1 + p2 + p3 = 1, (2.15)

p1 − p2 =
α2

α1

. (2.16)

Solving in terms of p1 leads to the 1-parameter family of solutions p2 = p1 − α2

α1
and

p3 = 1 + α2

α1
− 2p1, where pn ∈ [0, 1] for all n. Without loss of generality, assume α1 = 1. Then
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non-negativity is achieved by

p1 ∈





[
α2,

1+α2

2

]
α2 ≥ 0

[
0, 1+α2

2

]
α2 < 0

. (2.17)

There are many solutions satisfying these constraints. Of particular note, there is a two-family

protocol that does not require using exclusively maximally entangled states: for α2 > 0, let

p1 = α2 so that p2 = 0 and p3 = 1 − α2; for α2 < 0, let p1 = 0 so that p2 = −α2 and

p3 = 1 + α2.

We refer to protocols achieving Eq. (2.13) (or, equivalently, Eq. (2.8)) as optimal. Note,

however, that achieving these conditions is a property of the probe state(s) used and does not

a priori guarantee the existence of measurements to extract q. Therefore, we now move on

to describing the third main stage of our protocols, which is the explicit measurement scheme:

apply a sequence of σ̂xi and CNOT gates to the final state of a protocol to transform it into

1/
√
2(|0⟩+ eiqt/α1|1⟩)(|0 . . . 0⟩). Then perform single qubit phase estimation to measure q.3

Such phase estimation is not as simple as it might appear, however. Because we are in-

terested in how our error scales in the t → ∞ limit, a naive approach loses track of which 2π

interval the phase is in [69–71]. We could assume that this information is known a priori [49], but

this is unjustified in practice as the required knowledge is of precision ∼ |α1|/t, i.e. it is already

within the Heisenberg limit. More realistically, starting with any t-independent prior knowledge

of the unknown phase, we use the so-called robust phase estimation protocols from Refs. [66–68]

3It is worth pointing out that it is not strictly necessary to reduce the problem to single qubit phase estimation.
The reason we consider disentangling all qubits is to reduce fully to the single qubit phase estimation problem of the
robust phase estimation papers in Refs. [66–68], described below. However, one could apply essentially equivalent
protocols by forgoing the disentangling of the qubits and simply performing parity measurements on the final cat-like
state. Such parity measurements can be carried out by simply measuring all qubits individually.
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to saturate Eq. (2.2) up to a modest constant factor. Such protocols work by optimally dividing

the total time t into K stages with stage k using a time 2νktk such that 2
∑K

k=1 νktk = t. In

each stage, one encodes the parameters into the state for a time tk and then makes a (σ̂x or σ̂y)

measurement. This is repeated 2νk times in order to obtain an estimate of q, which in each stage

becomes a more and more precise estimate. Provided the time of the final stage scales linearly

with the total time, i.e., tK ∼ t, Heisenberg scaling in time is still achieved and we can esti-

mate q with a mean square error achieving the bound in Eq. (2.2) up to a constant factor. For

completeness, we review this measurement scheme in more detail in Appendix A.3.

To summarize, a full optimal protocol is as follows:

1. Using any relevant experimental desiderata and optimization algorithm, find a nonnegative

solution p to Eq. (2.13).

2. Restrict p to its N nonzero elements, and restrict T to the corresponding columns. If

desired, reorder the elements of p and the columns of T . The N τ corresponding to the

columns of T will be the families of states used in the protocol.

3. Initialize a quantum state on the d qubits to |0⟩⊗d.

4. Using CNOT and σ̂x gates, prepare |ψ(τ (1); 0)⟩, the first state of the protocol. Couple

the state to the Hamiltonian Ĥ and remain in this family for time p1tk, leading to state

|ψ(τ (1);ϕ1)⟩, where ϕ1 =
∑

j p1tkτ
(1)
j θj . Here, tk is the time required by the current step

of the robust phase estimation protocol.

5. Using CNOT and σ̂x gates, coherently switch to |ψ(τ (2);ϕ1)⟩ from |ψ(τ (1);ϕ1)⟩. Remain

in this family for time p2tk, leading to state |ψ(τ (2);ϕ1 + ϕ2)⟩, with ϕ2 =
∑

j p2tkτ
(2)
j θj .
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6. Repeat this process for all states in the restricted T , staying in the family parameterized by

τ (n) for time pntk, leading to a final state |ψ(τ (N); qtk)⟩.

7. Using CNOT and σ̂x gates, convert this final state to 1/
√
2(|0⟩+ eiqtk |1⟩)|0⟩⊗d−1.

8. Make a measurement on the first qubit of the final state (see Appendix A.3 for more details)

and repeat starting from step 3. After 2νk repetitions, move to the next stage of the robust

phase estimation protocol, and use an updated evolution time tk. After a number of stages

K as prescribed by the robust phase estimation protocol, extract a final estimate of q with

a mean square error achieving the bound in Eq. (2.2) up to a constant factor.

Having described the full details of the protocol, including the subtleties involved in subdi-

viding the total time t into different stages in order to implement robust phase estimation, in the

rest of the [chapter], for simplicity of presentation, we will simply consider the total encoding

time t and act as if the parameters can be encoded into the state in one step, using evolution for

this full time. This should be viewed as a notational shorthand such that t can be replaced with

the relevant tk at any given stage when implementing the full protocol.

2.5 Minimum Entanglement Solutions

We now focus on solutions from our family of protocols that require the minimum amount

of entanglement. Specifically, we prove necessary and sufficient conditions on α for the existence

of a protocol that uses at most k-partite entanglement. This is the primary technical result of [this

chapter]. We emphasize that, while the protocols in the previous section use a particular choice

of controls that does not include ancilla qubits, Theorem 2.5.1 applies to any protocol making

use of a Hamiltonian described via Eq. (2.1).
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Theorem 2.5.1 (Main result). Let q(θ) = α · θ. Without loss of generality, let ∥α∥∞ = |α1|. Let

k ∈ Z+ so that

k − 1 <
∥α∥1
∥α∥∞

≤ k. (2.18)

An optimal protocol to estimate q(θ), where the parameters θ are encoded into the probe state via

unitary evolution under the Hamiltonian in Eq. (2.1) requires at least, but no more than, k-partite

entanglement.

Theorem 2.5.1 justifies our claim that d-partite entanglement is not necessary unless ∥α∥1

is large enough, i.e. in the case of measuring an average (αi = 1
d
∀ i). We now sketch the proof,

providing full details in Appendix A.4. The proof comes in two parts. First, using k-partite

entangled states from the set of cat-like states considered above, we show the existence of an

optimal protocol, subject to the upper bound of Eq. (2.18). Second, we show that, subject to the

conditions in the theorem statement, there exists no optimal protocol using at most (k−1)-partite

entanglement, proving the lower bound of Eq. (2.18).

Part 1. Define T (k) to be the submatrix of T with all columns n such that
∑

m |Tmn| > k

are eliminated, which enforces that any protocol derived from T (k) uses only states that are at

most k-partite entangled. Define System A(k) as

T (k)p(k) = α/α1, (2.19)

p(k) ≥ 0. (2.20)
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Let α′ = α/α1 and define System B(k) as

(T (k))⊤y ≥ 0, (2.21)

⟨α′,y⟩ < 0. (2.22)

By the Farkas-Minkowski lemma [72, 73], SystemA(k) has a solution if and only if SystemB(k)

does not, so it is sufficient to show that SystemB(k) does not have a solution if
∑

j>1 |α′
j| ≤ k−1,

where we used that α′
1 = 1. This can be shown by contradiction.

Part 2. The probe state must always be maximally sensitive to the first sensor qubit (see

Lemma A.1.1 in Appendix A.1), so F(θ)1j only accumulates in magnitude when qubit j is

entangled with the first qubit (intuitively, Eq. (2.4) is similar to a connected correlator). Using

this, we show that satisfying the condition in Eq. (2.8) requires ∥α∥1/∥α∥∞ > k − 1. □

Theorem 2.5.1 provides conditions for the existence of solutions to Eq. (2.13) with limited

entanglement, but it is not constructive. To obtain an explicit protocol, simply solve the system

of linear equations T (k)p = α.

Of course, instantaneous entanglement is not the only resource that one might want to

minimize. For instance, one might also be interested in minimizing average entanglement over

the entire protocol. This possibility is considered in Section 2.6. Other, more general, resource

restrictions can be handled by setting up a constrained optimization problem that picks out certain

solutions to the system of linear equations T (k)p = α subject to a cost function E(p). For

example, if certain pairs of sensors are easier to entangle than others, due to, for instance, their

relative spatial location in the network, that could be encoded into E(p). More complicated

optimizations could also take into consideration the ordering of the states used in the protocols.
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For example, because our protocols require coherently applying CNOT gates to move between

different families of entangled states, and these gates may be costly or error-prone resources, one

might wish to find protocols that minimize the usage of these gates. We discuss this possibility

and the potential tradeoff between minimizing entanglement and CNOT gates in Section 2.7.

2.6 Average Entanglement

As mentioned above, one might also wish to minimize not just the size of the most-

entangled family of states, but also the average entanglement used (given by weighting the size

of each entangled family by the proportion of time that the family is used in the protocol). In

this section (with some details deferred to Appendix A.5), we show that there exists a class of

optimal protocols, ones that we name “non-echoed,” that minimize this average entanglement.

The formal definition is as follows:

Definition 2.6.1 (Non-Echoed Protocols). Consider some α ∈ Rd encoding a linear function

of interest. Let T be the matrix which describes our families of cat-like probe states, and let p

specify a valid protocol such that p > 0 and Tp = α/∥α∥∞. We say that the protocol defined

by p is “non-echoed” if ∀i such that pi is strictly greater than 0, sgn(Tij) ∈ {0, sgn(αj)}.

At any stage of a non-echoed protocol, letting the portion of the relative phase accumulated

between the two branches of the probe state associated to the parameter θi be given by ciθi, two

conditions must hold: (1) |ci| < |αi|; (2) sgn(ci) = sgn(αi). More intuitively, sensitivity to each

parameter is accumulated “in the correct direction” at all times, meaning one does not use any

sort of spin echo to produce a sensitivity to the function of interest, hence the name “non-echoed.”

We now prove two useful statements about non-echoed protocols.
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Lemma 2.6.1. Non-echoed protocols use minimium average entanglement.

Proof. We start with Tp = α/∥α∥∞. Then

∥α∥1/∥α∥∞ = sgn(α)⊤(Tp)

= (sgn(α)⊤T )p = w⊤p, (2.23)

where we have defined wj =
∑

i |Tij| to be the sum of the absolute value of the elements of

the jth column of T . That is, wj represents how entangled the corresponding cat-like family of

states is. But, then, clearly w⊤p is the average entanglement of the entire protocol. Furthermore,

the second half of the proof of Theorem 2.5.1, given in Appendix A.4 shows that the minimum

average entanglement of any optimal protocol is given by ∥α∥1/∥α∥∞ (see the discussion after

the completion of the proof).

The intuition behind this lemma is that if one always accumulates phase in the “correct

direction,” then the total amount of entanglement used over the course of the protocol must be

minimized, as any extra entanglement would lead to becoming overly sensitive to some parame-

ter, which would require some sort of echo to correct.

We further have the following theorem, which can be viewed as an extension of Theo-

rem 2.5.1.

Theorem 2.6.1. For any α ∈ Rd, there exists an optimal non-echoed protocol with minimum

instantaneous entanglement for measuring q = α · θ.

The proof of this theorem is given in Appendix A.5, and it proceeds in a very similar way

to the proof of Theorem 2.5.1. The main difference is that one also restricts the allowed state
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families to be those with the correct sign so as to be non-echoed. And, analogously to how one

can find a protocol with minimum entanglement, one can also obtain a solution that minimizes

average entanglement by restricting T to only include columns such that sgn(Tij) = sgn(αi) for

all i, j and then solving the corresponding system of linear equations.

2.7 CNOT Costs of Minimum Entanglement Protocols

We now address another resource of potential interest: how many entangling (CNOT) gates

are required to perform our protocols with a focus on the minimum entanglement protocols.

We will again assume, for simplicity, that ∥α∥∞ = α1 = 1 > |α2| ≥ |α3| ≥ · · · ≥ |αd|.

Furthermore, without loss of generality, we will adopt the convention that an optimal protocol

specified by a p ≥ 0 such that Tp = α begins by preparing a state in the family described by the

first column of T and evolving for time p1t, and then proceeds to the appropriate state (i.e., the

one with phase p1t) in the family described by the second column, then evolving for time p2t, and

so on, until eventually moving to the measurement state. If pi = 0, the corresponding state family

is skipped and not prepared. By construction, the number of CNOT gates needed to perform this

protocol is the number of gates required to generate the first state, plus the number needed to

convert from the first state to the second state, and so on. Finally, one should add the number

of gates needed to prepare the measurement state, which disentangles all qubits, from the final

probe state.4 The number of gates required to move from state i to state i+ 1 corresponds to the

number of elements of τ i that are±1 but 0 in τ i+1 and vice versa. In what follows, we will often

consider only the gates that are used to convert between probe states (i.e., we will not consider the

initial state preparation or final measurement preparation). This is physically motivated by the
4These gates are not strictly necessary. See footnote [3, above].
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fact that these intermediate gates may be more difficult to perform or may be more susceptible to

noise. Furthermore, assuming one is interested in the value of q at some particular moment (and

not, say, continuously), one might be free to prepare and purify the initial probe state in advance

of the actual sensing task, which also justifies ignoring the initial CNOT cost.

Assume that N states used in the protocol, i.e. p is such that it contains at most N nonzero

elements. It is clear that at mostO(N2
) CNOT gates are needed. However, this is not necessarily

optimal. In fact, Ref. [49] provides a protocol that uses d states and only (d − 1) = O(d)

intermediate CNOT gates. This “disentangling protocol” consists of using a maximally entangled

Greenberger-Horne-Zeilinger state (up to σ̂x rotations) for a time |αd|t, then disentangling the last

qubit and using the (d−1)-entangled state for time (|αd−1|−|αd|)t before disentangling the next-

to-last qubit and so on until reaching the final state corresponding to τ = (1, 0, . . . , 0)⊤. This

final state is used for time (|α1| − |α2|)t = (1 − |α2|)t. The disentangling protocol does not

minimize the instantaneous entanglement, but it does minimize average entanglement (as it is a

non-echoed protocol—see Section 2.6).

Even more interestingly, Ref. [49] also provides a protocol, which we refer to as the “echo-

ing” protocol, that uses zero intermediate CNOT gates. It proceeds by using d exclusively max-

imally entangled states (thereby minimizing neither average nor, in most cases, instantaneous

entanglement), but judiciously echoing away the extra sensitivity that this extra entanglement

induces.

To illustrate these protocols in the language of the current [chapter], we provide T and p

(where, for simplicity of notation, we restrict T and p to the states that are used for a non-zero
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fraction of time) for the case d = 8 and αi > 0:

T disentangling =




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0




, pdisentangling =




α8

α7 − α8

α6 − α7

α5 − α6

α4 − α5

α3 − α4

α2 − α3

α1 − α2




(2.24)

and

T echoing =




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 −1

1 1 1 1 1 1 −1 −1

1 1 1 1 1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 −1 −1

1 −1 −1 −1 −1 −1 −1 −1




, pechoing =




1+α8

2

α7−α8

2

α6−α7

2

α5−α6

2

α4−α5

2

α3−α4

2

α2−α3

2

α1−α2

2




. (2.25)

In the case of the disentangling protocol, the number of CNOTs needed is heavily dependent on

the ordering of the states. For example, consider, instead, ordering the states in the following

33



way:

T disentangling =




1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 0 1 0 1 1 1 1

1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0




. (2.26)

Here, the number of CNOTs required is now (d − 1) + (d − 2) + · · · + 1 = Θ(d2). Thus, it

is not only the choice of states that affects the CNOT cost of a protocol, but also their ordering.

Naively, finding an optimal set of states and their optimal ordering is a difficult problem, as if one

finds a protocol using N states, there are N ! orders to check.

While we were unable to find a general solution to this optimization problem, numerics al-

low us to provide a pragmatic analysis of the cost. To begin, we considered the naive approach of

finding a random (non-echoed) minimum entanglement solution using d states for random prob-

lem instances and, then, using this solution set, we brute-force searched over all column orderings

of T restricted to families of states specified by this solution to find an optimal ordering in terms

of CNOT cost. This was done for d ∈ [3, 10] sensors with twenty random instances each. Without

loss of generality, the random problem instances were taken to have all positive coefficients. We

observe a CNOT cost scaling ∼ d2, indicating that a random minimum entanglement solution,

even with optimal ordering, does not have the optimal linear in d scaling. See Figure 2.1.

Consequently, more nuanced algorithms for finding a minimum entanglement solution with
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better CNOT costs are desirable. To this end, we considered a greedy algorithm that yields a Θ(d)

CNOT cost whenever it does not fail. The algorithm works by building up the full sensitivity to

one parameter before switching coherently to a new state family (in this way, it is non-echoed—

see Section 2.6). Consequently, each time we switch to a new state, one sensor qubit can be

disentangled and never re-entangled. In particular, we seek to build up sensitivity to the param-

eters according to their weight in q, i.e. we build up sensitivity to parameters going from the

smallest corresponding |αj| to the largest. The full algorithm is completed in at most d steps.5

However, this greedy algorithm can fail to produce a valid protocol, as it does not enforce

the condition that ∥p∥1 = 1. This condition will be violated for some functions—typically those

with many coefficients with approximately equal magnitude. Still, when it works, this algorithm

succeeds in producing CNOT-efficient minimum entanglement protocols, as shown in Figure 2.1.

Finding more general algorithms that always succeed for this task remains an interesting open

problem.

Independent of the algorithm used to minimize the CNOT count of an optimal protocol,

the takeaway message is the same: there is an apparent tradeoff between entanglement- and gate-

based resources. The disentangling protocol minimizes average entanglement, but not necessarily

instantaneous entanglement, and requires only O(d) intermediate entangling gates; the echoing

protocol uses maximal entanglement, but requires only single-particle intermediate gates. Proto-

cols that minimize instantaneous entanglement do so at the cost of more intermediate entangling

gates. Depending on the primary sources of error or the physical constraints on any given quan-

tum sensor network implementation, one of these resources might be more important to minimize

than the other. In general, determining the optimal CNOT scaling for protocols that minimize in-

5Code is available upon request.
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Figure 2.1: CNOT costs versus number of sensors d for minimum entanglement protocols using
d optimally ordered states chosen either randomly or via the greedy algorithm described above.
Twenty randomly chosen instances (that do not fail) to yield a valid protocol via the greedy
algorithm. When it returns a valid protocol, the greedy algorithm recovers optimal linear scaling
with d for the CNOT cost, whereas randomly chosen states have quadratic scaling, even with
optimal state ordering.

stantaneous and/or average entanglement is a crucial open question for future work.

2.8 Time-Independent Protocols

Another approach to constructing protocols is to use so-called probabilistic protocols.

These protocols eschew control and instead exploit the convexity of the quantum Fisher infor-

mation by staying in one family throughout any given run of the protocol, but by letting this

family vary over different runs. Intuitively, each family is sensitive to a different function qn such

that q =
∑N

n=1 pnqn, where N is the number of families from T used in the protocol, and pn is

the frequency that family n is used. In this way, one can create an estimator for q using those for

qn. In order to generate a Fisher information matrix satisfying Eq. (2.8) [49, 54], the pn should

come from a solution to Eq. (2.13). These protocols have the advantage of requiring no control,

but, unfortunately, suffer worse scaling with d than ours for generic functions when the available

resources are comparable.
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In particular, to fairly account for resources, we must fix a total time t to perform all stages

of our protocol. Therefore, when considering a probabilistic protocol that uses multiple families

from T , but does not switch coherently between them, we must assign a time tn to family n such

that
N∑

j=1

tn = t. (2.27)

Note, we have used the fact that no stages of a probabilistic protocol with the families in T can

be performed simultaneously. One could imagine protocols that parallelize the measurement of

some qj that involve disjoint sets of sensors. However, such protocols are necessarily non-optimal

given Lemma A.1.1 in Appendix A.1, which says that any optimal protocol requires entanglement

with the first qubit at all times.

We can bound the maximum of the Fisher information matrix element F(θ)11 obtainable

via such a probabilistic protocol as

maxF(θ)11 ≤max
pn,tn

N∑

n=1

pnt
2
n,

subject to:
N∑

n=1

tn = t,

N∑

n=1

pn = 1. (2.28)

where we used that τ (n)1 = 1 for all n. The inequality arises due to the fact that the maximization

problem on the right hand side of the inequality does not enforce that Tp = α/α1. We could add

this as an additional constraint, but it will not be necessary.
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To perform the necessary optimization, consider the Lagrangian:

L =
N∑

n=1

pnt
2
n + γ1


t−

N∑

n=1

tn


+ γ2


1−

N∑

n=1

pn


 , (2.29)

where γ1, γ2 are Lagrange multipliers. Therefore, we obtain the system of equations

2pntn − γ1 = 0, (∀n),

t2n − γ2 = 0, (∀n),
N∑

n=1

tn = t,

N∑

n=1

pn = 1, (2.30)

which can be solved to yield the solution

max
pn,tn

N∑

n=1

pnt
2
n =

t2

N
2 , (2.31)

for pn = 1/N and tn = t/N for all n. Therefore,

F(θ)1j ≤
t2

N
2 , (∀j), (2.32)

which clearly fails to achieve the saturability condition for j = 1, unless N = 1, which is only

possible for a very small set of functions (generic functions require N that scale nontrivially with

d). Therefore, provided one considers cases where each qn must be learned sequentially (which is

a requirement for any possibly optimal protocol via Lemma A.1.1), we fail to achieve saturability
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even up to a d-independent constant for generic functions via time-independent protocols.

Note that we have, for simplicity, again restricted ourselves to the case where α has a

single maximal magnitude element. The more general proof follows almost identically, with

some notational overhead, when generalizing beyond this condition.

2.9 Conclusion and Outlook

We have proven that maximally entangled states are not necessary for the optimal mea-

surement of a linear function with a quantum sensor network unless the function is sufficiently

uniformly supported on the unknown parameters. While the uniformly distributed case has been

considered extensively in the literature, as it provides the largest possible separation in perfor-

mance between entangled and separable protocols, there is no a priori reason why one should

be interested in only these sorts of quantities. Our results demonstrate that while the precision

gains to be had are less away from the uniformly distributed regime, the required resources are

also less. This result is of particular relevance to the development of near-term quantum sensor

networks, where creating large-scale entangled states may not be practical. Furthermore, while

algebraic approaches like the one we consider here have been used before to generate bounds

for the function estimation problem [49, 59], leveraging this approach to derive protocols that

achieve these bounds subject to various experimental constraints is a new and widely applicable

technique. We emphasize again that these results are also useful in more general settings, such

as the measurement of analytic functions, as these measurements reduce to the case studied here

[10, 58, 59].

To the best of the authors’ knowledge, all information-theoretically optimal protocols for
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the estimation of a single linear function that are currently in the literature are subsumed by

the framework that we develop in this work. What protocol one chooses to use will depend

heavily on the experimental context; if decoherence is more problematic than the number of

entangling gates that one must perform, then minimum entanglement protocols will be preferred

to the conventional protocols. However, if decoherence is mild, but two-qubit gates introduce

significant errors, then a protocol such as the echoing protocol presented in Ref. [49] will be

preferred. Consequently, the extent to which minimum entanglement protocols are more or less

valuable than their more highly entangled counterparts depends on the details of the physical

implementation of a quantum sensor network. Either way, the development of a framework to

address these questions is, in of itself, an important contribution of this work.

We also briefly point out one more resource-related constraint of protocols that rely on

time-dependent control (whether in the form of σ̂x gates, CNOT gates, or others): these proto-

cols require precise timing of the gate applications. Uncertainty in the timing leads directly to a

systematic error in the function being measured. Importantly, however, this timing issue is a lim-

itation of all known optimal protocols for the linear function estimation task (see e.g. Ref. [49]).

We therefore view these limitations as more pertinent to experimental implementation than the

theory of resource tradeoffs that we are considering here.

So far, we have not discussed the situation where we are constrained to k-partite entan-

glement, but k is not sufficient to achieve optimality (for any protocol) via Theorem 2.5.1. We

propose the following protocol for such a scenario: Let R be a partition of the sensors into in-

dependent sets where we do not allow entanglement between sets and allow, at most, k-partite

entanglement within each r ∈ R. Let α(r) denote α restricted to r. Pick the optimal R such that

the condition of Theorem 2.5.1 is satisfied for all r; that is, we ensure that within each indepen-
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dent set we obtain the optimal variance for the linear function restricted to that set. The result is

a variance

M =
1

t2

∑

r∈R

∥α(r)∥2∞. (2.33)

The optimal R is a partition of the sensors into contiguous sets (assuming for simplicity that

|αi| ≥ |αj| for i < j) such that for all r ∈ R,
∑

i∈r |αi|/maxi∈r |αi| ≤ k, satisfying The-

orem 2.5.1. We conjecture that this protocol is optimal, and it is clearly so if partitioning the

problem into independent sets is optimal. However, one could imagine protocols that use differ-

ent partitions for some fraction of the time. Intuitively, this should not improve the performance,

but we leave analyzing this as an open question.

Finally, no optimal time-independent protocols for arbitrary linear functions exist in the

literature. Finding such protocols (or proving their non-existence) remains an open problem of

interest.
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Chapter 3: Optimal Function Estimation with Photonic Quantum Sensor Net-

works

3.1 Introduction

In quantum metrology, entangled states of quantum sensors are used to try to obtain a

performance advantage in estimating an unknown parameter or parameters (e.g. field amplitudes)

coupled to the sensors. In addition to this practical advantage of quantum sensing, the theory of

the ultimate performance limits for parameter estimation tasks is deeply related to a number

of topics of theoretical interest in quantum information science, such as resource theories [74],

the geometry of quantum state space [46], quantum speed limits [75–77], and quantum control

theory [76].

Initial experimental and theoretical work on quantum sensing focused on optimizing the

estimation of a single unknown parameter (see e.g. Ref. [78] for a review). More recently, the

problem of distributed quantum sensing has become an area of particular interest [79]. Here,

one considers a network of quantum sensors, each coupled to a local unknown parameter. The

prototypical task in this setting is to measure some function or functions of these parameters.

In this context, the task of optimally measuring a single linear function q(θ) of d independent

local parameters θ = (θ1, · · · , θd)T is particularly well-studied both theoretically [9, 49–51, 53–
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55, 57, 80–85] and experimentally [86–89]. In addition to its independent utility (i.e. for measur-

ing an average of local fields in some region), linear function estimation serves as a key sub-task

of more general metrological tasks, such as measuring an analytic function of the unknown pa-

rameters [10], measuring an analytic function of dependent parameters [90, 91], or measuring

multiple functions [58, 92].

For qubit sensors, the asymptotic limits on performance for these function estimation tasks

are rigorously understood, and techniques for generating optimal protocols subject to various con-

straints, such as limited entanglement between sensors, are known [83]. However, despite exten-

sive theoretical and experimental research on distributed quantum sensing for photonic quantum

sensors (see e.g. [79, 93] for reviews), the asymptotic performance limits for function estima-

tion are not yet rigorously established. Here, we close this gap, proving an ultimate bound on

asymptotic performance, as measured by the mean square error of the estimator, for measuring

a linear function of unknown parameters each coupled to a different photonic mode via either

(i) the number operator n̂ or (ii) a field-quadrature operator, chosen without loss of generality

to be the momentum quadrature p̂ := i(â† − â)/2. That is, we are interested in determining a

function of either unknown local phase shifts or unknown quadrature displacements. For case (i),

our primary focus, we derive this bound subject to a strict constraint on photon number, proving

a long-standing conjecture appearing in Ref. [9]. In case (ii), we derive our bound subject to

a constraint on the average photon number, which is more natural in this setting as quadrature

displacements are not photon-number conserving. Here, our results are consistent with existing

bounds in the literature [81], but, for completeness, we include derivations in this setting using an

equivalent mathematical framework to the number operator case and the qubit sensor case [83].

This allows for a natural comparison of the various performance limits and resource require-
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ments of function estimation in quantum sensor networks and opens the door to designing new,

information-theoretically optimal protocols in the asymptotic limit of sufficient data.

The rest of the [chapter] proceeds as follows. In Section 3.2, we formally set up the

problem of interest and provide useful notation. In Section 3.3 we prove lower bounds on the

mean-squared error of an estimator for arbitrary linear functions for both number operator and

displacement operator generators. We then study protocols that saturate these bounds in Sec-

tion 3.4. Finally, we discuss other entanglement-restricted optimal protocols in Section 3.5.

3.2 Problem Setup

Consider a sensor network of d optical modes each coupled to an unknown parameter θj

for j ∈ {1, · · · , d} via

Ĥ(s) =
d∑

j=1

θj ĝj + Ĥc(s) =: θ · ĝ + Ĥc(s), (3.1)

where ĝj is the local coupling Hamiltonian and boldface denotes vectors. Here, we consider the

following two cases:

ĝj := n̂j = â†j âj, (3.2a)

ĝj := p̂j =
i

2
(â†j − âj), (3.2b)

where â†j, âj are the bosonic creation and annihilation operators acting on mode j, n̂j is the

number operator acting on mode j, and p̂j is the momentum- (p̂-) quadrature on mode j. The

choice of p̂-quadrature is, of course, arbitrary. All results apply equally well for coupling to any
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quadrature. The θ-independent, time-dependent Hamiltonian Ĥc(s) is a control Hamiltonian,

possibly including coupling to an arbitrary number of ancilla modes. Here, s ∈ [0, t], where t is

the total sensing time.

In either case, our task is to measure a linear function q(θ) = α · θ of the local field

amplitudes θ where α ∈ Qd is a vector of rational coefficients. (The restriction to rational

coefficients is due to the discreteness of the resources—the number of photons—available in

this problem; in the case we are interested in—large photon numbers—this is only a technical

point.) To accomplish this task, we consider probe states with either fixed photon number N or

fixed average photon number N . Given such probe states, we consider encoding the unknown

parameters into the state via the unitary evolution generated by the Hamiltonian in Eq. (3.1).

We will consider both an unrestricted control Hamiltonian and a control Hamiltonian fixed

to have the form

Ĥc(s) = ĥc(s)δ(s− j∆t), (3.3)

where ĥc(s) is a (unitless) Hermitian operator, δ(s) is the Dirac delta function, ∆t := t/M is the

time for a single application of the encoding unitary exp(−iH∆t). The index j ∈ {1, · · · ,M}

indexes these applications, where M is the total number of applications. This construction is

motivated by the fact that typical physical implementations of a number operator coupling, e.g. in

a Mach-Zehnder interferometer, and displacement operator coupling, e.g. via an electro-optical

modulator (EOM), often do not allow for intermediate controls at arbitrary times. Therefore,

when we fix our control Hamiltonians to be described by Eq. (3.3), we have limited any controls

to be applied between each pass through these optical elements; for simplicity, we have assumed

that these control operations can be implemented on a timescale much shorter than the timescale
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of phase accumulation. Without loss of generality, we will let ∆t = 1 for the rest of this [chapter],

implying that (in this setting) t =M . Therefore, the parameter encoding procedure for the photon

number coupling is done via the unitary

U = U (M)V U (M−1)V · · ·U (1)V =
M∏

m=1

(U (m)V ), (3.4)

where V := exp(−iĝ · θ) and U (m) for m ∈ {1, · · · ,M} denote the unitaries applied between

passes. Here, by pass, we mean a single application of the unitary V . We use the convention that

the product operation left multiplies.

In both settings, it is worth emphasizing that, while our information-theoretic results lower

bounding the asymptotically achievable mean square error of an estimate q̃ of q will apply to any

protocol within the framework(s) described above, the explicit protocols we will develop will use

finite ancillary modes and finite controls.

3.3 Lower Bounds

Following the approach of Refs. [49, 83], we compute lower bounds on the mean square

errorM of an estimator q̃ of q by rewriting the Hamiltonian in Eq. (3.1) as

H(s) =
d∑

j=1

(α(j) · θ)(β(j) · ĝ) + Ĥc(s), (3.5)

for some (time-independent) choice of basis vectors {α(j)}dj=1, where α(1) := α and {β(j)}dj=1

is a dual basis such that α(i) · β(j) = δij . The vectors {α(j)}dj=1 are associated with a change of

basis θ → q where qj := α(j) · θ such that q1 = q. That is, α(1) =: α with corresponding dual
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vector β(1) =: β. Then we can define a β-parameterized generator of translations with respect to

the quantity q as

ĝq,β := min
q(2),··· ,q(d)

∂Ĥ

∂q

∣∣∣∣∣
q(2),··· ,q(d)

= β · ĝ. (3.6)

Armed with Eq. (3.6), we can write a bound onM in terms of a single-parameter quantum

Cramér-Rao bound [25, 38, 93]

M≥ 1

µF(q|β) , (3.7)

where F(q|β) is the quantum Fisher information with respect to q, given some choice of fixing

the extra d − 1 degrees of freedom in our problem, as specified by the vector β ∈ Rd such that

α · β = 1. Any such single-parameter bound is a valid lower bound as fixing extra degrees of

freedom can only give us more information about the parameter q (see below for mathematical

details). µ is the number of experimental repetitions. This bound holds for an unbiased estimator

q̃. When deriving our bounds, we will restrict ourselves to single-shot Fisher information and

set µ = 1.1 Quantum Fisher information is maximized for pure states, so restricting ourselves to

pure states and unitary encoding of the unknown parameters into the state we can write

F(q|β) ≤ 4t2max
ρ

[(∆ĝq,β)ρ]
2, (3.8)

where ĝq,β is the β-parameterized generator of translations with respect to the unknown function

q. The variance [∆(ĝq,β)ρ]
2 is taken with respect to a pure probe state ρ = |ψ⟩⟨ψ|.

1Clearly, with µ = 1, we are not guaranteed the existence of an unbiased estimator, so there is some subtlety
in this restriction. The choice is sufficient for determining bounds and optimal probe states, but, when considering
measurements to extract the quantity of interest, realistic protocols must use more than one shot. For instance, robust
phase estimation allows for µ = O(1), while still allowing us to obtain an unbiased estimator that achieves the
quantum Cramér-Rao bound up to a multiplicative constant [66–68]. In Appendix B.7, for completeness, we briefly
summarize this approach. See also, Refs. [63, 65] and Ref. [83] for further discussion of these issues.
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Ultimately, we seek a choice of new basis that yields the tightest possible bound on the

quantum Fisher information F(q). This choice is determined by the solution to2

min
β

max
ρ

[∆(β · ĝ)ρ]2, subject to α · β = 1. (3.9)

Let (β∗, ρ∗) be a solution for this optimization problem. Then we can rewrite the single-shot

version of Eq. (3.7) as

M≥ 1

4t2[∆(β∗ · ĝ)ρ∗ ]2
. (3.10)

This bound can be understood as corresponding to the optimal choice of an imaginary single

parameter scenario, where we have fixed d − 1 of the d parameters controlling the evolution of

the state, leaving only the parameter of interest q free to vary. While this requires giving ourselves

information that we do not have, additional information can only reduceM, and, therefore, any

such choice provides a lower bound onM (via single-parameter bounds) when we do not have

such information. While not guaranteed by this method of derivation, we shall see that such

bounds are saturable, up to small multiplicative constants.

Constraints can be placed on the probe state ρ depending on the physical generators coupled

to the parameters of interest: as previously discussed, in this work we consider the constraints

of fixed photon number N for the generator n̂j and fixed average photon number N for the

generator p̂j . The rationale behind these constraints is as follows. p̂ does not conserve photon

number, hence it does not make sense to restrict to a fixed photon number sector when coupling

to quadrature operators and, thus, average photon number is the natural constraint. For n̂, on

2Note the use of a minimax as opposed to a maximin in Eq. (3.9). This follows from the fact that the minimax of
some objective function is always greater than or equal to the maximin and we seek to maximize the quantum Fisher
information.
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the other hand, we must work in the fixed photon sector, as using fixed average photon number

allows for the construction of pathological probe states enabling arbitrarily precise sensing. In

particular, consider the state

|ψa⟩ =
√
a− 1

a
|0⟩+

√
1

a
|aN⟩. (3.11)

It is easy to see that |ψa⟩ has mean photon number N and variance (a − 1)N
2
. Hence, even for

fixedN , letting a get arbitrarily large allows for an arbitrarily large variance, and hence arbitrarily

precise sensing.

Leaving the details of the calculation to Appendix B.1, solving the above optimization

problem for ĝj = n̂j restricted to probe states with exactly N photons yields

M≥ max
{
∥α∥21,P , ∥α∥21,N

}

N2t2
, (3.12)

where P := {j |αj ≥ 0} and N := {j |αj < 0}. In the second line, we use the notation

∥α∥1,S :=
∑

i∈S

|αi|, (3.13)

where S ∈ {P ,N}. For the rest of the [chapter], we assume without loss of generality that we

are in the case that ∥α∥1,P ≥ ∥α∥1,N to simplify our expressions. In the special case where α

possesses only positive coefficients (i.e., N = ∅),

M≥ ∥α∥
2
1

N2t2
, (3.14)
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proving a long-standing conjecture from Ref. [9] that this is the minimum attainable variance for

α ∈ Qd with α ≥ 0 and Nα ∈ Nd. This is our primary result.

Similarly, for the case of local quadrature displacements restricted to probe states with

average photon number N , we obtain the following bound:

M≥ ∥α∥
2
2

4Nt2
−O

(
d∥α∥22
N

2
t2

)
. (3.15)

Eq. (3.15) is a minor generalization of the results in Refs. [79, 81], extended to allow for neg-

ative coefficients and for arbitrary non-Gaussian probe states. Therefore, for completeness, we

include a reminder of the arguments from Refs. [79, 81] along with our more general derivation

in Appendix B.2.

We can compare the bounds in Eqs. (3.12) and (3.15) to the corresponding bounds on the

mean square error obtainable by separable protocols—that is, those using separable probe states

such that each parameter θi is measured individually using an optimized partition of the available

photons, and then these estimates are used to compute q. In particular, for number operator

coupling and fixed photon number states, using ηj =
|α′

j |
∥α′∥1N photons (α′

j := α
2/3
j ) in mode j, it

holds that [9]

Msep ≥
∥α′∥22/3
N2t2

, (3.16)

where ∥·∥2/3 denotes the Schatten p-function

∥v∥p =
(∑

i

vpi

)1/p

(3.17)

with p = 2/3. When p ∈ [1,∞], this function is a norm, but for p ∈ (0, 1) it is not, as it
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does not satisfy the property of absolute homogeneity, but it still provides a convenient notational

shorthand.

Performing a similar optimization for the case of displacement coupling and fixed average

photon number, one obtains

Msep ≥
∥α∥21
4Nt2

+O
(

1

N
2
t2

)
, (3.18)

where the optimum division of photons is given by using ηj =
|αj |
∥α∥1N photons in mode j. A

non-closed-form version of this bound can be found in Ref. [80] in the case where N is finite.

One recovers our result in the asymptotic in N limit.

Consequently, in both the phase and displacement sensing settings, the achievable advan-

tage due to entanglement between modes is fully characterized by the difference between the

vector p-norm of α with p = 2
3
, 1 or p = 1, 2, respectively. By generalized Hölder’s inequality,

∥α∥22/3 ≤ d∥α∥21 and ∥α∥21 ≤ d∥α∥22. Both inequalities are saturated for any “average-like”

function with |α| ∝ (1, 1, · · · 1)T . In both cases, we obtain a O(1/d) improvement in preci-

sion due to entanglement, consistent with the so-called Heisenberg scaling in the number of

sensors d. This is consistent with results for qubits in Ref. [49], where the best improvement

between the separable and entangled bounds occurs when measuring an average-like function.

For the case of phase sensing, the optimal performance, including constants, is obtained when

∥α∥21,P = ∥α∥21,N = ∥α∥1/2 (which occurs when the vector α is half positive ones and half

negative ones).
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3.4 Protocols

3.4.1 Existing Protocols

The bounds established in the previous section are all saturable, up to small multiplicative

constants, using protocols that exist in the literature, or slight variations thereof. In particular,

Refs. [9, 51] present a protocol for estimating a linear function of local phase shifts with positive

coefficients (i.e., α ≥ 0) which achieves the bound in Eq. (3.12) up to a small multiplicative

constant. This protocol makes use of a so-called proportionally-weighted N00N state over d+ 1

modes,

|ψ⟩ ∝
∣∣∣∣N

α1

∥α∥1
, · · · , N αd

∥α∥1
, 0

〉
+

∣∣∣∣0, · · · , 0, N
〉
, (3.19)

where we have expressed the state in an occupation number basis over d + 1 modes and have

dropped the normalization for concision. The last mode serves as a reference mode. Observe

that, for this state to be well-defined, it is essential that α/∥α∥1 ∈ Qd and that N is sufficiently

large that the resulting occupation numbers are integers. Details of how protocols using this

probe state work and how they generalize to the case of negative coefficients are provided in

Appendix B.4. A description of how to achieve the separable bound in Eq. (3.16) is provided in

Appendix B.2.

Similarly, in the case of measuring a linear function of displacements using states with fixed

average photon number, Ref. [80] provides a protocol that, up to small multiplicative constants,

saturates the bound in Eq. (3.15) and a separable protocol that, again up to small constants,
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achieves the bound in Eq. (3.18). Interestingly, these protocols only require Gaussian probe

states, indicating that these states are optimal. In particular, these protocols make use of an initial

single-mode squeezed state, followed by a properly constructed beam-splitter array to prepare

a multi-mode entangled probe state with the appropriate sensitivity to quadrature displacements

in each mode. Homodyne measurements on each mode can then be used to extract the function

of interest. Consistent with this fact, our separable lower bound matches the Gaussian state-

restricted bound obtained in Ref. [80] and the bound for arbitrary states derived in Ref. [81] for

the particular case of measuring an average.

3.4.2 Algebraic Conditions for New Protocols

Other protocols are possible and can be derived via a simple set of algebraic conditions.

In particular, for a probe state to exist saturating the bound in Eq. (3.10), or its specific versions

in Eqs. (3.12) and (3.15), we require the existence of an optimal choice of basis transformation

θ → q such that knowing qj for j > 1 yields no information about q = q1. Mathematically, this

means that the quantum Fisher information matrix [61] with respect to the parameters q must

have the following properties:

F(q)11 = 4t2[∆(β∗ · ĝ)ρ∗ ]2, (3.20a)

F(q)1i = F(q)i1 = 0 (∀ i ̸= 1), (3.20b)
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Recall that (β∗, ρ∗) are the solution to the minimax problem in Eq. (3.9). We can reexpress these

conditions in terms of the quantum Fisher information matrix with respect to θ as

(β∗)TF(θ)β∗ = 4t2[∆(β∗ · ĝ)ρ∗ ]2, (3.21a)

(β∗)TF(θ)β(i) = (β(i))TF(θ)β∗ = 0 (∀ i ̸= 1). (3.21b)

Then, using α(i) · β(j) = δij , we obtain the condition

F(θ)β∗ = 4t2[∆(β∗ · ĝ)ρ∗ ]2α. (3.22)

Matrix elements of F(θ) for pure probe states and unitary evolution are given via

F(θ)ij = 4

[
1

2
⟨{Hi,Hj}⟩ − ⟨Hi⟩⟨Hj⟩

]
, (3.23)

whereHi = −iU †∂iU with ∂i := ∂/∂θi, U is the unitary generated by Eq. (3.1) and the expecta-

tion values are taken with respect to the initial probe state [61].

We refer to protocols that make use of probe states and controls so that Eq. (3.22) is satisfied

as optimal. However, we caution that the existence of an optimal probe state does not imply the

existence of measurements on this state that allow one to extract an estimate of the parameter q

saturating the lower bounds we have derived. This issue of the optimal measurements to extract

parameters is also discussed extensively in e.g. Ref. [70], with some convenient, nearly optimal,

protocols presented in Refs. [66–68]. Such methods are the origin of the “small multiplicative

constants” that arise in the explicit protocols above. In fact, lower bounds derived via the quantum
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Cramér-Rao bound can only be obtained up to a constant≥ π2 [71]. See Appendix B.7 for a brief

explanation of these ideas.

For the particular cases considered in this [chapter], β∗ has been explicitly calculated (see

Appendices B.1 and B.2), so Eq. (3.22) can be expressed in a more meaningful form. For number

operator coupling, we obtain the condition

∑

i∈P

F(θ)ij =
N2t2

∥α∥1,P
αj, (3.24)

for all j. Similarly, for the quadrature coupling, an optimal protocol requires

F(θ)α ∼ 4Nt2α, (3.25)

where ∼ denotes asymptotically in N . Eqs. (3.24)-(3.25) provide a generic route to finding new

protocols: consider a set of parameterized families of probe states T that one can coherently

switch between using available controls Ĥc(t) (here, a “family” of states refers to a particular

superposition of Fock states with an arbitrary relative phase). One can then calculate F(θ) via

Eq. (3.23) and allocate the time spent in a particular family of states such that the associated

quantum Fisher information condition is achieved. As a limiting case, one could consider |T | =

1, removing the necessity of coherent control; the protocols considered in the previous section

are of this sort (and, in Appendix B.4, we show that these protocols do, indeed, achieve the

saturability conditions).

The possible choices for families of states T that allow for such a solution are actually quite

limited, even given access to arbitrary control Hamiltonians and ancilla modes. In particular, we
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prove the following in the case where ĝj := n̂j:

Lemma 3.4.1. Any optimal protocol using N photons and M passes through interferometers

with a coupling as in Eq. (3.1) with ĝj = n̂j requires that, for every pass m, the probe state |ψm⟩

be of the form

|ψm⟩ ∝ |N (m)⟩P |0⟩NR + eiφm|0⟩P |N ′(m)⟩NR, (3.26)

where P , N , and R represent the modes with αj ≥ 0, αj < 0, and the (arbitrary number of)

reference modes, respectively, N (m) and N ′(m) are strings of occupation numbers such that

|N (m)| = |N ′(m)| = N for all passes m. φm is an arbitrary phase.

The proof follows straightforwardly from an explicit calculation of the Fisher information

matrix for ĝj = n̂j , but is somewhat algebraically tedious so we relegate it to Appendix B.5.

Lemma 3.4.1 suggests a particular choice of T from which we can pick an optimal protocol

for function estimation in the ĝj = n̂j case. In particular, define a set of vectors

W :=
{
ω ∈ Zd

∣∣ ∥ω∥1,P = N, ∥ω∥1,N ≤ N, ωjαj ≥ 0 ∀ j
}
. (3.27)

Further, consider the restriction ω|P ∈ Zd with components

(ω|P)j =





ωj, j ∈ P

0, otherwise,

(3.28)

and the restriction ω|N , defined similarly. Armed with these vectors, we can define a particular

choice T of one-parameter families of probe states in an occupation number basis where each
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|ψ(ω;φ)⟩ ∈ T is labeled by a particular choice of ω such that

|ψ(ω;φ)⟩ ∝ |ω|P⟩|0⟩+ eiφ|−ω|N ⟩|N − ∥ω|N∥1⟩, (3.29)

where φ ∈ R is an arbitrary parameter and the last mode is a reference mode. It should be clear

that these families of states are of the form specified by Lemma 3.4.1. Furthermore, note that the

proportionally-weighted N00N state in Eq. (3.19) is also of this form.

Our protocols proceed as follows: starting in a state |ψ(ω; 0)⟩, after any given pass through

the interferometers we use control unitaries to coherently switch between families of probe states

such that the relative phase between the branches is preserved (that is, we change ω, but not

φ). The fact that an optimal protocol must coherently map between such states is proven in

Lemma B.5.2 in Appendix B.5. We stay in the family of states |ψ(ωn;φ)⟩ for a fraction pn of

the passes where pn = rn
M

for rn ∈ {0, 1, · · · ,M} such that
∑

n pn = 1. Here n indexes some

enumeration of the families of states in T .

The value of the component ωj in a given probe state determines the contribution of the

parameter θj coupled to sensor j to the relative phase between the two branches of the probe state

during a single pass. In particular, in a single pass with a probe state in the family |ψ(ω;φ)⟩,

the relative phase between the two branches of the probe state becomes ω · θ + φ. Assuming an

initial probe state with φ = 0 and summing over all passes we obtain a total relative phase

φtot =M
∑

n

pn(ωn · θ) (3.30)

=: (Wr) · θ. (3.31)
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In the second line, we implicitly defined W as a matrix whose columns are the vectors ωn ∈ W

and r := Mp ∈ Z|T |. Explicitly computing the Fisher information matrix for these states

demonstrates that the optimality condition in Eq. (3.24) is satisfied if

Wr = NM
α

∥α∥1,P
; (3.32)

see Appendix B.4 for details. Consequently, any integer solution r to Eq. (3.32) such that

∥r∥1 =M,

r ≥ 0, (3.33)

yields an optimal protocol. The protocols of Ref. [9], described above and generalized in Ap-

pendix B.4, are a particularly simple case within this class with M = 1 and ω = Nα
∥α∥1,P

, i.e. we

select out only a single column ofW .

Solutions to Eqs. (3.32)-(3.33) are not guaranteed to exist for all N,M . In particular, we

require that

NM
α

∥α∥1,P
∈ Zd. (3.34)

For α ∈ Q and sufficiently large N or M this hold true. Setting up the system of equations in

Eqs. (3.32)-(3.33) that must be solved to pick out explicit protocols requires identifying the set

of vectorsW defined in Eq. (3.27). While computationally straightforward, if expensive, to con-

struct and enumerate this set, the number of states is extremely large, yielding a correspondingly

large set of linear Diophantine equations in Eq. (3.32). Consequently, it is reasonable to place

further, experimentally-motivated constraints to limit this set of states and pick out advantageous
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protocols. For instance, one such constraint is to limit the amount of entanglement between

modes on any given pass. We consider this case in the following section.

It is also important to note that integer linear programming is NP-hard [94], so finding a

particular solution once we add additional constraints is not a computationally easy task. Re-

gardless, in applications one can apply standard (possibly heuristic) algorithms for integer linear

programming to seek solutions. If a solution is found, it is known to be optimal. Consequently,

proving the existence or lack thereof of a solution with certain additional constraints may be

intractable for large problem instances.

Similar arguments to those that go into proving Lemma 3.4.1 allow us to show that, for

quadrature sensing, the condition in Eq. (3.25) can be reduced to the condition that

F(θ)ij ∼
4Nt2

∥α∥22
αiαj, (3.35)

which is proven in Appendix B.6. However, there is not a clearly interesting family of states that

can be leveraged to achieve this quantum Fisher information, as in the case of number operator

coupling or qubit sensors [83]. However, the existing optimal protocols described above do obey

this condition asymptotically in average photon number N .

3.5 Entanglement Requirements

The remaining flexibility in the choice of optimal probe states enabled by some control also

allows us to impose further experimentally relevant constraints. One reasonable constraint is the

amount of inter-mode entanglement required during the sensing process. This was considered in

Ref. [83] for the case of qubit sensors.
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The answer to the entanglement question in the current context depends crucially on the

sorts of control operations we allow. In the number operator case, with arbitrary time-dependent

control, only 2-mode entanglement is needed at any given time, as one can simply prepare a

N00N state between the reference and one of the sensing modes and coherently switch which

sensing mode is entangled with the reference mode such that the time spent entangled with mode

j is given by tj = |αj|t/∥α∥1. For similar reasons, no entanglement is needed for displacement

sensing; here, no reference mode is needed and one can simply sequentially apply displacement

operators for a time tj = |αj|t/∥α∥1 on a single-mode squeezed state, followed by a homodyne

measurement. When control operations to change the probe state are only allowed at M discrete

time intervals, as described by Eq. (3.3), the problem becomes more interesting. For number

operator coupling, subject to a fixed photon number constraint, any optimal protocol requires at

least (⌈∥α∥0/M⌉+1)-mode entanglement. This bound is fairly trivial: it merely states that one

must be entangled with each non-trivial mode for at least one pass. For displacement operator

coupling, subject to a fixed average photon number constraint, an essentially identical argument

allow us to prove that any optimal protocol requires at least ⌈∥α∥0/M⌉-mode entanglement.

The difference of one is because, unlike displacement sensing, phase sensing generally requires

entanglement with a reference mode. In the M → ∞ limit, we recover the continuous control

case, so these trivial bounds can be tight. This triviality is in contrast to the qubit case, where

results analogous to Lemma 3.4.1 lead to significantly tighter constraints on the minimum amount

of necessary entanglement for optimal protocols [83]. This discrepancy arises due to the fact that,

unlike with photonic resources which must be distributed in a zero-sum way between modes, for

qubit sensors one can be maximally sensitive to all coupled parameters simultaneously.
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Qubit phase sensing Phase sensing Displacement sensing
Parameter cou-
pling

1
2
σ̂zi θi n̂iθi

i
2
(â†i − âi)θi

Resources qubit number, d photon number, N avg. photon number, N
sensing time, t sensing time, t sensing time, t

MSE (separable) ≥ ∥α∥22
t2

[49] ≥ ∥α∥2
2/3

N2t2
[9] ≥ ∥α∥21

4Nt2

MSE (entangled) ≥ ∥α∥2∞
t2

[49] ≥ ∥α∥21,P
N2t2

≥ ∥α∥22
4Nt2

[81]
Entanglement
needed (discrete
controls)

k ≥ max
{⌈

∥α∥1
∥α∥∞

⌉
,
⌈
∥α∥0
M

⌉}
k >

⌈
∥α∥0
M

⌉
k ≥

⌈
∥α∥0
M

⌉

Entanglement
needed (arbitrary
controls)

∥α∥1
∥α∥∞ ∈ (k − 1, k] [83] k = 2 no entanglement

k-partite entan-
glement protocol
always exists?

yes [83] no yes

Table 3.1: A comparison of the lower bounds on the mean square error and entanglement re-
quirements for an (asymptotically) optimal protocol obeying the corresponding conditions on the
quantum Fisher information for the task of estimating a linear function q = α · θ with qubit,
phase sensing, and displacement sensing quantum sensor networks.

3.6 Conclusion and Outlook

We have determined the fundamental achievable performance limits for phase sensing and

have extended proofs of lower bounds for displacement sensing beyond just an average to ar-

bitrary functions. In the process, we proved a long-standing conjecture regarding function esti-

mation with number operator coupling [9] and showed that some of the protocols that exist in

the literature [9, 51, 80], are, in fact, optimal in the asymptotic limit. By considering different

implementations of a quantum sensor network within a single framework, we reveal the role of

entanglement and controls as they relate to the type of coupling and whether the relevant resource

is “parallel” (as in qubit sensor networks, where all parameters can simultaneously be measured

to maximal precision) or “sequential” (as in photonic sensor networks, where the photons must

be optimally distributed between modes). Our approach to proving our bounds also enables
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an algebraic framework for developing further optimal protocols, subject to various constraints.

Here, we considered the particular case of entanglement-based constraints, enabling comparison

to similar work in the case of qubit sensors [83]. These results, and how they fit into the land-

scape of known results for quantum sensor networks, are summarized in Table 3.1. How other

constraints impact the existence of and control requirements for optimal protocols remains an

interesting open question deserving of further study.
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Chapter 4: Optimal Measurement of Field Properties with Quantum Sensor

Networks

4.1 Introduction

It is well established that entangled probes in quantum metrology can be used to obtain

more accurate measurements than unentangled probes [26, 28, 34, 95–97]. In particular, while

measurements of a single parameter using d unentangled probes asymptotically obtain a mean

squared error (MSE) from the true value of order O(1/d), using d maximally entangled probes,

each coupled independently to the parameter, one obtains an MSE of order O(1/d2) – the so-

called Heisenberg limit [95, 98]. More recently, understanding the role of entanglement and

generalizing this scaling advantage to the measurement of multiple parameters at once or func-

tions of those parameters has been an area of keen interest [8, 51–53, 80, 82, 86, 97, 99–107] due

to a wide array of practical applications [108–114]. Importantly, optimal bounds and protocols

have been derived for measuring analytic functions of independent parameters, each coupled to

a qubit sensor in a so-called quantum sensor network [102]. The problem of directly measur-

ing a spatially dependent field of known form, possibly with extra noise sources, has also been

considered [105].

In this [chapter], we consider the following very general problem that is relevant for many
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Figure 4.1: At each position xi, a quantum sensor (black dots) is coupled to a field f(x;θ),
whose functional form is known, but the parameters θ are not. The protocols presented here
utilize entanglement to obtain the highest accuracy allowed by quantum mechanics in estimating
the quantity q(θ). One example problem is to estimate the field value q = f(x0;θ) at a location
x0 (red cross) without a sensor.

technological applications of quantum sensor networks. A set of quantum sensors at positions

{x1, . . . ,xd} is locally probing a physical field f(x;θ), which depends on a set of parameters

θ ∈ Rk, where we have used boldface to denote vectors. We assume that we know the func-

tional form of f(x;θ), but we do not know the values of the parameters θ. For instance, these

parameters may be the positions of several known charges, and f(x;θ) one of the components

of the resulting electric field. Our objective is to measure a function of the parameters q(θ). This

could be, for instance, the field value q(θ) = f(x0;θ) at a position x0 without sensor, or the

spatial average q(θ) =
∫
R

dx f(x;θ) over some region R of interest. In the following, we derive

saturable bounds on the precision for measuring q(θ) using quantum entanglement. The setup is

depicted in Fig. 4.1.

As a more concrete example, consider a network of three quantum sensors that are locally

coupled to a field f(x; θ1, θ2) parametrized by θ = (θ1, θ2). The field amplitudes at the positions

of the sensors shall be f1(θ) = θ1, f2(θ) = θ2, f3(θ) = θ1 + θ2, respectively, where we have

introduced the shorthand notation fi(θ) = f(xi;θ). Assume we want to measure the value of

q(θ1, θ2) = θ1. One possible strategy is to simply use the first sensor to measure f1(θ). On
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the other hand, we could also measure 1
2
(f1(θ) − f2(θ) + f3(θ)), thereby potentially gaining

accuracy by harnessing entanglement between the individual sensors. In fact, there are infinitely

many variations of the second strategy, and we eventually expect some of them to be superior to

the first strategy.

In contrast to previous work [102], where one considers estimating a given function

F (f1(θ), . . . , fd(θ)) of independent local field amplitudes f1(θ), . . . , fd(θ), we consider here the

problem of estimating a function of the parameters, q(θ1, . . . , θk), instead. Due to the correlation

of the local field amplitudes, there are many measurement strategies that need to be considered

and compared in terms of accuracy. In this [chapter], we determine the optimal protocol for this

very general setup.

In applications, one often measures field amplitudes that depend on the same set of pa-

rameters. Therefore, by allowing for the estimation of quantities that depend on measurements

of correlated field amplitudes, this work addresses many problems of practical interest, left un-

solved by previous work. These applications include optimal spatial sensor placement and field

interpolation. As a physically motivated example, we explicitly demonstrate how our protocol

may be applied to a toy version of the field interpolation problem.1 In addition to finding the op-

timal attainable variance and a corresponding protocol for a wide class of problems of practical

significance, another primary contribution of our work is the use of optimization duality theorems

in the derivation of quantum Cramér–Rao bounds, a technical approach we anticipate being of

use beyond the scope of this specific problem.

1Ref. [102] discusses the field interpolation problem as well, but only solves the problem for the case k = d.
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4.2 Problem Setup

We formally consider a quantum sensor network as a collection of d quantum subsys-

tems, called sensors, each associated with a Hilbert space Hi [9, 51]. The full Hilbert space

is H =
⊗d

i=1Hi. We imprint a collection of field amplitudes f(θ) = (f1(θ), . . . , fd(θ))
T

onto a quantum state, represented by an initial density matrix ρin, through the unitary evolution

ρf = U(f)ρinU(f)
†. Here, θ = (θ1, . . . , θk)

T is a set of independent unknown parameters. To

be specific, we consider qubit sensors and a unitary evolution generated by the Hamiltonian

Ĥ = Ĥc(t) +
d∑

i=1

1

2
fi(θ)σ̂

z
i , (4.1)

with σ̂x,y,zi the Pauli operators acting on qubit i and fi(θ) = f(xi,θ) the local field amplitude at

the position of the ith sensor. Our results apply to more general quantum sensor networks (see

Outlook). The term Ĥc(t) is a time-dependent control Hamiltonian that we choose, which may

include coupling to ancilla qubits. This time-dependent control is not necessary to achieve an

optimal protocol [8, 115], but one may use such control to design optimal protocols with simpler

requirements on the choice of input state ρin [8].

Our goal is to estimate a given function of the parameters q(θ) at their (unknown) true

value, which we denote as θ′. The estimate of this quantity q(θ′) is based on measurements

of the final state ρf , specified by a set of operators {Π̂ξ} that constitute a positive operator-

valued measure (POVM) with
∫

dξ Π̂ξ = 1. We repeat this experiment many times and estimate

q(θ′) via an estimator q̃ obtained from the data. On a more technical level, we assume that the

sensor placements allow us to obtain an estimate of θ′, which ensures the problem is solvable
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2. This assumption implies that the number d of quantum sensors should be larger than k. (See

Outlook for cases where we can violate this assumption.) The choice of initial state ρin, control

Hamiltonian Ĥc(t), and POVM {Π̂ξ} defines a protocol to estimate q(θ′).

Before proceeding, let us fix some notation. We emphasize that θ is treated as a variable,

with unknown true value (given by the physical fields) denoted θ′. Thus q(θ) is a function,

whereas q(θ′) is a specific number obtained by evaluating the function at the true value θ′. We

derive our bounds as functions of this general θ for wherever q(θ) is analytic, but importantly the

ultimate bound depends on evaluation at the true value θ′. We use indices i, j = 1, . . . , d to label

quantum sensors and m,n = 1, . . . , k to label parameters.

The MSE of the estimate q̃ from the true value q(θ′) is given by

M = E
[
(q̃ − q(θ′))

2
]
= Var q̃ + (E [q̃]− q(θ′))

2
, (4.2)

where the first and second terms are the variance and estimate bias, respectively. We define the

optimal protocol to measure q(θ′) as the one that minimizesM given a fixed amount of total time

t. To determine the optimal protocol, we first derive lower bounds onM using techniques from

quantum information theory. We then construct specific protocols that saturate these bounds.

4.3 MSE Bound

In this section, we derive a saturable lower bound onM that can be achieved in time t.3

To derive our bound, we begin with the following result on single-parameter estimation from

2Formally, we assume the ability to make an asymptotically (in time t per measurement run and in the number of
measurement runs µ) unbiased, arbitrarily-small-variance estimate. See [Appendix C] for detailed definitions

3Technically, to saturate our bounds, one requires µ measurements and thus a total time of µt over all experimen-
tal runs. However, we avoid this technicality for notational clarity.
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Ref. [115]. If the unitary evolution of the quantum state is controlled by a single parameter q,

then

M≥ 1

FQ
≥ 1

t2||ĥq||2s
, (4.3)

where FQ is the quantum Fisher information, ĥq = ∂Ĥ/∂q is the generator with γmax (γmin) its

largest (smallest) eigenvalue, and ||ĥq||s = γmax−γmin is the seminorm of ĥq. The first inequality

is the quantum Cramér–Rao bound [45–48].

It is not obvious that Eq. (4.3) may be applied to the problem of estimating q(θ) as we have

k > 1 parameters controlling the evolution of the state. However, we circumvent this issue by

considering an infinite set of imaginary scenarios, each corresponding to a choice of artificially

fixing k − 1 degrees of freedom and leaving only q(θ) free to vary. Under any such choice, our

final quantum state depends on a single parameter, and we can apply Eq. (4.3) to the imaginary

scenario under consideration.

We note that any such imaginary scenario requires giving ourselves information that we

do not have in reality. However, additional information can only result in a lower value ofM.

Therefore, any lower bound onM derived from any of the imaginary scenarios is also a lower

bound for estimating the function q(θ). For a bound derived this way to be saturable, there must

be some choice(s) of artificially fixing k − 1 degrees of freedom that does not give us any useful

information about q(θ), and thus yields the sharpest possible bound. This is, in fact, the case.

In our analysis below, the existence of such a choice becomes self-evident since we present a

protocol that achieves the tightest bound. However, in the [Appendices], we prove that such a

choice exists purely on information theoretic grounds.

More formally, consider a basis {α1,α2, · · · ,αk} such that, without loss of general-
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ity, α1 = ∇q(θ′) =: α. We then consider any choice of the remaining basis vectors. For

any such choice, let αn correspond to a function qn(θ) = αn · θ. Therefore, if we con-

sider a particular choice of basis, we are also considering a corresponding set of functions

{q1(θ) = q(θ), q2(θ), · · · , qk(θ)}. We suppose we are given the values {qn(θ′)}n≥2, fixing

k − 1 degrees of freedom. The resulting problem is now determined by a single parameter, and

Eq. (4.3) applies.

The derivative of H with respect to q, while holding q2, . . . , qk fixed, is

ĥq =
∂Ĥ

∂q

∣∣∣
q2,...,qk

=
d∑

i=1

1

2
(∇fi(θ′) · β)σ̂zi , (4.4)

where β =
(
∂θ1
∂q
, . . . , ∂θk

∂q

)
|q2,...,qk . Using the chain rule, we find that β satisfies α · β = 1.

As we show formally in the [Appendices], every β ∈ Rk in Eq. (4.4) corresponds to a valid

choice of the k − 1 dimensional subspace spanned by {αn}n≥2. Therefore, since ĥq depends on

{αn}n≥2 only through β, the tightest bound onM is found by optimizing over arbitrary choices

of β subject to the constraint α · β = 1.

To formulate the corresponding optimization problem, define the matrix G by

Gim(θ
′) =

∂fi
∂θm

(θ′). (4.5)

We emphasize that G depends on the true value of the parameters θ′. Utilizing ||1
2
σ̂zi ||s = 1, we

write the seminorm of ĥq as

||ĥq||s =
d∑

i=1

|∇fi(θ′) · β| = ∥G(θ′)β∥1, (4.6)

69



with ||x||1 =
∑d

i=1 |xi| the L1 or Manhattan norm. Therefore, for any β satisfying α ·β = 1, we

have

M≥ 1

t2||ĥq||2s
=

1

t2∥G(θ′)β∥21
. (4.7)

In order to obtain the sharpest bound, we must solve what we refer to as the bound problem for

G(θ′) and α:

Bound problem: Given a non-zero vector α ∈ Rk and a real d × k matrix G, compute u =

max
β

1
∥Gβ∥1 under the condition α · β = 1.

This is a linear programming problem and can in general be solved in time that is polyno-

mial in d and k (see, e.g., Ref. [116]). Hereafter, we refer to the resulting sharpest bound as “the

bound”.

4.4 Optimal Protocol

We now turn to the problem of providing a protocol that saturates this bound. For clarity of

presentation, we develop this protocol in the case that both the field f(θ) and the objective q(θ)

are linear in the parameters θ; that is, f(θ) = Gθ, with θ-independent G, and q(θ) = α · θ.

However, the existence of an asymptotically optimal protocol can be proven in the more general

case that f(θ) and q(θ) are analytic in the neighborhood of the true value θ′ [See Appendix C].

Similar to the approach taken in Ref. [102], this generalization ultimately amounts to

using a two-step protocol. In the first step, one spends an asymptotically negligible time t1

estimating the values of the parameters θ. Then one linearizes f(θ) and q(θ) about this estimate

θ̃ and spends the remaining time t2 = t− t1 estimating the resulting linearized objective. (Note,
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asymptotically, t2 ∼ t.) Therefore, while we leave the rigorous analysis of this generalization

to [Appendix C], the analytic case reduces to the linear case considered here, and therefore the

principle insights are made most readily apparent in this context.

For the linear case, we propose an explicit protocol to measure q and show that it saturates

the bound and thus is optimal. The optimal protocol measures the linear combination

λ(f) = w · f , (4.8)

where f is the vector of local field amplitudes. The vector w ∈ Rd is chosen such that λ̃(f) =

q̃(θ) is an unbiased estimator of q(θ′), and will be optimized to saturate the bound. (We note

that, for d > k, there are many choices of w that satisfy λ = q.)

For the estimator λ̃ to be unbiased, we must have E [q̃] = q(θ′) = α · θ′. This is achieved

by choosing w to satisfy the consistency condition

GTw = α. (4.9)

Indeed, this implies

E [q̃] = E [w · f ] = (Gθ′)
T
w = θ′ ·

(
GTw

)
= α · θ′. (4.10)

We prove in [Appendix C] that, under our assumption that we can estimate θ′, Eq. (4.9) may

always be satisfied for some w, and therefore our protocol is valid.

For any such choice of w, we use the optimal linear protocol of Ref. [8]—which for com-

pleteness, we summarize in [Appendix C]—to measure λ(f). The variance obtained by this
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protocol is

Var q̃ =
∥w∥2∞
t2

, (4.11)

where ||w||∞ = maxi|wi|. Since we are dealing with an unbiased estimator, the MSE coincides

with the variance of the estimator in Eq. (4.11). In order to find w with the lowest possible value

of ∥w∥∞ (i.e. the smallest variance), we must solve what we refer to as the protocol problem:

Protocol problem: Given a non-zero vector α ∈ Rk and a real d × k matrix G, compute u′ =

min
w
∥w∥∞ under the condition GTw = α.

This, again, can be efficiently solved by generic linear programming algorithms [116, 117]

or special-purpose algorithms [118–120].

To show that the optimal protocol from solving this problem saturates the bound, we now

show that the bound problem and protocol problem are equivalent in that u = u′. For this, we

utilize the strong duality theorem for linear programming [118, 121].4 It states that, for linear

programming problems like the protocol problem, there is a dual problem whose solution is

identical to the original problem. In our case, we have the following dual problem:

Dual protocol problem: Given a non-zero vector α ∈ Rk and a real d × k matrix G, compute

u′′ = max
v

α · v under the condition ∥Gv∥1 ≤ 1.

The strong duality theorem then implies u′′ = u′. Additionally, there is a correspondence

between the two solution vectors w0 and v0, so that, given the solution vector to one problem,

we can find the solution vector to the other [118, 121]. We now prove the following theorem.

Theorem 4.4.1. Let u and u′ be the solutions to the bound and protocol problems, respectively.

4See Ref. [104] for a quantum sensing use of this theorem in the context of evaluating the Holevo Cramér–Rao
bound.
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Then u = u′.

Proof. By the strong duality theorem, the solution of the dual protocol problem satisfies u′′ =

maxv α · v = u′. Let the corresponding solution vector of the dual protocol problem be v0.

Define β0 := v0/u′. We have α · β0 = u′/u′ = 1, thus β0 satisfies the constraint of the bound

problem. To prove the theorem, we show that u′ ≤ u and u ≤ u′. On the one hand, provided

∥Gβ0∥1 ̸= 0, the condition ∥Gv0∥1 ≤ 1 of the dual problem implies

u′ ≤ 1

∥Gβ0∥1
≤ max

β

1

||Gβ||1
= u. (4.12)

On the other hand, for any β satisfying the constraint α · β of the bound problem, and for the

optimal w = w0 of the protocol problem satisfying ∥w0∥∞ = u′, Hölder’s inequality yields

1 = α · β = (GTw0)Tβ = w0 · (Gβ) ≤ ∥w0∥∞∥Gβ∥1

=⇒ 1

∥Gβ∥1
≤ ∥w0∥∞ = u′ for all β. (4.13)

This shows that u′ ≥ 1/||Gβ||1 for all β, thus u′ ≥ u, which completes the proof. As a byproduct,

we learn from Eq. (4.12) that β0 maximizes 1/||Gβ||1, and so is the solution vector of the bound

problem.

Theorem 4.4.1 implies that the protocol measuring λ with optimal w saturates the bound.

As an instructive example, we return to the toy model presented in the introduction. Con-

sider three sensors coupled to local field amplitudes f1(θ) = θ1, f2(θ) = θ2, and f3(θ) = θ1+θ2.
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Our objective is q(θ) = θ1, so α = (1, 0)T . We have

GT =



1 0 1

0 1 1


 . (4.14)

First consider the bound problem. The constraint α · β = 1 implies β = (1, b)T with arbitrary

b. The maximum of 1/∥Gβ∥1 is achieved for β0 = (1, 0)T , yielding u = 1/2. For the protocol

problem, the constraint in Eq. (4.9) gives w1 + w2 = 1 and w2 + w3 = 0. The corresponding

minimal value of ∥w∥∞ is u′ = 1/2 for w0 =
(
1
2
,−1

2
, 1
2

)T . Finally, for the dual protocol

problem, the constraint ∥Gv∥1 ≤ 1 implies |v1| + |v2| + |v1 + v2| ≤ 1. The solution vector

is v0 = (1/2, 0)T , which yields u′′ = α · v0 = 1/2. This explicit example demonstrates that

u = u′ = u′′. Furthermore, as noted in the proof of Theorem 4.4.1, β0 = v0/u′.

4.5 Applications

Having derived optimal bounds and protocols saturating them, we now discuss some ap-

plications. We begin by considering the same example as above and show that, remarkably, our

results in this case indicate that the best entangled and best unentangled weighting strategies need

not be the same. With or without entanglement, we estimate q(θ) = θ1 by measuring a linear

combination w · f with the constraints w1 + w3 = 1, w2 + w3 = 0. Without entanglement, our

only option is to measure each component of f independently in parallel for time t, yielding a

total MSE for q(θ) of ∥w∥22/t2. In stark contrast, for the entangled case, the MSE is given by

∥w∥2∞/t2. It is easy to see that minimizing the Euclidean and supremum norm of w, subject

to our constraints, does not yield the same result: Without entanglement, w =
(
2
3
,−1

3
, 1
3

)T is
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optimal, yielding an MSE of 2
3t2

. With entanglement, w =
(
1
2
,−1

2
, 1
2

)T is optimal, with MSE of

1
4t2

. This simple example shows that, to achieve the optimal result with entanglement, one cannot

in general use the weights w that are optimal without entanglement.

Our results are practically relevant for any situation where one knows the functional form

of the field of interest f(x;θ) and seeks to determine some quantity dependent on the parameters

of that field. Examples include functionals of the form q(θ) =
∫
R

dx k(x)f(x; θ) with any

kernel k(x) and region of integration R. The examples from the introduction correspond to

k(x) = δ(x− x0) and k(x) = 1. Since the θ-dependence of f(x,θ) is analytic, this amounts to

evaluating an analytic function q(θ).

As it is of clear physical relevance, we explicitly consider a simple, one-dimensional ver-

sion of the former case with k(x) = δ(x−x0), namely, field interpolation. Consider the situation

of k particles at positions x ∈ {z1, · · · , zk} with unknown charges specified by the parameters

{θ1, · · · , θk} (and true values given by {θ′1, · · · , θ′k}). Suppose we seek to determine the mag-

nitude of (one component of) the electric field q(θ) at x = x0 using d ≥ k sensors at positions

x ∈ {s1, · · · sd}. We then have

q(θ) =
1

4πϵ0

k∑

n=1

θn
(zn − x0)2

, (4.15)

which is linear in the unknown parameters {θn}. Similarly, the fields measured by the sensors,

given by fi(θ) = (1/4πϵ0)
∑k

n=1(θn/(zn − si)2) are also linear in the parameters. Our protocol

then applies quite simply to this situation with

G(θ′)in =
1

4πϵ0(zn − si)2
(4.16)
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and the elements of α given by αn = 1/[4πϵ0(zn − x0)
2]. One can then straightforwardly

solve the bound problem, the protocol problem, or the dual protocol problem given the particular

locations of charges and sensors via analytic or numeric methods.

Our findings are also relevant for determining the optimal placement of sensors in space,

i.e. determining the best locations x1, . . . ,xd in the control space X in which they reside. For

example, if the sensors are confined to a plane, then X = R2. This problem clearly consists of

two parts: (1) evaluating the best possible MSE for any chosen set of sensor locations and (2)

optimizing the result over possible locations. The MSE amounts to the cost function in usual

optimization problems. Our results solve this first part as it would be used in the inner loop of

a numerical optimization algorithm. The full problem, involving also the second part, is a high

dimensional optimization in a space of dimension d×dim(X). Therefore, in general, one expects

that finding the global optimal placement could be quite challenging. However, even finding a

local optimum in this space is clearly of practical use.

4.6 Outlook

While we assumed that we can obtain an individual estimate of the true value θ′ of the pa-

rameters, one could imagine situations where this assumption is not satisfied. Some such systems

are underdetermined and not uniquely solvable, but in some cases we can reparametrize θ → θ∗

in order to satisfy the assumption. For example, if two parameters in the initial parametriza-

tion always appear as a product θ1θ2 in both f and q, we cannot individually estimate θ1 or θ2.

However, we can reparametrize θ1θ2 → θ∗1 and thus satisfy our initial assumption.

Our work applies to physical settings beyond qubit sensors—that is, any situation where
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Eq. (4.3), may be applied our results should hold, provided we use the corresponding seminorm

for the particular coupling. One example is using a collection of dMach-Zehnder interferometers

where the role of local fields is played by interferometer phases [101, 122–126]. Here the lim-

iting resource is the number of photons N available to distribute among interferometers and not

the total time t. We note, however, there are subtleties that we do not consider here when only the

average number of photons is known [127]. The optimal variance for measuring a linear combi-

nation of local field values in this setting is conjectured in Ref. [8]. Under the assumption that

this conjecture is correct, we may replace Eq. (4.11) withM = ∥w∥2∞
N2

5 and otherwise everything

remains the same as the qubit sensor case. One could also consider the entanglement-enhanced

continuous-variable protocol of Ref. [80] for measuring linear combinations of field-quadrature

displacements. A variation of this protocol has been experimentally implemented in Ref. [86].

We expect our bound and protocol could be extended to all the scenarios just described or even to

the hybrid case where some local fields couple to qubits, some to Mach-Zehnder interferometers,

and some to field quadratures. The ultimate attainable limit in such physical settings remains an

open question, however.

One could consider the case d < k provided the d sensors are not required to be at fixed

locations. For instance, if one had access to continuously movable sensors in a 1D control space

X , by the Riesz representation theorem [121], one could encode any linear functional of f(x;θ)

by moving the sensors according to a particular corresponding velocity schedule. As a simple

example, one can consider evaluating the integral of some function of (one component of) a

magnetic field over one-dimensional physical space by moving a qubit sensor through the field

5Comment: This is a typo in the published version of this chapter. It should read ∥w∥21. See Chapter 3 of this
thesis for a proof (and generalization) of this conjecture.
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and measuring the accumulated phase. One could also consider variations of this work in the

context of semiparametric estimation [128]. We leave further exploration of such schemes to

future work.

Finally, we emphasize that our protocol requires the use of highly entangled pure states

(such as GHZ states) and does not consider the effects of decoherence or noise. Provided deco-

herence times are long, our results are applicable, but, beyond this limit, analyzing our protocols

in such open systems (or designing different, more noise-robust protocols) remains an interesting

and important question.
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Chapter 5: Protocols for Estimating Multiple Functions with Quantum Sensor

Networks: Geometry and Performance

5.1 Introduction

It is well-established that entanglement in quantum metrology often facilitates more accu-

rate measurements compared to what is possible with unentangled probes [26, 28, 34, 95, 97].

This fact has been demonstrated exhaustively for the cases of measuring a single parameter [115]

or a single analytic function of many parameters [8, 9, 51, 52, 54, 55, 59, 102] using quantum

sensor networks, which are highly general models of quantum metrology. In these models, one

considers an array of d quantum sensors, each coupled to a local parameter. One then seeks to

optimally measure these local parameters directly (or some functions thereof) by selecting an

initial state ρ0 for the sensors, a unitary evolution U by which the local parameters are encoded in

the state, and a choice of measurement specified by a positive operator-valued measure (POVM).

While measuring a single analytic function of multiple parameters in this setting is a bona

fide multi-parameter problem, the fact that one seeks a single quantity makes the problem of

finding the information-theoretic optimum for the variance of the desired quantity easier than a

more general multi-parameter problem; in particular, one can make clever use of rigorous bounds

originally derived for the single-parameter case [8, 54, 102]. However, when one genuinely seeks
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to estimate multiple quantities, one must solve the general problem of designing provably optimal

protocols for multi-parameter quantum estimation. This has proven to be a challenging problem,

and has attracted a large amount of interest theoretically [45, 48, 52, 53, 63, 80, 92, 96, 97, 99–

101, 104, 106, 109, 111, 112, 129–135] and experimentally [136–138]. Despite these extensive

research efforts, the general problem has not yet been solved. Here, we consider another step

towards this goal; in particular, we consider the case of measuring n ≤ d analytic functions with

a quantum sensor network of d qubit sensors and develop a protocol that outperforms previously

proposed protocols in many cases. We also emphasize the geometric aspects of this problem,

meaning the orientations of vectors of coefficients associated with our functions, and how this

geometry determines the protocol performance.

We begin by noting that, analogous to Ref. [102], one can reduce the problem of measuring

n analytic functions of the parameters to that of measuring n linear functions. In particular, one

can consider spending some asymptotically (in total time t) vanishing time t1 measuring the local

parameters to which the sensors are coupled and then the rest of the time t2 = t − t1 measuring

the n linear combinations that result from a Taylor expansion of each analytic function about

the true values of the local parameters estimated in the previous step. While provably optimal

in the single-function case (n = 1), this reduction from analytic functions to linear functions is

not necessarily optimal in the multi-function case. While we conjecture that the optimality of

this reduction from analytic to linear functions does generalize to the multi-function case, as we

do not claim general optimality of the protocols in this work, the reduction may be freely made

without having to prove the veracity of this conjecture.

Having made this reduction to the problem of measuring multiple linear functions in a

quantum sensor network, we can connect to previous works addressing the same problem, subject
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a) Local Protocol b) Global Protocol

c) Sequential Protocol

Figure 5.1: The protocols for measuring n ≤ d linear functions {f1(θ), . . . , fn(θ)} of d pa-
rameters θ = (θ1, . . . , θd) considered in this work can be classified into three groups: (a) Local
protocols do not utilize entanglement and measure the parameters locally, allowing for large par-
allelization. (b) Global protocols simultaneously estimate all functions. (c) Sequential protocols
divide the problem into n parts, where each part is optimized to estimate a single function from
the set {f ′

1, . . . , f
′
n}, which may consist of linear combinations of the original set {f1, . . . , fn}.

to various simplifying constraints [9, 52, 53]. Leaving the details of these previous approaches

for after we have introduced more mathematical formalism, we note that we may qualitatively

divide protocols for this problem into three classes: local, global, and sequential [52]. In a local

estimation protocol, one optimizes only over unentangled input states and local measurements

of the sensors. In a global protocol, one simultaneously estimates all the desired functions by

optimizing over all (possibly entangled) input states and all (possibly non-local) measurements.

Finally, in a sequential protocol, we divide the experiment into n steps, where in each part we

measure a single function (which may be a linear combination of the original set {f1, · · · , fn}),

preparing a new (optimal) initial state and performing a new measurement in each step. See

Fig. 5.1 for diagrammatic representations of these different protocol types.

For the special case of measuring n = d orthogonal, linear functions (that is, linear func-
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tions such that the vectors of coefficients defining the linear functions are all mutually orthogo-

nal), it has been known for some time that the functions can be measured optimally with a local

protocol [9, 52], but for general functions, proofs of optimal protocols are lacking. In fact, the

only entanglement-enhanced approach in the literature for measuring n > 1 general linear func-

tions in a quantum sensor network is given in Ref. [53]. The bound on performance given there is

for global protocols and is derived from the quantum Cramér-Rao bound [45–48] subject to the

restriction that one considers only a special set of so-called sensor symmetric states. However,

even within this restriction, beyond the case of d = 2, it is an open question whether the states

and measurements (POVMs) required to saturate the derived bound exist for all problems.1

Here, we highlight a generalization of this approach, by deriving similar bounds using so-

called signed sensor symmetric states. However, the generalized version also does not guarantee

that the optimal states and measurements exist in general. Targeted at this shortcoming, we also

consider an alternative, sequential protocol, subject to different restrictions, for which we can ex-

plicitly describe a protocol which achieves its theoretical performance. In addition to presenting

this alternative protocol, we lay out how the precise geometric features of a given problem impact

the performance of this sequential protocol compared to the signed sensor symmetric approach

and the simple local protocol.

1The reason that there may not exist states satisfying the bound is that, as explained later in the [chapter], the
bound is obtained by fixing v [defined in Eq. (5.16)] to be t2/4 and then optimizing J [defined in Eq. (5.15)] given
this restriction to obtain the best bound. In principle, we are not guaranteed a state corresponding to this pair of
4v = t2 and the minimizing J , but of course the bound is still a correct lower bound if one is only allowed to use
sensor symmetric states whether or not it can be saturated. Also, see Ref. [53] for further discussion.
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5.2 Problem Setup

With the general approach established, we now present the rigorous formulation of the

problem. We consider a quantum sensor network of d qubit sensors prepared in some initial

state ρ0. We then encode d local parameters θ = (θ1, θ2, · · · , θd)T into the sensors via unitary

evolution under the Hamiltonian

Ĥ = Ĥc(t) +
d∑

i=1

1

2
θiσ̂

z
i , (5.1)

with σ̂x,y,zi the Pauli operators acting on the ith qubit, and θi the local parameter measured by the

ith sensor. The term Ĥc(t) is a time-dependent control Hamiltonian that may include coupling to

ancilla qubits. When measuring a single function, this time-dependent control is not necessary

to achieve an optimal protocol [8, 115], and therefore, may freely be set to zero; however, one

may use such control to design optimal protocols with simpler requirements on the choice of

input state ρ0 [8]. Using this setup, our goal is to optimally measure n ≤ d functions f(θ) =

(f1(θ), f2(θ), · · · , fn(θ))T . In the following, we use i, j = 1, . . . , d to label qubits and ℓ,m =

1, . . . , n to label functions. Boldface is used to denote vectors.

To compare the accuracy of the different approaches and to eventually optimize them, we

employ a standard figure of merit, which we denote asM, given as

M =
n∑

ℓ=1

wℓVar f̃ℓ, (5.2)

where f̃ are estimators of the functions and w = (w1, · · · , wn)T is a vector of weights. Since an
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accurate protocol should yield small variances, we seek to minimizeM. In this context, given

a total evolution time t, a protocol is defined by choice of initial state ρ0, control Hamiltonian

Ĥc(t), measurements, and estimator f̃ for f .

The figure of merit M is lower bounded via the Helstrom quantum Cramér–Rao bound

[45–48], which yields

M≥ 1

N

n∑

ℓ=1

wℓ[F−1
Q (f)]ℓℓ, (5.3)

where N is the number of trials (which from now on we set to one for concision and consider just

the single-shot Fisher information) and FQ(f) is the quantum Fisher information matrix with

respect to the functions f . While this bound is not generally saturable, in the setting of Eq. (5.1)

it is.2

While saturable in the setting considered, the right hand side of Eq. (5.3) is not easily

evaluated in general. However, it has been proven [8] that, if we seek to measure a single linear

function f(θ) = α · θ of the parameters θ, we may evaluate this bound and obtain that the

minimum (asymptotically in time t and number of trials) attainable variance of an estimator f̃ of

f(θ) over all quantum protocols is

Var f̃ = max
i

|αi|2
t2

. (5.4)

This bound can be explicitly saturated by the protocols given in Ref. [8]. As previously described,

if f(θ) is a more general analytic function, one may attain a similar bound using a two-step

protocol. In the first (asymptotically negligible) step, one makes local estimates θ̃ of each of the

2In particular, it is saturable because the generators of translations Ki, as defined in the discussion around
Eq. (5.15), commute.
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parameters θ. In the second step, one uses the rest of the time to optimally measure the Taylor

expansion of f(θ) about this estimate to linear order in θ [102].

For the case of measuring multiple functions f1, . . . , fn, we assume without loss of gener-

ality that the fℓ are linear functions in the parameters θ, because more general analytic functions

could be similarly linearized in asymptotically negligible time. We parameterize the linear func-

tions by real coefficient vectors αℓ such that

f1(θ) = α1 · θ, (5.5)

...

fn(θ) = αn · θ. (5.6)

Defining the matrix elements Aℓi = (∂fℓ/∂θi)θ̃ = (αℓ)i, i.e., αT
ℓ is the ℓth row of A, we can

phrase the problem as that of optimally measuring the n-component vector

Aθ = (α1 · · ·αn)
T θ. (5.7)

Without loss of generality we assume normalization of the coefficient vectors,

||αℓ||2 = 1 for all ℓ, (5.8)

because any non-unit length can be absorbed into the weights w in Eq. (5.2).

Recall, the problem of measuring n = d linear functions of independent parameters with

quantum sensor networks has been considered in the literature in the case where the n functions
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are orthogonal (in which case local, global and sequential protocols are equivalent) [9, 52] and for

general linear functions for global protocols when the input states ρ0 are restricted to be sensor

symmetric [53]. Here, we generalize the sensor symmetric approach and derive a performance

bound when using so-called signed sensor symmetric input states (defined rigorously below). We

refer to the variance obtained by the signed sensor symmetric protocol asMss.

In this work, we also introduce an optimized sequential protocol for solving the n function

estimation problem. We consider dividing our protocol into n sequential steps where, within each

step, the protocol is provably information-theoretic optimal (i.e., saturates the quantum Cramér–

Rao bound). In particular, for each step ℓ ∈ {1, . . . , n} taking time tℓ, we measure a single

function optimally using the protocols from Refs. [8, 102]. We cannot, however, prove that the

full protocol is optimal in an information-theoretic sense. The naive version of this protocol is

to measure the n given functions {f1, . . . , fn} one after another with some optimal choice of the

time tℓ spent on each function. We denote the figure of merit of the naive sequential protocol by

Mnaive.

However, the naive sequential protocol is not the only option for sequentially measuring

multiple functions. Indeed, the coefficient vectors {α1, · · · ,αn} span a linear subspace of Rd,

and we may instead sequentially measure any set of linear functions whose vectors of coefficients

{α′
1, · · · ,α′

n} span the same subspace and then (after the measurements) calculate the original

functions {f1, . . . , fn}. To help understand this visually, this approach is depicted in the diagram

in Fig. 5.2 for n = 2 functions and d = 3 sensors. We denote the figure of merit obtained via this

method byMopt.
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Figure 5.2: A visualization for n = 2 functions and d = 3 sensors of how we can optimally
select a set of functions to measure whose coefficient vectors {α′

ℓ} span the same subspace as the
coefficient vectors {αℓ} of the functions we care about. The vectors are the coefficient vectors
and the planes indicate the subspace they span. The axes are labeled by standard basis unit vectors
{e1, e2, e3}.

To be explicit, define the n× n matrix C encoding the change of linear functions via

A = CA′, (5.9)

where A′ = (α′
1, · · · ,α′

n)
T is the matrix whose rows are the coefficient vectors of the new linear

functions we measure. The variance of measuring any individual α′
ℓ is given by the optimal linear

protocol [8]

Mℓ =
µ′
ℓ
2

t2ℓ
, (5.10)

where we introduce

µ′
ℓ = ∥α′

ℓ∥∞ = max
j
|α′
ℓ,j| = max

j
|
n∑

m=1

(C−1)ℓmAmj|. (5.11)

Note that this corresponds to Eq. (5.4) for every ℓ. We denote by µ′ the vector with entries µ′
ℓ, and

by µ the analogous vector for the original functions [obtained by setting C = I in Eq. (5.11)].

The figure of merit for estimating the original functions f with the optimized sequential protocol
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is then formally given by

Mopt = min
C

min
{t1,··· ,tn}

[
n∑

ℓ=1

n∑

m=1

wmC
2
mℓ

(
µ′
ℓ

tℓ

)2
]
, (5.12)

which takes into account optimization over C and over the division of the total time into time

steps tℓ; the factor C2
mℓ comes from the standard expression for a linear combination of variances

and accounts for the linear change of functions. A more practical form ofMopt will be derived

below. If the naive sequential protocol were optimal, then the minimum of Mopt would be

attained at C = I . However, we will show in the following that choosing suitable C ̸= I often

gives a significant improvement. This matches one’s intuitive expectations — for example, if

the coefficient vectors of all the functions are nearly aligned, we might expect that the optimal

approach is to spend most of the time measuring a single function whose coefficient vector is in

that general direction, and the rest of the time measuring functions with orthogonal coefficient

vectors to distinguish the small differences in the functions we care about. We will see that this

intuition is correct.

Furthermore, we note that for this approach, we do not consider taking advantage of po-

tential parallelization that may arise for certain choices of functions to measure—in particular,

those sets of functions that depend on completely disjoint sets of sensors. More formally, when

one chooses functions to measure such that A′ is the direct sum of matrices representing lin-

ear functions on disjoint sets of qubits, one could simultaneously measure functions that depend

on disjoint sets of sensors, and thus spend more time measuring them, improving the accuracy.

Therefore, purposefully choosing functions to measure that allow for such parallelization could

potentially (although not necessarily) perform better than our protocol, which does not take this
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possibility into account. However, improved performance via parallelization is not guaranteed

as Eq. (5.12) depends on both the time tℓ spent measuring a function and the infinity-norm of

the coefficient vector, µ′
ℓ = ∥α′

ℓ∥∞—whereas parallelization improves the former, it may worsen

that latter.

We note that, when n = d, the local strategy is a special case of such parallelization as

it consists of measuring the local parameters all in parallel, and therefore a completely diago-

nal A′. As another simple example, suppose α1 = (1, 1, 1)T/
√
3, α2 = (1,−1, 1)T/

√
3, and

α3 = (0, 0, 1)T . One way (amongst several) that this could be parallelized would be choosing to

measure α′
1 = (1, 1, 0)T/

√
2, α′

2 = (1,−1, 0)T/
√
2, and α′

3 = (0, 0, 1)T ; with this choice, one

could, in parallel, estimate the sets of functions {α′
1,α

′
2} and {α′

3}.

At this point, we have commented on four approaches to our problem: (1) the local strategy

with variance Mlocal (defined in Eq. (5.13) below), (2) the (global) signed sensor symmetric

strategy generalized from Ref. [53] with variance Mss, (3) the naive sequential strategy with

variance Mnaive, (4) the optimized sequential strategy with variance Mopt. Importantly, none

of these strategies is optimal in general. Depending on the geometry of the linear functions to

be measured, each of these strategies could be the preferable one (excluding the naive strategy,

which, of course, in the best case, has Mnaive = Mopt). The term “geometry” here refers to

the absolute and relative orientations of the coefficient vectors {αℓ}. The question of what is

the ultimate information-theoretic limit onM for multiple linear functions remains open. Here,

we demonstrate cases in which each of these known strategies is preferable with an emphasis

on the geometric interpretation. We emphasize that, in many instances, both the signed sensor

symmetric and the optimized sequential strategy can out-perfom the local unentangled strategy,

which is of great importance for practical applications.
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5.3 The Strategies

In this section, we determine the figure of merit M for the four strategies considered in

this work. We emphasize that while the local and sequential strategies have explicit protocols to

obtain the corresponding figure of merit, the figure of merit for the signed sensor symmetric is

not proven to be always be attainable beyond d = 2.

5.3.1 Local Strategy

First we consider the local strategy, which does not utilize entanglement. Since we can

measure each local parameter θi simultaneously, with a variance of 1/t2 [98], we arrive at

Mlocal =
n∑

ℓ=1

wℓ
||αℓ||2
t2

=
1

t2

n∑

ℓ=1

wℓ =
N
t2
, (5.13)

where we used the normalization of the αℓ and introduce

N =
n∑

ℓ=1

wℓ. (5.14)

We emphasize that the local protocol performs independently of the geometry of the measured

linear functions.

5.3.2 Signed Sensor Symmetric Strategy

Next we review the results of Ref. [53] for the sensor symmetric approach, using our nota-

tion and emphasize a generalization of their approach to what we call signed sensor symmetric
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states. We emphasize that, given the restriction to (signed) sensor symmetric states, this approach

gives a rigorous lower bound on the figure of meritM. However, as previously discussed, unlike

the local or sequential strategies, for d > 2 one cannot guarantee that the figure of merit Mss

obtained via this approach is saturable [53].

Define the generators of translations in parameter space as K = (K1, · · · , Kd)
T , where

Ki = i(∂U/∂θi)U † for evolution under the unitary U . Following Ref. [53], for this strategy, we

specifically consider the Hamiltonian in Eq. (5.1) with Ĥc(t) = 0, so that U = exp(−iĤt) and

Ki = σ̂zi t/2. This restriction of Eq. (5.1) to evolution under a time-independent Hamiltonian is

not necessary for the sequential protocols considered later. However, the single linear function

results from Ref. [8], which we use as a subroutine of our sequential protocol, presents two pro-

tocols, one that matches this restriction and one that does not (see section IV therein). Therefore,

when explicitly comparing the sequential protocol to the signed sensor symmetric problem, we

assume we are considering the former.

Given the generators of translations Ki, we define the inter-sensor correlations [9, 130] by

Jij =
⟨KiKj⟩ − ⟨Ki⟩⟨Kj⟩

∆Ki∆Kj

(5.15)

for i ̸= j, where we have used (∆Ki)
2 = ⟨K2

i ⟩ − ⟨Ki⟩2. Given this definition, we define sensor

symmetric states as those such that for all i ̸= j, Jij = J = c/v with

v = ⟨K2
i ⟩ − ⟨Ki⟩2, c = ⟨KiKj⟩ − ⟨Ki⟩⟨Kj⟩. (5.16)
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Specifically, for evolution under the time-independent version of Eq. (5.1). we have

v =
t2

4

(
1− ⟨σzi ⟩2

)
c =

t2

4

(
⟨σzi σzj ⟩ − ⟨σzi ⟩⟨σzj ⟩

)
(5.17)

for all i ̸= j. The authors of Ref. [53] define such states in analogy with path-independent states

in optical interferometry [130, 139], which, in addition to the analytic accessibility provided by

such states, motivates this construction. The case of uncorrelated sensors, of course, is included

for J = 0.

Now we turn to a generalization of the sensor symmetric states considered in Ref. [53]

that we call signed sensor symmetric states. This generalization is natural as the (unsigned)

sensor symmetric state construction of Ref. [53] picks out functions with coefficient vectors α

aligned along the vector of all ones 1 = (1, 1, · · · , 1)T as being favorable, but we know the

positive orthant is not special, and one can immediately generalize from 1 being the favorable

orientation to any ω ∈ {−1, 1}d (of which 1 is just one example). The reason such functions are

most favorable is also intuitively clear—entanglement is most helpful when one measures global,

average-like quantities, which is precisely what functions with coefficient vectors aligned along

some ω are. We emphasize this generalization is very direct, as one can consider mapping any

problem using a general ω to the case of Ref. [53] merely by applying a Pauli-X operator on

all qubit sensors corresponding to negative elements of ω and correspondingly flipping the signs

of all corresponding coefficients specified by αℓ. However, to fairly compare to the sequential

protocol, it is important we consider all such ω, as different choices can lead to an improved figure

of merit. Therefore, we relax the restriction on the numerator of Jij as presented in Ref. [53] by
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defining

cij = ⟨KiKj⟩ − ⟨Ki⟩⟨Kj⟩ (5.18)

and then restrict our consideration to states such that

cij = c
(
ωωT

)
ij
= c Ωij, (5.19)

where ω ∈ {−1, 1}d is a vector with all entries±1 and c is a constant. The entries of Ωij are also

±1 and so cij = ±c. We keep the definition J = c/v for our newly defined c, but note that now

Jij = cij/v = ±J .

When restricted to the (unsigned) sensor symmetric initial states, i.e. when ω = 1 with

1 = (1, . . . , 1)T the vector of all ones, the authors of Ref. [53] were able to evaluate the quantum

Cramér–Rao bound and determine the minimal achievable value forM, given the requirement of

sensor symmetric input states. For the signed sensor symmetric states, the calculation is similar

to that in Ref. [53], so we just state the result for our generalized approach here and present the

details in Appendix D.1.

First define the ω-dependent geometry parameter G(ω), which encodes the geometric re-

lationship between the coefficient vectors {αℓ} of the n linear functions and the vector ω. We

have

G(ω) =
1

N
n∑

ℓ=1

wℓ
(
d cos2 ϕω,ℓ − 1

)
. (5.20)

Here ϕω,ℓ is the angle between the vectors αℓ and ω. Thus cosϕω,ℓ = αℓ · ω/
√
d. Note that

G(ω) ∈ [−1, d − 1]. Again, we note that the relevance of this geometric quantity is intuitively
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clear as entanglement provides the biggest benefit when measuring functions aligned along some

ω—that is, those functions for whom ϕω,ℓ ≈ 0. The ω-dependent lower bound on the figure of

merit is found to be

Mss(ω) = min
J

N
t2

1 + [d− 2− G(ω)]J
(1− J )[1 + (d− 1)J ] , (5.21)

where we have used 4v = t2 as in Ref. [53] to obtain the lowest bound. Under this condition on v,

and the assumption that J ∈ (1/(1− d), 1), so that the quantum Fisher information is invertible,

the minimum is attained for

Jopt(ω) =

1

G(ω) + 2− d

[
1−

√
(G(ω) + 1)[d− 1− G(ω)]

d− 1

]
. (5.22)

One can then obtain the theoretical best performance for a signed sensor symmetric strategy as

Mss = min
ω
Mss(ω). (5.23)

Importantly, the obtainable accuracy is intimately related to the geometry of the linear func-

tions we seek to measure. In particular, one finds the best performance for this strategy when G is

approximately d− 1; that is, when ϕω,ℓ ≈ 0. This corresponds to the situations where the sensor

symmetric states have the largest inter-sensor correlations Jopt (i.e. are most entangled). We

emphasize again, that there is no guarantee that this performance is always achievable, although

in Ref. [53] it was proven for d = 2 and demonstrated for a large set of problems for d > 2.
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5.3.3 Naive Sequential Strategy

In the naive sequential protocol, we sequentially measure the n linear functions {f1, . . . , fn}

using an optimal single linear function protocol [8]. For this, we determine the optimal times tℓ

spent to measure the ℓth function by minimizing Eq. (5.12) forC = I with respect to {t1, · · · , tn}

under the constraint
∑

ℓ tℓ = t. The solution to this Lagrange multiplier problem, presented in

Appendix D.2, reads

Mnaive =
1

t2

(
n∑

ℓ=1

[wℓµ
2
ℓ ]

1/3

)3

. (5.24)

As an important example, consider equal weights, wℓ ≡ N /n. Then we have

n2N
dt2
≤Mnaive ≤

n2N
t2

. (5.25)

Indeed, the upper bound is obtained for unfavourable functions {fℓ} such that µ = 1n (“worst

case”), with 1n the n-component vector of ones, whereas the lower bound is obtained for favourable

functions {fℓ} with µ = 1n/
√
d (“best case”). These are the two extreme possible cases. Com-

pared to the local protocol figure of merit of N /t2 for any choice of wℓ, we see that in the worst

case, the local protocol is always superior to the naive sequential protocol. Furthermore, even in

the best case, we must have d > n2 to obtain an advantage from the naive sequential protocol

compared to the local protocol, implying a relatively large number of sensors. This shows that

the naive sequential protocol, with C = I , is not very competitive. On the other hand, as we show

now, by optimizing over C a significant gain in accuracy over the local protocol can be achieved.
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5.3.4 Optimal Sequential Strategy

Finally, we consider the optimal sequential protocol. The minimization over time in Eq. (5.26)

proceeds as in the naive case but with a general C. Therefore, again leaving details to Appendix

D.2, we obtain for the optimal sequential protocol that

Mopt = min
C

1

t2




n∑

ℓ=1

(
n∑

m=1

wmC
2
mℓ

) 1
3

µ′
ℓ
2/3




3

, (5.26)

with optimal time to measure the ℓth function given by

tℓ = t
(
∑n

m=1wmC
2
mℓ)

1/3
µ′
ℓ
2/3

∑n
p=1

(∑n
m=1wmC

2
mp

)1/3
µ′
p
2/3
. (5.27)

Inserting the definition of µ′
ℓ from Eq. (5.11), we arrive at

Mopt =

min
C

1

t2




n∑

ℓ=1

(
n∑

m=1

wmC
2
mℓ

) 1
3

max
i
|
n∑

m=1

(C−1)ℓmAmi|
2/3



3

. (5.28)

Note that due to the appearance of both C and C−1 in the expression with the same powers, the

result is invariant under a change in the normalization of the columns of C. Therefore we may

fix these column normalizations and introduce the constraint that

n∑

m=1

wmC
2
mℓ = 1, (5.29)
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for each ℓ. Under this constraint, we obtain the simpler expression

Mopt = min
C

1

t2

[
n∑

ℓ=1

max
i
|
n∑

m=1

(C−1)ℓmAmi|2/3
]3
, (5.30)

with optimal time per function given by

tℓ = t
µ′
ℓ
2/3

∑n
m=1 µ

′
m

2/3
. (5.31)

Geometrically, the constraint in Eq. (5.29) corresponds to restricting the columns of C to

the surface of an (n − 1)-dimensional ellipsoid (or (n − 1)-sphere if wm = N /n ∀m). The

columns of C can then be efficiently parametrized by elliptical (or spherical) coordinates, and

the optimization amounts to finding the best choice of corresponding angular variables. We

emphasize that this choice of normalization can be made without loss of generality.

We have now fully characterized our optimized sequential protocol. In particular, one can

numerically perform the minimization over matrices C in Eq. (5.28) subject to the constraint in

Eq. (5.29). However, while for practical purposes we have solved the problem, many questions

of more general nature arise at this point. In particular, what kind of advantage is provided by

the optimized sequential protocol over the naive one? What geometries of coefficient vectors

correspond to the best performance for the sequential protocol? How does it compare to the

signed sensor symmetric approach? These questions will be addressed in the following section.

All of the figures of merit calculated in this section are summarized in Table 5.1.
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Local Naive Sequential Signed Sensor Symmetric Optimized Sequential

M N
t2

1
t2

(
n∑
ℓ=1

[wℓµ
2
ℓ ]

1/3

)3

min
ω

N
t2

1+[d−2−G(ω)]Jopt

(1−Jopt)[1+(d−1)Jopt]

Jopt(ω) = 1
G(ω)+2−d

[
1−

√
(G(ω)+1)[d−1−G(ω)]

d−1

]

G(ω) = 1
N

n∑
ℓ=1

wℓ (d cos
2 ϕω,ℓ − 1)

min
C

1
t2

[
n∑
ℓ=1

max
i
|
n∑

m=1

(C−1)ℓmAmi|2/3
]3

subject to
n∑

m=1

wmC
2
mℓ = 1

Table 5.1: Summary of figures of merit. Recall, that for all strategies other than signed sensor
symmetric strategy, we have an explicit physical protocol to achieve the given figure of merit.
For the signed sensor symmetric strategy, beyond d = 2, we are not necessarily guaranteed that
a state exists that achieves the figure of merit, and therefore it is a lower bound, given the signed
sensor symmetric state restriction.

5.4 Performance and Geometry

To compare the performance of the different strategies, we first study some analytically

accessible limits and then turn to a numerical analysis of the related optimization problem.

5.4.1 Geometrically Symmetric Limit

We begin by considering what we refer to as the geometrically symmetric limit of the

signed sensor symmetric strategy. This limit will be useful for comparing to the optimized se-

quential protocol in the following subsections. For this, we consider a situation where the co-

efficient vectors αℓ are all approximately the same angle ϕ′ from some ω, which we recall is a

vector with all elements ±1. This results in a particularly useful simplification of the expression

for the geometry parameter G. We then define the parameter

ϵω,ℓ = ϕω,ℓ − ϕ′, (5.32)

so that ϵω,ℓ may be treated as a small parameter for a perturbative expansion, see Fig. 5.3
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Figure 5.3: (a) A visualization for n = 2 functions and d = 3 sensors of geometrically symmetric
functions. In particular, the coefficent vectors lie near the surface of a cone centered on some ω.
(b) The opening angle of the cone is given by ϕ′ and the angular displacement from ϕ′ for a
particular αℓ is specified by ϵω,ℓ, as defined in Eq. (5.32).

The geometry parameter of the signed sensor symmetric strategy then reads

G(ω) = Gϕ′(ω)

+
1

N
n∑

ℓ=1

wℓd
(
−2ϵω,ℓ sinϕ′ cosϕ′ − ϵ2ω,ℓ cos(2ϕ′)

)

+O
(
ϵ3ω,ℓ
)
. (5.33)

Here we expand in powers of ϵω,ℓ and define

Gϕ′(ω) =
1

N
n∑

ℓ=1

wℓ
(
d cos2 ϕ′ − 1

)
= d cos2 ϕ′ − 1, (5.34)

the geometry parameter for measuring a single function at an angle ϕ′ from ω. The condition on

how small ϵω,ℓ needs to be depends on ϕ′, but for any particular problem we can determine the

necessary condition. In general, as long as ϵω,ℓ ≪ 1/
√
d, the corrections will be negligible.
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Next we consider Eq. (5.21) in the large-d limit and obtain

Mss =
N
t2

(
1− G(ω)

d

)

+O
(
N
dt2

√
(1 + G(ω))(d− G(ω)− 1)

d− 1

)
, (5.35)

for arbitrary values of ω. We substitute Eq. (5.33) and obtain, to leading order in the geometri-

cally symmetric limit and for large d, that

Mss(ω) ≈ N
t2

(
1− Gϕ′(ω)

d

)
≈ N
t2

(
sin2 ϕ′ +

1

d

)
. (5.36)

Note that, for ϕ′ = 0, i.e. when all functions are nearly aligned with ω, this reduces to the

expected optimal scaling N /(t2d).

We will use these results in the following sections as we compare the signed sensor sym-

metric strategy to the optimized sequential strategy.

5.4.2 Nearly Overlapping Functions

Next consider the case when all the vectors αℓ are “close” in each component, i.e. we con-

sider measuring a set of n nearly identical functions. Intuitively, one would expect the optimal

sequential strategy in this case to be spending almost all the time measuring the linear combina-

tion pointing towards the average of these functions, and then spending a small amount of time

measuring in other directions in order to distinguish the small variations in the functions. We find

that this intuition is rigorously true. We also find that, in this case, we can analytically determine

a scaling advantage (in d) for this protocol relative to the signed sensor symmetric strategy (and,
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of course, the unentangled strategy). Finally, we consider a particular example from Ref. [53]

and find that its implication about the role of entanglement in protocol performance—namely

that it can be disadvantageous in certain circumstances—is limited to the consideration of just

the (unsigned) sensor symmetric strategy and is not generally true.

To formally define what we mean by “nearly overlapping”, consider angles δℓ associated

with each vector of coefficients αℓ as specified by

cos δℓ = αℓ · ā, (5.37)

where ā is a vector, with Euclidean norm equal to 1, chosen such that the average angle n−1
∑n

ℓ=1 δℓ

is minimized. For δℓ sufficiently small for all ℓ, αℓ ≈ ā for all ℓ. Furthermore,

max
i
Aℓi = max

i
āi +O(δℓ), (5.38)

for Aℓi = (αℓ)i. Therefore, with δ = maxℓ δℓ, we obtain from Eq. (5.30) that

Mopt =
maxi ā

2
i +O(δ2)
t2

min
C

[
n∑

ℓ=1

|
n∑

m=1

(C−1)ℓm|
2/3
]3
. (5.39)

Leaving the somewhat tedious details to Appendix D.3, we find that this reduces to the expected

result that

Mopt =
N
t2

max
i
ā2i +O

(N δ2
t2

)
. (5.40)

Note that, in general, δ ≪ 1/
√
d ensures that this is a good leading-order approximation. This
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is a reduction in the variance by a factor of approximately (to order δ2) maxi ā
2
i ∈ [1/d, 1]

compared to the local protocol in Eq. (5.13), or, when compared to the naive sequential protocol

in Eq. (5.24), a reduction in the variance by a factor of order O(1/n2).

To compare to the signed sensor symmetric protocol, we note that this nearly overlapping

case is merely a special case of the nearly geometrically symmetric case of the sensor symmetric

protocol (provided δ is sufficiently small). In particular, δ is the relevant expansion parameter for

our asymptotic approximations as ϵω,ℓ ≤ δ for all ℓ. Therefore, to compare, we may simply use

the previous results from Section 5.4.1 with corrections upper bounded by taking ϵω,ℓ → δ.

Furthermore, we note that, to leading order, Mss = NM(n=1)
ss , and similarly, Eq. (5.40)

also has the leading-order expressionMopt = NM(n=1)
opt , where the right-hand sides correspond

to the accuracyN times the single-function estimation figure of merit. Therefore, we see that, in

order to compare the accuracy of both protocols for nearly overlapping functions, it is sufficient

to compare their performance for single-function estimation.

Of course, for a single function, the “sequential” strategy is provably optimal as we have

reduced it to the case of Ref. [8]. So, at best, the signed sensor symmetric strategy will perform

the same as the “sequential” strategy for a single function. For example, we note that for the best

case for both strategies—where all functions are oriented along some ω to order O(δ)—both

approaches have a cost to leading order of N /(t2d), which is superior to the local protocol by

1/d. Also, for d = 2, the time-independent protocol of Ref. [8] does actually utilize sensor
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symmetric states, because the initial states are chosen from the set

|ψ⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ⟩ = 1√
2
(|01⟩+ |10⟩) , (5.41)

and therefore, for all choices of functions with d = 2 (where both approaches provide explicitly

saturable bounds), the two protocols are identical and optimal.

For d > 2, on the other hand, as previously discussed, there may not exist physical states

that obtain the figure of merit provided by the signed sensor symmetric strategy. However, even

if we assume the figure of merit Mss is attainable, we shall see that the optimized sequential

strategy can often be the superior choice. In this context, we consider two examples. First, we

demonstrate a scaling advantage in d for the sequential protocol in this nearly overlapping limit.

Then we revisit the example from Eq. (38) of Ref. [53] and demonstrate that the implication made

that entanglement can be detrimental is an artifact of the (unsigned) sensor symmetric approach

and that for the better performing sequential protocol, as well as the more general signed sensor

symmetric approach, entanglement is useful.

Example 1: To demonstrate an example of a scaling advantage of the sequential protocol

over the signed sensor symmetric strategy, suppose we have n nearly overlapping functions such

that δ ≪ 1/
√
d relative to the vector of coefficients given by

ā =
1√

(x2 − y2)κ+ y2d

(
x, · · · , x︸ ︷︷ ︸

κ

, y, · · · , y︸ ︷︷ ︸
d−κ

)T
, (5.42)

where the first κ elements are (up to normalization) x ∈ R and the last d−κ elements are y ∈ R.
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We assume x, y = O(1) and κ = O(dβ) for β ∈ [0, 1). Without loss of generality, suppose

x > y. In this case, the cost of the optimized sequential strategy is straightforwardly obtained

from Eq. (5.40) to be

Mopt =
N
t2

(
x2

(x2 − y2)κ+ y2d

)
+O

(N δ2
t2

)

=
N
t2

x2

y2d

(
1− (x2 − y2)κ

y2d

)
+O

[N
t2
(
δ2 + d2(β−1)

)]
, (5.43)

where the second line comes from expanding in powers of κ/d. For the signed sensor symmetric

strategy for the same problem, we pick ω such that ωi = sgn(āi), which minimizes the angle

between ā and ω. In the large d limit, we may then use Eq. (5.36) with

cos2 ϕ′ =
(ā · ω)2

d
=

[
(|x| − |y|)κ+ |y|d

]2

d
[
(x2 − y2)κ+ y2d

] . (5.44)

We can perform an expansion of the numerator of Eq. (5.44) in powers of κ/d as

[
(|x| − |y|)κ+ |y|d

]2
= |y|2d2

[
1 +

(|x| − |y|)κ
|y|d

]2

= |y|2d2
[
1 +

2(|x| − |y|)κ
|y|d +O

(
κ2

d2

)]
, (5.45)

and expand the denominator as

1

d
[
(x2 − y2)κ+ y2d

] = 1

y2d2

[
1 +

(x2 − y2)κ
y2d

]−1

=
1

y2d2

[
1− (x2 − y2)κ

y2d
+O

(
κ2

d2

)]
. (5.46)
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We then have

sin2 ϕ′ = 1− cos2 ϕ′ =
(|x| − |y|)2κ

y2d
+O

(
κ2

d2

)
, (5.47)

which we may plug into Eq. (5.36) for the signed sensor symmetric strategy

Mss =
N
t2

(|x| − |y|)2κ
y2d

+O
[N
t2
(
δ2 + d2(β−1)

)]
, (5.48)

which demonstrates a scaling advantage by a factor of O (κ−1) = O
(
d−β
)

for the optimized

sequential protocol in this problem.

Example 2: Now we consider the example of a single function from Eq. (38) of Ref. [53]

for d = 3 sensors and coefficient vector3

α =
1√
18




√
2 +
√
3 + 1

√
2−
√
3 + 1

√
2− 2



. (5.49)

The example was chosen in Ref. [53] such that for ω = 1, G(ω) = 0, and thus Jopt(ω) = 0,

which in turn implies that the optimal (unsigned) sensor symmetric state is unentangled. Equation

(5.21) then implies

Mss(ω = 1) =
1

t2
, (5.50)

which is larger than the true optimal figure of merit, which is obtained by the “sequential” proto-

3We have normalized differently by a factor of 1/
√
3 from Eq. (38) of Ref. [53] in order to match our assumption

that ||α||2 = 1.
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Setting Signed Sensor Symmetric Optimized Sequential
Geometrically symmetric limit

(large d)
Mss(ω) ≈ N

t2

(
1− Gϕ′ (ω)

d

)
≈ N

t2

(
sin2 ϕ′ + 1

d

)

ϕ′ := angle of functions w.r.t. ω

Nearly overlapping limit Same as geometrically symmetric limit Mopt =
N
t2
maxi ā

2
i +O

(
N δ2

t2

)

Functions aligned along ā
Best Case

Functions aligned along some ω
Mss =

N
dt2

Mopt =
N
dt2

Example 1 (Scaling)
Scaling advantage forMopt

Functions aligned along Eq. (5.42)
Mss = O

(Nκ
dt2

)
= O

( N
d1−βt2

)
(note: β ∈ [0, 1)) Mopt = O

( N
dt2

)

Table 5.2: Summary of analytic results comparing the signed sensor symmetric strategy and
optimized sequential strategy. Recall that the figure of merit for the local strategy is N /t2.

col:

Mopt =
1

t2

(√
2 +
√
3 + 1√

18

)2

≈ 0.9551

t2
. (5.51)

We also note that, even within the framework of sensor symmetric strategies, the result obtained

from Ref. [53] is not the best one can do. If we extend to the signed sensor symmetric approach,

one can consider ω = (1, 1,−1)T and do better. In particular, in this case, one obtains

Mss(ω) =
0.9554

t2
, (5.52)

which is only slightly worse than the true optimum, and, crucially, also involves entanglement.

Therefore, from this example, we learn that (a) entanglement is helpful for measuring the function

in Eq. (5.49), just not when we restrict to (unsigned) sensor symmetric states, and (b) accuracy is

(unsurprisingly) potentially decreased when restricting ourselves to sensor symmetric states.

For convenience, we summarize the analytic results comparing the signed sensor symmetric

and optimized sequential strategies in Table 5.2.
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a) b) c)

d) e) f)

Figure 5.4: Mss versus Mopt for 1000 random samples from the positive orthant of α1,α2

with n = 2, w1 = w2 = 1 for different numbers of sensors d. Dashed lines correspond to
Mlocal. Colors correspond to the geometry parameter for the problem instance. Observe that the
signed sensor symmetric approach is never worse than the local protocol, whereas the optimized
sequential protocol can be. However, as d increases the optimized sequential protocol is almost
always superior. Also recall, that for d > 2,Mss is generically just a lower bound, and it is not
guaranteed one can achieve this figure of merit with physical states. Therefore, one can think of
Mss as a best case scenario for a physically realized signed sensor symmetric protocol.

5.4.3 Numerical Results

In the previous sections, we found that both the optimized sequential and signed sensor-

symmetric strategies perform identically (and optimally) when measuring many functions whose

coefficient vectors {αℓ} are aligned along a particular ω. More generally, the optimized sequen-

tial protocol always performs at least as well as, and typically outperforms the signed sensor

symmetric strategy when measuring many functions with nearly overlapping coefficient vectors,

and in fact, we can obtain a scaling advantage in d for certain problems (Example 1). However,

while informative, the nearly overlapping limit considered above is such that the optimized se-

quential strategy performs its best. Therefore, it is of interest to also consider a broader class of

examples and to consider where the signed sensor symmetric strategy outperforms the optimized
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sequential strategy.

Unfortunately, however, a full analytic comparison between the different approaches is

beyond reach as far as we know, so for a general problem, one must therefore compare the two

approaches explicitly to see which one is the correct choice for a given situation. Here, to better

understand the expected performance in such cases, we turn to numerics on random problem

instances. Our key result is to demonstrate that generically, for large d, many problems are best

approached using our optimized sequential protocol as opposed to the sensor symmetric or local

strategies.

Numerically, the optimization over C in Eq. (5.30), subject to Eq. (5.29), to obtain the cost

of the optimized sequential protocol can be fairly costly in terms of computation time, as the

optimization is non-convex and in a high dimensional parameter space. This is not necessarily

an issue for particular applications, where only a limited number of such optimizations must be

performed. As an example, consider n = 2 functions, d ≥ n sensors, and equal weights in the

figure of merit (w1 = w2 = 1). The normalization condition (5.29) implies that the columns of

the 2× 2 matrix C have unit length. We can parametrize this by two angles via

C =



cosφ cosφ′

sinφ sinφ′


 . (5.53)

Given the coefficient vectors α1,2 of the two functions to be estimated, the numerical optimization

over φ, φ′ is accomplished straightforwardly. For n = 3 functions, six angles φ1, . . . , φ6 are

needed, making the optimization more challenging for larger n.

The two functions, represented by the two normalized coefficient vectors α1,2, depend on
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2(d− 1) real parameters. In this context, we randomly sample coefficients for the two functions

from a uniform distribution and calculate the cost of the signed sensor symmetric strategy and the

optimized sequential strategy. For d = 2k for k ∈ [1, 6], we consider 1000 such problems where

for simplicity we assume that α1,2 are sampled from the positive orthant so that the optimal ω is

necessarily 1 and plot the results in Fig. 5.4.

We observe that the signed sensor symmetric strategy is never worse than the local protocol,

whereas the optimized sequential protocol can be at small d. In the particular case of n = d = 2,

the sequential strategy is never better than the signed sensor symmetric strategy. As previously

mentioned, it is well known that, for this problem, when the two functions are orthogonal, a

local protocol obtains the optimal variance (that is,M = N /t2 is optimal) [9, 52]. In this case,

as demonstrated in Ref. [53], the sensor symmetric strategy matches this known optimal result.

In particular, the sensor symmetric strategy predicts an optimal geometry parameter G(ω) = 0,

corresponding to no inter-sensor correlations and, therefore, a local protocol. We observe this

behavior in panel a) of Fig. 5.4 where the G = 0 points correspond toMss =Mlocal = 2. Note

that cases of G ≈ 0 that correspond to nearly orthogonal coefficient vectors are only those points

whereMopt ≈ 4, as can be concluded from Fig. 5.5 where we plotMopt versus α1 · α2. As d

increases, however, the optimized sequential protocol is almost always superior to both the local

and signed sensor symmetric strategies for these randomized problem instances.

5.5 Conclusion and Outlook

In this work, we explored the potential of sequential protocols to measure multiple func-

tions with quantum sensor networks. We highlighted both analytical and numerical aspects, and
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Figure 5.5: Mopt versus α1 · α2 for n = 2 functions and d = 2 sensors. Note that the nearly
orthogonal case (α1 ·α2 ≈ 0) impliesMopt ≈ 4 (i.e., the worst case for the optimized sequential
strategy). Comparing to the first panel of Fig. 5.4 we see that in this caseMss ≈Mlocal = 2.

compared the protocol to a generalized version of the sensor symmetric bounds for the same

problem from Ref. [53]. We find that, when d is large, the sequential protocol is typically su-

perior for generic problem instances. The sequential strategy also has the advantage of having

an explicit protocol to obtain its given performance, whereas beyond d = 2, while shown to be

saturable in certain cases [53], the lower bound when restricted to signed sensor symmetric states

is not guaranteed to always be attainable. However, for a particular problem, one should compare

both strategies, as neither is always superior.

Our results, together with those in Ref. [53], point to an intriguing interplay between the ge-

ometric configuration of the functions to be measured and the performance of various protocols.

In particular, our optimized sequential protocol performs best with nearly overlapping functions;

the signed sensor symmetric approach performs best when the set {αℓ} is nearly aligned along

some ω. Beyond carefully tuned examples, we note that for most problems where we seek to es-

timate a collection of analytic functions of local field amplitudes, our protocol is the best known
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choice, especially with more than a small number of sensors d.

Our sequential protocol could directly be extended to the case where the sensors are each

coupled to correlated field amplitudes as in the recent work by some of the authors [59]; that

is, instead of considering independent field amplitudes θi coupled to the sensors, one could con-

sider the case where θ is specified by a known analytic parameterization by some set of k ≤ d

parameters.

Our sequential protocol could also be extended to other physical settings beyond qubit

sensors—namely, for any quantum sensor network where one may measure a single linear com-

bination of field amplitudes, one can apply our sequential approach. For example, a collection of

dMach-Zehnder interferometers could replace the qubit sensors, where the role of the local fields

is played by interferometer phases [101, 122–126]. Here, the limiting resource is the number of

photons N available to distribute among interferometers as opposed to the total time t. In this

context, it was conjectured in Ref. [51] that one could measure a single function with variance

M =
∥w∥21
N2 —this replaces Eq. (5.4), and otherwise everything remains the same.4 However,

there are subtleties in the case where the average number of photons is not known [127], which

we do not consider here. Another relevant setting is the measurement of linear combinations

of field-quadrature displacements as considered using an entanglement-enhanced continuous-

variable protocol in Ref. [80]. A variation of this protocol was experimentally implemented in

Ref. [86]. One could also consider a combination of these settings where some field amplitudes

are coupled to qubits, some to Mach-Zehnder interferometers, and some to field-quadrature dis-

placements.

While the importance of geometry is striking, the general question of the information-

4Comment: Note this conjecture is proven in Chapter 3 of this thesis.
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theoretic optimal strategy that minimizes the quantum Fisher information for this problem re-

mains a pressing open question. Additionally, our results are asymptotic and ignore the potential

effects of decoherence. Understanding the performance of the sequential protocol in the non-

asymptotic regime (i.e., via Bayesian analysis as considered in Ref. [53]) and under the effects

of decoherence remains a question of great importance. These limitations aside, our findings ad-

vance the understanding of measuring multiple functions with quantum sensor networks and pro-

vides an alternative protocol that practically performs better than previously considered schemes

in many instances.
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Chapter 6: Discussion and Further Directions for Part I

Chapters 2-5 tell a fairly complete story about the asymptotic limits of function estimation

in quantum sensor networks and the protocols required to reach those limits. For both qubit-based

and photonic sensors, we have shown a tight algebraic connection between fundamental precision

bounds and the resources and protocols required to achieve them. We have also emphasized how

settings that allow for freedom in choosing the function to estimate enable one to make better

use of entanglement—namely, by measuring more global functions for which one can obtain the

greatest precision gain over unentangled protocols.

However, a number of interesting questions beyond immediate applications and extensions

remain. A couple directions seem particularly compelling:

• Secure Networked Quantum Sensing: As pointed out in Ref. [8], for protocols using local

measurements, linear function estimation is, in a weak sense, secure against sensor nodes

being compromised by malicious parties. In particular, from any strict subset of local mea-

surements one cannot infer the value of the function being estimated. Stricter forms of

security against attack—both internal and external to the network—are of clear interest,

however. For instance, one can consider situations where some nodes are compromised,

communication channels between nodes are compromised, or a situation where one would

like to delegate the whole operation of the quantum network to a third party without re-
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vealing information about what function of the unknown parameters one wants to extract.

Some initial work along these lines has been done [140–142], but there is much left to ex-

plore. The key challenge in this setting, compared to similar questions related to secure or

delegated quantum computing, is the existence of unknown parameters, which intrinsically

limits the sorts of attacks that can be defended against; for instance, a malicious party con-

trolling one node of the sensor network could always measure a field they are not supposed

to and, if the correct field is not known, this could never be detected. We hope that lessons

from cryptography or delegated quantum computing can help circumvent certain aspects

of this problem.

• Multiparameter Quantum Sensing: The work contained in this dissertation depended heav-

ily on the fact that, while “under the hood” the problems considered are multiparameter

problems, a function of those parameters is a single quantity. This allowed us to make

clever use of single parameter Cramér-Rao bounds, subject to some constraints that arose

from the multiparameter nature of the problem. While we extended beyond this setting

somewhat in Chapter 5, in that chapter we focused on protocols, not their ultimate opti-

mality. To fully understand the resource requirements and landscape of optimal protocols

for multiple function estimation other techniques are needed. A key tool in this problem

will be the more general Holevo Cramér-Rao bound [48, 104], which unlike the Helstrom

version used in this dissertation, is saturable even in the multiparameter setting—although

only with multi-copy measurements.

Relatedly, the choice of cost function in a genuinely multiparameter problem makes for a

rich optimization landscape. For instance, instead of the standard trace of the covariance
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matrix considered in Chapter 5 and in the Holevo Cramér-Rao bound, one could consider

other norms on the covariance matrix. Analysis of alternative choices has a long history

in the classical parameter estimation literature (see, for instance, [143]), as well as in the

related area of optimal design of experiments [144], but is relatively unexplored in the

quantum setting.
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Part II

Quantum Optimization
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Chapter 7: Polynomial Time Algorithms for Estimating Spectra of Adiabatic

Hamiltonians

7.1 Introduction

Since their introduction in [145], so-called stoquastic Hamiltonians, those with real non-

positive off-diagonal matrix elements, have been a major point of focus for research regarding

adiabatic quantum computation (AQC)[146]. Stoquastic Hamiltonians have real, non-negative

ground states, and therefore, a question of particular interest is whether AQC with stoquas-

tic Hamiltonians is capable of exponential speedup over classical computation. We note that

the computational cost for an AQC problem is determined via adiabatic theorems which up-

per bound the runtime as the inverse of the eigenvalue gap between the lowest two eigenvalues

squared [147, 148]. As a complexity theory question, the computational power of stoquastic

AQC is still unknown, but for specific classical algorithms such as path integral [15] or diffusion

Monte Carlo (MC) [14, 149], examples have been presented where exponential speedup over the

specific classical algorithm is indeed still possible with stoquastic Hamiltonians.

However such finely tuned examples raise new questions as to whether such obstructions

to classical simulation are typical of more general stoquastic Hamiltonians. The diffusion MC

examples and others, such as the well studied “spike” example [14, 150–154] take advantage
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of heavy symmetry with a potential that is a function of Hamming weight to allow for effi-

cient analytic and computational analysis. It has been shown that such problems are always

efficiently classically simulatable by path integral quantum Monte Carlo (QMC) [155], which

suggests somewhat more complicated models would be helpful for addressing these questions.

Here we consider such a model designed to be both efficiently analyzable and somewhat

more realistic than purely Hamming symmetric problems. In particular, we expect realistic cost

functions to have many local minima; therefore we consider a collection of K = poly(n) indi-

vidually Hamming symmetric wells. While the full Hamiltonian in such a model is no longer

Hamming symmetric, enough symmetry remains to allow for a similar reduction to an effective

polynomial sized subspace. We show that this reduction can always be exact for K = 2, 3.

For larger K we introduce an approximate tight-binding scheme for analyzing the model.

The reduction this model affords is represented diagramatically in Fig. 7.1 for three Hamming

symmetric potential balls on 10 qubits. In addition to being computationally efficient, this tight-

binding model makes the effects of tunneling readily apparent; in the tight-binding model, the

minimum eigenvalue gap is in many cases dictated by the matrix element between ground states

of neighboring potential wells, which in turn is dominated by the “tunneling” part of the wave-

functions, i.e. the amplitudes on bit strings for which the potential energy is greater than the

eigenenergy of the state. As interference is not manifest in the ground state of stoquastic Hamil-

tonians, it is expected that if AQC with such Hamiltonians is to provide advantages over classical

computation these advantages should lie in the power afforded by tunneling effects between lo-

cal minima of the cost function; therefore even if the model presented here also proves to be

efficiently simulatable classically, it still provides a useful new tool set for addressing and under-

standing the performance of AQC with more realistic stoquastic Hamiltonians.
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Figure 7.1: The key feature of our model and the tight-binding approach to analyzing it is the
ability to exponentially reduce the size of the problem to an effective Hamiltonian that explicitly
considers tunneling between a collection of Hamming symmetric wells. Here we diagramatically
demonstrate this reduction for a collection of 3 Hamming symmetric wells of width 1 on 10
qubits. The original graph representing our Hamiltonian has a hypercube geometry, but the edges
not within wells are eliminated for visual clarity.

In this [chapter] we present this model and our exact and approximate algorithms for ana-

lyzing it, along with a collection of examples designed to highlight their strengths and limitations.

7.2 Tight-binding approximation

Hamiltonians with −∑j Xj driving terms and Hamming-symmetric potentials comprise

a common class of Hamiltonians considered in AQC [14, 149–154], where Hamming weight

is defined as the number of ones in a bit string corresponding to a basis state of the Hilbert

space. Such Hamiltonians are often used due to the ability to block diagonalize the Hamiltonian

into smaller subspaces: if we think of our qubits as spin-1/2 particles each block corresponds

to a possible total angular momentum j and we can parameterize within each block by the z-

projection of the angular momentum m and a parameter γ labeling the degeneracies of the j, m

representations.
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Here we introduce a reparameterization σ = n/2− j ∈ [0, n/2], w = n/2+m ∈ [σ, n−σ]

which indexes the permutation symmetric subspace as the σ = 0 subspace and definesm in terms

of Hamming weight. The ground state and thus the relevant spectral gap of such Hamiltonians

is guaranteed by the Perron-Frobenius theorem to lie in the exponentially-reduced permutation

symmetric σ = 0, γ = 0 subspace.

As we use the Perron-Frobenius theorem several times throughout this [chapter], we restate

it here for convenience: Let A be a matrix with all real and non-negative entries. Then A has a

unique leading eigenvalue with corresponding eigenvector with all elements strictly positive.

In the context of stoquastic AQC, we have a Hamiltonian with all non-positive matrix el-

ements so exp(−βH) ≃ 1 − βH is nonnegative for sufficiently small β > 0 and the Perron-

Frobenius theorem applies which guarantees a nondegenerate, real, nonnegative ground state.

Furthermore, as the ground state is nondegenerate, it is guaranteed to transform in a one di-

mensional representation of any symmetry group of the Hamiltonian. In particular, Hamming-

symmetric Hamiltonians have the symmetry group Sn, which has only two one-dimensional rep-

resentations: the trivial representation and the sign representation. By the positivity of the ampli-

tudes of the ground state, it cannot transform according to the sign representation and therefore

is invariant under all permutations of the qubits.

Therefore, analyzing the Hamming symmetric problem in this subspace which has a basis

parameterized by the Hamming weight w enables efficient computation of the spectral gap. A

detailed review of this reduction is presented in Appendix E.1.

Here, we consider a generalization of the standard problem. Instead of a fully Hamming-

symmetric Hamiltonian, we specify K bit strings, each with a Hamming-symmetric potential
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“well” about it. This Hamiltonian is of the form

H(s) = −a(s)
n

∑

j

Xj +
K−1∑

k=0

bk(s)Vk

(∑

j

X k̄Z̄jX
k̄
)

(7.1)

where X k̄ =
⊗n

i=1X
k̄i is a bit shift operator shifting a bit string from k̄ ∈ {0, 1}n to the all

zeros bit string and Z̄ = (I − Z)/2 = |1⟩⟨1| is the Hamming weight operator. The remaining

(standard) notation is introduced and defined in Appendix E.1. Note, for example, that the Grover

Hamiltonian with K marked items is a special (simple) case of this Hamiltonian, with Vk = −1

for
∑

j X
k̄Z̄jX

k̄|x⟩ = 0 and 0 otherwise.

Despite the loss of full Hamming symmetry, a similar reduction of Hamiltonians of this

form exists, making it possible to calculate the spectral gap of the full problem efficiently. Rela-

beling symmetries that make this calculation exact for K = 2, 3 are described in Appendix (E.2).

Here we simply indicate a key notation from these exact results for the case ofK = 2: in analogy

with the fully Hamming symmetric case we now label our subspaces by a coordinate pair (σ1, σ2).

Basis states are further parameterized by two integers h1 ∈ [0, n1] and h2 ∈ [0, n − n1] where

n1 is the Hamming distance between the two wells and a pair (γ1, γ2) labeling degeneracies of

representation. The ground state of the Hamiltonian is guaranteed to be in the (σ1, σ2) = (0, 0)

subspace. The details are left to the appendix. For K > 3, we introduce a tight-binding approxi-

mation, to which we now turn.

We first consider each of the K wells individually. The eigenstates for each well can be

directly and efficiently calculated, as long as one ignores the existence of the other wells. We

denote the ground state of the kth isolated well by |ψ(0)
k ⟩, and the set of such ground states by

T (0) ≡ {ψ(0)
k }. Similarly, we denote T (1) ≡ T (0)∪{ψ(1)

k } as the set of ground states and (possibly
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degenerate) first excited states of the individual wells.

Our zeroth (first) order tight-binding model ansatz consists of the assumption that the

ground state |ϕ(0)⟩ and first excited state |ϕ(1)⟩ of the full Hamiltonian exist in the span of the

elements of T (0) (T (1)). Therefore starting with the eigenvalue equation H|ϕ⟩ = E|ϕ⟩ we can

insert the tight-binding ansatz |ϕ⟩ =∑j cj|ψj⟩ for some coefficients cj to give for the lowest two

energy states

H

K−1∑

j=0

cj|ψj⟩ = E

K−1∑

j=0

cj|ψj⟩. (7.2)

Then multiplying through by the complete set T (0) (or T (1)) of basis states gives the generalized

eigenproblem
∑

i,j

cjH
(TB)
ij |ψi⟩ = E

∑

i,j

cjSij|ψi⟩ (7.3)

where H(TB)
ij = ⟨ψi|H|ψj⟩ and Sij = ⟨ψi|ψj⟩. Solving this generalized eigenproblem gives a

variational solution for the lowest two energy states.

To calculate the elements H(TB)
ij and Sij we use the exponentially reduced subspaces cor-

responding to the pair of wells i, j (as described in detail in Appendix E.2) to calculate |ψi⟩ and

|ψj⟩. Once we have the basis states |ψi⟩ and |ψj⟩, calculating the overlap Sij is then self explana-

tory. To calculate H(TB)
ij = ⟨ψi|H|ψj⟩ in this subspace we can exactly write the driver part of the

Hamiltonian and the diagonal term corresponding to the wells i, j and then add a correction term

to exactly include the effects of the other wells in this matrix element. In particular we can write

H
(TB)
ij = ⟨ψi|Hd +

∑

h1,h2

[Vi(h1, h2) + Vj(h1, h2) + Vc(h1, h2)]|ψj⟩ (7.4)

where Hd is the driver part of the Hamiltonian in the appropriate basis Vi and Vj are the diagonal
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potential terms corresponding to the ith and jth wells and

diag(Vc) =

∑
k ̸=i,j

∑n
rk=0N(h1, h2, n1, Rik, Rjk, rk)Vk(rk)√(

n1

h1

)(
n−n2

h2

) (7.5)

where n1, Rik and Rjk are the Hamming distance between the ith and jth wells, the ith and kth

wells and the jth and kth wells, respectively, rk is the distance from the kth well and Vk(rk) is

the potential due to the kth well at distance rk. The function N(h1, h2, n1, Rik, Rjk, rk) gives

the number of points of intersection between Hamming spheres of radius ri = h1 + h2 and

rj = (n1 − h1) + h2 centered on the ith and jth wells respectively and the Hamming sphere of

radius rk centered on the kth well. For details on how to calculate N see Appendix E.3.

Note that calculating the matrix elementsH(TB)
ij and Sij is only efficient if we can calculate

them only by considering a constant (or polynomial) set of reduced subspaces (fixed or bounded

(σ
(ij)
1 , σ

(ij)
2 )) of the ijth basis. By the Perron-Frobenius theorem and symmetry, the ground state

of any well is guaranteed to be in the (σ
(ij)
1 , σ

(ij)
2 ) = (0, 0) subspace. So if we just consider

zeroth order tight-binding we must only compute individual ground states in this subspace. If we

want to include first excited states as in first order tight-binding, however, we must consider the

possibility that those states exist in (σ
(ij)
1 , σ

(ij)
2 ) > (0, 0) subspaces.

In Appendix E.4 we prove that the first excited state for a given well is guaranteed to exist

in one of the (0,0), (1,0), or (0,1) subspaces and thus limits us to a constant set of polynomially-

sized subspaces we must diagonalize for first order tight-binding. Here we give a sketch of

the proof and the motivating ideas. To simplify things we note that a single well Hamiltonian

can also be written in terms of the standard Hamming symmetric subspaces labeled by σ and

σ
(ij)
1 + σ

(ij)
2 ≤ σ. That is we can show this result by demonstrating that the first excited state of
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well belongs in either the σ = 0 or σ = 1 subspace.

Start by considering just the driving term of the Hamiltonian Hd ∝ −
∑

j Xj . The ground

state of Hd is therefore proportional to |+⟩⊗n. The first excited state is n fold degenerate where

one of the n bits is flipped to a |−⟩ state. An equal superposition of these states is a permutation

symmetric (σ = 0) eigenstate, leaving n − 1 states in the σ = 1 subspace, each labeled by a

different γ in our |wσγ⟩ basis. We note that while within the σ = 0 subspace this first excited

eigenstate is the second lowest eigenvalue, in the σ = 1 subspaces for fixed γ = γ′ each of these

eigenstates corresponds to the smallest unique eigenvalue within these subspaces. Additionally,

as each of these fixed γ = γ′, σ = 1 subspaces is itself a stoquastic matrix, by the Perron-

Frobenius theorem each of these candidate first excited states is real and non-negative in its

respective subspace.

If we add a Hamming symmetric well, the degeneracy in the first excited state is broken

between the σ = 0 state and the σ = 1 states. Which of these is energetically favored depends on

the potential and the relative strength of the driving and potential terms, but the σ > 1 eigenstates

can never have lower energy than these states even following the breaking of the degeneracy.

To see this we consider an eigenstate |ψ⟩ = ∑
wσγ α(w, σ, γ)|wσγ⟩ with corresponding energy

(independent of w for α(w, σ, γ) ̸= 0)

E(s) = −1− s
n

(
r+C+ + r−C−)+ sV (w) (7.6)

where r± = α(w±1,σ,γ)
α(w,σ,γ)

for all w, σ, γ and C± are standard spin-1/2 raising and lowering coeffi-

cients (and functions of w and σ). Note that the potential term is independent of σ and thus does

not affect which subspace is energetically favored. However, for a subspace σ and a subspace
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σ′ > σ at fixed w, C±(σ′ > σ) < C±(σ) so if r± were independent of σ then the σ = 0 subspace

would always be favored. Consider the energy difference between the candidate first excited

states

∆E(s) = Eσ′(s)− Eσ(s) =
1− s
n

[r+σ C
+
σ + r−σ C

−
σ − r+σ′C

+
σ′ − r−σ′C

−
σ′ ]. (7.7)

This equation is independent of w so we take w = σ′ so that C−
σ′(w = σ′) = 0 to eliminate

one term. For σ > 0, r± must be nonnegative (by the Perron-Frobenius theorem) so ∆E(s)

is nonnegative unless r+σ′ is large relative to r±σ . By analyzing the eigenvector equation in both

subspaces, however, and using the fact that C+
σ′ < Cσ we obtain

Eσ′ − sV
Eσ − sV

>
r+σ′

r+σ
. (7.8)

Both sides are positive definite for σ, σ′ > 0. And as sV is the same in both subspaces, if

Eσ′ < Eσ then r+σ′ < r+σ but this contradicts that r+σ < r+σ′ . Therefore the first excited state must

always exist either in the σ = 0 or σ = 1 subspaces.

Additionally, we can see how the σ = 1 subspace may be energetically favored over the

σ = 0 subspace: the σ = 0 subspace does not have the positive definite restriction on r±, so

therefore if there is a sufficiently rapid sign change in the first excited state wavefunction in the

σ = 0 subspace as we may see in a bound state of a well, then the σ = 1 subspace is energetically

favored.

Thus, to perform first order tight-binding we must simply check the σ = 0 and σ = 1

subspaces for the first excited state for each well. If the σ = 1 states are energetically favored we

125



use all n−1 degenerate first excited states for that well in the tight-binding calculation. Therefore

the tight-binding matrices for first order tight-binding can be up to nK × nK in size.

Before discussing numerical details of the practical implementation of this tight-binding

framework, note that this framework explicitly considers the tunneling between potential wells.

In particular non-zero off diagonal elements of the matrices H(TB) and S are due to evanescent

portions of the bound state wavefunctions that extend beyond their respective wells. When the

gap is small the ground state wave function can vary rapidly with s as depicted in Figure 7.2.

To understand how this relates to the standard conception of tunneling note that we can make

the driver term correspond to our intuitive conception of a kinetic energy term by pulling out an

s dependent diagonal term ∝ I from the second term in 7.1 to obtain the standard normalized

graph Laplacian for this system Hk = (1 − s)[I − 1
n

∑
j Xj] which can be considered a kinetic

energy term [149]. The remaining diagonal potential term is the corresponding potential energy.

7.3 Numerical Considerations and Error Estimates

Once we construct the tight-binding matrices H(TB) and S, we must solve the generalized

eigenproblem given in 7.3. This is complicated by the fact that S may be ill-conditioned, lead-

ing to numerical instabilities. We address this by using the Fix-Heiberger reduction algorithm

for solving symmetric ill-conditioned generalized eigenproblems [156]. In our code, we used a

Lapack-style implementation of this algorithm from [157]. This algorithm works for real sym-

metric matrices with S positive definite with respect to some user defined tolerance 0 < ϵ ≪ 1.

Essentially this algorithm finds the eigenvalues of H and S which are zero with respect to ϵ and

discards them before diagonalizing the remaining blocks of these matrices to solve the general-
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Figure 7.2: (a) Exact ground state of a two well system on 10 qubits (n1 = 4, n2 = 6) as a
function of h1 and h2 for s near the minimum gap. The well on the left (right) has width 0 (1) and
we see that at the point of minimum gap the wave function can rapidly switch between wells. (b)
Energy landscape for fixed h2 = 0 (cut with minimum distance between wells). The minimum
eigenvalue gap occurs at an energy such that the parts of the wave functions external to the wells
have amplitudes on bit strings for which the potential energy is greater than the eigenenergy of
the state. Here potential energy is shifted by −(1 − s)I so that the relation to tunneling in the
sense that the there is wave function support on bitstrings such that the energy is less than the
potential energy is readily apparent.

ized eigenproblem.

We expect the approximation to be good when the wave functions are “tightly bound”.

Therefore we propose an approximate upper bound on the error based on first order pertubations

of the diagonal elements of H(TB):
[∑

i |⟨ψi|H̄(i)|ψi⟩|2
]1/2

where H̄(i) is the Hamiltonian ex-

cluding the potential from the ith well. We test this upper bound on a set of 2450 random runs on

between 4 and 10 qubits, between 2 and 10 wells, with depths between -1.0 and -5.99 (arbitrary

units) and width 0. Our intuition is confirmed and we see that the relative error in the energy gap

for zeroth order TB at 17 evenly spaced s values is with high probability upper bounded by our
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proposed error estimate as shown in Fig. 7.3. We estimate the relative error as

[∑

i

|⟨ψi|H̄(i)|ψi⟩|2
]1/2

/γ̃(TB)

where

γ̃(TB) := E
(TB)
1 − E(TB)

0 −
√
2
[∑

i

|⟨ψi|H̄(i)|ψi⟩|2
]1/2

is the minimal possible gap within the absolute error estimates. Figure 7.4 shows the empirical

CDF from the data, further indicating that this is with high probability a good upper bound. In

particular problems, some of the points violating this upper bound can be eliminated as unstable

eigenvalues using a case by case choice of ϵ in the Fix-Heiberger algorithm as for these runs ϵ

was fixed at 0.1 in all cases.
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Figure 7.3: True error (tight-binding compared to direct diagonalization) versus error estimate
for eigenvalue gap in zeroth order TB for a set of 2450 random runs on between 4 and 10 qubits,
between 2 and 10 wells, with depths between -1.0 and -5.99 and width 0 at 17 evenly spaced
s values. If γ̃(TB) < 1 then tight-binding cannot distinguish between the ground state and first
excited state and the corresponding point is not plotted. Circles indicate s ∈ [0.15, 0.30], squares
s ∈ [0.15, 0.30], diamonds s ∈ [0.35, 0.70], and stars s ∈ [0.70, 0.95]. Note for the low s points
violating the upper bound estimate in the top right of the figure, with a different choice of ϵ the
Fix-Heiberger algorithm could eliminate these points as unstable eigenvalues.
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Figure 7.4: Error estimate minus true error estimated CDF for zeroth order TB for the 2450
random runs from Fig 7.3.

Finally note that the scaling of the zeroth order tight-binding algorithm is O(T (K2n6 +

K3)) where T is the number of s values for which the eigenspectrum is computed. The dominant

factor comes from computing the O(K2) matrix elements of the tight-binding Hamiltonian, each

of which requires diagonalizing a dimensionO(n2) square matrix. Our codes for the exact solvers

for K ≤ 3 and for tight-binding along with input files for all the examples next presented are

located on GitHub [158].

7.4 Examples and Applications

We now lay out a series of examples and possible applications aimed at revealing the power

(and limits) of these algorithms. Example 1 gives the application of unstructured search with a

prior guess, each represented as a single well. We solve this problem using both the exact two

well algorithm and the tight-binding algorithm for up to a fairly large (n = 70) number of qubits,

demonstrating both of their effectiveness. Example 2 draws attention to how the tight-binding

framework generates an effective graph (Hamiltonian) describing the problem, but it looks at this
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correspondence in reverse, by considering simulating an Ising model ground state adiabatically,

using tight-binding as a tool for mapping the two systems to one another. The particular example

presented has no practical implementation and serves merely as an interesting example of tight-

binding with multiple wells, but we suggest generalizations beyond the scope of this [chapter]

that could prove useful. Example 3 demonstrates the effectiveness of tight-binding for a large

number of wells (n = 10, K = 50). Finally, Example 4 highlights a situation where first order

tight-binding is needed.

Example 1: Unstructured Search with Priors

Unsurprisingly, as AQC is equivalent to the standard circuit model of quantum computation

with polynomial overhead [13] an AQC version of Grover’s algorithm for unstructured search

demonstrates an equivalent speedup [159]. The speedup requires having an optimized adiabatic

schedule where the adiabatic condition is obeyed locally, speeding up when the eigenvalue gap

between the ground state and first excited state is large and slowing down when the gap is small. If

one ran the adiabatic algorithm purely at the rate prescribed by the minimum gap, the cost would

be equivalent to classical unstructured search. Such an optimized schedule depends on having

knowledge of the gap structure at O(log(1/γ)) points throughout the evolution at a precision also

O(log(1/γ)) [160], which is potentially a challenge for general problems. Questions have also

been raised as to how robust this highly optimized evolution is to noise [161], although static

noise and time-dependent noise small relative to the gap can be handled [160].

Here we set aside these questions and the process of integrating over local gaps and sim-

ply investigate the minimum gap while searching for a single marked item as in Grover search
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but with a prior guess to the location of the marked item. If these estimates of the location of

the marked item are good, then we expect the eigenvalue gap to be correspondingly wider, thus

making it easier to find the marked item. This situation fits neatly into our model. We simply

start at s = 0 with a potential well representing our guess for the marked item and evolve to the

potential giving the marked state. In principle, this “guess” well could be tuned to have a func-

tional form such that the initial wave function corresponds to a particular probability distribution

corresponding precisely to our confidence in our initial guess. For simplicity, however, we shall

treat our guess simply as a constant potential Hamming ball of some radius. This setup is given

by the Hamiltonian

H(s) = (1− s)
[
− 1

n

∑

j

Xj + VpΘ
(
rp −

∑

j

X k̄Z̄jX
k̄
)]
− s|m⟩⟨m| (7.9)

where Vp < 0, rp is the depth and Hamming radius of the prior well p, respectively, and |m⟩ is

the marked item.

With a single bit string prior plus the marked item we can use the exact two well solver and

find exact solutions, so for our example we compare both this exact solution and the tight-binding

solution. For simplicity, we consider point-like wells (rp = 0) so we only have to worry about the

σ = 0 subspace and zeroth order tight-binding. Figure 7.5 shows how the eigenvalue gap scales

with distance of one such prior from the marked item. Both the exact (two well subspace) and

tight-binding solutions are shown, as further evidence of the accuracy of tight-binding for larger

numbers of qubits. We see from these results that if the prior is close to the true marked item we

do see an increase in the gap relative to standard Grover with no priors. However, if the prior is

far from the true marked item, the gap shrinks relative to Grover with no prior.
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We should expect that randomly guessing will not provide any advantage (i.e. the prior

must actually come from some prior knowledge about the problem). As shown in Figure 7.6

which plots the gap times the probability of randomly guessing a prior at the Hamming distance

R versus n that with random guessing we recover a O(2−n/2) scaling which we expect for un-

structured search.

Figure 7.5: Plot of eigenvalue gap versus distance from marked item for a single width 0, depth
-1 marked item for n=20 (circles), 30 (squares), 40 (diamonds), 50 (cross), 60 (five point star),
70 (triangle). Error bars overlaid on these points indicate the tight-binding results. Horizontal
dotted lines show the gap for no prior and the shaded region indicates the distances where the
prior offers an improvement in the gap over standard Grover.

20 30 40 50 60 70

n

10-25

10-20

10-15

10-10

10-5

G
a
p

 P
(R

)

Probability Scaled Gap vs. Number of Qubits

Figure 7.6: Plot of probability scaled minimum eigenvalue gap vs. number of qubits. The dashed
line demonstrates that we recover O(2−n/2) scaling if the priors are randomly guessed.

In Figure 7.7 we show a particular energy spectrum (n = 30, rp = 5), demonstrating
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Figure 7.7: Plot of a particular eigenvalue spectrum vs. s for the Grover with priors example.
Lines indicate exact eigenvalues whereas error bars give the lowest two energy levels as deter-
mined by tight-binding. We see that tight-binding does an excellent job at finding the minimum
gap in this problem with error bars on the order of the machine precision.

the size of the error bars in tight-binding as a function of s. We see that tight-binding does an

excellent job of identifying the minimum gap with small error (at s = 0.5). Also note from the

exact solution that a number of other energy eigenvalues are all clustered around this point (many

of which are highly degenerate). Such a feature could make these problems difficult for standard

power iteration type methods for finding principal eigenvalues.

The next natural cases to consider are prior probability distributions favoring multiple bit

strings and/or priors with rp > 0. However, we find that for this particular example tight-binding

is a relatively poor approximation due to strong overlaps, as indicated by our error estimate.

While these issues could be ameliorated by using deeper wells, to explore cases with multiple

wells or wells with rp > 0 we turn to other examples.

Example 2: Approximate Ground State of a System of Strongly Interacting Spins

A key feature of tight-binding is that it generates a greatly reduced effective graph (repre-

senting a Hamiltonian) with edge weights determined by the tunneling matrix elements between
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wells. One could imagine being given a real world Hamiltonian and then trying to identify these

key features and approximately modeling it with tight-binding. This is a hard problem, however,

so we leave this aside and work with a simpler example designed to demonstrate this key point.

In particular, we work in reverse: starting with a small collection of strongly interacting spins we

use the tight-binding framework to simulate the ground state of this Hamiltonian using the adia-

batic Hamiltonian with potential wells considered in this [chapter]. As an explicit case consider

an Ising model on L quantum spins of the form

HI = −
L∑

i<j

JijZiZj −
L∑

i=1

BiXi − α1 (7.10)

where the last term is simply a potential shift chosen to make the diagonal terms strictly negative.

If we can choose a collection of 2L wells on some set of n qubits with tight-binding Hamiltonian

H(TB)(s∗) and overlap matrix S(s∗) such that [S−1H(TB)](s∗) ≈ HI then by evolving adiabati-

cally from s to s∗ we can approximately sample the ground state of HI .

Such a framework may have practical applicability, although understanding the extent of

generality to a broad class of underlying Hamiltonians would require a thorough investigation

of which interactions can be modeled using potential wells on a hypercube lattice. Namely we

are limited to tunneling between wells, which enforces a fairly restrictive geometric dependence

on the various matrix elements of the tight-binding Hamiltonian. There is still a number of

available degrees of freedom, however, including the number of qubits in the host system, the

shape and structure of the tight-binding wells, and global potential terms that could assist in

tunneling between certain wells. Therefore, at least for certain problems, we conjecture that such

a procedure could be practically useful in two cases: (1) if one has a large number of qubits that
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can be evolved adiabatically but a limited set of available controls (namely individual control in

the computational basis but only a globalX term, as in the DWave machine [162]), it would allow

one to simulate more complicated interactions; (2) depending on how robust the tight-binding

framework is to noise in the underlying system of qubits this scheme could serve as a method for

fault-tolerant simulation on a large number of noisy qubits. The Davis-Kahan theorem suggests

that our framework is indeed robust to moderate noise [163]. We note that the Hamming ball

wells used here are not easily generated on current hardware as they require n-body interactions.

However, such potential wells are a simplification for ease of testing our code. One could make

K = 2L wells with an K-local potential using a degree 2K polynomial in the distances to each

of the desired wells.

Here we leave these more general questions open and raise them purely as a possible mo-

tivation for a particular example which demonstrates the effectiveness of tight-binding. For

simplicity assume that Bi ≪ Jij ∀ i, j, which means that S ≈ 1 and our mapping is simply

H(TB)(s∗) = HI for some s∗. Then consider a system of 3 spins with interactions Jij = 1∀ i, j

and Bi = 0.015∀ i (arbitrary units). Using α = 30 and s∗ = 0.95, this Hamiltonian can be

mapped to a tight-binding Hamiltonian of 8 hyperspherical wells (2 with s∗Vp = −33.5 and 6

with s∗Vp = −29.5, r = 0) on 10 qubits where we consider terms in the tight-binding Hamilto-

nian smaller thanO(10−5) as essentially zero. In Figure 7.8, we compare the exact (full diagonal-

ization) adiabatic ground state probability distribution at s∗ as determined via the tight-binding

mapping and the exact Ising model ground state probability distribution. The adiabatic proba-

bility is determined by the normalized probability of sampling within the well corresponding to

a given Ising model basis state. We see that the mapping is a good one: the adiabatic version

samples with probabilities within O(10−5) of the true probability.
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Figure 7.8: Comparison of exact adiabatically simulated ground state probability distribution to
exact true ground state for the 3 qubit Ising model with Jij = 1 ∀ i, j and Bi = 0.015∀ i. The
adiabatic Hamiltonian is constructed via a mapping between tight-binding with 8 wells and the 3
qubit Ising model Hamiltonian.

Example 3: Large Set of Wells

As a final test for a large set of wells, we compared exact diagonalization and tight-binding

for a set of 50 wells with depths between −1 and −1.13 with r = 0 on 10 qubits, as depicted

in Fig. 7.9. We found that tight-binding was effective in this case, however, the point in the

evolution in s where the wave function is tightly bound enough for the errors to be small enough

to identify the gap is later than in problems with fewer wells. This suggests that for large sets of

wells tight-binding is only useful at identifying the minimum gap when the minimum gap occurs

late in the evolution, as in the example here, where the gap is at s = 1. This brings attention to

one key limitation of tight-binding: it does not let us know if the minimum gap is prior to the

point in the schedule where the tight-binding errors decrease to the point that we can resolve the

gap. Figure 7.9 also depicts the results for tight-binding without the use of the Fix-Heiberger

algorithm. We see that due to numerical instability the eigenvalues diverge and Fix-Heiberger

allows us to be control this divergence and to automatically eliminate unstable eigenvalues with
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appropriate choice of ϵ.
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Figure 7.9: Plot of lowest two eigenvalues versus s for Example 3. We see at large s tight-binding
is effective, however, a large number of wells does require that the minimum gap occur at larger
s to capture it effectively with tight-binding. Lines indicate tight-binding without Fix-Heiberger
indicating its usefulness to automatically remove unstable eigenvalues.

Example 4: First Order Tight-binding

Problems involving wells with r > 0 possibly requires first order tight-binding in order to

capture internal structure of the wider wells and to check whether or not these states are relevant.

Such problems are not quite as easily automated as zeroth order tight-binding and tend to require

more fine tuning of the ϵ parameter in the Fix-Heiberger reduction algorithm, as well as compar-

ison between zeroth and first order solutions to correctly ascertain the appropriate gap. Here we

consider an example designed to demonstrate the need for first order tight-binding. In particular,

we consider two Hamming spherical potential wells

H(s) = −1− s
n

∑

j

Xj − s
∑

i∈{a,b}

ViΘ
(
ri −

∑

j

X īZ̄jX
ī
)

(7.11)
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s E1 (Exact) E1 (TB0) E1 (TB1)
0.20 -1.05367 -1.04988 -1.05350
0.30 -1.52649 -1.50398 -1.52649
0.40 -2.01448 -1.73993 -2.01448
0.50 -2.50802 -2.46024 -2.50802
0.60 -3.00427 -2.94545 -3.00427
0.70 -3.50206 -3.43262 -3.50206
0.80 -4.00080 -3.92102 -4.00080
0.90 -4.50018 -4.41022 -4.50018

Table 7.1: First excited state energies for Example 4. First order tight-binding is needed to get
the correct solution in this problem.

with Va = −5, Vb = −4.9, ra = 1, rb = 0, |ā| − |b̄| = 6, and n = 10. In this case, due to well a

being energetically favored for all s the full first excited state wave function is constructed using

the first excited state of well a. Zeroth order tight-binding doesn’t capture this behavior. This is

shown in Table 7.1. Note that in this calculation we did not use the first excited state of the width

0 well, as this state is unnecessary and not tightly bound and thus introduces avoidable error into

the approximation.

In most problems with Hamming symmetric wells, this is not an issue and even with wider

wells one can get the correct first excited state purely with zeroth order tight-binding, but it is

important to have these tools available to have a complete understanding of the energy spectrum.

7.5 Conclusion

We provide a set of algorithms for efficiently analyzing the performance of AQC for prob-

lems that can be expressed in terms of a set of individually Hamming symmetric wells. These

problems, while still highly symmetric, are more complex than the well studied Hamming sym-

metric example and should provide a new testbed for study of AQC. In particular, the tight-

binding approach for studying this model highlights the effects of tunneling, which must be the
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source of the quantum speedup if one is afforded by AQC with stoquastic Hamiltonians We also

provide several examples demonstrating the effectiveness of tight-binding as a tool for studying

this toy model.
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Chapter 8: Effective Gaps Are Not Effective: Quasipolynomial Classical Sim-

ulation of Obstructed Stoquastic Hamiltonians

8.1 Introduction

The power of adiabatic quantum computation (AQC) with stoquastic Hamiltonians (Sto-

qAQC), formally introduced in [164], remains difficult to understand. While we know AQC

with general Hamiltonians is universal [13], one might reasonably expect that stoquastic Hamil-

tonians – those that have a known representation with real, non-positive off-diagonal matrix

elements – are more efficiently classically simulable. In this work, we provide a classical,

quasipolynomially-efficient algorithm for sampling from eigenstates of k-local, stoquastic Hamil-

tonians which are otherwise widely believed to “obstruct” classical simulation algorithms [14, 18,

149, 165].

8.2 Background

AQC interpolates over a one-parameter family of HamiltoniansH(s) to produce a quantum

state close to the ground state ofH(sf ). The computational cost of this process is usually bounded

by an adiabatic theorem scaling inversely in the minimal eigenvalue gap γmin = mins γ (H(s))

between the two lowest eigenvalues γ(H(s)) = λ1(H(s))−λ0(H(s)) of H(s) [147, 148]. Thus,
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an efficient simulation algorithm must scale at most sub-exponentially with γ−1
min.

While most researchers do not expect StoqAQC to be capable of universal quantum com-

puting (as evidenced by i.e. [164, 166–169]), the primary techniques for simulating these pro-

cesses rely on Monte Carlo (MC) methods, and tend to focus on estimating certain properties of

thermal states. For a full simulation of a StoqAQC process, however, we would like to be able

to reproduce ground-state measurement statistics at zero temperature. When comparing AQC to

particular MC-based algorithms for this task, there exist a number of “obstructions” that do yield

exponential separations [14, 18, 149, 165]. In fact, results published shortly after the first ver-

sion of this manuscript exploit these obstructions to prove a superpolynomial oracle separation

between classical algorithms and StoqAQC with non-k-local, but sparse Hamiltonians [18].

Many classical methods are limited to classically sampling from a statistical distribution

proportionate to probability amplitudes of a quantum state ϕ, rather than probabilities of its mea-

surement outcomes. One can immediately see a fundamental obstruction to this approach in its

most abstract—the divergence between ∥ϕ∥1 and ∥ϕ∥2 can greatly impact sampling statistics.

For our purposes, let ϕ be the ground state of H(s) and let ϕ(i) ≡ ⟨i|ϕ⟩. Now, suppose that

there exists some m such that |ϕ(m)|2/∥ϕ∥22 = Ω(1/poly(n)), where n is the number of qubits.

An efficient quantum process capable of producing the state ϕ will take only O (poly(n)) mea-

surements of ϕ in the basis {|i⟩} ∋ |m⟩ to reliably return m. Alternatively, suppose one can

produce samples of a random variable X taking values in {i} with probability mass function

(PMF) Pr (X = i) = |ϕ(i)|/∥ϕ∥1. We have that |ϕ(m)|
∥ϕ∥1 = |ϕ(m)|

∥ϕ∥2
∥ϕ∥2
∥ϕ∥1 ≥ 2−n/2 |ϕ(m)|

∥ϕ∥2 . When this

inequality is nearly achieved, one requires exponentially many samples of X before one expects

to return m. (For an explicit example, see [149, Example 0].) Thus, even an efficient classi-

cal process for perfectly producing samples of X may be exponentially slower than its quantum
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counterpart. Even in an idealized case, it seems one might require a classical process capable

of directly sampling from the PMF Pr (X = i) = |ϕ(i)|2/∥ϕ∥2, which can be rather difficult to

obtain.

8.3 Approach

Current examples of k-local Hamiltonians where the inequality above is nearly achieved

for the ground state of H(s) rely on symmetries maintained by H(s), constraining adiabatic

dynamics to a polynomially-sized effective subspaces [150–154, 170]. This raises a natural ques-

tion: is it possible to efficiently classically reproduce the quantum statistics of the ground state

of H(s) without knowing its (near) symmetries a priori? In this [chapter], we answer in the

affirmative, thereby providing an algorithm capable of simulating eigenstates previously deemed

“obstructed” [14, 149, 165, 170].

In particular, we consider symmetries such that the ground state ϕ of H(s) is preserved

under permutations π of computational basis states {|i⟩}, such that |ϕ(m)| = |ϕ(π(m))| for all

m ∈ {i}. As elaborated later, this set of symmetries can be formally described by the automor-

phism group of an appropriate graph. For simplicity, in this [chapter], we restrict attention to

symmetries generated by terms with the same number of interacting qubits. This includes all k-

local obstructions previously discovered, but more general constructions are possible.1 Here, we

introduce a classical algorithm that discovers and leverages such symmetries in quasi-polynomial

time. The algorithm is upper bounded in its complexity by the greater of graph isomorphism (GI)

on graphs with poly(n) vertices and poly(|S|), where S is an irreducible set of equivalence classes

between computational basis states. Since GI is solvable in quasi-polynomial time [171, 172],
1See [Appendix F] for further discussion.
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our algorithm scales quasi-polynomially in n whenever |S| is quasi-polynomial in n. This rules

out exponential separations between AQC and classical algorithms for k-local, stoquastic Hamil-

tonians with large automorphism groups.

Our graph constructions are general, however our restriction to stoquastic Hamiltonians

simplifies our study of symmetries. The Perron-Frobenius theorem guarantees that the ground

state ϕ of a stoquastic Hamiltonian can be written with all non-negative amplitudes in the com-

putational basis (e.g. [173]).2 Automorphisms π can be expressed as tensor products of Pauli-X

operators, and the non-negativity of the ground state means that we can ignore sign changes and

only study the case that ϕ(m) = ϕ(π(m)). (Note that there exists a bitstring b ∈ {0, 1}n such

that
⊗

iX
bi |m⟩ = |l⟩ for all l,m ∈ {0, 1}n.) That is, the lack of sign change means that we do

not need to consider the possibility of first conjugating H(s) by unitaries that map X terms to Y

terms and vice versa. Although we exploit this simplification, we anticipate these constructions

can be generalized to study properties of general k-local Hamiltonians.

8.4 Algebraic Graph Theory

The primary contribution of this [chapter] is the formal construction of bijective mappings

from H to a pair of graphs, which allows us to reduce the problem of simulation to that of GI.

The two mappings are bijective, in the sense that the Hamiltonian can be recovered from each

graph. The first, H 7→ Γ, takes H to an exponentially-sized, undirected graph Γ with spectral

properties consistent with H itself. The second, H 7→ G, maps H to a vertex-colored, directed

graph G = (VG, EG) which incorporates all relevant automorphisms of Γ. In a sense, the latter

2Actually, discrete nodal domain theorems are generally more useful here, but they too depend upon Perron-
Frobenius theorem [174].
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is the compact, graph representation of Γ in the same way that H , written in terms of Pauli

matrices, is the compact representation of H as a matrix. G can be used to efficiently reconstruct

and determine equivalent vertices of Γ via GI and, thus, determine the effective subspace of H .

We first construct Γ, then present the algorithm in detail in which we treat the construction of G

as a black box. Then, we explicitly provide a construction ofG. We refer the reader to [Appendix

F] for a complete, minimal example.

8.5 Mapping I: H to Γ

We consider the weighted graph representation, Γ = (VΓ, EΓ, wΓ), of a stoquastic Hamil-

tonian where VΓ =
{
Xb =

⊗
iX

bi
}
b∈{0,1}n ∪ {∞} [175]. That is, we label each vertex usually

associated with computational basis state |b⟩ by Xb, as Xb|r⟩ = |b ⊕ r⟩ for any r ∈ {0, 1}n,

and we seek an r-independent construction. (We also define Yb =
⊗

i Y
bi and Zb =

⊗
i Z

bi .)

We assume that we are presented with a k-local stoquastic Hamiltonian H ∈ R|V ∗
Γ |×|V ∗

Γ |, where

V ∗
Γ = VΓ \ {∞}. Specifically,

H = −
∑

∥b∥H≤k

αbXb −
∑

∥b∥H≤k
∥b∥H∈2Z

βbYb +
∑

∥b∥H≤k

κbZb, (8.1)

where ∥b∥H is the Hamming weight of the bit string b and |βb| ≤ αb ∀ b.3 FromH , we identify the

set of edge generatorsK = {Xb | αb ̸= 0}. LetHX =
∑

∥b∥H≤k αbXb andHY =
∑

∥b∥H≤k
∥b∥H∈2Z

βbYb.

3 For simplicity and to avoid too much notation, we consider only Hamiltonians that can be written as these
combinations. However our construction will generalize to situations with mixed terms (i.e. XY Y ), by introducing
a new gadget that connects together an X- and Y Y -gadget.
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Now,

⟨b′|(HX +HY )Xb|b′⟩ = αb + i−∥b∥Hβb⟨b′|Zb|b′⟩

= αb + i−∥b∥H (−1)b·b′βb

= αb + i2b·b
′−∥b∥Hβb. (8.2)

We let w(u, v) = w(v, u) and define edge weights,

w (Xb′ , v) =





αb + i2b·b
′−∥b∥Hβb if v = Xb′⊕b

∑

∥b∥H≤k

(−1)b·b′κb v =∞,
(8.3)

and edges EΓ = {{u, v} | w(u, v) ̸= 0}. The eigenvectors of H satisfy

(w(u,∞)− λi)ϕi(u) =
∑

v∈V ∗
Γ

w(u, v)ϕi(v), (8.4)

where u ∈ V ∗
Γ , ϕ(∞) = 0, and (ϕi, λi) is the ith eigenvector-eigenvalue pair. In order to identify

symmetric subspaces of H , we consider identifying all vertices of Γ that are equivalent under

an edge-weight preserving automorphism f : VΓ −→ VΓ of Γ. We call the set of all such

automorphisms Aut(Γ). Now, we sum over equivalence classes JuK = {f(u)}f∈Aut(Γ):

∑

u′∈JuK

(w(u′,∞)− λi)ϕi(u′) =
∑

u′∈JuK

∑

v

w(u′, v)ϕi(v),
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or

(w(u,∞)− λi)ϕi(u) =
∑

JvK

ωuJvKϕi(v), (8.5)

where ωuJvK =
∑

v∈JvKw(u, v).

This defines our effective Hamiltonian H ′ : JV ∗
Γ K× JV ∗

Γ K −→ R+ on the space of effective

vertices JV ∗
Γ K = {JuK}u∈V ∗

Γ
:

H ′(JuK, JvK) =





w(u,∞) if JuK = JvK

−ωuJvK otherwise.

(8.6)

Note that ωvJuK ̸= ωuJvK, but rather |JvK|ωvJuK = |JuK|ωuJvK. By Eq. (8.5), the right eigenvector

of H ′ corresponding to eigenvalue λ0 is proportional to the eigenvector of H corresponding to

eigenvalue λ0.

8.6 The Algorithm

Assume that we can map our Hamiltonian to a graph Γ as described above. Our goal is to

find an effective graph Γ′ with vertex set JV ∗
Γ K∪ {∞}, whose ground state corresponds to that of

Γ.

For clarity, we break the classical algorithm into two parts: (1) FINDEFFECTIVEVER-

TICES, which recursively searches Γ to return V ′ such that u ∈ V ′ ⇐⇒ V ′ ∩ JuK = {u}; and

(2) FINDEFFECTIVEGRAPH, which takes as input V ′ and returns Γ′. Both routines assume the

existence of an ancillary algorithm FINDREPRESENTATIVE(u, V ′) = v ∈ V ′ ∩ JuK, whose exis-

tence we will later justify. For now, we treat it as an oracle with runtime quasi-polynomial in n,
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O (|V ′|QP(n)), where QP(n) matches the runtime of the best-known GI algorithm [171, 172].

Algorithm 1 Find Effective Vertices
1: function FINDEFFECTIVEVERTICES(u, V ′)
2: if u = ∅ then
3: u← RANDOM(V ∗

Γ )
4: Add u to V ′

5: end if
6: for v ∈ N(u) do
7: if FINDREPRESENTATIVE(v, V ′) = ∅ then
8: Add v to V ′

9: V ′ ← FINDEFFECTIVEVERTICES(v, V ′)
10: end if
11: end for
12: return V ′

13: end function

Algorithm 1 returns a set of vertices such that each vertex is distinct and the entire routine,

including the FINDREPRESENTATIVE subroutine, takes time O (∆(Γ)|V ′|2QP(n)) where ∆(Γ)

is the maximum degree of Γ. Since V ′ includes precisely one representative of each equivalence

class in the connected component of Γ, the following routine generates the effective graph Γ′.

Algorithm 2 Find Effective Graph
1: function FINDEFFECTIVEGRAPH(Γ)
2: V ′ ← FINDEFFECTIVEVERTICES(∅)
3: Ωuv ← 0 for all u, v ∈ V ′

4: for u ∈ V ′ do
5: for v ∈ N(u) do
6: v ← FINDREPRESENTATIVE(v, V ′)
7: Ωuv ← Ωuv + w(u, v)
8: end for
9: end for

10: return (V ′,Ω)
11: end function

The primary loop of FINDEFFECTIVEGRAPH (Line 4) takes time O (∆(Γ)|V ′|2QP(n)),

and therefore the total time to obtain the effective graph is also O (∆(Γ)|V ′|2QP(n)).
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We can now obtain H ′ and sample from its eigenstates. For u, v ∈ V ′, Ωuv = ωuJvK =

∑
v0∈JvKw(u, v0). Thus, Eq. (8.6) is well-defined and the operator H ′ known, even if each entire

equivalence class JuK is not.

We know that existing methods, such as the power iteration method, can produce the ground

state ϕ′ ofH ′ with error ϵ in timeO (log(ϵ−1)/ log(λ1/λ0)). Therefore, we can sample the ground

state of the full Hamiltonian H in time O
(
log(ϵ−1)/ log(λ1/λ0) + ∆(Γ)|V ′|2QP(n)

)
.

We note that we cannot simply normalize ϕ′ and expect to obtain appropriate statistics;

rather, each u ∈ V ′ ∩ JuK represents a sample of the class itself. Thus, we need to sample

JuK with probability |JuK|ϕ(u)2, where ϕ is the appropriately normalized ground state of H . By

Eq. (8.5),H ′ has a ground state ϕ′ that preserves relative amplitudes ϕ(u)
ϕ(v)

= ϕ′(u)
ϕ′(v)

for all u, v ∈ V ′.

Now, we use ϕ′ and |JuK| to sample u ∈ JuK ∩ V ′ with probabilities according to ϕ,

Pr (JuK) = |JuK|ϕ(u)2 = |JuK|ϕ′(JuK)2∑
v∈V ′ |JvK|ϕ′(JvK)2

. (8.7)

Note that for ωvJuK ̸= 0, |JvK|
|JuK| =

ωuJvK
ωvJuK

. Therefore,

|JuK|∑
v∈V ′|JvK|

=


∑

v∈V ′

∏

e∈P (u,v)

ωe0Je1K

ωe1Je0K




−1

, (8.8)

where P (u, v) ⊆ EG′ is any directed path connecting u, v ∈ V ′. Up to a factor constant for all

u, v, Eq. (8.8) determines |JuK| and, thus, fully determines Eq. (8.7).

Repeating this process initializes a new seed in Algorithm 1 Line 3, and we return each

member of JuK with equal probability. Furthermore, the random seed guarantees that a sample

from a connected set of vertices VC of Γ is returned with probability |VC |/|VΓ|, as expected.
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8.7 Mapping II: H to G

Now, we explicitly give an implementation of FINDREPRESENTATIVE. It is helpful to keep

in mind that while this construction is unavoidably definition-heavy, the construction naturally

reduces our problem to GI. In fact, our approach is somewhat similar to Luks’ reduction of graph

automorphism to GI [176] or Crawford’s formalism of symmetries in clausal theories [177],

applied to the study of Aut(Γ). Inspired by the latter, we build what we abusively call a clausal

theory graph G and our goal is to define an invertible map M such that M(Γ) = M0[VΓ] ∪

M1[EΓ] = G. We do so by introducing gadgets, smaller graphs that allow us to separately map

each v ∈ VΓ and e ∈ EΓ to specific vertex-colored, directed graphs. The union of these gadgets

forms G. We will introduce a number of different types of vertices, where each type is assigned a

unique color represented by a superscript (E.g. ℓ(a)). In the following {a, b, c, d } represent fixed,

unique colors and {xb, yb, zb} represent a distinct set of variable colors which are assigned based

on the particular Hamiltonian. Two vertices are identical only if they both have the same color

and label. Furthermore, for simplicity, we will abusively write {u, v} for an undirected edge and

(u, v) for a directed edge. (Thus, {u, v} ∈ E can be read as {(u, v), (v, u)} ⊂ E.)

First, we define a set of literals L =
{
Z

(a)
i

}n−1

i=0
and their negations −L =

{
−Z(a)

i

}n−1

i=0
,

where i = (δij)
n−1
j=0 . We label each vertexXb ∈ V ∗

Γ by a set of literalsA(Xb)
(b) =

{
(−1)biZ(a)

i

}n−1

i=0
.

We call A(Xb)
(b) an assignment. Each Xb corresponds to a gadget, the vertex-colored star graph

M0(Xb) with edge set EM0(Xb) =
{{
ℓ(a), A(Xb)

(b)
}}

ℓ(a)∈A(Xb)(b) . Furthermore, M0 : VΓ −→

[L ∪ −L] ∪
{
A(Xb))

(b)
}
b∈{0,1}n is bijective and hence invertible. Thus, M−1

0 (M0(Xb)) = Xb.

For each edge generator Xb ∈ K, we construct the graph G1(b) specified by edge set

EG1(b) =
⋃
bi ̸=0

{
{Z(a)

i , X
(xb)
b }, {X

(xb)
b ,−Z(a)

i }
}

. Here, xb = αb (i.e. we assign these vertices
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a color based on the corresponding coefficient in the Hamiltonian) and we name such vertices

generator vertices.

Each G1(b) only captures weights αb corresponding to edges generated by Xb ∈ K. We

still require gadgets that incorporate βb, so that we can extract edge weights consistent with

Eq. (8.3) from G. Define

Ub =

{{
(−1)b′iZ(a)

i

}(c)

bi ̸=0
|i2b·b′−∥b∥Hβb < 0

}

b′∈{0,1}n
. (8.9)

Note that when βb = 0, Ub = ∅.

To specify the gadget, we construct the directed vertex-colored graphG2(b) =
⋃
u
(c)
b ∈Ub

g(u
(c)
b ),

where each g(u(c)b ) is the star graph with edge set

E
g(u

(c)
b )

=
{
(ℓ(a), u

(c)
b ), (u

(c)
b ,−ℓ(a)), {u

(c)
b , Y

(yb)
b }

}
ℓ(a)∈u(c)

b

.

We name the u(c)b s and the Y (yb)
b s weight generator and weight generator cluster vertices, respec-

tively. Here, yb = maxb′ αb′ + |βb| is the color representing the cluster that allows us to extract

edge weights of Γ.

Finally, we build a graph from the term
∑

∥b∥H≤k κbZb, where it helps to write κbZb =

|κb|Cb. We call each Cb a clause, and we identify the set of assignments that “satisfy” the clause.

For a choice of b,

Cb =

{{
(−1)b′iZ(a)

i

}(d )

bi ̸=0
|(−1)b·b′ = sign(κb)

}

b′∈{0,1}n
. (8.10)
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Hamiltonian
Term

Gadget
Name

Gadget Implementation

Xb =⊗
iX

bi
G1(b)

⋃

bi=1

(
Z~i −Z~iXb

)

Yb =⊗
i Y

bi ,
∥b∥H ∈ 2Z

G2(b) ⋃

ub∈Ub

⋃

ℓ∈ub




` −`ub

Yb



Zb =⊗
i Z

bi
G3(b)

⋃

c∈Cb

⋃

ℓ∈c

(
` Zbc

)

Γ Vertex
label
Xb M0(Xb)

⋃

ℓ∈A(Xb)

(
` A(Xb)

)

Table 8.1: Gadgets summary. Vertex labels are as defined in the text (See Eqs. (8.9) and (8.10)).
Superscripts are dropped and represented with a unique color/shape.

As H is k-local, |Cb| = 2|b|−1 ≤ 2k−1. Now, we construct the edge set

EG3(b) =
{{

c(d ), Z
(zb)
b

}
∪
{
c(d ), ℓ(a)

}
ℓ(a)∈c(d )

}
c(d )∈Cb

.

We name c(d )’s andZ(zb)
b ’s clause and clause cluster vertices, respectively. Here, zb = maxb′ αb′+

maxb′ |βb′| + |κb| is the color representing the cluster of satisfying assignments, which allows us

to extract edge weights of Γ. These gadgets are summarized in Table 8.1.4

Given these constructions we define the direct mapping G = M(Γ) = M0[VΓ] ∪M1[EΓ]

as follows:

1. M0(u ∈ VΓ) as defined above,

2. M1({u,Xbu} ∈ EΓ) = G1(b) ∪G2(b), and

3. M1({u,∞} ∈ EΓ) =
⋃
κb ̸=0G3(b).

4As previously mentioned, for full generality one must consider composite gadgets for Hamiltonians with mixed
terms (i.e. XYY or XYZ). See [Appendix F] for details.
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Note that M1[EΓ] contains all relevant information about Aut(Γ) and, thus, we can study G′ =

M1[EΓ] ∪ (L ∪ ¬L, ∅). Note that when Γ is connected, G′ = M1[EΓ]. Importantly, by construc-

tion, |VG′| = O (poly(n)). M also has the following useful property.

Theorem 8.7.1. The function M : Γ 7→ G is bijective.

Theorem 8.7.1 is true by construction, but we include proof in [Appendix F] for complete-

ness. Now, we define G(u) =M0(u) ∪M1[EΓ] and can state the following theorem.

Theorem 8.7.2. There exists a color-preserving isomorphism G(u) ≃ G(v) if and only if u ≡ v.

Theorem 8.7.2 is also true by construction, and explicit proof can be found in [Appendix

F]. By exploiting the k-local structure of the Hamiltonian in the form of a compact G, we are

able to reduce our problem from deciding whether f ∈ AutΓ for an exponentially-sized graph Γ

to deciding isomorphism G(u) ≃ G(f(u)) of polynomially-sized graphs G(u), G(f(u)).

Armed with this construction and the above theorems we can give the algorithm for FIND-

REPRESENTATIVE.

Algorithm 3 Check equivalent vertices

1: function FINDREPRESENTATIVE(u, V ′)
2: G← G(u)
3: for v ∈ V ′ do
4: G′ ← G(v)
5: if G ≃ G′ then return v
6: end if
7: end for
8: return ∅
9: end function

We note that G(u) can be constructed in time O (poly(n)) and that color-preserving GI

on bipartite, directed graphs is GI-complete [178]. Additionally, Algorithm 3 with stoquastic

k-local Hamiltonians is GI-complete. To see this, for any two graphs S, S ′, label vertices such
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that VS ∩ VS′ = ∅ and let H =
∑

{i,j}∈ES
ZiZj +

∑
{i,j}∈ES′ ZiZj . Then, G

(
X⊕

i∈VS
i

)
≃

G
(
X⊕

i∈VS′ i

)
iff S ≃ S ′. In the other direction, Algorithm 3 uses GI as a subroutine. The best

known algorithm for GI takes time QP(n) = 2O(log(n)
O(1)) [171, 172], and therefore the entire

routine takes O (|V ′|QP(n)).

8.8 Discussion

Our results can be extended to near-symmetries via a straightforward application of the

Davis-Kahan sinΘ theorem [179, 180]. In particular, let H,∆ be Hamiltonians where H has

ground state density matrix ρ and H + ∆ has ground state density matrix ρ∆ from which we

would like to sample. Then,

√
1− F (ρ, ρ∆) ≤

π

2

∥(I − ρ∆)∆ρ∥F
λ1(H)− λ0(H +∆)

≤ π

2
tan2Φ

where F (ρ, ρ∆) = ∥ρρ∆∥2F is the fidelity, tan2Φ = |⟨∆⟩ρ|
γ(H)−⟨∆⟩ρ , and γ(H) is the eigenvalue gap of

H . Thus, F (ρ, ρ∆) ≥ 1− π2

4
tan4Φ.

If one has any procedure for producing a guess ρ, one can later check that ⟨∆⟩ρ is small

enough to guarantee ∥ρ− ρ∆∥ ≤ ϵ. As a limited example, suppose one perturbs each αb, βb, κb

in H by at most δ. Then, ∥∆∥F ≤ δ∥H∥F . Therefore, provided that δ ≤ ϵ γ
∥H∥F

, tan2Φ ≤

ϵ
1−ϵ . Hence, we can achieve arbitrary precision ϵ while perturbing each of αb, βb, κb by δ =

O (ϵγ/∥H∥F ), where we have assumed γ/∥H∥F = Ω
(
poly−1n

)
throughout.

Alternatively, an approximate GI algorithm [181] might suffice to implement FINDREPRE-

SENTATIVE; more general approximation algorithms are left for future work.
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8.9 Conclusion

Our algorithm rules out the existence of an exponential separation between classical algo-

rithms and StoqAQC using Hamiltonians with effective subspaces with size |V ′| scaling subex-

ponentially in n, a class containing all previously known k-local obstructions [14, 149, 165].

Beyond these symmetric and approximately symmetric problems, whether all k-local sto-

quastic Hamiltonians are quasi-polynomially simulable remains an open question. We conjecture

that families of Hamiltonians that lack near-symmetries typically have exponentially small gaps,

suggesting that they are difficult for AQC.5 This conjecture is largely motivated by the fact that

avoiding exponentially small gaps requires pathologically smooth transitions, as explained in

[Appendix F].6 Proving this, combined with our results here and a better understanding of those

near-symmetries that we can efficiently approximate, would reduce understanding the simulabil-

ity of StoqAQC to better understanding the significance of the gap in both classical and quantum

cases.

5A large spectral gap is not necessary for successful AQC. It is not too difficult to construct examples where Sto-
qAQC succeeds despite a small gap, though they often appear pathological and one might expect classical methods
to be similarly successful.

6As noted in the [Appendix F], this result is similar to, but in terms of gap-analysis, stronger than that in [182]
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Chapter 9: Simultaneous Stoquasticity

9.1 Introduction

The efficient simulation of quantum phenomena is essential to understanding chemistry,

materials, and physics, and similarly the lack of efficient classical simulation is critical to the

long-term applicability of quantum computing. One of the key properties that can make a Hamil-

tonian easy to simulate classically is stoquasticity [145], a basis dependent property where the

off-diagonal matrix elements are real and non-positive.1. Such stoquastic Hamiltonians do not

suffer from the sign problem allowing classical simulation of their ground state properties via

Monte Carlo techniques [183, 184]

Stoquastic Hamiltonians have been especially important in the development of quantum

annealing [185] and quantum adiabatic computation [146]. Adiabatic quantum computing is

quantum universal [13], but the proof relies on non-stoquastic Hamiltonians. There is growing

evidence that adiabatic computing with stoquastic Hamiltonians is no more powerful than classi-

cal computing [184, 186–189] except in contrived highly non-local settings [18]. In complexity

theory, stoquastic Hamiltonians appear in the definition of the complexity class StoqMA, which

characterizes the computational hardness of the local Hamiltonian problem for stoquastic Hamil-

tonians [190].
1In the mathematics literature, such matrices are called Z-matrices or negative Metzler matrices.
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A large body of literature has been built up around the problem of finding stoquastic

[191, 192] or nearly stoquastic [193, 194] bases for Hamiltonians. The corresponding unitary

basis change is said to “cure” the non-stoquastic Hamiltonian. While the existence of such a

basis is guaranteed by the diagonalizability of Hermitian matrices (the locality of such a basis is

not guaranteed), finding such a basis change is an NP-hard problem [195–197]. However, this

literature has mostly focused on just curing a single Hamiltonian’s sign problem. In order to run

simulated quantum annealing [15, 187] or otherwise simulate the behavior of adiabatic compu-

tation, both annealing Hamiltonians must be stoquastic. This raises the question not just of how

to find a basis in which two Hamiltonians are simultaneously stoquastic but further whether such

a basis even exists. Our work along this direction is complementary to the results in Ref. [196]

where the authors consider the problem of stoquasticizing a local Hamiltonian consisting of a

sum of local terms and showed that this Hamiltonian can be stoquasticized if and only if all terms

can be simultaneously stoquasticized. Furthermore, they showed that it is NP-hard to find a basis

that accomplishes this.

To formally state our problem of interest: let Stoq be the set of all stoquastic matrices.

Given a set of Hamiltonians S = {H1, H2, · · ·Hm} defined on a d-dimensional Hilbert spaceHd,

does there exist a single unitary U that simultaneously cures the non-stoquasticity of (“stoquasti-

cizes”) all Hj ∈ S; that is, ∃ U such that UHjU
† ∈ Stoq for all j?

Using the mathematical theory of simultaneous unitary similarities [198–201], we find

that the problem reduces to determining if there exists a solution to a system of polynomial

(in)equalities. For m > 2 and/or d > 2, the resulting system of polynomial equations does

not generically have a solution, and therefore a simultaneously stoquasticizing unitary does not

always exist. In fact, we show almost every set S of Hamiltonians is not simultaneously stoquas-
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tizable. By considering a generalized Bloch vector representation, we can geometrically interpret

our results, connecting to the literature on the geometry of quantum states [202–207].

This result has broad implications for adiabatic quantum computing, where annealing be-

tween two Hamiltonians that are not simultaneously stoquasticizable should be hard to simulate

classically, independent of basis. The more general theory of simultaneous transformation of

two or more Hermitian operators plays a key role in other areas of quantum physics, the most

obvious being simultaneous diagonalizability governing the commutativity and compatability of

observables. Similarly simultaneous unitary congruence has been used to show that quantum

seperability is connected to the simultaneous hollowability of matrices [208], and simultaneous

orthogonal equivalence connects to local unitary equivalence of a pair of quantum states [209].

9.2 Lie Algebras and Lie Groups

Formally, any Hamiltonian H ∈ Cd×d is (up to a physically irrelevant shift by a multiple

of identity) an element of the Lie algebra su(d). Here, we take the usual physicist convention

that su(d) consists of the set of all d × d traceless, Hermitian matrices. This is known as the

fundamental representation. The Lie algebra su(d) has real dimension d2 − 1 and, therefore, any

element of the Lie algebra may be expanded in a basis of d2 − 1 elements of the algebra, which

we choose to obey the standard orthonormality condition

Tr(λ̂iλ̂j) = 2δij. (9.1)
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We also have that

λ̂iλ̂j =
2

d
δijI + ifijkλ̂k + dijkλ̂k, (9.2)

where I is the identity matrix and fijk and dijk are the totally anti-symmetric and symmetric

structure constants, respectively. We use the convention of summing over repeated indices. A

standard choice of basis is the generalized Gell-Mann basis. It is made up of d(d−1)/2 symmetric

matrices,

λ̂
(x)
jk = |j⟩⟨k|+ |k⟩⟨j|, (1 ≤ j < k ≤ d), (9.3a)

d(d− 1)/2 skew-symmetric matrices,

λ̂
(y)
jk = −i|j⟩⟨k|+ i|k⟩⟨j|, (1 ≤ j < k ≤ d), (9.3b)

and d− 1 diagonal matrices,

λ̂
(diag)
j =

√
2

j(j + 1)
diag(1, · · · , 1︸ ︷︷ ︸

j

,−j, 0, · · · , 0), (9.3c)

where in this final equation we have j ∈ {1, · · · , d − 1}. For su(2), the generators defined in

this way are the familiar Pauli operators, which motivates the x, y superscipts for the symmetric

and skew-symmetric generalized Gell-Mann matrices, respectively. For su(3), they are the Gell-

Mann matrices.
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We can write any traceless Hamiltonian H in this basis as

H = b · λ̂, (9.4)

where λ̂ is a vector of basis elements and b ∈ Rd2−1 is the so-called (generalized) Bloch vec-

tor corresponding to H . We consider grouping the components of λ̂ into subsets matching the

basis elements defined in Eqs. (9.3a)-(9.3c) as follows: let X , Y and D be the sets of indices

corresponding to the symmetric, skew-symmetric, and diagonal generalized Gell-Mann matrices,

respectively. We have {X ,Y ,D} = {1, · · · , d2 − 1}.

Therefore, there exists an isomorphism S ∼= B between a set S = {H1, H2, · · · , Hm} of

traceless Hamiltonians and a set of corresponding Bloch vectorsB = {b(1), b(2), · · · b(m)}. These

Bloch vectors will simplify a number of proofs and provide a valuable geometric interpretation

of our results.

9.3 Simultaneous stoquasticity

Given the set S = {H1, H2, · · · , Hm} we want to solve the decision problem: Does there

exist a unitaryU such thatH ′
j = UHjU

† ∈ Stoq for allH ′
j ∈ S ′ := {UH1U

†, UH2U
†, · · · , UHmU

†}?

Observe that the choice of trace of the Hamiltonians and of the Hermitian generators of U

can be chosen to be zero with no physical consequence. Therefore, without loss of generality, we

restrict our consideration to traceless Hj ∈ S and to special unitaries U ∈ SU(d).

This assumption allows us to directly describe the problem in terms of Bloch vectors as

detailed in the previous section. In particular, consider the sets of Bloch vectors B ∼= S and

B′ ∼= S ′. In the space of Bloch vectors Stoq corresponds to the subset of Bloch vectors such
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Figure 9.1: For a qubit, the geometric representation of Stoq in Bloch vector space is the
±σ̂(z),−σ̂(x) half-plane. Observe that for two Hamiltonians H1, H2, represented by their Bloch
vectors, there always exists a unitary which can simultaneously take both H ′

1, H
′
2 to the Stoq

subspace.

that bj = 0 for j ∈ Y and bj ≤ 0 for j ∈ X . The decision problem is now that of finding whether

there exists a unitary U such that the vectors b′ ∈ B′ all fall in this subspace.

When d = 2, the Bloch space is of dimension d2 − 1 = 3 and Stoq is easily visualizable

as the±σ̂(z),−σ̂(x) half-plane, as depicted in Fig. 9.1. In this case, it is well-known that SU(2) is

a double-cover of SO(3), and therefore we can visualize the action of unitaries on S as rotations

of the collection of vectors B. It is simple to observe that the answer to our decision problem is

yes if and only if the vectors B all lie in a single half-plane. This plane can then be rotated via

some unitary to align with the Stoq half-plane. This is always possible if m ≤ 2 and d = 2.

We seek to generalize and formalize this geometric intuition for d > 2. We will make use

of the mathematical theory of simultaneous unitary similarities [198–200, 210] and the related

theory of simultaneous invariants [211]. Two ordered sets of m matrices S, S ′ are simultaneously

unitarily similar if there exists a unitary U such that H ′
j = UHjU

† for all Hj ∈ S, H ′
j ∈ S ′. In

this terminology our goal is to determine if the set S of Hamiltonians is simultaneously unitarily

similar to a set S ′ ∈ Stoq.
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Define a word on a set T as any formal product of nonnegative powers of the elements

tj ∈ T . We then have the following theorem due to Ref. [200].

Theorem 9.3.1. The ordered sets of Hermitian matrices S = {H1, · · · , Hm} and S ′ = {H ′
1, · · · , H ′

m}

are simultaneously unitarily similar if and only if Tr[w(S)] = Tr[w(S ′)] for all words w in S, S ′.

The quantities Tr[w(S)] are known as trace invariants under simultaneous unitary similar-

ity. Unfortunately, Theorem 9.3.1 is a practically useless condition since it requires the checking

of all words in S and S ′. To get around this issue, one must demonstrate that only a finite set of

independent words exist [210, 212–214].

When checking the unitary similarity of a single pair of Hermitian matrices H,H ′, it is of-

ten quoted in the physics literature (typically in the context of density matrices) that it is sufficient

to check the equivalence of the trace invariants Tr[Hk] and Tr[H ′k] for k ∈ [1, d] [203, 215–217].

While perhaps intuitively obvious—as Hermitian matrices have d real eigenvalues—this is typi-

cally stated without proof. For completeness, we give such a proof in the Appendix.

More generally, for m ≥ 2, we can show that it is sufficient to consider word lengths up to

ℓmax = min





⌈ (cd)2+2
3
⌉

cd
√

2(cd)2

cd−1
+ 1

4
+ cd

2
− 2.

(9.5)

where c is the minimum integer such that (c2−3c+2)/2 ≥ m. For instance, ifm = 2, c = 4. The

proof mostly follows Refs. [200, 212, 213], and the derivation of this expression is demonstrated

in the Appendix.

Therefore, the decision problem of whether there exists a unitary that simultaneously sto-

quasticizes S is equivalent to determining if there exists a solution to the system of polynomial
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(in)equalities in the matrix elements of H ′ ∈ S ′:

Tr[w(S)] = Tr[w(S ′)], ∀ |w| ≤ ℓmax (9.6a)

Re(H ′
jk) ≤ 0, ∀j ̸= k,H ′ ∈ S ′ (9.6b)

Im(H ′
jk) = 0, ∀j ̸= k,H ′ ∈ S ′. (9.6c)

This amounts to a system of
∑ℓmax

ℓ=2 m
ℓ+md(d− 1)/2 ∼ mO((cd)3/2) polynomial equations

andmd(d−1)/2 inequality constraints onmd2 real variables. Many of the equations for different

words in Eq. (9.6a) will end up being redundant due to symmetries such as the cyclicity of the

trace and algebraic dependence of the resulting trace invariants. Independent of if one can identify

the minimal set of such constraints, solving the decision problem of whether or not a solution

exists to this set of polynomial (in)equalitites is NP-hard and lies in PSPACE [218]. Therefore,

identifying if S is simultaneously stoquasticizable is completely intractable for large problem

instances.

9.4 A No-go Result

Given this computational difficulty, we also present the following no-go result.

Theorem 9.4.1. A necessary condition for S to be simultaneously stoquasticizable is that for ev-

ery eigenvalue λ ̸= 0 of i[Hi, Hj] there is another eigenvalue −λ of i[Hi, Hj] (paired eigenvalue

condition) for all Hi ̸= Hj ∈ S.

Proof. Any two matricesH ′
i, H

′
j ∈ Stoq have all real matrix elements. Therefore, the Hermitian

matrix C ′ = i[H ′
i, H

′
j] must be skew-symmetric. Skew-symmetric matrices have the property
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that all eigenvalues are paired. As eigenvalues remain unchanged under action by a unitary and

if we act on H ′
i, H

′
j by a unitary, C ′ changes equivalently, this paired property must exist for any

simultaneously stoquastizable Hi, Hj . This holds for all pairs of Hamiltonians in S.

This theorem provides a straightforward condition to rule out if S is simultaneously sto-

quasticizable. However, the presence of paired eigenvalues does not guarantee simultaneous

stoquasticity as: (a) stoquastic matrices must have negative, as well as real, off-diagonal ele-

ments; (b) it is possible for simultaneously non-stoquastic Hamiltonians to have a commutator

with paired eigenvalues.

This condition also relates to the dynamical Lie algebra from quantum control theory [219,

220] which for simultaneously real Hamiltonians (in any basis) neatly breaks up into a Cartan

decomposition with every other layer of the dynamical Lie algebra (i.e. nested commutators with

even numbers of our original Hamiltonians) corresponding to purely imaginary Hamiltonians

(transformed into a given basis). Therefore, finding a basis in which a set of Hamiltonians are

simultaneously real, a necessary condition for simultaneous stoquasticization, is equivalent to

identifying whether there is a Cartan decomposition of su(d) = p ⊕ so(d) where the set of

Hamiltonians is contained in p.

9.5 Bloch Vector Approach

We now reexpress the trace invariants in terms of Bloch vectors. This provides a geometric

interpretation that neatly connects back to the intuition from the one qubit example given earlier,

while highlighting a number of symmetries between words that are less clear in the alternative

formalism. This approach will also allow us to prove another no-go result, from which the fol-
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lowing theorem establishing the rareness of simultaneous stoquasticity immediately follows.

Theorem 9.5.1. For almost every S withm ≥ 2, d ≥ 3, S is not simultaneously stoquasticizable.

“Almost every” is used in the technical sense that the set of simultaneously stoquastizable

S are measure zero.

With this goal in mind, let us consider expressing the trace invariants from Theorem 9.3.1

in terms of Bloch vectors. For words of arbitrary length |w|, we have

Tr[w(S)] = Tr




|w|∏

j=1

d2−1∑

µj=1

b(wj)
µj

λ̂µj


 , (9.7)

where we have denoted the j-th element of w as wj .

Now consider evaluating Eq. (9.7) explicitly for words of small length. By our assumption

of tracelessness, the trace invariant for any w(S) of length one is zero. A general trace invariant

for |w| = 2 is

Tr[HiHj] = Tr[(b(i) · λ̂)(b(j) · λ̂)] = 2b(i) · b(j), (9.8)

where we used Eq. (9.2) to evaluate the trace. Therefore, the lengths (from the i = j case) and

relative angles (from the i ̸= j case) of the Bloch vectors corresponding to pairs of Hamiltonians

in S are simultaneous trace invariants.

This result is intuitively satisfying. For a qubit, recalling that SU(2) is homomorphic to

SO(3), this is precisely what we would expect to be invariant for a rigid collection of vectors

being rotated simultaneously about the origin. We should also expect this to be the only constraint

for a qubit. This expectation is validated by computing the trace invariant for words of length
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three:

Tr[HiHjHk] = 2dµνξb
(i)
µ b

(j)
ν b

(k)
ξ = 2(b(i) ∗ b(j)) · b(k), (9.9)

where we have introduced the star product, defined component-wise, using the symmetric struc-

ture constants, as,

(b(i) ∗ b(j))ξ = dµνξb
(i)
µ b

(j)
ν . (9.10)

For su(2), the symmetric structure constants are all zero, so, as expected for a qubit, words

of length greater than two provide no further constraints.

Various properties of the star product are detailed in the Appendix. In particular, observe

that the star product is not associative and that Eq. (9.9) is completely symmetric in the input

word. Similar observations allow us to show that any trace invariant can be written as v · b(i) for

some i ∈ [1,m], where v is any vector in the set B of all possible combinations of star products

between Bloch vectors in B. That is B = {b(j), b(j) ∗ b(k), (b(j) ∗ b(k)) ∗ b(l), · · · }. This can be

verified by direct computation, but we provide explicit proof in the Appendix.

Given this formalism, we can pick a finite set of Bloch trace invariants using Eq. (9.5)

and then construct an equivalent decision problem to Eqs. (9.6a)-(9.6c) to test for simultaneous

stoquasticity. The stoquasticity conditions in this context are b′(i)j = 0 j ∈ Y and b′(i)j ≤ 0 for

j ∈ X for all i.

We also obtain the following no-go result.

Theorem 9.5.2. Let S be a set of Hermitian matrices with corresponding Bloch vectors B =
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{b(1), b(2), · · · b(m)}. Let B be the set of all possible star products between elements of B. A

necessary condition for S to be simultaneously stoquasticizable is that dim(span(B)) ≤ (d2 +

d− 1)/2.

Proof sketch. Observe that for all Hi ∈ Stoq, b(i)j = 0 for j ∈ Y . From the definition of the star

product and the form of the non-zero symmetric structure constants of su(d) [221], one observes

that if S ∈ Stoq all vectors in B are also in this subspace. The dimension of B is invariant under

unitary transformations, so this is a necessary condition for simultaneous stoquasticity. □

Full details are provided in the Appendix. Most importantly, this result leads directly to

Theorem 9.5.1, the proof of which we sketch below, again leaving the algebraic details to the

Appendix.

Proof sketch of Theorem 9.5.1. From similar analysis of the star products, we can prove that for

almost every S, dim(B) = d2 − 1. That is, B spans the full Bloch vector space for almost every

S. Combining this result with Theorem 9.5.2, Theorem 9.5.1 immediately follows. □

9.6 Conclusion and Outlook

Quantum annealing relies on the interaction of two non-commuting Hamiltonians, and

there are clear connections between the power of that computation and the stoquasticity of the

Hamiltonians. Our results provide proof that a general quantum annealing procedure does not

possess any basis in which it can be described completely stoquastically. We know that classi-

cal computing can be described using simultaneously diagonal Hamiltonians, and the seeming

power of non-stoquasticity speaks to the idea that quantum advantage might lie further past si-

multaneously stoquastic Hamiltonians. More work is needed to determine how tightly quantum

166



advantage is bound up merely with these notions of simultaneous stoquasticity and how much

other factors, such as locality of the simultaneous basis, play a role.

Furthermore, our results provide a definitive set of conditions for simultaneous stoquastic-

ity, which are, as expected, difficult to calculate in practice given the computational complexity of

this problem. The commutator condition of Theorem 9.4.1, while enticing from its connections

to simultaneous diagonalizability (see the Appendix for a further exploration of how these geo-

metric ideas relate to simultaneous diagonalizability) and dynamical Lie algebras, provides only

a necessary but not sufficient condition and then only on a simultaneous real basis, not specifi-

cally a simultaneous stoquastic basis. The other no-go result in Theorem 9.5.2 suffers a similar

flaw.

Further work is also possible by extending these results beyond just stoquasticity to the

full class of Hamiltonians lacking sign problems. General sign problem free Hamiltonians take

a Vanishing Geometeric Phase (VGP) form [175, 222]. This form generalizes the notion of

stoquastic Hamiltonians to all Hamiltonians generated from stoquastic Hamiltonians via diagonal

unitary transformations. While this is a more general form that should be studied in the context

of simultaneous transformations, it lacks linearity, meaning that linear combinations of VGP

Hamiltonians are not necessarily VGP, hinting that simultaneous stoquasticizability is a more

fundamental concept to consider for multiple Hamiltonians.
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Chapter 10: Discussion and Further Directions for Part II

While they do not all directly address it, Chapters 7-9 are generally oriented around an es-

sential question: Is exponential quantum advantage possible for adiabatic quantum computation

with stoquastic, k-local Hamiltonians? By rigorously ruling out all known attempts at construc-

tions that provide an exponential separation for particular examples, Chapter 8 suggests not. On

the other hand, as mentioned in Chapter 1, recent results proving a separation for sparse Hamilto-

nians indicate that stoquasticity alone is not sufficient to constrain adiabatic quantum computation

to the power of classical computation [18, 19]. However, such proofs seem unlikely to generalize

to k-local Hamiltonians. Tellingly, k-locality is essential to the approach of Chapter 8.

Such results are promising, but answering the full question rigorously remains extremely

challenging. One possible approach would be to prove that large amounts of symmetries of the

sort considered in Chapter 7 and Chapter 8 are necessary for separations between classical algo-

rithms and k-local, stoquastic adiabatic computation. This idea is reminiscent of digital quantum

computation where sufficient structure of some sort seems to be an essential ingredient for large

quantum advantages [223]. Thus, one could reasonably expect large amounts of structure of this

particular kind to be necessary in this adiabatic setting, but proving it for arbitrary classical algo-

rithms is certainly a tall order. Perhaps the geometric approaches of Chapter 9 could provide a

helpful tool-set.
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The challenges of a rigorous proof aside, it is generally expected that adiabatic quantum

computation with k-local stoquastic Hamiltonians will not provide any particularly large speed

ups over classical algorithms. Consequently, significant attention in recent years has been de-

voted to trying to design and understand non-adiabatic quantum annealing algorithms. In such

general quantum annealing schemes, as in adiabatic quantum computation, one considers initial-

izing a quantum system in some simple-to-prepare ground state of a Hamiltonian H0 and then

attempts to prepare the ground state of some other Hamiltonian H1. The adiabatic theorem pro-

vides a sufficient, but not necessary, condition for successfully completing this task. Alternative

schemes include algorithms like the Quantum Alternating Operator Ansatz (QAOA) [224] and

other such diabatic strategies [225]. While extensively studied numerically, at the moment, little

is understood rigorously about these more general quantum annealing schemes. Consequently,

seeking such rigorous results is a timely direction to pursue.

We have begun to address this shortcoming using two distinct approaches in recent work.

In Ref. [16] we use quantum speed limits—bounds that are essentially a re-cast form of those

we leveraged for quantum metrology in Part I of this dissertation—to provide saturable lower

bounds on annealing times for arbitrary annealing schedules. However, the examples of saturation

involve fine-tuned highly symmetric problems similar to those in Chapter 7, and the bounds do

not immediately provide guidance for designing better annealing protocols for more realistic

scenarios. This is an important area for future work.

In contrast, the results of Ref. [20] are better adapted to realistic scenarios, but this comes at

the cost of expressions that are significantly more challenging to evaluate than those in Ref. [16].

Here, we derive an “intermediate timescale” adiabatic theorem that provides a route towards

rigorously understanding a numerically [226] and experimentally [227] observed phenomenon
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where, in certain circumstances, one can go quickly through an avoided crossing, which is the

bottleneck for an adiabatic algorithm, and still end up with sizeable overlap with the target state

at the end of the procedure. An important piece of future work in this context is to work out

these applications in detail, perhaps with the help of a loosening of our existing bound to ease its

applicability.

These results and the immediate questions they raise are just the first steps towards a deeper,

rigorous understanding of quantum annealing, with important practical applications for quantum

optimization algorithms. Using these mathematical tools, we anticipate this being a fruitful area

of research for the forseeable future.
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Part III

Quantum Simulation
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Chapter 11: Parallelization Techniques for Quantum Simulation of Fermionic

Systems

11.1 Introduction

The ability to simulate complex fermionic systems is an important area of promise for

quantum computers with applications ranging from quantum chemistry and condensed matter

physics to nuclear and high-energy physics [228–231]. Before performing such a simulation,

however, one must map from the fermionic operators to operators acting on the Hilbert space of

the qubits of the quantum computer. A common approach to performing such a mapping is to

use the Jordan-Wigner transformation [232, 233], which encodes local fermionic operators on N

fermionic modes as non-local qubit operators on N qubits. This non-locality, which manifests

as strings of Pauli-Z operators, is the price of obtaining the correct fermionic anti-commutation

relations when using qubit operators. Unfortunately, even for physically-local fermionic inter-

actions in higher than 1+1 dimensions, the length of these Pauli-Z strings can scale with the

system size. This results in costly fermionic simulations [234, 235] on near-term quantum de-

vices where the two-qubit entangling-gate (e.g., CNOT) count of an algorithm is expected to be

the limiting factor. In particular, the Pauli weight of an operator G (the number of qubits on

which it acts non-trivially) is directly related to the number of two-qubit entangling gates needed
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to implement the unitary U = exp(−iG) [236]. Nonetheless, recent progress has resulted in

improvement in both entangling-gate count and in circuit depth when simulating given Jordan-

Wigner-transformed fermionic Hamiltonians using product formulas, resorting to e.g., suitable

term ordering and nesting strategies [237] or fermionic SWAP networks [238–240].

A number of other mappings from fermions to qubits have been proposed in the litera-

ture [241–252]. Many of these proposals aim to map local fermionic operators to local qubit

operators, forming a class that is called local encodings in this [chapter]. Local encodings trade

operator non-locality for state non-locality as a vehicle for encoding fermionic anti-commutation

relations in qubits. In particular, one finds that to preserve the appropriate anti-commutation re-

lations via a local encoding, one must: a) increase the number of qubits, and b) restrict the state

of the system to lie within some subspace of the Hilbert space—typically the logical codespace

a (modified) toric code. At the price of these complications, one generally obtains lower gate

counts required for simulation. The comparative analyses of various encodings given the Hamil-

tonian under study, the quantum resources to be optimized, and the architecture connectivity

constitute an active area of research, see e.g., Refs. [240, 244, 250, 253, 254].

In this work, we explore the potential for parallelization (that is the ability to simultane-

ously simulate several Hamiltonian terms) in local encodings, hence reducing the circuit depth of

the simulation. In this context, product formula-based Hamiltonian-simulation algorithms based

on Trotter-Suzuki decomposition of the time-evolution operator [255–257] are best suited for

this analysis, nonetheless, other simulation algorithms [258–265] can also benefit from the par-

allelization strategy explored here. We consider the parallelization problem in connection to (a

slightly abstracted version of) the underlying qubit architecture of the quantum computer, and em-

phasize, both analytically and numerically, connections between qubit architectures, fermionic-
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encoding locality, and parallelization. It is found that the problem of parallelization is equivalent

to path coloring on a graph that represents the particular fermion-to-qubit mapping under con-

sideration and the physical interactions among the fermionic modes. Consequently, heuristic

classical algorithms can be used to inform efficient implementations of fermionic simulations on

quantum hardware.

The particular graph-theoretic approach of this work is enabled by the strategy undertaken

in Ref. [249], in which a general framework for local fermionic encodings of the sort described

above is developed. In particular, it was demonstrated how to disconnect the interaction graph

of the fermionic modes being simulated and the so-called system graph, which determines the

fermionic encoding in a flexible and qubit-architecture-aware manner. This separation enables

the construction of the so-called custom fermionic codes, which are a generalization of the Bravyi

and Kiteav superfast encoding [241, 246]. The Jordan-Wigner transformation is a limiting case

of such custom codes. The degree of non-locality can be reduced upon introducing further qubits

and local connectivity on the system graph at will, and such choices amount to a range of custom

encodings. The input to our parallelization problem is such a system graph, which fixes the en-

coding chosen to implement the interactions in the original fermionic Hamiltonian. The question

investigated in this [chapter] is to what extent the Hamiltonian simulation can be parallelized,

and whether certain system graphs are best suited for maximal parallelizability.

The structure of this [chapter] is as follows. Custom fermionic codes of Ref. [249] is re-

viewed in Sec. 11.2. In Sec. 11.3, we demonstrate how the problem of parallelizing product

formula-based Hamiltonian-simulation algorithms maps to path coloring on the system graph,

and is, therefore, a NP-hard problem. This is named the weak coloring problem. By considering

the fine-grained details of the fermion-to-qubit mapping below the abstraction level of the sys-
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tem graph, another path coloring problem is defined. This is called the strong coloring problem.

Analytic results on the weak and strong coloring problems for a few illustrative systems are pre-

sented in Sec. 11.4. A numerical approach to heuristically solving the weak and strong coloring

problems is presented Sec. 11.5. The numerical and analytic results are then compared for these

system graphs, exhibiting consistency. We further numerically investigate the weak and strong

coloring problems for a few realistic system graphs designed for current qubit architectures. It is

found that by solving (or finding heuristics for) the more detailed strong coloring problem, one

can often obtain significant gains in parallelizability compared to the more abstracted weak col-

oring problem. For most system graphs, these improvements are a constant factor—for instance,

in the case of a star system graph or complete system graph, strong coloring asymptotically pro-

vides up to a factor of two improvement over weak coloring. However, we also construct an

example for which the advantage gained grows linearly in the system size, which is the maxi-

mal possible gain from considering strong coloring. Both weak and strong coloring approaches

provide large reductions in circuit depth compared to a naive sequential approach. Finally, the

performance gains of strong coloring depend heavily on the choice of enumerating qubits in the

encoding—a feature that is also taken advantage of in Ref. [252] to provide optimal fermion-qubit

mappings. Sec. 11.6 includes a summary of the results and a discussion of possible directions for

future study. The code generating the colored graph from the system graph and the corresponding

physical interactions is [available online] [266].
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11.2 Custom Fermion-to-Qubit Mappings

11.2.1 Setup

Consider a system ofN fermionic modes. A general fermionic Hamiltonian may be written

in the second quantization as

H =
∑

uv

κuva
†
uav +

∑

uvwx

κuvwxa
†
ua

†
vawax + · · · , (11.1)

where a†u and au are the fermionic creation and annihilation operators on site u, respectively,

satisfying the standard fermionic anticommutation relations

{au, a†v} = δuv, {au, av} = {a†u, a†v} = 0, (11.2)

and κuv, κuvwx are some coefficients consistent with the Hermiticity of the Hamiltonian. It is

convenient to consider a Majorana basis γ, γ′ for the fermionic operators as

γu = a†u + au,

γ′u = i(a†u − au), (11.3)

that clearly satisfy

{γu, γv} = 2δuv, {γ′u, γ′v} = 2δuv, {γu, γ′v} = 0. (11.4)
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To simulate a fermionic Hamiltonian on a quantum computer, one must first map from fermions

to qubits while preserving these anti-commutation relations. The standard approach is the Jordan-

Wigner mapping from N fermionic modes to N qubits,

au →
∏

v<u

Zv(Xu + iYu),

a†u →
∏

v<u

Zv(Xu − iYu), (11.5)

where Xu, Yu, and Zu are Pauli operators on the u-th qubit. The Jordan-Wigner transforma-

tion requires non-local qubit operations whose weight scales with the system size. These high

Pauli-weight operators directly translate to increased gate counts for quantum simulation, and has

stimulated various strategies to alleviate the simulation cost when resorting to a Jordan-Wigner

mapping [237–240].

11.2.2 Local Fermion-to-Qubit Mappings

There are many other approaches to mapping from fermions to qubits which aim to address

the shortcomings of the Jordan-Wigner transformation. For instance, the Bravyi-Kitaev transfor-

mation encodes both occupation information (like the Jordan-Wigner transformation) and parity

information in such a way that single fermionic operators act non-trivially on at most O(log2N)

qubits [241]. This is in contrast to the linear scaling of the Pauli weight of qubit operators in

system size for the Jordan-Wigner transformation. A simpler ternary-tree-based mapping from

N fermionic modes to N qubits performs even better, leading to provably minimal Pauli weights

in the average case. In this case, a single fermionic operator acts on ⌈log3(2N +1)⌉ qubits [267].
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One can think of such a mapping as a generalization of the Jordan-Wigner transformation from a

1D chain to tree graphs [268].

Fully local encodings—in the sense that local fermionic operators map to local qubit operators—

are possible with the addition of ancilla qubits. An important example is the Bravyi and Kitaev

superfast encoding [241] and its generalizations [246, 249]. A multitude of other local mappings

have also been developed, often aimed at minimizing the qubits required, while still maintaining

local, low Pauli-weight qubit operators [243–245, 247, 248, 250, 251, 269, 270]. These local

mappings can generally be understood as generalizations of the toric code [271]. In particular,

all known local fermionic encodings are equivalent to the toric code on some lattice up to de-

formations by a constant-depth circuit of local Cliffords [249, 250]. Fermionic-pair excitations

in the local encoding arise as freely deformable strings of Pauli operators on the lattice, and the

fermionic anti-commutation relations are enforced via restriction to a particular code subspace

of the ancilla-extended Hilbert space. Equivalently, one could view the ancilla qubits as being

used to couple to an auxillary gauge field [248, 272]. A given local mapping, therefore, corre-

sponds to a particular “gauge theory” and restricting the simulation to a particular subspace is

equivalent to the choice of Gauss’s law sector in the corresponding gauge theory. In either view,

observe that local fermionic encodings of this sort require the preparation of a toric-code state.

Therefore, local fermion-to-qubit mappings trade non-locality in the operators for extra qubits

and non-locality in the states. To ensure the simulation proceeds in the allowed subspace of the

Hilbert space—that is, that the local and non-local constraints are satisfied— strategies similar to

preserving (gauge) symmetries in lattice-gauge-theory simulations [273–280] can be explored.
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11.2.3 Custom Fermionic Codes

This work focuses on a particular class of fermion-to-qubit encodings—the so-called cus-

tom fermionic encodings—developed by Chien and Whitfield [249] as a generalization of the

construction by Setia et al. [281]. These mappings are, in turn, a generalization of the Bravyi

and Kitaev superfast encoding [241]. For our purposes, the essential feature of custom fermionic

codes is that they allow for a variety of different encodings ranging from local to quasi-local to

highly non-local ones. This flexibility permits trading resources like the number of qubits, qubit

connectivity, and Pauli weight of simulated operators in an architecture-aware manner. In this

[chapter], we will add the parallelizability of the resulting Hamiltonian-simulation algorithm to

this list.

Let us briefly review how to construct a custom fermionic code. One can introduce edge

operators Auv and vertex operators Bu which are defined as

Auv = −iγuγv, (11.6)

Bu = −iγuγ′u, . (11.7)

These operators suffice to generate all parity-preserving fermionic operators in a Hamiltonian of

the form Eq. (11.1). Therefore, the Hamiltonian with N fermionic modes

HK =
∑

uv

κuva
†
uav, (11.8)
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for some symmetric, real constants κuv = κvu, can be expressed as

HK = − i
2

∑

u<v

κuv(AuvBv +BuAuv)−
1

2

∑

u

κuuBu (11.9)

= − i
2

∑

u<v

κuvAuv(Bv −Bu)−
1

2

∑

u

κuuBu, (11.10)

up to constant terms that can be ignored.

The interaction set T can now be defined as the set of all terms with non-zero coefficients

in the re-expressed Hamiltonian. Furthermore, an interaction graph Γ = {VΓ, EΓ} can be defined

with vertices corresponding to each fermionic mode and an edge joining any pair of vertices (u, v)

such that the edge operator AuvBv belongs to T . For instance, for the Hamiltonian in Eq. (11.9)

with κuv ̸= 0, the interaction set is

T = {AuvBv}u̸=v ∪ {Bu}u∈{1,···N}, (11.11)

and the corresponding interaction graph is a complete graph KN on N vertices. In what follows,

it is assumed without loss of generality that Γ is connected, as if Γ is disconnected, one is dealing

with two physically independent systems, and can consider the connected case on each system

separately.

From Eq. (11.3) and Eqs. (11.6) and (11.7), one can show that the edge and vertex operators
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obey the following relations

B†
u = Bu, A†

uv = Auv,

B2
u = A2

uv = 1, [Bu, Bv] = 0,

Auv = −Avu, AuvBw = (−1)δuw+δvwBwAuv,

AuvAwx = (−1)δuw+δux+δvw+δvxAwxAuv,

i|C|
|C|∏

ν=1

Acνcν+1 = I, (11.12)

where in the final equality C is any cycle in Γ specified via an ordered list of vertices C =

{c1, c2, ..., c|C|, c1 ≡ c|C|+1} for cν ∈ VΓ with only the final vertex repeated, and, therefore, the

product is over all edge operators in the cycle.

Next, a second graph can be introduced, the so-called system graph Σ = {VΣ, EΣ}. A valid

system graph is any undirected, connected graph with vertex set VΣ = Vphys∪Vvirt equipped with

a bijective mapping M : VΓ → Vphys—that is, |VΓ| = |Vphys|. The subscripts are shorthand

for physical vertices and virtual vertices. The physical vertices correspond to physical fermionic

modes in the interaction graph and the virtual vertices (if they exist) correspond to additional aux-

illary fermionic modes that can be freely introduced. One can envision constructing the system

graph from the interaction graph by adding an arbitrary number of virtual vertices and adding

or removing any edges so long as the final graph is connected. Note that the condition that the

graph is connected implies that any two vertices that were connected before are still connected

via physical or auxillary vertices. This connectivity condition is sufficient for one to implement

any interaction terms in the Hamiltonian, see e.g., Eq. (11.20) below. Consequently, the edge set
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of the system graph can be completely different from that of the interaction graph.

An encoding of a fermionic system on such a graph Σ consists of associating with each

vertex v ∈ VΣ a set of

nv := ⌈d(v)/2⌉ (11.13)

qubits, where d(v) is the degree of vertex v. A set of 2nv Pauli operators {γ̃1v , γ̃2v , · · · , γ̃2nv
v }

can then be defined on these qubits. In the following, these operators are referred to as local

Majoranas. Note that we have introduced the convention of using subscripts {u, v, w, · · · } to

index vertices of Σ and superscripts {i, j, k, · · · } to index local quantities such as enumerations

of the local Majoranas or indices of internal qubits. Furthermore, subscripts {ν, µ, · · · } are used

in various places for indexing generic sets.

The local Majoranas can be any choice of operators that satisfy the following conditions:

1. They obey the Majorana-operator1 properties including anti-commutation relations with

other local Majoranas defined on the vertex. Furthermore, they must commute with the

local Majoranas on other vertices. That is,

γ̃k†v = γ̃kv , {γ̃jv, γ̃kv} = 2δjk, [γ̃ju, γ̃
k
v ] = 0 for u ̸= v. (11.14)

2. They generate the full Pauli group on the nv qubits associated with v ∈ VΣ.

Any explicit choice for the local Majoranas can be mapped to any other via a Clifford circuit

acting on the qubits associated with that vertex [249]. Most simply, one could consider encoding

the local Majoranas via a Jordan-Wigner transformation. That is, given some enumeration of the

1Note that these correspond to both types of γ and γ′ operators defined in Eq. (11.3).
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qubits in a vertex v, one has

{γ̃1v , γ̃2v , γ̃3v , γ̃4v , γ̃5v , γ̃6v , · · · } −→ {X1
v , Y

1
v , Z

1
vX

2
v , Z

1
vY

2
v , Z

1
vZ

2
vX

3
v , Z

1
vZ

2
vY

3
v , · · · }. (11.15)

It is straightforward to verify that this choice satisfies the conditions above. One could also

use other encodings—for instance, Fenwick trees [243, 281] or ternary trees [267]. This work

concerns only the case of a Jordan-Wigner encoding of the local Majoranas. Note, however,

that the same techniques and many of the qualitative results will apply similarly to these other

choices.

Once the local Majoranas are specified, each local Majorana can be associated with an edge

of that same vertex. That is, both the local Majoranas associated with a vertex and the edges con-

necting the vertex to its neighbors are enumerated in Σ. The j-th local Majorana corresponding

to a vertex is then associated with the edge connecting it to its j-th neighbor. Therefore, each

edge e ∈ EΣ has two associated local Majoranas—one at each endpoint. Given such a choice,

encoded edge operators acting on qubits can be defined as

Ãuv = ϵuvγ̃
ξu(v)
u γ̃ξv(u)v , (11.16)

where v is the ξu(v)-th neighbor of u, u is the ξv(u)-th neighbor of v, and the Levi-Civita tensor

ϵuv is defined with respect to an arbitrary choice of orientation for each edge in Σ. In particular,

we let ϵuv = 1 if u is the head of the oriented edge (u, v) and ϵuv = −1 if u is the tail. This choice

of enumerating the edges of each vertex u, as specified by picking ξu(v) for each neighbor v of

u, will become important later in Sec. 11.4.3 when discussing the strong-coloring problem.
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Furthermore, the vertex operator on qubits can be encoded as

B̃u = (−i)nu

2nu∏

j=1

γ̃ju. (11.17)

One can verify that the choices of encodings in Eqs. (11.16) and (11.17) satisfy all but the

final loop condition in Eq. (11.12). To satisfy the loop condition, it is necessary to restrict the

simulation to the subspace of the total Hilbert space that does satisfy this condition. In the context

of quantum error correction, this space is the codespace stabilized by the loop operators L̃ around

cycles C on Γ, defined by

L̃(C) = i|C|
|C|∏

j=1

Ãcjcj+1
. (11.18)

As the encoded edge and vertex operators commute with the loop operators, once a state is ini-

tialized in the code subspace, the simulation remains in that subspace assuming no algorithmic

or experimental errors. For considerations regarding boundary conditions and fermionic parity,

see Refs. [246, 249]. Here, we consider only open boundary conditions for simplicity, but other

boundary conditions can be analyzed within the framework of this work as well.

Once in the code subspace, the mapping from fermionic edge and vertex operators can be

performed to qubit edge and vertex operators, Auv → Ãuv and Bu → B̃u. This completes the

mapping from a fermionic Hamiltonian H to a qubit Hamiltonian H̃ ,

M : H =
∑

ν

κνhν −→ H̃ =
∑

ν

κν h̃ν , (11.19)

where κν are constants related to the original coupling coefficients and the hν and h̃ν are products

of edge and vertex operators on fermionic Majorana modes and qubits, respectively.
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This mappingM is not unique—the exact form of each h̃ν depends not only on the par-

ticular system graph Σ that determines the mapping, but also on the paths through the system

graph chosen to simulate each corresponding h̃ν , as well as the choice of encoding of the local

Majoranas. In particular, one does not necessarily need to have a direct edge (u, v) ∈ EΣ to

implement Ãuv. An edge operator between two modes u and v not directly connected is given by

a product of edge operators along any path Puv = {p1 = u, p2, · · · , p|Puv | = v} connecting the

two modes. That is,2

Ãuv =

|Puv |−1∏

ν=1

Ãpνpν+1 . (11.20)

Therefore, given the assumption that Σ is connected, all edge operators in the qubit Hamiltonian

H̃ can be implemented by choosing any path between the relevant vertices. Again, these path

choices are not unique. While the precise details depend on these choices, it is always true that

each h̃ν is a string of Pauli operators on qubits. That is h̃ν = {X, Y, Z, I}⊗n, where n is the

number of qubits h̃ν acts on. Importantly, whether an operator Ãuv can be implemented directly

or must be implemented via a path of such operators through the system graph, it obeys all the

same relations given in Eq. (11.12).

These choices do matter, however. In particular, recall virtual vertices are allowed in the

system graph which, at the cost of more qubits, enable more choices of paths between different

physical vertices. This tradeoff between more qubits and more direct (and correspondingly, more

2Observe that Eq. (20) slightly overloads the notation Ãuv , as strictly speaking, the Ãuv operators on the left-
and right-hand sides of the equation have a slightly different meaning. In particular, one should distinguish between
Ãuv that, given the system graph, can be directly implemented as in Eq. (11.16), and those that cannot and must be
implemented via a product of such operators as in Eq. (11.20). The meaning should be clear from the context. Note
that tilde operators always denote those acting on qubits and not on fermionic modes.
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local) paths for implementing the required Pauli operators is the essential tension in regards to

optimizing a Hamiltonian-simulation algorithm for a fermionic system in this construction.

11.2.4 Prior Work on Optimizing System Graphs

Some of the tradeoffs implied by the custom fermionic encoding have already been ex-

plored. In particular, Ref. [248] discusses how the flexible framework of custom fermionic codes

allows for designing fermionic encodings suited to particular qubit architectures by balancing the

number of qubits required for an encoding with the Pauli weight of the resulting operators. In

one limit, where the system graph is a line graph, one recovers the Jordan-Wigner transformation.

By adding qubits and connectivity in the system graph, one can reduce the Pauli weight of the

resulting operators, obtaining local or quasi-local encodings. This exact tradeoff was explored in

detail for a variety of different system graphs in Ref. [249] for the 2-body SYK model, which has

all-to-all coupled fermions.

Observe that the tradeoff between Pauli weight of operators and numbers of qubits and

qubit connectivity is directly related to the properties of the system graph Σ. For instance, the

number of qubits Q(Σ) is directly determined by the degree of the vertices in Σ as

Q(Σ) =
∑

v∈VΣ

nv =
∑

v∈VΣ

⌈d(v)/2⌉. (11.21)

As is shown in the following, this tight connection between graph-theoretic properties and re-

source counts holds even for more complicated properties of the fermion-to-qubit encoding and

the resulting Hamiltonian simulation.
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11.3 Parallelization and Path Coloring

11.3.1 Notions of Parallelization

In this work, a new possibility for optimization afforded by the flexibility of the custom

fermionic codes is considered: parallelization. We use the term parallelization instead of the

related concept of circuit depth because our analysis concerns a slightly higher level of abstrac-

tion than the particular circuit-level implementation of a Hamiltonian-simulation algorithm. It

is assumed that provided two Pauli strings h̃ and h̃′ act non-trivially on disjoint sets of qubits,

they may be implemented simultaneously in a quantum-simulation algorithm. Therefore, the

goal is to minimize the number of steps required to implement the full set of Pauli operators in

the interaction set T̃ = {h̃ν}. If one can choose paths on the system graph for the implemen-

tation of the required Pauli strings that minimizes collisions between those paths and orders the

implementation of these operators in an optimal way, one can minimize the circuit depth for im-

plementing the relevant operators. See Fig. 11.1b for an example. This formulation is especially

relevant to quantum simulation via product formulas, in which these Pauli operators are directly

implemented for each Trotter step.

It is important to note that our approach focuses solely on grouping the Pauli strings so as

to minimize the number of steps to implement the full interaction set. It is well established that

the choice of ordering terms can impact the Trotter error, which in turn changes the overall circuit

depth of the Hamiltonian-simulation algorithm required to achieve a certain error tolerance [237,

254, 280, 282, 283]. While such effects are not considered in this work, when applying the

parallelization techniques here to a particular problem of interest, one should view parallelization
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of the sort considered here as one piece of a many-faceted optimization.

11.3.2 Graph Coloring

The parallelization problem defined above can be formalized using the notion of path col-

oring on a graph. This problem also arises in other similar networking and scheduling problems

[284]. We begin by reviewing the ideas of colorings on graphs and then describe how the paral-

lelization problem may be formulated in these terms.

Consider a graphG = {V,E}. A vertex coloring onG is a mapping C : V → C where C is

a set of so-called colors or wavelengths. A valid coloring C is one such that no adjacent vertices

in G are assigned the same color. The smallest number of colors required to (vertex) color a

graph is called its chromatic number, χ(G). For a general graph, finding χ(G) is NP-hard [285].

However, both bounds and effective heuristic algorithms exist. A simple and useful upper bound

is

χ(G) ≤ max
v∈V

d(v) + 1, (11.22)

where d(v) is the degree of vertex v [286]. A coloring satisfying this bound can be obtained in

polynomial time in the number of vertices using the greedy coloring algorithm presented below.

Algorithm 4 Greedy Coloring

1: function GREEDYCOLOR(G = {V,E}, C)
2: for each v ∈ V do
3: Assign v the first color c ∈ C not used by any of its neighbors
4: end for
5: end function

If G is a simple, connected graph, but is neither a complete graph nor an odd cycle, then
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this bound is improved to

χ(G) ≤ max
v∈V

d(v), (11.23)

and the greedy coloring algorithm will still satisfy this bound [286] .

The bound on χ(G) can be still lowered by the clique number ω(G) of the graph—that is,

the size of the largest clique inG, where a clique is a complete induced subgraph ofG. Therefore,

the size of any clique W (G) is also a valid lower bound. This gives

χ(G) ≥ ω(G) ≥ |W (G)|. (11.24)

A related problem to the vertex-coloring problem is the path-coloring problem. As previ-

ously described, this will be our graph-theoretic problem of interest when formalizing the prob-

lem of optimally parallelizing the implementation of the Pauli strings that result from a custom

fermionic code. In this problem, given a set of paths P in the graph G, one seeks to color the

paths such that no two paths which share a vertex inG receive the same color and that a minimum

number of colors is used to color all the paths.3

The path coloring problem can be mapped to a vertex coloring problem on a different graph

called the conflict graph Π(P) of the set of pathsP . The conflict graph has a vertex set VΠ(P) = P

and edge set EΠ(P) = {(q, p) | q, p ∈ P , q ∩ p ̸= ∅}. Therefore, the path coloring problem is also

NP-hard.
3Note that typically in the literature, this problem is defined such that no paths can share an edge instead of a

vertex. Our alternative definition is due to the particular context in which path coloring is applied.

189



11.3.3 Conflict Graphs for Parallelizability

Having defined the path coloring, the connection to parallelizability becomes clear. Given

a system graph Σ, one seeks to efficiently implement the interactions in the interaction graph Γ

as specified by the interaction set T̃ . For any interaction τ ∈ T̃ , one requires a choice of path p

through Σ joining the relevant vertices for the interaction τ . Choosing a particular path for each

interaction gives a path set P = {pτ}τ∈T̃ with |P| = |T̃ |. Given a choice of P , one then seeks to

determine the degree of parallelization via a coloring of a conflict graph Π(P). We construct two

different versions of the conflict graph, corresponding to what we dub the weak coloring problem

and the strong coloring problem. The latter considers the internal qubit structure of the vertices

of the system graph as specified by the custom fermionic encoding; the former does not. These

problems can be formally specified as follows:

Definition 11.3.1 (The weak coloring problem). Given a system graph Σ and a path set P on Σ

specifying the implementation of a set of interactions T̃ , construct a conflict graph Π(P), whose

vertex set is P and whose edge set is EΠ(P) = {(q, p) | q, p ∈ P , q ∩ p ̸= ∅}. The weak coloring

problem is to optimally color Π(P).

The chromatic number χ resulting from the weak coloring problem corresponds to the

minimum number of steps required to implement all the interactions τ ∈ T̃ , where it is assumed

that interactions that require disjoint sets of vertices of the system graph may be implemented in

parallel.

Definition 11.3.2 (The strong coloring problem). Given a system graph Σ and a path set P on Σ

specifying the implementation of a set of interactions T̃ , construct a conflict graph Π(P), whose
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vertex set is P and whose edge set is EΠ(P) = {(q, p) | q, p ∈ P , Q(q) ∩Q(p) ̸= ∅}, where Q(p)

gives the set of internal qubits required to implement to the path p ∈ P . The strong coloring

problem is to optimally color Π(P).

Note that Q(p) in the definition of the strong coloring problem depends on the local Ma-

jorana encoding (i.e., Jordan-Wigner, Fenwick trees, etc.) in the system-graph vertices. This

work only considers the Jordan-Wigner encoding of local Majoranas. The following section will

provide an explicit description of Q(p) in this setting. Here, the resulting chromatic number χ

corresponds to the minimum number of steps required to implement all the interactions τ ∈ T̃ ,

where it is assumed that interactions that require disjoint sets of qubits may be implemented in

parallel.

Compared to the weak coloring problem, the definition of parallelizability in the strong

coloring problem is connected more directly to the qubit architecture and to the circuit depth of

the Hamiltonian-simulation algorithm; the weak coloring problem has the advantage of being

somewhat more abstracted and easier to work with. Both schemes are considered in this work.

Observe also that the definitions of the weak and strong coloring problems take in both the system

graph and a particular choice of path for each interaction in the interaction set. This choice of

paths, as specified by the set P , is not unique, of course, and to truly maximize the amount

of parallelization, one must both pick the optimal path set P and optimally color the resulting

conflict graph. Naturally, this is a very difficult problem. In particular, the following result can

be stated:

Fact 11.3.1. Optimally parallelizing the implementation of an interaction set T̃—in either the

weak or strong coloring sense—is NP-hard.
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Proof. Suppose there exists an oracle that, given an interaction list and a system graph, returns the

solution set of paths P that will enable the creation of a conflict graph Π(P) with the minimum

chromatic number. Given P via this oracle, one is left with a graph coloring problem on Π(P),

which is known to be NP-hard [285].

The oracle invoked in the proof above is quite powerful in its own right. Therefore, outside

some analytically accessible examples, one need to turn to heuristic algorithms to address the

selection of the path set P and the solving of the resulting weak and strong coloring problems.

The full procedure of defining and solving the weak and strong coloring problems starting from

the qubit architecture is shown in Fig. 11.1 for a simple example. Each step of this process will

be described in detail in the following sections.

11.4 Analytic Results

11.4.1 The Hamiltonian

For the purposes of exploring the weak and strong coloring problems for a variety of system

graphs both analytically and numerically, we shall make use of an explicit choice of a fermionic

Hamiltonian as a minimal example. In particular, let us consider an all-to-all Hamiltonian with

two-mode interactions given by Eq. (11.8). This Hamiltonian can be expressed in terms of edge

and vertex operators as in Eq. (11.9). Assuming all coefficients are non-zero, the interaction

graph Γ for this problem will be the complete graph on N vertices, KN , and the interaction set T

is given by Eq. (11.11). Note that |T | = N2.
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Figure 11.1: (a) An overview of the full procedure of defining and solving the weak and strong
coloring problems for parallelizing a Hamiltonian simulation of fermions. There are many stages
for optimization: the choice of system graph, the choice of physical fermionic modes, the choice
of paths linking those modes, and the coloring algorithm. While these choices are straightforward
in this small example, for general problems, the design space is extremely large. This work
focuses on the last two steps, which is an NP-hard optimization problem. Here, the conflict-graph
vertices are labeled by the physical vertices of the system graph involved in the interaction. That
is, ÃuvB̃v is labeled by uv and B̃v is labeled by v for all u, v. Note that the difference between
the weak and strong coloring problems in this example is in the ability of the strong coloring
scheme to route through the virtual vertex e to implement the ad (and da) path simultaneously
with bc (and cb) without any conflict, hence a lower chromatic number compared with the weak
coloring scheme. This corresponds to enumerating the edges of vertex e as {ea, ed, eb, ec} 7→
{1, 2, 3, 4}. (b) Corresponding circuit diagrams for ordering the Pauli strings according to the
sequential strategy and via the weak and strong coloring problems. Here eL and eR label the left
and right internal qubits of vertex e of the system graph, respectively. Colors match those in the
corresponding conflict graphs and gates of the same color are implemented simultaneously.

11.4.1.1 Extensions to Other Models

The Hamiltonian in Eq. (11.8) is closely related to long-range fermionic systems, such as

the SYK model [287, 288]. To get exact results for specific Hamiltonians of interest (with or

without long-range interactions), one can use the algorithm presented here to heuristically solve

the weak and strong coloring problems for the relevant system graph. Another example of a
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minimal fermionic Hamiltonian is that with only nearest-neighbor hopping on a square lattice.

This case will be studied later in Sec. 11.5.4.

A generalization of our results worthy of particular emphasis is the case of Hamiltonians

with k-body interactions for k > 2. For instance, terms such as a†ua
†
vawax yield, amongst other

things, terms of the form ÃuvÃwx when expressed as edge and vertex operators. Quite clearly,

implementing such a term in terms of Pauli operators requires two simultaneous paths through Σ:

one from u to v and one from w to x. The path set P can now be viewed as a multiset of paths,

with each element of P (now potentially a set of paths) mapping to a vertex of the conflict graph.

From there, construction of the conflict graph proceeds as usual.

11.4.2 Rules for Strong Coloring

In this section, the rules for constructing the conflict graph for the strong coloring problem

given the interactions in Eq. (11.11) will be developed, under the assumption that local Majoranas

are encoded via a Jordan-Wigner transformation on the internal qubits of each vertex of the

system graph. This allows to abstract the problem of determining conflicts between paths to one

about the properties of the system graph under consideration.

To begin, recall that each vertex u ∈ VΣ contains nu = ⌈d(u)/2⌉ qubits. Under a Jordan-

Wigner encoding, one can imagine expanding each vertex of the system graph into a line graph of

nu vertices, where each new vertex is associated with two edges of the original vertex as depicted

in Fig. 11.2.4 Any local Majorana operator on the vertex u will induce a Jordan-Wigner string on

some subset of these internal vertices. The first task is to identify what precisely these strings are

for the four possible (types of) operators acting on the vertex u: B̃u, Ãxu, ÃxuÃuy, and ÃxuB̃u

4Note when d(u) is odd, one of these internal vertices has only one external edge.
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where x, y ∈ VΣ are arbitrary neighbors of u in Σ. Observe that determining the qubits needed

within vertex u to implement the operator ÃxuB̃u is equivalent to ÃuxB̃u since Ãux = −Ãxu.

Figure 11.2: The central gray vertex is u and black vertices are its neighbors. This is just notation
and no formal coloring has been performed yet. When constructing the conflict graph for strong
coloring under a Jordan-Wigner encoding of the local Majoranas, it is useful to think of each
vertex u ∈ VΣ as being expanded to a line graph of nu = ⌈d(u)/2⌉ internal vertices, each
connected to two of the original edges of u, where d(u) is the degree of u. Different interaction
types on vertex u induce different Jordan-Wigner strings on these internal vertices as summarized
in Tab. 11.1 and depicted in Fig. 11.3.

First consider a vertex operator B̃u. Given a Jordan-Wigner encoding of the local Majo-

ranas, one has immediately from Eqs. (11.15) and (11.17) that in terms of Pauli operators

B̃u =
nu⊗

j=1

Zj
u, (11.25)

where Zj
u is the Pauli-Z operator acting on qubit j of vertex u. Therefore, a vertex operator uses

all qubits on that vertex (see Fig.11.3-a), affording no possibility for improved parallelization via

strong coloring when implementing these terms.

On the other hand, operators of the form Ãux acting on vertex u do not use all the qubits.

Such operators appear when vertex u is a physical vertex and one is seeking to implement an

interaction of the form ÃuvB̃v between vertex u and some other vertex v via a path through Σ

that starts with the edge from u to x ∈ VΣ. It will be useful to introduce one more piece of
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notation. In particular, define

au(x) :=

⌈
ξu(x)

2

⌉
, (11.26)

so that it can be compactly stated that the first au(x) qubits of vertex u are “active” when imple-

menting the local Majorana operator γ̃ξu(x)u . This follows immediately from the Jordan-Wigner

encoding of these local Majoranas, where one should recall that the custom fermionic code re-

quires an enumeration of both the internal vertices of u and of its edges. Given a fixed choice of

enumeration, x is the ξu(x)-th neighbor of u. Therefore, from Eq. (11.16), one immediately finds

that the operator Ãux makes use of the first au(x) qubits of vertex u (as well as the first ax(u)

qubits of vertex x), see Fig. 11.3-b.

Next consider an operator of the form ÃxuÃuy acting on vertex u. Such operators occur

when vertex u is an intermediate vertex along a path implementing an interaction between two

physical fermionic modes. Just like Ãux, these operators also do not require the use of all qubits

in u. Individually, Ãxu and Ãuy make use of the first au(x) and the first au(y) qubits in u, respec-

tively. However, there are cancellations since the operators both act with Pauli-Z operators on the

first au(x) − 1 and au(y) − 1 qubits, respectively. Such cancellations of Jordan-Wigner strings

are reminiscent of the cancellations of such strings in sequential Trotter-Suzuki steps [237]. The

net result is that only the qubits between min{au(x), au(y)} and max{au(x), au(y)} are used,

see Fig. 11.3-c.

Finally, consider an operator of the form ÃxuB̃u acting on vertex u. These operators arise

at the starting and ending vertices of a path. Once again, there are cancellations in the Pauli-

Z operators required to implement the two sub-operators. In particular, ÃxuB̃u acts on the last

nu−au(x)+1 qubits of vertex u, see Fig. 11.3-d. Tab. 11.1 summarizes the results in this section.
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Figure 11.3: Examples of the internal qubits of vertex u (enumerated top to bottom as u1, u2, u3)
that are required to implement the operators (a) B̃u, (b) Ãux, (c) ÃxuÃuy, and (d) ÃxuB̃u. Active
qubits and input/output system-graph vertices are marked with red. The dashed lines denote
internal edges. Again, the coloring is the notation and no formal graph coloring is assumed here.
The choice of edge enumeration is marked.

.

Term Active qubits in vertex u
B̃u All nu qubits
Ãux Qubits 1 to au(x)

ÃxuÃuy Qubits min{au(x), au(y)} to max{au(x), au(y)}
ÃxuB̃u Qubits au(x) to nu

Table 11.1: Rules for determining internal qubits used by the various terms that arise in simulating
the Hamiltonian in Eq. (11.9) using a Jordan-Wigner encoding of the local Majoranas. Recall
au(v) := ⌈ ξu(v)2

⌉ is the number of “active” qubits when implementing γ̃ξu(v)u , and v is the ξu(v)-th
neighbor of u.

11.4.3 Limits of Weak and Strong Coloring

In this section, two simple system graphs will be studied: a star graph SN with N physical

vertices all joined to a central virtual vertex, and a complete graph KN consisting of N physical

vertices. These examples are limiting cases for both the weak and strong coloring problems.

In addition, they allow for straightforward analytic calculations and enable an understanding

of the essential conceptual features of the two types of coloring problems. This understanding
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will be leveraged to determine what properties of a system graph allow for the greatest possible

improvement from using strong coloring as opposed to weak coloring. An example with such an

extreme separation will be constructed at the end of the section.

11.4.3.1 Star Graph

The star graph Σ = SN of N physical vertices all coupled to a central virtual vertex is the

worst-case limit for parallelization as there is a single bottleneck vertex through which all paths

for the N(N −1) two-mode interactions must pass. It helps to refer back to Fig. 11.1 to visualize

the procedure for the minimal case of Σ = S4. As seen in that figure, the corresponding conflict

graph for the weak coloring problem has a complete subgraph KN(N−1) consisting of all vertices

that correspond to two-mode interactions, which sets a lower bound on the chromatic number of

the conflict graph. No additional colors are needed to color the one-mode interaction vertices as

the vertex operators {B̃w}w/∈{u,v} can be implemented simultaneously with the ÃuvB̃v operators.

Therefore, the chromatic number for weak coloring is

χweak(Π(SN)) = N(N − 1). (11.27)

For strong coloring, it turns out that the even and odd N cases must be addressed sep-

arately. First, consider N even. Expanding all vertices of the system graph as in Fig. 11.2,

the physical vertices remain unexpanded, whereas the central virtual vertex u expands to a line

graph of nu = N/2 vertices {u1, · · ·unu}, where each uj ∈ u has two edges that each connect

to one neighbor of u in Σ. The two-mode interactions involving vertex u induce eight Jordan-

Wigner strings between each pair of these neighbors—two for each of the four choices of pairs
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of physical-neighbor vertices connected to a given pair (uµ, uν), µ ̸= ν. They also induce single-

vertex “strings” for each uν for the two-mode interactions between physical vertices that are both

neighbors of that vertex.

Minimizing the number of steps to avoid overlaps of these strings is straightforward: start-

ing with u1, implement all interactions that induce Jordan-Wigner strings originating from u1

while simultaneously implementing the interaction that induces the longest non-overlapping Jordan-

Wigner string originating from unu . This takes 8nu = 4N steps. At this point, all interactions

involving u1 and unu have been implemented. Therefore, ignore those vertices and repeat the

same procedure on the remaining nu − 2 internal vertices. Keep repeating this procedure until

all two-mode interactions have been implemented. For N > 2, implementing the single-mode

interactions requires no extra steps as most physical vertices are unused for any given step, giv-

ing many opportunities to implement these interactions simultaneously with a given two-mode

interaction. The net result (for N > 2, even) is

χstrong(Π(SN), N even) =





8
∑nu/2

µ=1 (2µ)− 6 = N2

2
+ 2N − 6, N

2
even,

8
∑(nu+1)/2

µ=1 (2µ− 1)− 6 = N2

2
+ 2N − 4, N

2
odd.

(11.28)

Note that number six is subtracted from the sum to correct for over-counting in the final step

which only involves two-mode interactions between physical vertices that share an internal ver-

tex. See Fig. 11.4 for an example of this construction for N = 8.

Now consider N odd. Expanding the vertices of the system graph, the result is identical

to the even-N case except unu has only one edge joining it to a physical vertex. This implies
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that the two-mode interactions involving unu induce only four Jordan-Wigner strings between

the internal vertices of u instead of four. One can implement these interactions first while si-

multaneously implementing four of the eight interactions that induce the longest possible non-

overlapping Jordan-Wigner strings starting from u1. This takes 4nu = 2(N + 1) steps. At this

point, all interactions that involve unu are implemented, but four interactions are yet to be imple-

mented for each induced Jordan-Wigner string involving u1. These can be implemneted while

simultaneously implementing four of the eight interactions that induce the longest possible non-

overlapping Jordan-Wigner strings starting from unu−1. This takes 4(nu−1) steps. This staggered

approach can be continued—implementing four of the eight interactions that induce a particular

Jordan-Wigner string starting from a given internal vertex in each stage of the procedure—until

all interactions are implemented. This gives

χstrong(Π(SN), N odd) = 4
nu−1∑

µ=1

(µ+ 1)− 2 =
N2

2
+ 2N − 9

2
, (11.29)

where number two is subtracted from the sum to correct for over-counting in the final step of this

procedure. See Fig. 11.4 for an example of this construction for N = 7.

The constructions yielding Eqs. (11.28) and (11.29) are optimal. In particular, observe

that in each step of these constructions, a path is implemented that passes through the central

internal vertex u⌈nu/2⌉ of the central vertex u. The set of paths that go through this vertex form

a complete induced subgraph of the conflict graph Πstrong(SN) of maximum size. That is, the

induced subgraph of this set of vertices in the conflict graph form the largest-size clique. Since

one of these paths is implemented in every step of the construction, the corresponding coloring of

Πstrong(SN) saturates the clique-number lower bound on the chromatic number from Eq. (11.24).
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Therefore, the constructions are optimal.

11.4.3.2 Complete Graph

The complete graph Σ = KN of N all-to-all connected physical vertices is the opposite

limit of the star graph. There are no bottlenecks in implementing paths between any pair of ver-

tices as all two-body interactions are directly implementable. Obviously, these direct connections

are the optimal paths.

For the weak coloring problem, one can simultaneously implement ⌊N/2⌋ of theN(N−1)

two-mode interactions. Consequently, all two-mode interactions can be implemented in N(N −

1)/⌊N/2⌋ steps. In addition, there areN one-mode terms to implement. For evenN , these can all

be implemented in one step after doing the two-mode interactions. For odd N , there is always an

unused vertex for any step where two-mode interactions are implemented, and therefore the one-

mode interactions can be done while doing the two-mode interactions. Therefore, the number of

steps required for each case is

χweak(Π(KN)) =





2N − 1, N even,

2N, N odd.

(11.30)

To gain some intuition about the conflict graph, we can also arrive at Eq. (11.30) by observ-

ing that the conflict graph Πweak(KN) consists of N pairwise-overlapping complete subgraphs

K2N−1, as depicted in Fig. 11.5 for the case of N = 4. This structure arises because for any

v ∈ VΣ, there are 2N − 1 interactions involving this vertex which all mutually conflict. Pairwise

overlaps occur between these complete subgraphs because each vertex in Πweak(KN) correspond-
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Figure 11.4: Examples of the optimal procedure to parallelize two-mode interactions via strong
coloring for the star graph for (a) N = 8 and (b) N = 7. In the top of the figure, the internal
vertices of the central virtual vertex u are shown. Edges between internal vertices are represented
by dashed lines. Red (gray) vertices are active (inactive) with red (gray) lines indicating induced
(no) Jordan-Wigner strings. Terms are grouped as they appear in the respective sums over µ in
Eqs. (11.28)-(11.29). Observe in the case of N odd, this means that the Jordan-Wigner strings of
a given type are split in the different groupings (the locations of such splits are marked by one,
two, or three stars). The step counts underneath each group give the number of steps to implement
all interactions that induce that set of Jordan-Wigner strings. This gives a total of 42 and 34 steps
for N = 8 and N = 7, respectively. The counts associated with each individual Jordan-Wigner
string give the number of interactions corresponding to that Jordan-Wigner string. This gives a
total of 8× (8− 1) = 56 and 7× (7− 1) = 42 interactions for N = 8 and N = 7, respectively.
Representative examples of the types of interactions between physical vertices that induce the
different Jordan-Wigner strings are shown in the bottom of the figure. Observe in (b) that for N
odd, the last internal vertex has only one physical vertex as a neighbor. This is responsible for
the different procedure for optimal parallelization.
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ing to a two-mode interaction between u, v ∈ VΣ is in the complete subgraph corresponding to

both u and v.

Let each of the N complete subgraphs be the vertices of a new (complete) graph G with

two edges between each v ∈ G. One can then map the problem of coloring the two-mode-

interaction vertices to one of edge coloring G so that no edges sharing a vertex share a color. In

particular, one may color the two-mode interaction vertices of Πweak(KN) with the color of the

corresponding edge of G. Edge coloring KN takes N − 1 colors for N even and N colors for

N odd [289]. Due to the double edges between each (u, v) ∈ VG, twice this number is required.

Finally, one must consider coloring the one-mode interaction vertices in the original problem. For

even N , this requires an additional color because all 2(N − 1) colors are used in each complete

subgraph. For odd N , each complete subgraph has two unused colors, and therefore, one can use

one of these colors for the single-mode vertex. This recovers Eq. (11.30) for the number of steps

required for weak coloring.

Consider strong coloring for this problem. As all interactions can be directly implemented

along a single edge of the system graph, one is limited by the capacity of the physical vertices

to have multiple inputs and outputs. In particular, referring to Tab. 11.1, it is clear that multiple

“ingoing” (ÃxuB̃u) or “outgoing” (Ãux) interactions cannot be implemented simultaneously on

a given vertex u. However, one can simultaneously have one “ingoing” and one “outgoing”

interaction for a given vertex—that is, a term of the form Ãux and a term of the form ÃyuB̃u can

be simultaneously implemented on vertex u provided that au(x) < au(y).

A lower bound on the chromatic number of Πstrong(KN) can be obtained in terms of the
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Figure 11.5: An illustration of the conflict graph for the weak-coloring problem with a system
graph KN with N = 4. The vertices of the system graph are labeled as {a, b, c, d} (e.g., as in
Fig. 11.6), and the vertices of the resulting conflict graph are labeled by the corresponding inter-
action. The conflict graph consists of N = 4 interlocking complete subgraphs each associated
with one of the system-graph vertices, as described in the main text. One such complete subgraph
is shown.

clique number of the graph (see Eq. (11.24)). In particular, one finds that

χstrong(Π(KN)) ≥ N + 2. (11.31)

This bound is derived as follows: Given any vertex u ∈ VΣ, the set of allN−1 interactions ÃuvB̃v

for all u ̸= v, the interaction B̃u, and two of the ÃvuB̃u interactions all require the use of the first

internal qubit u1. These interactions form the largest complete subgraph KN+2 of Πstrong(KN).

Coloring this complete subgraph requires N + 2 colors, yielding Eq. (11.31). Therefore at best,

asymptotically (in N ) one obtains χweak(Π(KN))/χstrong(Π(KN)) ∼ 2.

An upper bound on the chromatic number of Πstrong(KN) can be found by explicit con-

struction. For any Hamiltonian cycle5 on KN , the edges in the cycle can be enumerated in such

a way that all N interactions along these edges can be implemented simultaneously via strong

5A Hamiltonian cycle on a graph is a cycle (closed loop) through the graph that visits each vertex exactly once.
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Figure 11.6: A minimal example of K4 that shows a complete system graph can have its edges
enumerated such that a Hamiltonian cycle of two-mode interactions can be implemented simul-
taneously via strong coloring. The dashed lines denote internal edges, red denotes active qubits,
and red arrows from u to v for u, v ∈ VΣ denote the implementation of an interaction of the type
ÃuvB̃v.

coloring. See Fig. 11.6 for an example of this for K4. The number of edge-disjoint Hamiltonian

cycles on a complete graph is (N−1)/2 for oddN and (N−2)/2 for evenN [290, 291]. One can

independently enumerate these edge-disjoint Hamiltonian cycles such that all interactions within

each of these cycles can be implemented simultaneously. Each of these disjoint Hamiltonian cy-

cles are then sequentially implemented. Assuming no other improvements from strong coloring

over weak coloring gives an obtainable upper bound, as described below.

Let us consider odd N first. Once the interactions contained in all (N − 1)/2 edge-disjoint

Hamiltonian cycles of KN are implemented, exactly half of the two-mode interactions are com-

pleted in (N − 1)/2 steps and each edge is traversed exactly once. Considering the rest of the

interactions in terms of weak coloring, the problem can be reduced to edge coloring a complete

graph as described above. The only difference is that one no longer has parallel edges to consider

since one of the two interactions along every edge e ∈ EΣ is already implemented. This gives

χstrong(KN , N odd) ≤ 3N − 1

2
. (11.32)
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For even N , once the interactions contained in all (N−2)/2 edge-disjoint Hamiltonian cy-

cles ofKN are implemented, one is still left with some parallel edges in the edge-coloring formu-

lation of the weak coloring problem. The extra parallel edges form a perfect matching6 [290, 291]

and therefore these “extra” interactions can be colored with a single additional color. The prob-

lem now reduces to the no-parallel edges version of the edge coloring problem on a complete

graph, yielding a final upper bound of

χstrong(KN , N odd) ≤ 3N

2
. (11.33)

Given this explicit construction, the combined asymptotic bounds on the improvement from

strong coloring over weak coloring is

3

2
≲

χweak(KN)

χstrong(KN)
≲ 2. (11.34)

11.4.3.3 Separating Weak and Strong Coloring

For the star-graph and the complete-graph examples, it was observed that asymptotically

(in N ) χweak

χstrong
≲ 2.

As it will be seen numerically in Sec. 11.5, such constant-factor improvements are typical

for system graphs that arise from realistic qubit architectures. In the near term, eliminating such

constant overheads in circuit depth is important and serves as one of the practical motivations

for this work, but a more significant separation in parallelization performance between weak

and strong coloring can be demonstrated. This example, while contrived, serves to show that

6A perfect matching is a set of pairwise non-adjacent edges that cover every vertex of the graph
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polynomial separations are possible and, perhaps more importantly, highlights a key feature of

system graphs which allow for a large separation between weak and strong coloring.

In particular, a necessary condition for a large improvement due to strong coloring is that

the edge bottleneck(s) of the system graph for routing paths in T̃ are significantly larger than the

vertex bottleneck(s). The reason for this is clear: vertex bottlenecks are the limiting factor on

parallelization for the weak coloring problem, whereas edge bottlenecks are the limiting factor

for strong coloring. That is, the more vertices (edges) to route paths through in the weak (strong)

coloring problems, the more room there is for parallelization. When there is a large separation

between the size of the edge and vertex bottlenecks, strong coloring necessarily provides more

of an advantage. The star graph is a simple example of such a large separation between edge and

vertex bottlenecks. The vertex bottleneck is a single vertex, but many edges enter this vertex,

suggesting a large potential improvement via strong coloring. We know analytically that this

improvement is asymptotically a factor of two. Despite the large separation between edge and

vertex bottlenecks, most interactions passing through the central vertex still require many of

the internal qubits, hence limiting a greater potential for strong coloring. The counterexample

constructed below aims to avoid this limitation.

For simplicity, let us consider N = 4m for some positive integer m. Divide the physical

vertices of Σ corresponding to these N fermionic modes into two disjoint sets T1, T2, each of

size N/2. Consider adding edges to the system graph such that both T1 and T2 induce disjoint

complete subgraphs. Now, consider adding N/2 virtual vertices to each of these complete sub-

graphs. Add an edge from each of these virtual vertices to all physical vertices in the subgraph,

forming two bipartite subgraphs. Finally, add a single additional virtual vertex and join it to all

other virtual vertices. See Fig. 11.7 for an example of the construction for N = 8.
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Figure 11.7: An example of the system graph Σbottleneck that allows for a linear-in-N scaling of
the ratio of the chromatic numbers of the conflict graphs with weak and strong coloring. The
physical vertices are divided into two complete subgraphs KN/2 separated by a single vertex
bottleneck, which allows only one interaction at a time between the two subgraphs in the weak
coloring problem. For visual clarity, the edges between vertices of the complete subgraphs are
not shown. For strong coloring, the extra layer of virtual vertices between each subgraph and the
central bottleneck vertex allows any disjoint set of N

2
interactions between the two subgraphs to

be implemented in a single step.
.

Call this system graph Σbottleneck. Σbottleneck has a single vertex bottleneck between its two

symmetric halves. The weak coloring chromatic number can computed to be

χweak(Π(Σbottleneck)) = 2

(
N

2

)2

︸ ︷︷ ︸
paths between

T1, T2

+ N − 1.︸ ︷︷ ︸
paths within
T1, T2

(11.35)

Now consider enumerating the edges of the central virtual vertex so that all edges going to one

half of the graph are even integers and all edges going to the other half are odd integers. With this

labeling, for any choice of N/2 interactions from one half of the graph to the other, one can route

all N/2 interactions through the central vertex simultaneously using strong coloring. Applying
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only weak coloring to implement interactions within each complete subgraphs then gives

χstrong(Π(Σbottleneck)) ≤ N︸︷︷︸
paths between

T1, T2

+ N − 1︸ ︷︷ ︸
paths within
T1, T2

= 2N − 1, (11.36)

which yields χweak(Π(Σbottleneck))
χstrong(Π(Σbottleneck))

≳ N
4

. Such linear-in-N improvement from strong coloring is the

best possible scaling for this ratio as the separation between sequential implementation of all

interaction terms and the best possible parallel scheme is ∼ N .

One should be cautious in interpreting this large separation. In practical settings, intelligent

design of system graphs from the underlying qubit architecture will rule out such large separa-

tions. In practice, more modest, but important, constant-factor improvements between strong and

weak coloring should be expected. In particular, there is no reason why the qubits in the central

virtual vertex of this example should all be grouped into one system-graph vertex—there are no

interactions that require more than a single qubit operator within this vertex. Therefore, a more

intelligent system graph built on the same underlying qubit structure would afford the weak col-

oring problem access to the same performance as the strong coloring problem in our contrived

example, by splitting the central virtual vertex into N/2 vertices.

Consequently, this example also raises the issue of intelligent system-graph design as a

prerequisite to using our algorithms to greatest effect. In Sec. 11.5, we give some more examples

of how system graphs may be constructed from the underlying qubit architectures.
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11.5 Numerical Results

11.5.1 Description of the Algorithm

For more complicated examples, it is necessary to turn to heuristic algorithms to find good

solutions to the parallelization problem in either the weak or strong coloring schemes. Any such

algorithm must perform the following steps: First, it must identify a set P of paths between

interacting vertices. Then, given P , it must construct the corresponding conflict graph, which—

in the case of strong coloring—requires a choice of enumerating the edges of the system graph. It

is known from our analytic results that this choice of enumeration can have a significant impact.

Finally, the algorithm must perform a vertex coloring on the resulting conflict graph, which is

well-known to be an NP-hard problem in its own right.

Our algorithmic approach to these problems is largely a straightforward one. The most

essential and novel aspect of the algorithm relates to choosing the enumeration of edges in an

intelligent way to amplify the improvement from strong coloring over weak coloring as much

as possible. This is important because it is this step that allows one to parallelize simulation

of fermionic Hamiltonians in a way that is aware of the fermion-to-qubit mapping chosen. An

understanding of the advantages afforded by taking this information into account is one of the

primary goals of this [chapter]. An overview of the salient features of the algorithm is provided

here, and the reader is referred to the github repository for access to the full code [158].

In either the weak or strong coloring case, to find a path set P , one can begin by weighting

the edges of Σ to penalize edges that connect to physical vertices since physical vertices are used

in physical interactions and may need to be saved for the implementation of other terms that
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involve them. The exact amount of this penalty is a free parameter of the algorithm. The larger

the penalty, the more the algorithm will prioritize potential for parallelization over minimizing

the Pauli weight of operators. This is because the use of physical vertices may provide shorter

paths and, hence, shorter Pauli strings but those are penalized by the algorithm.

Next the algorithm needs to choose a random ordering of the interaction set T̃ . Given this

ordering, for each interaction τ ∈ T̃ , the algorithm identifies a path as the shortest distance,

weighted path through Σ connecting the relevant vertices. This can be done efficiently in time

Θ
(
(|VΣ| + |EΣ|) log |VΣ|

)
via Dijkstra’s algorithm [292]. Next, the weight of all edges used in

this path are increased and the algorithm proceeds to finding the shortest path for the next τ ∈ T̃

on the reweighted graph. The increase in the weight of the used vertices penalizes paths that do

not find “new” routes through Σ—this is advantageous since paths that traverse the same edge

in Σ are guaranteed to conflict. The exact choice for this penalty is, again, a free parameter of

the algorithm. Due to the sequential nature of this algorithm and the penalties for traversing

previously used edges, different orderings of T̃ will produce different path sets P . Consequently,

one needs to run the algorithm many times to sample a variety of different path sets.

Once P is generated, the algorithm go on to construct the corresponding conflict graph

Π(P). For weak coloring, this is straightforward—if two paths p, q ∈ P share any vertices, the

corresponding vertices in Π(P) share an edge. For strong coloring, whether or not p, q ∈ P

conflict depends on the choice of edge enumeration for the vertices in the paths. This choice of

enumeration is arbitrary, so a wise choice is an enumeration that attempts to minimize conflicts.

In particular, whenever the algorithms finds a path p ∈ P , it loops through the vertices u ∈ p and

enumerates any previously unenumerated edges according to the following rules: If v is the first

vertex in the path and therefore acted on by an operator of type Ãux, it enumerates the outgoing
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edge with the smallest available index. If u is an interior vertex along the path and therefore acted

on by an operator of type ÃxuÃuy, the algorithm enumerates the incoming vertex as the smallest

available index and the outgoing edge as the next smallest available index. Finally, if u is the final

vertex in the path and therefore acted on by an operator of type ÃxuB̃u, the algorithm enumerates

the incoming edge with the largest available index. This method of constructing a choice of

enumeration follows directly from Tab. 11.1 and minimizes conflicts between paths in a greedy

manner. Like the determination of the paths, the outcome of this greedy approach depends on

the initial ordering of the interaction set, so, again, it is advantageous to run the algorithm many

times.

With Π(P) in hand, the algorithm must vertex color it to solve the weak or strong coloring

problem, that is to determine the number of steps required to implement the interactions in T̃ . In

particular, one can make use of a greedy coloring algorithm as shown in Algorithm 4. The greedy

coloring algorithm is guaranteed to satisfy the bound in Eq. (11.22), but its performance can be

much better depending on the ordering of vertices. We take a standard approach of a largest-first

ordering, where the vertices are ordered from the largest to the smallest degree [293]. For vertices

of the same degree, the ordering is random as determined by the order of the initial randomized

interaction list. This largest-first approach often works well in practice, but it is only one option

among many [294].

11.5.2 Analytically Solved Examples Revisited

We now revisit the analytically solved examples of Sec. 11.4. Using the star graph and

complete graph as examples, the algorithm described above is tested for a variety of N ranging
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from 3 to 35. 1000 different random orderings of the interaction list for each N are considered.

As the algorithm is deterministic once a choice of such an ordering is made, this corresponds to

1000 runs of the algorithm. The results are shown in Fig. 11.8.

For the star graph, the algorithm numerically obtains the true chromatic number for both the

weak and strong coloring problem for every ordering of the interaction list. For the weak coloring

problem, this is because the conflict graph is well-colored.7 In particular, the conflict graph is a

co-graph—a class whose members are known to be well-colored [295]. To demonstrate that a

graph is a co-graph, it is sufficient to show that it has no length-4 paths as induced subgraphs.

Such subgraphs do not exist for Πweak(SN). Every vertex u ∈ VΠweak
is either a member of a

complete subgraph KN(N−1)/2 consisting of all vertices whose interactions correspond to two-

mode interactions or its only neighbors are all contained in such a complete subgraph. Therefore,

there exists no set of four vertices whose induced subgraph is a path. While the strong coloring

conflict graph is no longer well-colored, the largest-first vertex ordering ensures successful greedy

coloring for all interaction-list orderings.

On the other hand, for the complete graph, the algorithm fails to always produce colorings

that fully achieve the analytic results. This is because the greedy coloring of the resulting conflict

graphs depends heavily on the vertex ordering. Achieving the optimal coloring requires a highly

fine-tuned construction. Therefore, the generic randomized greedy coloring algorithm is unlikely

to obtain such a coloring as N grows large. Despite these challenges, the coloring algorithm

provides almost optimal results for the complete graph for the graph sizes considered.

Fortunately for this algorithm, many realistic architectures are expected to result in system

7Well-colored graphs are those such that all vertex orderings produce the same number of colors for a greedy
coloring.

213



Figure 11.8: Numerical results for the chromatic number from the weak (blue circles) and strong
coloring (red diamonds) problems for (a) star and (b) complete system graphs with N phys-
ical fermionic modes. For the non-asymptotic analytic results, see Eqs. (11.27)-(11.29) and
Eq. (11.30), respectively. For the complete graph, the numerical algorithm fails to achieve the
analytically determined bounds as obtaining these results requires a highly fine-tuned vertex or-
dering for the greedy coloring algorithm on the corresponding conflict graph.

graphs that are limited by vertex bottlenecks, given practical limitations on the high qubit connec-

tivity required for producing input/output-limited system graphs like the complete graph.8 In the

next section, the weak and strong coloring problems will be investigated on two system graphs

designed from such realistic architectures.

11.5.3 Current Architectures

The algorithm developed in this section can be applied to system graphs designed on ex-

amples of realistic superconducting-qubit architectures. Quantum processors built from super-

conducting qubits have limited connectivity and thus stand the most to gain from optimized

parallelizations. The first example to be studied is a heavy-hexagon qubit architecture as used

by many of IBM’s quantum processors [296]. This architecture has been shown to be favorable

for reducing cross-talk and frequency collisions, while allowing for error correction via a hybrid

8Trapped-ion systems are an exception as they provide all-to-all interactions among pairs of qubits.
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surface and Bacon-Shor code [297]. The second example is a square-lattice qubit architecture

similar to that used by Google’s Sycamore chip [298].

Importantly, qubit architectures are distinct from the system graphs one creates on them.

While the qubit architecture places constraints on the design of a system graph, one is free to cre-

ate many different system graphs on a given quantum processor. In practice, this design problem

can be viewed as one of optimizing the limited resources of a particular quantum processor—

number of qubits, qubit connectivity, circuit depth—to extract a quality simulation of the largest

possible system of fermions. Observe that at the cost of a large circuit depth and high Pauli

weight operators, a simple Jordan-Wigner transformation (in the form of a system graph which

is a line graph) allows one to simulate the most fermions, as no ancilla qubits are needed.

One approach to reduce circuit depths and high Pauli-weight operators is to consider more

general system graphs. Here, qubit connectivity is a key limitation on designing efficient system

graphs if one wants to avoid the need for SWAP operations in the circuit decomposition of the

Hamiltonian-simulation algorithm. In particular, it is desirable to design a system graph so that

1) any qubits that make up a system-graph vertex have linear connectivity for the Jordan-Wigner

encoding of the local Majoranas, and 2) if a pair of vertices are adjacent in the system graph, the

internal qubits associated with that edge are adjacent in the architecture graph.

To apply the algorithm, let us limit ourselves to a single example of a system graph for

each qubit architecture under consideration. In particular, in each case, a system with a total of

49 fermionic modes will be considered. For the heavy hexagon architecture, the system graph

considered is constructed from 65 qubits and mirrors the structure of the underlying qubits. This

is identical to an example considered in Ref. [249]. For the square lattice, the system graph con-

sidered is a triangular tiling of the Euclidean plane and requires 147 qubits. The precise mappings
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from architecture graphs to system graphs for each of these cases are shown in Fig. 11.9.

Given these system graphs, N of the 49 vertices are randomly selected to be physical

vertices for various N between 5 and 35. For each N , 50 random choices of physical vertices

are considered and on each instance, the algorithm is run for 1000 different random orderings of

the interaction set for both the weak and strong coloring problems. The best solution from these

1000 different random orderings is then taken. These results, along with quadratic fits are shown

in Fig. 11.10.

As is seen from the plots, the improvement from strong coloring over weak coloring in

the case of the heavy-hexagon graph is minimal compared to the improvement in the triangular

lattice. This is consistent with the conclusions of Sect. 11.4: strong coloring provides the higher

performance benefit when the size of the edge bottlenecks to routing the paths induced by in-

teractions are much larger than the size of vertex bottlenecks. The triangular lattice has many

more edges per vertex (and correspondingly more qubits) which enable greater parallelization

via strong coloring.

Figure 11.11 shows tradeoffs between the number of qubits and the degree of parallelization

for the various examples considered in this work: the complete graph, the star graph, the heavy-

hexagon graph, and the triangular lattice. While the best balancing of these various tradeoffs

depends on many variables, the triangular lattice serves as a particularly nice example of how a

system graph on a realistic architecture can be subject to significant reductions in circuit depth via

parallelization. While weak coloring alone offers significant performance gains over a sequential

approach, considering the precise details of this mapping via the strong coloring problem is

important for minimizing the circuit depth.
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Figure 11.9: Mappings from architecture graphs to system graphs. On the architecture graph,
qubits are represented by black dots and are grouped into system-graph vertices as denoted by
the gray shading. On the system graphs, square vertices denote virtual vertices and red circular
vertices denote physical vertices. For the numerics, N physical vertices are chosen randomly
from the 49 total fermionic modes.

.
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Figure 11.10: Numerical results for the chromatic number of the conflict graph as a function of
the number of qubits N for (a) the heavy-hexagon system graph and (b) the triangular-lattice
system graph compared with the scaling of the sequential implementation of the Hamiltonian
terms.

.

Figure 11.11: Numerical results on the amount of parallelization for various system graphs. (a)
shows the improvement in the number of steps for strong coloring versus weak coloring. (b)
shows the improvement for strong coloring over a sequential implementation of the interactions
in the interaction list. (c) and (d) show the same as (a) and (b), respectively, but weighted by the
number of qubits in the system graph. When comparing the different system graphs, recall the
size of the complete graph and star graph scale with the number of physical vertices N whereas
the heavy hexagon and triangular lattice do not.
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11.5.4 Local Interactions

A more common fermionic interaction term is nearest-neighbor hopping on a lattice. The

parallelization of this work within the framework of custom fermionic codes can be applied to

optimize simulating this model as well. Consider an interaction graph in the form of a two-

dimensional square lattice of physical fermionic modes with nearest-neighbor hopping and open

boundary conditions,

H =
∑

⟨u,v⟩

κuva
†
uav +

∑

u

κuua
†
uau, (11.37)

for real κuv = κvu, where the sum is over neighbors on the square lattice. Minimizing the

Pauli weight and maximizing the parallelization of such nearest-neighbor hopping terms is the

limiting algorithmic factor for a variety of models of interest, such as the spinless Fermi-Hubbard

model on the square lattice. This problem is well-understood analytically for a variety of specific

fermion-to-qubit mappings [242, 245, 250]. While such analytic approaches to specific problems

are valuable when tractable, the techniques of this work allow for an automated optimization for

arbitrary Hamiltonians and arbitrary system graphs.

We consider this problem for three different system graphs. The first case is a system graph

identical to the interaction graph—a two-dimensional square lattice with all physical fermionic

modes. This case can be directly compared with previous work on this problem. The other two

cases involve placing the physical fermionic modes in the heavy-hexagon and triangular-lattice

system graphs considered above (see Fig. 11.9). The physical modes are embedded such that

nearest neighbors on the square-lattice interaction graph are as close as possible on the system

graph, enabling low-weight Pauli strings. The precise details of this mapping are included with
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the source code as supplemental material [158].

The results for weak and strong coloring on each of these system graphs for a range of

interaction-graph lattice sizes are shown in Fig. 11.12. For each lattice size L × L for L ∈

{4, 9, 16, 25, 36}, 1000 random orders for the interaction list are considered for both weak and

strong coloring. Observe that compared to non-local models, the advantage over weak coloring

due to strong coloring is minimal, independent of system graph. This is expected since all path

lengths are short in this model and, similar to the complete-graph example, parallelization is

limited by the input/output capacity of the physical vertices. However, parallelization provides

significant gains over a naive sequential strategy which scales as ∼ 4N .

In agreement with previous work, an O(1) circuit depth is obtained with increasing lattice

size for the square-lattice interaction graph, and the local fermionic interactions are mapped to

local qubit interactions. The triangular lattice performs similarly although it allows for slightly

improved performance, especially when small numbers of physical fermions are embedded in the

system graph. This is because the triangular lattice offers more paths for implementing interac-

tions than the square lattice. The spike in chromatic number for N = 36 in the triangular lattice

is because a 6× 6 square lattice cannot quite fit in the triangular-lattice system graph considered.

Therefore, some interactions that are local in the interaction graph become non-local in the sys-

tem graph. This effect is even more pronounced for the heavy-hexagon system graph which has

lower connectivity than the interaction graph, and therefore cannot perform as well as the other

system graphs even for small system sizes.
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Figure 11.12: Numerical results for the chromatic number of the conflict graph of the system
graphs noted corresponding to a square lattice with nearest-neighbor hopping for weak and strong
coloring problems.

11.6 Conclusion and Outlook

The amount of parallelization afforded by a system graph is an important target for opti-

mization in the quantum simulation of fermionic Hamiltonians on near-term quantum processors

where circuit depth is expected to be an important limiting factor. In this work, this problem is

mapped to a graph coloring problem and the relationship between parallelization and the system-

graph structure for a variety of representative examples are explored both analytically and nu-

merically. It is found that by considering the details of the fermion-to-qubit mapping, that is to

seek strong coloring, one can often find constant-factor improvements in parallelizability relative

to performing only weak coloring which is a more high-level approach. Both approaches enable

significant reductions in circuit depth relative to a naive sequential approach. The amount of

improvement of both coloring schemes compared with the sequential approach, and the strong

versus weak coloring is a function of system-graph characteristics—for instance, the number

of and the severity of system graph’s vertex and edge bottlenecks—as well as on the choice of
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enumerating edges in the system graph.

A full account of the algorithmic costs for a Hamiltonian of interest would incorporate the

algorithms for parallelization presented here to design a fermion-to-qubit mapping that respects

hardware-specific constraints, such as qubit connectivity, noise tolerance, and implementable cir-

cuit depths. This work considers only one approach to parallelizability offered at the level of

the number of steps needed to implement the Pauli strings that result from a custom fermionic

code. When attempting to fully optimize a simulation algorithm in an architecture-aware manner,

our approach may further be combined with other parallelization schemes, e.g., those based on

fermionic SWAP networks [238–240] or approaches that concern fine-grained details of the cir-

cuit decomposition when the Pauli strings are compiled to basic two-qubit entangling gates [237].

The strong-coloring problem, in particular, depends heavily on the choice of encoding of the lo-

cal Majoranas. While this work only considers Jordan-Wigner encoding of the local Majoranas,

it is known that other choices (e.g. Fenwick-tree encoding [234, 241, 246]) lead to lower Pauli

weights for the local operators—potentially at the cost of reducing the possibility of paralleliza-

tion via strong coloring. In fact, local Majoranas could be encoded differently on different sites to

perform a full optimization at the circuit level. The problem of detailing the strong coloring rules

for other (possibly mixed) choices of encoding the local Majoranas is left to for future studies.

The custom fermionic codes considered in this work, and the generalizations described

above, encompass a broad range of mappings. Nonetheless, these do not exhaust the possibilities

for mapping fermions to qubits. Consequently, one can imagine profitably mapping paralleliza-

tion tasks to graph coloring for other encodings as well. For instance, while weak coloring allows

one to parallelize a Jordan-Wigner encoding (contained in the class of encodings of this work as

a system graph consisting of a line of vertices), another ancilla-free mapping, the Bravyi-Kitaev
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encoding [241], does not allow for this sort of improvement. This is because the structure of

the Bravyi-Kitaev encoding is given by a Fenwick tree [234], where the root qubit of the tree is

non-trivially acted on for every operation, preventing parallelization of the sort we consider here.

We anticipate that applying our tool-set for analyzing parallelizability for Hamiltonian sim-

ulation in conjunction with architectural considerations will be useful for obtaining detailed sim-

ulation costs for other fermionic Hamiltonians not studied in this work. For example, local and

non-local interactions involving four fermionic operators (e.g., Coulomb interactions in quan-

tum chemistry and two-nucleon interactions in nuclear physics) and interactions involving more

fermions (such as three- and higher-body interactions in nuclear physics [299]) can be incorpo-

rated in the parallelization scheme of this work, and lead to improved simulations in the near and

far term. In another interesting direction, one may consider applying the strategy of this work in

designing parallelized simulation steps in connection to system graph and hardware connectivity

to interacting systems of fermions and bosons, such as those of relevance to lattice gauge theo-

ries [300–305]. For example, it would be interesting to thoroughly examine the simulation cost,

considering parallelization potential, of fully fermionic formulations (that can be achieved only

in 1+1 dimensions [306]) and fully bosonic formulations (that can be achieved for certain gauge

theories [307]) of a lattice gauge theory [308]. Finally, in designing system graphs, one may

need to take into consideration the entanglement structure (see e.g., Ref. [309] for a discussion in

the context of quantum fields) of the resulting subgraphs and the associated computational com-

plexity of various simulation steps, such as state preparation, that is closely tied to entanglement

properties.
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Chapter 12: Randomized Measurement Protocols for Lattice Gauge Theories

12.1 Introduction

Measurement in quantum mechanics reveals very limited information regarding the struc-

ture of the underlying quantum state. This has major practical implications, e.g., for variational

near-term quantum-classical algorithms [310–313], the verification of quantum devices [314],

or when detecting entanglement [315] in quantum simulation experiments. Randomized mea-

surement protocols, such as randomized benchmarking [316], classical shadows [21, 317–326],

and entanglement tomography [22, 327–339] are valuable techniques for addressing this prob-

lem. They allow one to estimate many observables from a few measurements [318, 319] or

extract non-linear quantities, such as purities ∼ Tr(ρk), k ≥ 2 and entanglement entropies [329–

332, 340], potentially without the massive overhead of traditional state tomography [341–343],

see e.g. [22] for a recent overview. Many techniques are feasible on noisy, near-term quantum

devices [344–346].

A key application for quantum computing and randomized measurement protocols is sim-

ulating quantum many-body systems, with digital or analog devices based on atomic, molecular

and optical (AMO), and solid-state systems [347–353]. Quantum simulation promises to ad-

dress long standing questions in condensed matter, high energy physics and nuclear physics.

Examples include simulating non-equilibrium evolution and thermalization [354–363], thermal
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Figure 12.1: (a) Illustration of our proposed symmetry-conscious randomized measurement
scheme, which preserves the symmetry structure of states, compared to symmetry-blind ap-
proaches. (b) Applications and benefits include cost reduction when measuring entanglement
and finding classical representations of quantum states, allowing a rudimentary symmetry-based
error mitigation scheme, and enabling symmetry-resolved measurement of entanglement struc-
ture.

systems [364, 365] and quantum phases [366–370]. One important frontier is the study of lat-

tice gauge theories (LGTs) [230, 300–303, 305, 308, 362, 371–415] with intricate entanglement

structures [363, 416–423] and, potentially, emergent topological phases that have applications in

topological quantum computation [271, 424–430].

Randomized measurement protocols are based on changing the basis via unitaries U drawn

from an appropriate ensemble E , i.e. ρ → UρU †, followed by measurement in this basis, and

classical post-processing or quantum variational techniques to determine quantities of interest.1

The effectiveness and cost of a scheme depends on the choice of E and the particular quantities

one wants to compute. For instance, estimating expectation values, Tr[Omρ], of M q-local op-

erators {Om}Mm=1 can be done with qubit-local random rotations, O(3q log(M)) measurements,

and efficient classical postprocessing [318]. For non-linear quantities, i.e. those that depend

on ρk (k ≥ 2), one approach is to choose an ensemble E that forms an (approximate) unitary

k-design [329, 330].

A fundamental problem is that standard randomized measurement protocols do not account

1Schemes using collective measurement on many copies of ρ (e.g. shadow tomography [431, 432]) do not fit into
this class of randomized measurement protocols.
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for the symmetry structure of states, e.g., by randomizing unnecessarily over unphysical bases.

In particular, a (classically known) symmetry Ŝ of ρ =
⊕

s ρs ([Ŝ, ρ] = 0), where s labels

Ŝ-eigensectors, is lost after randomization. Therefore, it is advantageous to perform symmetry-

conscious randomized measurement by using randomizing unitaries such that [U, Ŝ] = 0 for all

U ∈ E . This information is compactly summarized in Fig. 12.1, comparing symmetry-ignorant

versus the symmetry-conscious random circuits U proposed in this manuscript. Our goal is to

systematically study the construction of symmetry-conscious randomizing circuits and their use

cases for exploring physical phenomena. The primary results and findings of our work are as

follows

(a) In Section 12.2, we discuss a comprehensive approach to symmetry-conscious random-

ization for qubit-based models with inherent symmetries. We discuss one application,

symmetry-conscious unitary k-designs, as an approach to global randomization. This of-

fers several advantages, including a significant reduction in measurement complexity and

allowing for symmetry-based error mitigation [395].

(b) In Section 12.3, we focus on a concrete LGT example to demonstrate the application

of symmetry-conscious unitary k-design based randomization. Our main finding is that

symmetry-conscious designs enable the simultaneous measurement of both the distillable

and symmetry components of entanglement, a capability that symmetry-ignorant designs

lack.

(c) In Section 12.4, we present our key result, a protocol designed to detect topological order

(TO) experimentally by assessing the gap of the entanglement spectrum (ES). The ES is a

presentation of a state in terms of an entanglement Hamiltonian in accordance with Li and
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Haldane’s conjecture for TO states [370]. This has attracted significant attention in recent

years, but has so far remained within the realm of theoretical exploration. To address this,

we leverage symmetry-conscious random measurements in combination with entanglement

Hamiltonian tomography techniques. This approach represents a promising step towards

experimental identification of topological phases which have already started to materialize

in experiments [433, 434].

The realization of an approximate unitary k-design is not necessary for our protocol, but

it is a convenient approach to illustrate the scheme given that Haar-random measurement

channels can be easily inverted. Any tomographically complete symmetry-respecting scheme

could serve the same purpose.

Finally, in Section 12.5, we summarize our results and further discuss applications and exten-

sions. The manuscript is supplemented by several appendices where we discuss various details

of the employed numerical techniques.

12.2 Symmetry-Conscious Randomization

We begin with a general description of symmetry-conscious unitary circuit construction—

i.e., circuits that preserve the symmetry structure of an input state ρ =
⊕

s ρs, U =
⊕

s Us. Our

approach, partly inspired by Refs. [329, 330], uses the fact that symmetry-conscious randomiza-

tion can be performed using local generators that are present in the Hamiltonian of a given system.

The first step is to identify local q-qubit generators (1 ≤ q ≤ m) for symmetry-conscious Haar

random unitaries from amongst the m-body terms of the relevant physical Hamiltonian H . For

pragmatic reasons, such terms are good candidates for experimentally-implementable symmetry-
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conscious randomization: if an experimentalist can engineer the local Hamiltonian terms for the

purposes of (Trotterized) time evolution, with adequate control of coupling strengths, they can

also perform randomization generated by such terms. The next step is to ensure that such terms

can generate (Haar-)random unitaries over an m qubit Hilbert space within every symmetry sec-

tor. The goal is to use this m-local symmetry-conscious randomization as a building block for

randomization over the full Hilbert space. General U(2) rotations are in either a ‘ZXZ’ or ‘ZYZ’

generator decomposition with angles α, β and γ (and a global phase). In an m-qubit circuit

one must identify the corresponding operators that act on q qubits and which ‘embed’ 1-qubit

rotations in every symmetry sector.

Different possible families of circuits can be generated by different choices of arranging

these blocks within a larger circuit; the m qubits interacting via a m-local Hamiltonian term,

need not match the same (typically, geometrically local) m qubits in the corresponding Hamil-

tonian. While we focus primarily on generating families of unitary circuits that form symmetry-

conscious unitary k-designs, one could also consider shallower circuits, e.g., for measuring local

observables.

To leverage global Haar randomness, we determine if the selected local, symmetry-respecting

terms are sufficient to generate global, symmetry-respecting Haar random unitaries within each

symmetry sector. This is not generically the case [435]. Verifying that sufficient randomization is,

indeed, possible with the selected set of terms must be done on a case-by-case basis and accounts

for the primary challenge in extending this approach to new systems. Here, we will demonstrate

that such local terms are sufficient to generate approximate unitary k-designs for a few different

examples of interest (with an emphasis on LGTs).
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12.2.1 A Symmetry-Conscious Unitary k-design Example: Particle Number

Symmetry

We illustrate our approach first for spin systems with particle number symmetry, ŜN ≡
∑

j(σ
z
j + 1)/2, where j labels a lattice site and σaj (a = x, y, z) are Pauli matrices acting on the

site. We emphasize that symmetry-conscious randomization schemes for particle number sym-

metry have been considered before [321, 435, 436], but it serves as a simplified setting in which

to develop the particular approach we will take to symmetry-conscious randomized measurement

protocols. The lessons we learn here can then be extended to LGTs.

Symmetry-conscious randomization is achieved with components consisting of (m=2)-

qubit gates of the form

u ≡




eiθ

[
u1

]

eiϕ



, (12.1)

where the rows and columns label (from top down) the ↓↓ (0-particle), ↑↓, ↓↑ (1-particle) and ↑↑

(2-particle) sectors; [u1] indicates the 2× 2 (ZY Z-decomposition) matrix structure,

[u1] ≡



ei(α+γ) cos(β) e−i(α−γ) sin(β)

−ei(α−γ) sin(β) e−i(α+γ) cos(β)


 . (12.2)

If α, β, and γ are selected such that [u1] is drawn from a circular unitary ensemble (CUE) [332],

θ and ϕ are drawn evenly from [0, 2π), then Eq. (12.1) is a block-structured unitary acting Haar-
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Figure 12.2: Random circuit scheme for systems with particle number symmetry. Blue squares
connected by black lines represent the unitary u in Eq. (12.3).

randomly on the blocks of equal particle number.2 It has the following circuit realization:

j1 ei
α
2
σz

U(β)
ei

γ
2
σz σx σx

j2 e−i
α
2
σz

e−i
γ
2
σz P (ϕ) σx P (θ) σx

(12.3)

where Uj1,j2(β) ≡ exp{iβ
2
(σyj1σ

x
j2
− σxj1σ

y
j2
)} and P (x) = diag(1, exp{ix}) is the phase gate.

In line with our general approach, the intuition behind Eq. (12.3) comes from inspecting

a particle number conserving Hamiltonian: Uj1,j2(β) is essentially a hopping term between j1

and j2 with amplitude β/2, the z-rotations before and after are density-density interactions with

amplitudes α/2 and γ/2, respectively. Together, these generate SU(2) in the 1-particle block.

The relative phases θ and ϕ are because we wish to embed U(2), not SU(2), and because the 0-

and 2- particle blocks should be U(1)-randomized. (A global phase is irrelevant.)

As a first application, we now focus on global randomization, arranging these compo-

nents into approximate unitary k-designs. To do so, we construct an ensemble E of NE n-

qubit symmetry-conscious random circuits, as shown in Fig. 12.2, consisting of ℓ layers where

n(n− 1)/2 pairs of qubits ((n− 1)(n− 2)/2 if n is odd) are randomly connected by Eq. (12.1).

For sufficiently large ℓ and NE , this realizes an approximate unitary k-design in every symmetry

2An overall phase of the 2×2 CUE matrix was re-expressed in the 0-, and 2-particle sectors by partially absorbing
it into a global phase.
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block s.

We verify that such circuits yield an approximate k-design numerically for k = 2 by con-

sidering the following moments, separately for every s,

(Bs)i′j′k′l′ijkl ≡ ⟨U s
ijU

s∗
i′j′U

s
klU

s∗
k′l′⟩ −

d2s
d2s − 1

[
(As)i′j′ij (As)k′l′kl + (As)k′l′ij (As)i′j′kl

]
, (12.4)

where ⟨. . . ⟩ = (1/NE)
∑

U∈E . . . is the E-ensemble average, ds is the dimension of sector s, and

(As)klij ≡ ⟨U s
ijU

s∗
kl ⟩. For a 2-design it holds that

(Bs)i′j′k′l′ijkl

2-des.
= −δii′δkk′δjl′δlj′ + δik′δki′δjj′δll′

ds(d2s − 1)
, (12.5)

while for a 1-design (As)klij = δijδkl/ds [437, 438]. We numerically simulate an ensemble of

NE circuits and compute their deviation from a 2-design ϵ as the absolute difference between

Eq. (12.5) and Eq. (12.4), averaged over indices and multiply by ds(d2s−1) to make ϵ dimension-

independent. Up to a rescaling of the approximation ratio, this choice of quantifying the error

between our random ensemble and a 2-design is equivalent to other standard choices, such as the

diamond norm or the the frame potential. This is demonstrated in Appendix H.1.

Fig. 12.3(a) displays the sizeNE of a circuit ensemble (with ℓ = 128 layers) to approximate

a 2-design better than ϵ = 10−2 for all particle number blocks of n = 4, 6, 8, 10 qubit systems.

The sampling complexity scales with the block-dimension ds as

NE ∼ dξs , ξ = 2.1± 0.2 , (12.6)

consistent with ξ = 2. Error bars are found by comparing with the ℓ → ∞ limit (obtained by
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Figure 12.3: (a) Particle number-respecting random circuits NE required to approximate a 2-
design with precision better than ϵ = 10−2 in every symmetry sector (ℓ = 128) for a total number
of sites N = 4, 6, 8, 10. Inset: Relative sampling cost reduction compared with a symmetry-
ignorant scheme. (b) Measurements NM required to estimate sector-wise 2-purities with preci-
sion better than ϵ = 0.05, for fixed NE = 1, 428 and ℓ = 128. Here, the states considered are
reduced density matrices on subsystems of dimension NA = N/2 (i.e. on a bipartition of the
lattice.)

directly sampling Haar random unitaries in each symmetry block); the fit error for ξ is determined

by varying the fit regime, leaving out the largest few blocks, and by varying the required ϵ by

one order of magnitude. The inset of Fig. 12.3(a) shows the relative reduction rs in sampling

cost compared to using a symmetry-ignorant scheme, where rs := (ds/dH)
ξ. Largest gains are

found away from half filling, which can be understood by comparing dH = 2n to ds =
(
n
s

)
=

n!/(s!(n − s)!) and using Stirling’s approximation to find that rs ∼ (ds/dH)
ξ ≈ [2( s

n
)

s
n (1 −

s
n
)1−

s
n ]−nξ/(2πn s

n
(1− s

n
))ξ/2, an exponential (in n) cost reduction for s≪ n/2 (≫ n/2).

A primary concern for constructing symmetry-conscious random circuits is circuit complex-
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ity—in particular, the required number of layers ℓ needed to reach a given precision as a function

of the system size. To investigate this, we conducted numerical simulations on systems involving

up to n=10 qubits. In Appendix H.2, we provide a detailed account of the number of layers nec-

essary to represent a k-design (specifically a 2-design), comparing our findings with exact Haar

random sampling results. For the system sizes we can consider numerically this convergence is

very rapid. For instance, for n = 10 qubits with NE = 8192 random unitaries the difference

between sampling from our circuits versus sampling directly from the CUE is already very small

within ℓ ≈ 15 layers for all symmetry sectors. The exact value of this error floor is set by NE ,

falling off with the expected ∼ 1/
√
NE scaling, see Appendix H.2. As our numerical methods

are restricted to relatively small systems and considering that k-designs serve as one application

rather than the core focus of our work, we refrain from asserting an exact analytical form of the

error scaling that holds true for large n. Nonetheless, it seems reasonable to conclude from our

data that the behavior scales as a low-degree polynomial, and that symmetry-conscious circuits

require comparable depths when compared to symmetry-agnostic circuits. For convenience, we

continue to work in the large layer limit, in practice ℓ = 128, thus massively overdoing the actual

number of layers needed. We will return to analytic estimates in future work.

12.2.2 Estimating k-purities from k-designs

Next, we explore measuring k-purities using a prototypical model with particle number

symmetry; we consider the following spin Hamiltonian in (1 + 1)d,

H =
1

2a

N−1∑

j=0

(σ+
j σ

−
j+1 + h.c.) +m

N−1∑

j=0

(−1)jσ+
j σ

−
j , (12.7)
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on a lattice withN sites labelled by j ∈ [0, N−1] and with periodic boundary conditions (PBCs);

σ±
j ≡ 1

2
(σxj ± iσyj ), a is the lattice spacing and m a mass term. Eq. (12.7) conserves particle

number, [H,
∑

j
1
2
(σzj+1)] = 0. As inputs for the particle number symmetry-conscious scheme in

Fig. 12.2, we numerically determine ground states of H via exact diagonalization [439]. Because

these are simple, unentangled computational basis states in the limit 1/2a → 0, we work in the

opposite limit with m · a = 0.05 (the ground states are half-filled). We focus on a subsystem A

with NA = N/2 sites. Symmetries of ρA are particle number s ≡ nA ∈ [0, NA] in the subsystem,

noting that if particle number is fixed globally, ρA is block-diagonal, [ρA,
∑NA−1

j=0
1
2
(σzj +1)] = 0,

i.e. ρA =
⊕

s ρA,s.

We extract k-purities, Tr(ρkA,s) by measuring the probabilities PU(b, s) of bitstring b (and

symmetry sector s) with NM shots in the basis defined by the random unitary U ; k-purities for

k ≥ 2 are directly related to the k-Rényi entropies S(k)
A,s ≡ [1/(1− k)] logTr(ρkA,s). Following the

approach taken in Refs. [329, 330, 440], stochastic moments ⟨PU(b, s)k⟩ ≡ (1/NE)
∑

U∈E PU(b, s)
k

are related to k-purities via [330],

⟨PU(b, s)k⟩ =
1

Dk

∑

{ai}k∈N0

C{ai}k

k∏

j=0

Tr
[
ρjA,s

]aj (12.8)

where {ai}k ≡ a1, . . . , ak ∈ N0 with
∑k

j=1 jaj = k, Dk ≡
∏k−1

j=0(ds + j) and C{ai}k ≡

k!/
∏k

j=1(j
ajaj!); ⟨PU(b, s)k⟩ and Tr

[
ρkA,s

]
refer to the k-moments of the probabilities and k-

purity per symmetry sector s, respectively, with
∑

b∈s PU(s, b) = Tr[ρA,s] ≡ ps ≤ 1 and

∑
s ps = 1. We assume an ideal quantum machine, and the total measurement cost is NM ·NE .

In Fig. 12.3(b), we show the required shot number NM to measure S(2)
A,s with precision

better than ϵ = 0.05, for fixed NE = 1,428 and ℓ = 128 layers, comparing different system
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sizes and symmetry sectors. The fit reveals an approximately linear dependence on ds, error bars

indicate standard error of the mean for seven independent trials. (In Fig. H.3 of Appendix H.2

we investigate the NE dependence in the infinite shot limit.) Together, our results show that the

cost of the symmetry-conscious approach, NE ·NM , is proportional to ds instead of dA (the size

of the subsystem). In many cases ds ≪ dA, yielding a significant advantage. We shall see that

this advantage is exponential for lattice gauge theories.

12.3 Lattice Gauge Theory Entanglement

12.3.1 Z2 LGT in (1+1)d

Lattice gauge theories (LGTs) are systems with an extensive number of local constraints

in the form of Gauss laws defining a physical sub-Hilbert space. One of the key applications is

the simultaneous measurement of distillable and symmetry components of entanglement. This

capability is exclusive to symmetry-conscious designs and is not attainable through symmetry-

ignorant schemes; it would otherwise require full state tomography. We consider Z2 LGT coupled

to staggered matter in 1 + 1 dimensions, with Hamiltonian,

H =
1

2a

N−1∑

j=0

(σ+
j σ̃

x
j,j+1σ

−
j+1 + h.c.) +m

N−1∑

j=0

(−1)j
2

(1 + σzj ) + e

N−1∑

j=0

σ̃zj,j+1, (12.9)

Gauss laws

Ĝj ≡ eiπQj σ̃zj−1,jσ̃
z
j,j+1, (12.10)

and periodic boundary conditions (PBC), where j labels a site and [H, Ĝj] = 0; σbj (σ̃bj,j+1),

b = x, z, are Pauli operators residing on the sites (links) of the lattice and representing the matter

235



Figure 12.4: (a) Illustration of Z2 LGT in 1+1 dimensions, depicted is an “even” site, (−1)j = 1,
where spin up (down) is the presence (absence) of a Z2 charge, Qj = +1 (0). (b) Single layer of
a random-measurement circuit with non-local gates 2 + |j1 − j2| qubit gates, an extension of the
strategy in section 12.2. (c) Near-term strategy based on 3-qubit unitaries. (d) Illustration of the
symmetry structure of ρA.

(gauge) degrees of freedom of the theory; m is a mass parameter, e the Z2 coupling, a the lattice

spacing, σ±
j ≡ (σxj ± iσyj )/2, and Qj ≡ (σzj + (−1)j)/2 is the Z2 charge. This is compactly

summarized in Fig. 12.4(a) where Gauss law eigensector with Ĝj|ψ⟩ = +1|ψ⟩ are physical.

Fig. 12.4(b) and (c) depict random measurement strategies for this model, we investigate a

NA site subsystem with boundary conditions ending in a matter site. The first strategy, (b), is an
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Figure 12.5: (a) Sector-wise k-purities of the Z1+1
2 ground state measured based on Eq. (12.8) as a

function ofNE , forNA = N/2 = 5,m ·a = 0.1, e/m = 8 and ℓ = 32. (b) Von Neumann Entropy
from k-purities/Rényi entropies using a 4th order finite-difference approximation of Eq. (12.14).
(c) Symmetry- (symm.), distillable (dist.) and total entanglement entropies as a function of e/m
for NE=2000, m · a = 0.1 and ℓ = 32. Symbols represent random measurement results, dotted
lines represent approximating SE by (exact) Rényi-entropies up to k = 4, solid lines are exact
results.

extension of the circuit in Section 12.2, Eq. (12.3), made gauge invariant by introducing Wilson

lines connecting sites j1 and j2,

Wj1,j2 ≡
j2−1∏

j=j1

σ̃xj,j+1 (12.11)

and with circuit representation,

j1 ei
α
2
σz
j1

Wj1,j2(β)
ei

γ
2
σz
j1 σx σx

j2 e−i
α
2
σz
j2 e−i

γ
2
σz
j2 P (ϕ) σx P (θ) σx

(12.12)

where Wj1,j2(β) ≡ exp{iβ
2
(σyj1Wj1,j2σ

x
j2
− σxj1Wj1,j2σ

y
j2
)}; the angles α, β, γ, ϕ and θ are ran-

domly drawn as before. The abbreviated middle qubit bundle in Eq. (12.12) refers to qubits

representing gauge links (orange in Fig. 12.4), j1 and j2 start and end on matter sites (blue in

Fig. 12.4). This results in a 2 + |j1 − j2| qubit unitary which is not a feasible strategy near-term.

Because of this we will focus on a 3-qubit unitary strategy, Fig. 12.4(c), at the cost of somewhat
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deeper circuits to obtain k-designs. We demonstrate numerically that these circuit form approx-

imate 2-designs in Appendix H.3, and focus here on measuring entanglement. We note that (b)

and (c) generate k-designs in every symmetry sector, despite the fact that no explicit 2-qubit en-

tangling operation is performed between gauge sites (orange). This is a consequence of gauge

symmetry: For this simple model the gauge link degrees of freedom are not truly independent

because they could have been eliminated using Gauss’ law.3

12.3.2 Measuring Distillable and Symmetry Components of Entanglement

We now put our randomizing circuits to use by demonstrating their utility for determin-

ing the entanglement structure of ground states. In the literature, this work included, the term

“entanglement structure” is used fairly ambiguously to denote anything characterizing entangle-

ment beyond entanglement entropies. This includes the separation of entanglement entropies

into distillable and symmetry entanglement, but, more generally, also includes the structure in

terms of an entanglement Hamiltonian, eigenvalue spectrum (the so-called Schmidt spectrum),

and symmetries of a reduced density operator. We will consider all of these in this section.

In particular, we consider a bipartition ρA ≡ TrĀ(ρ) of the lattice with NA ≡ N/2 sites.

As before, ρA is block-diagonal in particle number nA (i.e., [ρA,
∑NA−1

j=0 (1 + σzj )/2] = 0) but

additionally has symmetries beyond those of the non-gauge spin model. They are illustrated in

Fig. 12.4(d): Because of Gauss’ law, on the right (left) boundary j = jR ≡ NA (j = jL ≡ 0),

3A caveat is that with PBCs a gauge zero mode cannot be integrated out. A k-design acting on the full system,
not just a subsystem, would include a modification which depends on how the remaining bosonic mode is digitized;
see e.g. [441, 442] for bosonic random measurement schemes.
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out-going (in-going) electric fields can be written as

σ̃zj,j+1 = exp{iπQj}σ̃zj−1,j . (12.13)

These operators are symmetries of ρA (i.e. [σ̃zjR,jR+1, ρA] = [σ̃zjL−1,jL
, ρA] = 0) if ρ is physical

(i.e. Gauss’ law respecting) and result in a four-block symmetry structure. Together, we label the

sectors as s ≡ nsL,sRA where sL/R = ↑/↓ and nA ∈ [0, NA] is particle number.

In Fig. 12.5(a), we show k-purities, Tr[ρkA,s] reconstructed by inverting Eq. (12.8), measured

for N = 10 (NA = 5), m · a = 0.1, e/m=8 and ℓ = 32. We plot them as a function of NE ;

measurements are obtained in the infinite shot limit (NM →∞). The k = 1 result ps ≡ Tr[ρA,s]

is recovered exactly by design, higher (k ≥ 2) purities are recovered for sufficiently large NE

(data is shown up to NE = 214). Not shown is the cost in NM to obtain constant error which, as in

Sect. 12.2, scales with ds. In Fig. 12.5(b), we estimate the von-Neumann entropy per symmetry

block,

Ss ≡ Trs[ρ̄A,s log(ρ̄A,s)] = − lim
k→1+

d

dk
Trs[ρ̄kA,s], (12.14)

where ρ̄A,s ≡ ρA,s/ps. We make use of a 4th order finite-difference approximation of the deriva-

tive to derive Eq. (12.14) from the measured k-purities; error bars are obtained from comparing a

4th and 3rd order derivative. Finally, Fig. 12.5(b) shows the decomposition of the von-Neumann

entropy, S = −TrA[ρA log(ρA)] into a symmetry- (‘classical’ entanglement) and distillable com-
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ponent, Ssymm. + Sdist.,

Ssymm. ≡ −
∑

s

ps log(ps) , Sdist. ≡
∑

s

psSs , (12.15)

as a function of e/m and for m · a = 0.1.

Finally, we note that a difference in the number of unitaries required for approximating a

2-design versus the seemingly lower requirements for measuring 2-fidelities evident in Fig. 12.5.

It is important to note that the accuracy of reproducing the latter is inherently dependent on the

state itself. In contrast, the analysis we perform in section 12.2 provides an upper bound, ensuring

convergence for any input state.

12.3.3 Classical Shadows

Next, we explore classical representations of ρA, starting with the classical shadow for-

malism of [318]. The basic idea is to randomize ρA → UρAU
† and perform a computational

basis measurement yielding a bitstring b from which the sector s can be read off. A symmetry-

conscious shadow is U †
s |b, s⟩⟨b, s|Us, where the subscript s indicates that one works in block s

with dimension ds. The ensemble of random rotations yields a CUE-random quantum channel

M[ρA] =
⊕

sMs[ρA,s], and with many measurements and, consequently, many shadows one

obtains classical sector-wise state representations by taking the expectation value

σ̄A,s ≡ E
[
M−1

s

(
U †
s |b, s⟩⟨b, s|Us

)]
, (12.16)
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Figure 12.6: (a) Bottom: Shadow-reconstructed symmetry-resolved Schmidt spectrum, m · a =
0.05, e/m = 1, ℓ = 32 and NS = 217. Inset: Full spectrum. Top: Probability per sector
ps. (b) Sector-wise relative entropy S(ρ̄A,s||σ̄A,s) between (normalized) exact ρ̄A,s and shadow-
reconstructed reduced density matrices σ̄A,s, as a function of shadow number NS with m · a =
0.05, e/m = 1 and ℓ = 32.

where E[. . . ] ≡ (1/NS)
∑NS−1

i=0 [. . . ] is the NS shadow average andM−1
s (X) ≡ (ds + 1)X −

Trs[X] Is; Trs and Is are the sector-wise trace and identity, respectively. The bar indicates nor-

malization, i.e. σ̄A,s ≡ σA,s/ps, Trs[σ̄A,s] = 1, ps ≡ Trs[σA,s] is simply the number of shadows

measured in one sector relative to NS .

Fig. 12.6 compactly summarizes the results of this analysis, showing the symmetry-resolved

Schmidt spectrum of ρA in (a), comparing exact results (empty squares) versus shadows (filled

triangles) for m · a = 0.05, e/m = 1, ℓ = 32 and NS = 217. The eigenvalue spectrum is well

reproduced down to Ps,λ ≈ 10−2 − 10−3; the inset shows the full spectrum and the top of (a)
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Figure 12.7: (a) Illustration of Z2
2+1 LGT, including Hilbert space and Gauss law constraints

Gj . (b) Random measurement circuits: We work with an even-odd alternating layers consist-
ing of randomly placed ‘electric’ rotations Rz(α), Rz(γ) and plaquette rotations U□(β) (orange
squares), approximating k- designs for sufficient circuit depth. (c) The symmetry structure of
ρA originates from Gauss laws at entanglement boundaries and a non-local ‘ribbon’ operator V A

x

spanning the two entanglement cuts.

the accurately recovered probability for each block, ps. Fig. 12.6(b) shows the relative entropy,

S(ρ̄A,s||σ̄A,s) ≡ Trs[ρ̄A,s log(ρ̄A,s)−ρ̄A,s log(σ̄A,s)], between exact ρ̄A,s and shadow-reconstructed

σ̄A,s, as a function of shadows per sector ps · NS .4 The fit (black curve) indicates approximate

power law ∼ (psNE)
− 1

2 convergence. We note that automatically fewer shadows are sampled in

less important sectors.

While Z1+1
2 LGT serves as a useful case study, we next consider 2 + 1 dimensions where

our ability to extract LGT entanglement structure provides a window to studying topologically

ordered systems. We add that symmetry-conscious shadows based on deep scrambling k-designs

are not ideal for estimating local observables, a single layer scheme is better suited for this

task [444].
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12.4 Experimental Verification of Topological Phases

Finally, our scheme can facilitate the experimental identification of topological phases,

an inherently difficult task because of the non-detectability of such phases by local measure-

ments [433, 434]. Our proposed strategy is to combine symmetry-conscious randomization with

classical shadow or entanglement Hamiltonian tomography to measure the entanglement gap of

topologically ordered states, drawing on the foundational work by Li and Haldane [370].

For convenience, we will continue utilizing k-designs in a large layer limit—much larger

than necessary. It is important to reiterate that these choices are not integral to our protocol but

are adopted for illustration and convenience, because of the simple channel inversion associated

with them for classical shadows and for easier comparison across different schemes. Any tomo-

graphically complete scheme is suitable for this task, including shallow depth circuits that are

more likely to be realistically employed in near-term experiments.

We focus on a model related to the toric code, used in [433], Z2 LGT in (2+1)d spacetime

dimensions (Z2
2+1). This model is graphically illustrated in Fig. 12.7(a), consisting of spin 1/2

degrees of freedom placed on the links (j, b) of a two-dimensional rectangular Nx × Ny lattice,

where j = (jx, jy) and b = x, y is the direction of a link. The Hamiltonian is given by

H = −K
∑

j

σxj,xσ
x
j+x̂,yσ

x
j+ŷ,xσ

x
j,y − g

∑

j,b

σzj,b , (12.17)

4Because the average shadow density matrix at finite NS might not be positive definite, we follow the regular-
ization strategy of [443] to project onto a positive definite matrix. The error of the scaling exponent includes an
estimate of the regularization dependence, estimated by comparing with replacing log(·)→ 1

2 log (·2).
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and superselection sectors are determined by Gauss laws ([H, Ĝj] = 0),

Ĝj ≡
∏

l∈+(j)

σzl , (12.18)

where the product is over neighboring links to each lattice site j, see Fig. 12.7(a) for illustration

where l runs over links labelled (1,2,3,4); physical states obey Ĝj|ψ⟩ = +1|ψ⟩. We assume

periodic boundary conditions along the x-direction, and fixed or periodic boundary conditions

(BCs) in the y-direction; for fixed BCs, Eq. (12.18) involves three links at the y-boundary.

Our primary result for this model, and, consequently, for the [chapter], is to demonstrate

that symmetry-respecting randomized measurement schemes enable an appealing and experimen-

tally tractable route to verifying topological order. Ultimately, we shall see that by leveraging the

approach known as entanglement Hamiltonian tomography (EHT) [336, 338, 339] and an ansatz

for the Entanglement Hamiltonian inspired by the Bisognano-Wichmann theorem [445, 446],

we can accurately extract much of the Schmidt spectrum of reduced density matrices ρA of the

ground state in this model, allowing us to detect topological order via the presence of a so-called

‘entanglement gap’ in the spectrum.

12.4.1 Symmetry-Respecting Randomized Circuits

We are interested in the entanglement properties of ρA ≡ TrĀ(ρ), where A is a bipartition

obtained by separating the lattice along the x-direction, with entanglement cuts at jx = 0 and

jx = NA
x − 1 so that Nx = NA

x + N Ā
x . The boundary is such that system A contains the y-

direction links at jx = 0 and jx = NA
x − 1, see Fig. 12.7(c) or [363] for more details, with

N□ = (NA
x − 1)×Ny plaquettes (2NA

x Ny −Ny −NA
x qubits) in A. We seek a gauge invariant,
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symmetry-respecting family of random circuits that form k-designs acting on every symmetry

sector of ρA. Our ansatz is illustrated in Fig. 12.7(b), made of alternating even-odd half-layers,

consisting first of Rz(α) ≡ exp{iασzi } rotations randomly placed at one side i ∈ {a, b, c, d} of

a plaquette (orange squares), followed by U□ ≡ U□(β) ≡ exp{iβσxaσxb σxc σxd}, and again by a

Rz(γ) ≡ exp{iγσzi }, placed at the same random i ∈ {a, b, c, d}. For every plaquette, the angles

α, β, γ are drawn according to a ZXZ decomposition of a CUE matrix,

UCUE ≡ eiδ



ei(α+γ) cos β ie−i(α−γ) sin β

iei(α−γ) sin β e−i(α+γ) cos β


 , (12.19)

where the phase δ is irrelevant. In Appendix H.4, we verify numerically that these random circuits

form an approximate unitary 2-design (k-design).

Before continuing, we discuss the symmetries of ρA ≡ TrĀ[ρ], depicted in Fig. 12.7(c).

The Gauss laws at entanglement boundaries allow us to write

σz4 = σz1σ
z
2σ

z
3 . (12.20)

Here, σz4 is the ‘electric field’ operator just outside A, and σz1σ
z
2σ

z
3 is just inside A. For all

2Ny boundary sites, the operator σz1σ
z
2σ

z
3 is a symmetry of ρA, i.e. [σz1σ

z
2σ

z
3, ρA] = 0, if ρ is

physical (i.e. Gauss law respecting). We label simultaneous eigensectors of all Eq. (12.20) as

s ∈ {↑, ↓}22Ny ; an example is s = ↑↑ ↓↑ (for Ny = 2) where the first Ny bits are the eigenvalues
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Figure 12.8: (a) Sector-wise k-purities of ρA of the Z2+1
2 ground state, from Eq. (12.8), for

Nx × Ny = (3 + 5) × 2, ϵ=0.1 and ℓ=64 layers and fixed BC in y. (b) Bottom: Shadow-
(NS = 216) versus BW-EHT-reconstructed (NE = 50, NM = 1024) Schmidt spectrum Ps,λ; with
Nx × Ny = (3 + 5) × 2, ϵ=0.2 and ℓ=64. Top: probability per sector ps; inset: entanglement
spectrum ξs,λ = − log(Ps,λ). (c) Entanglement gap ∆ξ between ‘low- and high-energy’ parts of
the ES as a function of ϵ, reconstructed using the BW-EHT scheme, for Nx ×Ny = (3 + 3)× 2
(PBC in y), NBW = 50, Nshots = 1024, and ℓ = 64. A horizontal red line is the infinite
volume limit, ϵc = 0.33 ± 0.01. Right: Symmetry-resolved Entanglement spectra ξs,λ for ϵ =
0.075, 03, 0.5.

of Eq. (12.20) at jx = 0 and the other Ny at jx = NA
x − 1. Additionally, a ‘ribbon’ operator

V A
x ≡

∏

l∈C

σzl (12.21)

commutes with ρA, [ρA, V A
x ] = 0, where l ∈ C indicates the links intersected by a contour C

through the centers of plaquettes, from one boundary to the other in an arbitrary path, see the

green dashed line in Fig. 12.7(c). For fixed y-BCs V A
x is not independent (it is determined by

fixing all sectors Eq. (12.20)), but for y-PBC its eigensectors are independent and labelled by an

additional ↑/↓, so that s ∈ {↑, ↓}22Ny+1
.
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12.4.2 Classical Shadows

As a warm-up, we first study again k-purities for the new model, thereby verifying correct-

ness of the randomization, before moving on to reconstructing a classical shadow representation

of the state that we will use to infer the presence or absence of TO. In Fig. 12.8(a) we display

k-purities Tr[ρkA,s] (k = 1, 2, 3, 4) of the Z2+1
2 ground state at ϵ ≡ g/K = 0.1, following the

approach outlined in Sect. 12.3, as a function of NE and in the infinite shot limit (NM → ∞),

with fixed y-BCs, Nx×Ny = (3+5)×2 and ℓ = 64. As before, the k = 1 results, ps = Tr[ρA,s],

are exact by design while k = 2, 3, 4-entropies are reproduced with increasing NE .

Finally, aiming at reconstructing the entanglement spectrum from classical shadows to di-

agnose TO, in Fig. 12.8(b), we show the Schmidt spectrum Ps,λ for ϵ = 0.2, comparing shadow-

reconstructed (NS = 216 = 65, 536, triangles) versus exact results (squares). Different colors

represent symmetry sectors s with weights ps ≡ Trs[ρA,s] in the top panel. Large Schmidt values

are well reproduced down to approximately 10−2, beyond which we observe significant devia-

tions that prevent us from reliably determining the entanglement gap.

12.4.3 Detecting Topological Order Through Entanglement Hamiltonian To-

mography

Aiming at higher precision, we explore an alternative approach, Entanglement Hamiltonian

Tomography (EHT) [336, 338, 339]. The basic idea is to parameterize the reduced density matrix
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by an Entanglement Hamiltonian (EH),

HA = − log [ρA] . (12.22)

A (heuristic) parameterization of ground state EHs, inspired by the Bisognano-Wichmann (BW)

theorem [445, 446], is

HA ≡ HA[{βO}] =
∑

O

βOHO , (12.23)

where HO are the local operators comprising the physical Hamiltonian, Eq. (12.17), and βO a

local ‘temperature’, varying with the distance ofO from the entanglement cut(s) (also depending

on jy if translation invariance in y is broken, i.e. for fixed y-BCs). The applicability and accuracy

of this ansatz was investigated for Z2+1
2 in [363].

To extract the {βO}, we follow [336] and first measure probabilities PU(b, s) in NE random

bases and with NM shots each. We then minimize

∑

b

〈(
PU(b, s)− Trs

[
ρ̄A,sUs|b, s⟩⟨b, s|U †

s

])2〉
E
, (12.24)

with respect to {βi} via classical post-processing, where ρ̄A,s ≡ ρ̄A,s[{βO}] ∼ exp{−HA,s[{βO}]},

normalized so that Trs[ρ̄A,s[{βO}] = ps. HA,s[{βO}] ≡
∑

O βOHs,O is the EH with Hs,O re-

stricted to a symmetry sector s. Because the BW optimization is performed sector-wise, matrices

of size ds are involved, versus the dimension of A, dA. In the infinite measurement limit, the

optimization will yield one universal set {βO} for all s, but in practice we work with normal-

ized ρ̄A,s ≡ ρA,s/ps and P̄U(b, s) = PU(b, s)/ps, so that the extracted {βO,s} depend on that

248



normalization and differ from {βO}, see Appendix H.4 for details.

Results of the BW-EHT-optimization for the Schmidt spectrum Ps,λ are displayed as dia-

mond symbols in Fig. 12.8(b) along with shadow results, for NE = 50 and NM = 1024. Despite

comparable cost (NE · NM = 51, 200) relative to the classical shadow approach (NS = 216 =

65, 536), BW-EHT reproduces the eigenvalue spectrum much more accurately; values as small

as 10−6 are approximately recovered and even eigenvalues as small as 10−11 are not far off. The

inset of Fig. 12.8(b) shows the entanglement spectrum (ES), i.e. the spectrum of the EH, which is

also well reproduced. The apparent advantage of the BW-EHT approach comes at the expense of

generality, it is tailored for ground states (it can be extended to non-equilibrium states [336, 410])

while classical shadows work regardless of the state.

Enabled by the performance of the BW-EHT optimization, we focus on a practical appli-

cation: detecting topological order (TO) of quantum states. Ground states of Z2+1
2 are separated

(in the infinite volume limit) into topologically ordered, ϵ < ϵc, and trivial states, ϵ > ϵc, with

a phase transition at a critical coupling ϵc. Li and Haldane’s entanglement-boundary conjecture

[363, 370] asserts that TO states are ‘entanglement-gapped’, i.e. their ES has separated low en-

ergy (large Schmidt values) and a high energy (small Schmidt values) parts. Further, the low

lying part is (up to rescaling) identical to the spectrum of a conformal field theory (CFT) describ-

ing gapless excitations at the edge of the system. We focus here on measuring the existence of an

entanglement gap ∆ξ to detect TO, which has been shown as very a robust order parameter for

the TO transition in this model even for very small systems [363].

Without loss of generality, to reduce finite size effects, we focus on periodic boundary

conditions in y (a torus) for the BW-EHT analysis. In Fig. 12.8(c) we show the entanglement gap

∆ξ for Nx ×Ny = (3 + 3)× 2, NE = 50, NM = 1024, and ℓ = 64 (black diamonds), compared
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to exact results (black solid line). Error bars represent the combined statistical error due to finite

NE and NM , see Appendix H.4 for details. A vertical red line indicates the infinite volume

extrapolated value ϵc = 0.33±0.01 [447]. We also show result for Nx×Ny = (3+3)×3 (green

dashed line) and Nx × Ny = (3 + 3) × 4 (blue dashed line), taken from [363] and approaching

the infinite volume limit to within less than 10%. Side panels show the BW-EHT-reconstructed

sector-wise ES for ϵ = 0.075, 0.3, 0.5, demonstrating the closing of the entanglement gap (gray

shaded area) at ϵc where our results approximately reproduce the phase transition.

We could not numerically simulate systems larger thanNx×Ny = (3+3)×2. For example,

a Nx ×Ny = (3 + 3)× 4 lattice of 48 qubits (20 qubits in the subsystem) exhausts our classical

computational resources.5 However, the classical (shadow- or BW-EHT-) analysis is simple for

such a system if it were prepared in experiment because, while dA = 22N
A
x Ny−Ny = 220 =

1, 048, 576, the analysis is restricted to symmetry blocks of only ds = 2N
A
x Ny−Ny = 28 = 256

states. This is a significant (in fact, exponential) reduction in the space over which the state is

randomized, but ds still grows exponentially with the subsystem size, albeit much slower than

dA.

12.5 Conclusion and Outlook

In this manuscript, we proposed randomized measurement protocols for lattice models that

leverage symmetries, focusing primarily on LGT entanglement structure exploration. We de-

vised deep-scrambling circuits that realize symmetry-conscious k-designs and illustrated their

use in simple gauge and non-gauge model examples. Our approach is intuitive and, there-

5The results for Nx ×Ny = (3+ 3)× 4 and (3 + 3)× 3 were obtained using exact diagonalization and working
with dual formulations of Z2+1

2 [363].
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fore, easily generalizable: by examining the physical Hamiltonian one can readily identify basic

symmetry-preserving interactions which can be used as the generators of a randomized measure-

ment scheme. Consequently, if a particular physical Hamiltonian can be realized, so can our

measurement scheme.

Symmetry-conscious randomized measurement schemes like those considered here have

lower sampling costs compared to symmetry-ignorant schemes by avoiding randomizing over

non-relevant Hilbert space parts. In particular, one obtains a sampling cost (to realize a 2- (k-

)design) that scales with block size ds, instead of Hilbert space dimension dH. This reduction can

be exponential, e.g., for particle number conserving systems away from half-filling, or for LGTs

due to randomizing only over the physical sector of Hilbert space. In constructing k-designs,

while still efficient, they also incur a somewhat larger circuit complexity.

Using such symmetry-conscious randomized measurement, our primary goal was to pro-

vide a practical scheme for measuring LGT entanglement structure, a potential useful route e.g.,

for quantum simulating high energy and nuclear physics [230, 448–452], e.g. to understand

Quantum Chromodynamics (QCD) where entanglement is largely unexplored [309, 363, 453–

459], or detecting topologial order. We illustrated our approach in a simple (1+1)d LGT exam-

ple, Z2 coupled to staggered matter, where we extracted symmetry-resolved k-purities and von

Neumann entanglement entropies, and separated their symmetry- and distillable components.

We then focused on Z2 in 2+1 dimensions where the intricate structure of gauge symmetric

states can lead to topologically ordered (TO) phases. These are currently receiving great atten-

tion, including experimental realizations in AMO and solid-state platforms [433, 434], motivated

by applications such as fractional quantum Hall effect states [460, 461] or fault-tolerant quantum

computation and storage [271, 424–430]. A difficulty is that TO cannot be probed by measuring
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local operators, a serious impediment for its experimental verification. Our approach to overcome

this is based on measuring the entanglement structure of such systems. While the importance of

entanglement as a robust indicator of topological order was realized long ago [462–464], we de-

veloped a concrete random-measurement scheme, following the logic of Li and Haldane [370],

that uses a state presentation in terms of Entanglement Hamiltonians (EH) and is based on mea-

suring entanglement gaps of their (symmetry-resolved) spectrum using a tomographic protocol

based on the Bisognano-Wichmann theorem [336]. Remarkably, performing random measure-

ments on very small subsystems as small as NA
x × Ny = 3 × 2, we observe a relatively sharp

TO-to-trivial phase transition. While our focus was on Z2+1
2 , the protocol can be easily general-

ized to other systems.

A benefit of our approach, not explicitly explored in the main text, is that symmetry-

conscious randomization allows for a rudimentary, but useful, near-term error-mitigation strategy

similar to that discussed in [395]. A feature of symmetry-conscious randomization is that sym-

metries of the input states are not lost and can be measured. Thus, machine errors that violate

those symmetries are detectable after randomization, suggesting that e.g., a postselection of mea-

surement results can improve the computation (at the cost of reduced statistics). Another poten-

tial application is approximate Haar random state preparation for thermal state algorithms [411].

Finally, we expect symmetry-respecting randomized measurement schemes to be useful to inves-

tigate thermal systems, including e.g, systems with non-Abelian conserved charges [465–476].

There are many future extensions of our work. For example, while our approach signif-

icantly reduces algorithmic costs compared to a symmetry-ignorant scheme, extracting entan-

glement entropies and structure still relies on classical post-processing which ultimately scales

exponentially with system size, an issue which can be addressed with quantum variational [338]
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and machine learning techniques [21, 325]. Extending the robust numerical analysis performed

here to provide analytical performance guarantees for the circuit depth and sampling complexity

of the random circuits in this work is also of clear interest. We also emphasize that realizing

an approximate k-design is a sufficient, but not necessary, condition for randomized measure-

ment protocols, and more studies regarding optimal randomization for certain observables are

needed.6 Developing a formalism for shadow and entanglement tomography protocols that ap-

plies to systems with limited control or is independent of the circuit model would be useful for

analog quantum simulation. Finally, while there are encouraging indications [344–346], the ro-

bustness of our scheme against experimental imperfections and noise should be investigated in

detail.

Finally, we point out related work [321, 435], following a similar idea for fermionic systems

with particle number symmetry, and also demonstrating a significant cost advantage. While not

programmable enough to realize k-designs, we think this is a very useful approach for fermionic

entanglement tomography. We also point out Ref. [479], proposing randomized measurement

schemes that take advantage of a priori knowledge about observables of interest to improve

sampling complexity and Refs. [480, 481], which, building on Ref. [335], propose randomized

measurement schemes to extract symmetry-resolved purities. Their scheme is based on local

random unitary transformations, in contrast to the symmetry-preserving unitaries we consider

here.

6During the review process of this manuscript, some interesting analytical results along these lines for circuits
with particle number symmetry were presented in [477], see also [478] for shallow depth circuits.
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Chapter 13: Discussion and Further Directions for Part III

In Chapters 11-12, we considered two problems relevant for quantum simulation: (1) the

problem of mapping fermions to qubits and (2) the design of symmetry-aware randomized mea-

surement protocols for probing properties of states in lattice gauge theories. While these are

distinct problems, both share a common theme of seeking to optimize computational resources

in a way that respects the algebraic and/or group-theoretic structure of the underlying states.

In line with this general approach, significant work on similar optimizations for fermion-

to-qubit mappings has been done since the paper that makes up Chapter 11 was published. Of

particular note, Ref. [482] considers an even more general set of mappings than we do, searching

over the space of mappings from Majorana monomials to Pauli operators to optimize the choice

of fermion-to-qubit mapping in a hardware-aware way. While further algorithmic improvements

can be expected, perhaps the most promising direction for future work is to combine these sorts

of optimizations with a larger suite of hardware-aware optimizations for quantum simulation

algorithms. One can also expect large improvements by targeting such optimizations to particular

problems of interest. For instance, we were able to find large improvements in a nearly end-to-

end cost analysis for simulating a particular set of nuclear effective field theories on the lattice

compared to general purpose performance bounds [23].

On the topic of symmetry-aware randomized measurement schemes, there is still much
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work to be done. Chapter 12 was largely numerical, so analytic performance guarantees for the

schemes considered there are of clear interest. In addition, we focused primarily on deep ran-

domizing circuits that produced approximate unitary k-designs. Shallow circuit versions of these

symmetry-aware schemes is an important next step; such schemes should be more immediately

experimentally feasible and would enable efficient estimation of local observables. Shallow ran-

domizing circuits have recently been considered for the case of particle number symmetry in

Ref. [478], but similar proofs for gauge symmetries do not yet exist. Furthermore, extending

these ideas beyond Z2 lattice gauge theory remains an important avenue for future work.
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Appendix A: Technical details of the results reported in Chapter 2

A.1 A Useful Lemma Regarding Optimal Probe States

In this Appendix, we prove a useful lemma restricting the structure of the probe state for

an optimal protocol.

Lemma A.1.1. Any optimal protocol, independent of the choice of control, requires that ⟨Ĥ1(t)⟩ =

0, where H1(t) is the time-evolved generator of the first parameter and the expectation value is

taken with respect to the initial probe state. Further the probe state must be of the form

|ψ⟩ = |0⟩|φ0⟩+ eiϕ|1⟩|φ1⟩√
2

, (A.1)

for all times s ∈ [0, t], where ϕ, |φ0⟩, |φ1⟩ are arbitrary states on the d − 1 remaining sensor

qubits plus, potentially, the arbitrary number of ancilla—they can be s-dependent.

Proof. Consider the expression for the matrix elements of the quantum Fisher information matrix

at time t (Eq. (2.4) of the main text):

F(θ)ij = 4[
1

2
⟨{Ĥi(t), Ĥj(t)}⟩ − ⟨Ĥi(t)⟩⟨Ĥj(t)⟩], (A.2)

where the expectation values are taken with respect to the initial probe state |ψ(0)⟩. Using the
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integral form of Ĥj(t) (Eq. (2.5) of the main text), we can write

F(θ)11 = 4Var
[
Ĥ1(t)

]
(A.3)

= 4

[∫ t

0

ds

∫ t

0

ds′⟨ψ(0)|Û †(s)ĝ1Û(s)Û
†(s′)ĝ1Û(s

′)|ψ(0)⟩
]

− 4

[∫ t

0

ds⟨ψ(0)|Û †(s)ĝ1Û(s)|ψ(0)⟩
]2

(A.4)

= 4

∫ t

0

ds

∫ t

0

ds′Cov|ψ(0)⟩[ĝ1(s), ĝ1(s
′)], (A.5)

where we recall

ĝ1(s) := Û †(s)ĝ1Û(s), (A.6)

and ĝ1 = ∂Ĥ/∂θ1 is the initial generator with respect to the first parameter. Once again, the

covariance is with respect to the initial probe state |ψ(0)⟩. We can then upper bound this as

F(θ)11(t) ≤ 4

∫ t

0

ds

∫ t

0

ds′
√
Var|ψ(0)⟩[ĝ1(s)]Var|ψ(0)⟩[ĝ1(s′)] (A.7)

= 4

[∫ t

0

ds
√
Var|ψ(0)⟩[ĝ1(s)]

]2
(A.8)

≤
[∫ t

0

ds∥ĝ1∥s
]2

(A.9)

= t2∥ĝ1∥2s (A.10)

= t2, (A.11)

where the first inequality bounds the covariance as the square root of the product of the variances,

the second inequality bounds the standard deviation of an operator by half the seminorm [38],

and the final equality uses the fact that ĝ1 = σ̂z1/2 has seminorm 1.1

1Note that the above block of equations relies on the fact that we are using the fixed Hilbert space of qubit
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Via Eq. (2.8) of the main text (rigorously derived in Appendix A.6) we know that an optimal

protocol must have F11(θ)(t) = t2. Therefore, an optimal protocol must saturate the inequalities

in Eq. (A.7) and Eq. (A.9). Eq. (A.9) is saturated when Var[ĝ1(s)] = ∥ĝ1(s)∥s = ∥ĝ1∥s for all

s. This holds if and only if |ψ(0)⟩ = 1√
2

(
|λmin⟩+ eiϕ|λmax⟩

)
, where |λmin⟩ and |λmax⟩ are the

eigenstates corresponding to the minimum and maximum eigenvalues of ĝ1(s) for all s ∈ [0, t]

and ϕ is an arbitrary phase. Given this condition, ĝ1(s) and ĝ1(s′) act identically on the state

|ψ(0)⟩ and consequently are fully correlated when one considers the covariance of these operators

with respect to the state. The Cauchy-Schwarz inequality in Eq. (A.7) is immediately saturated

as well.

Importantly, under this condition on the probe state, any operator in the one-parameter fam-

ily ĝ1(s) = Û †(s)ĝ1Û(s) acts identically on |ψ(0)⟩ (the unitary does not change the eigenvalues,

and the eigenstates are shared by all ĝ1(s), as argued above). Thus, one can freely substitute any

operator in the one-parameter family ĝ1(s) = Û †(s)ĝ1Û(s) for another. Therefore, for such an

optimal probe state,

⟨H1(t)⟩ = −
∫ t

0

ds⟨ψ(0)|ĝ1(s)|ψ(0)⟩ = t⟨ĝ1⟩ = 0 (A.12)

because ĝ1 ∝ σ̂z1 and, consequently, by the argument that we can replace ĝ1 by ĝ1(s) when acting

on the probe state,

⟨ψ(s)|ĝ1|ψ(s)⟩ = 0 (∀s). (A.13)

The statement of the lemma immediately follows.

sensors. Were one to extend this derivation to photonic sensors with indefinite particle number, the results would not
immediately follow.
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Note that Lemma A.1.1 holds for any optimal protocol, not just those using our cat-like

states. However, it also justifies our choice of probe states and why we specifically set τ1 = 1 for

all τ (i.e., to maintain an equal superposition between |0⟩ and |1⟩ on the first qubit).

A.2 Proof of the Optimality of Cat-State Protocols

In this Appendix, we will rigorously prove the optimality of the time-dependent protocols

considered in the main text. In particular, we show that the Fisher information matrix condition

for saturability in Eq. (2.8) of the main text is satisfied by solutions to Eq. (2.13) of the main

text when we consider protocols that use σ̂x and CNOT controls to switch between families of

cat-like states in T . That is, we show the following mapping between saturability conditions:

Tp =
α

α1

=⇒ F(θ)1j =
α

α1

t2, (A.14)

where we recall that we have assumed that |α1| = ∥α∥∞ > |αj| for all j (in Appendix A.6, we

will generalize beyond the assumption of a single maximum magnitude αj at the cost of some

notational inconvenience).

Using Lemma A.1.1, we can show that for any optimal protocol (i.e., not just those using
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our cat-like states)

F(θ)1j = 2⟨{Ĥ1, Ĥj}⟩ (A.15)

= 2

∫ t

0

ds

∫ t

0

ds′⟨ψ(0)|{ĝ1(s), Û †(s′)ĝjÛ(s
′)}|ψ(0)⟩ (A.16)

= 2

∫ t

0

ds

∫ t

0

ds′⟨ψ(0)|{ĝ1, Û †(s′)ĝjÛ(s
′)}|ψ(0)⟩ (A.17)

= 2t

∫ t

0

ds′⟨ψ(0)|{ĝ1, Û †(s′)ĝjÛ(s
′)}|ψ(0)⟩ (A.18)

= 2t

∫ t

0

ds′⟨ψ(0)|{ĝ1(s′), Û †(s′)ĝjÛ(s
′)}|ψ(0)⟩ (A.19)

= 4t

∫ t

0

ds′⟨ψ(s′)|ĝ1ĝj|ψ(s′)⟩ (A.20)

= t

∫ t

0

ds′⟨ψ(s′)|σ̂z1σ̂zj |ψ(s′)⟩. (A.21)

The third and fifth equalities come from the argument in the proof of Lemma A.1.1 that we may

replace ĝ1(s) with ĝ1 (and vice versa) when acting on optimal probe states. The penultimate

equality is just a consequence of the commutativity of the initial generators.

We now apply these general results to our specific protocols. Saturating the initial Fisher

information conditions in Eq. (A.14) implies that we must show

∫ t

0

ds′⟨ψ(s′)|σ̂z1σ̂zj |ψ(s′)⟩ =
αj
α1

t. (A.22)

Let the gates in our protocols be labeled as Ĝi where Ĝi is either a CNOT or σ̂x gate. The gate

Ĝi is applied at a time s = t∗i . Then, for s ∈ (t∗k, t
∗
k+1), we can write the time-dependent state as

|ψ(s)⟩ = |ψ(τ (k);φ)⟩ ≡
k∏

i=0

Ĝi|ψ(τ (0);φ)⟩, (A.23)
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where |ψ(τ (0); 0)⟩ is the initial state of the protocol, φ is the relative phase between the two

branches of the state that has accumulated up to time s, and, therefore, |ψ(τ (k);φ)⟩ is the state

produced after applying the first k gates. Because our protocols explicitly use only σ̂x and CNOT

gates to move between families in T , we have that |ψ(τ (k);φ)⟩ = (|0⟩|χ(k)
0 ⟩+ eiφ|1⟩|χ(k)

1 ⟩)/
√
2,

and
∫ t

0

ds′⟨ψ(s′)|σ̂z1σ̂zj |ψ(s′)⟩ =
n∑

i=0

(t∗i+1 − t∗i )τ (i)j , (A.24)

where we implicitly define t∗0 = 0 and t∗n+1 = t as the initial and final times of the protocol

and |χ(k)
0 ⟩ and |χ(k)

1 ⟩ are some states defined on the Hilbert space which excludes the first qubit

sensor. The time t∗i+1 − t∗i corresponds to the time we are in the probe family |ψ(τ (i);φ)⟩, which

in our protocols is pit. Thus, to satisfy the Fisher information conditions, we need

∑

i

piτ
(i)
j =

αj
α1

=⇒ (Tp)j =
αj
α1

. (A.25)

This formally proves optimality of our time-dependent protocols that satisfy Tp = α/α1.

A.3 Review of Robust Phase Estimation

In this Appendix, we review, for completeness, the phase estimation protocols of Refs. [66–

68] described in the main text as a method to extract the quantity of interest q from the state

1/
√
2(|0⟩+ eiqt/α1|1⟩)(|0 . . . 0⟩), (A.26)

which is the final state obtained from our family of optimal protocols.

Again, when we refer to our protocols as optimal, we mean this in the sense that our pro-
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tocols achieve the conditions on the quantum Fisher information matrix that allow the maximum

possible quantum Fisher information with respect to the parameter q to be obtained. However,

to completely specify the procedure by which one obtains the quantity q, an explicit phase esti-

mation protocol is needed. As explained in the main text, such a task is complicated by the fact

that for large times and/or small α1 = ∥α∥∞, it is unclear what 2π interval the relative phase be-

tween the branches of Eq. (A.26) is in [69, 70]. The phase estimation protocols of Refs. [66–68]

demonstrate how to optimize resources to deal with this issue, while still saturating the single-

shot bound in Eq. (2.2) of the main text up to a small d- and t-independent constant. In particular,

such protocols allow us to reach a mean square error of

M =
c2∥α∥2∞

t2
, (A.27)

for some small (explicitly known) constant c. Ref. [71] proves that this constant factor c2 in

Eq. (2) can be reduced to, at best, π2.

While reviewing such phase estimation protocols, we follow the presentation of Ref. [68],

which corrects a few minor errors in Ref. [66], as noted in the corresponding erratum [67]. We

refer the reader to Ref. [68] for further details. Conveniently, by putting the final state into the

form of Eq. (A.26), we have reduced this problem completely to the single qubit, multipass

version of the problem described in that reference. Consequently, everything follows practically

identically to their presentation.

Consider dividing the total time t, which is the relevant resource in our problem, into K

stages where we evolve for a time Mjδt in the j-th stage (δt is some small basic unit of time and

Mj ∈ N). We assume that we have (d, t)-independent, prior knowledge of q such that we can set
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δt to satisfy

δtq

∥α∥∞
∈ [0, 2π). (A.28)

In the j-th stage, using one of our protocols for a time Mjδt, we prepare 2νj independent copies

of the state

|ψj⟩ =
1√
2

(
|0⟩+ eiqMjδt/∥α∥∞|1⟩

)
|0...0⟩, (A.29)

From now on we will drop the d − 1 qubit sensors in the state |0...0⟩, as they are irrelevant;

however, it is worth noting that it is not necessary to put the state in this form before performing

measurements. We do so to make the comparison to Ref. [68] particularly transparent. We

then perform a single-qubit measurement on the first qubit sensor of each of these state copies,

yielding 2νj measurement outcomes, which we can use to estimate q. The total time of this K

stage protocol is consequently given by

t = 2
K∑

j=1

νjMjδt. (A.30)

Given this setup, we choose single-qubit measurements and optimize the choice of νj,Mj

per stage so that we can learn q bit by bit, stage by stage, in such a way that optimal scaling in d,

t is still obtained [Eq. (A.27)]. In particular, consider making two measurements, each νj times

per stage (thus explaining the factor of two we introduced earlier): (i) a σ̂x measurement and (ii)

a σ̂y measurement. These measurements each give us outcomes that are Bernoulli variables (i.e.

264



with values ∈ {0, 1}) with outcome probabilities

p(x)(0) =
1 + cos (Mjqδt/∥α∥∞)

2
,

p(x)(1) = 1− p(x)(0),

p(y)(0) =
1 + sin (Mjqδt/∥α∥∞)

2
,

p(y)(1) = 1− p(y)(0), (A.31)

where the first two probabilities are for the σ̂x measurement and the latter two are for the σ̂y

measurement. Using both of these measurements allows us to resolve the two-fold degeneracy

in the phase qMjδt/∥α∥∞ within a given [0, 2π) interval that would arise from, e.g., a σ̂x mea-

surement alone. The observed probabilities of obtaining 0 for the σ̂x and σ̂y are independent

random variables that converge in probability to their associated expectation values for νj →∞.

These measurements are non-adapative, which makes this particular phase estimation protocol

especially appealing.

At each stage, we extract an estimator ϕ̃ of ϕ :=Mjqδt/∥α∥∞ as

ϕ̃ := atan2(2f
(y)
0 − 1, 2f

(x)
0 − 1) ∈ [0, 2π), (A.32)

where atan2 is the 2-argument arctangent with range [0, 2π). In the limit νj →∞, this estimator

indeed converges to ϕ, but the “magic” of this phase estimation scheme lies in the correct repro-

cessing of data stage-by-stage so that νj can be kept (d, t)-independent. Ref. [68] demonstrates

rigorously that picking Mj = 2j−1 for j ∈ {1, · · · , K} and optimizing over νj one can, at each

stage, estimate q/∥α∥∞ with a confidence interval of size 2π/(3× 2j−1) so that in each stage we
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learn another bit of this quantity. The results of this optimization are νj that decrease linearly with

the step j so that as the time spent in a stage grows, the statistics we employ shrink. Importantly,

it so happens that we can scale K →∞ (i.e. take an asymptotic in t limit) while maintaining νK

constant. The net result is a mean square error given by Eq. (A.27) with c = 24.26π, which is

a factor of 24.26 greater than the theoretical optimal value [71], but with the convenient feature

that the protocol uses non-adaptive measurements. We refer the interested reader to Ref. [68] for

detailed derivation of the results sketched here.

It is also worth noting that other protocols are possible. For instance, in Ref. [65], a similar

two-step method is described for the estimation of global parameters (i.e. where the parameter

is not restricted to a local neighborhood of parameter space). This protocol provides an explicit

method to use some (ultimately negligible) fraction of the sensing time available to narrow down

the location of the parameter q in parameter space, followed by an optimal local estimation. We

emphasize that the explicit estimation scheme we propose (i.e. the one in Refs. [66–68]) does not

require adaptive measurements, which is one of its key advantages.

A.4 Full Proof of the Main Theorem

In this Appendix, we expand on the proof sketch of Theorem 2.5.1 in the main text to fully

prove the result. For reference, this theorem is restated here.

Theorem A.4.1. Let q(θ) = α · θ. Without loss of generality, let ∥α∥∞ = |α1|. Let k ∈ Z+ so

that

k − 1 <
∥α∥1
∥α∥∞

≤ k. (A.33)

An optimal protocol to estimate q(θ), where the parameters θ are encoded into the probe state
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via unitary evolution under the Hamiltonian in Eq. (2.1) of the main text, requires at least, but no

more than, k-partite entanglement.

Proof. We divide our proof into two parts. First, using k-partite entangled states from the set of

cat-like states considered in the main text, we show the existence of an optimal protocol, subject

to the upper bound of Eq. (A.33). Second, we show that there exists no optimal protocol using at

most (k − 1)-partite entanglement, proving the lower bound of Eq. (A.33).

Part 1. Define T (k) to be the submatrix of T with all columns n such that
∑

m |Tmn| > k are

eliminated, which enforces that any protocol derived from T (k) uses only states that are at most

k-partite entangled. Define System A(k) as

T (k)p(k) = α/α1, (A.34)

p(k) ≥ 0. (A.35)

Let α′ = α/α1 and define System B(k) as

(T (k))⊤y ≥ 0, (A.36)

⟨α′,y⟩ < 0. (A.37)

By the Farkas-Minkowski lemma [72, 73], SystemA(k) has a solution if and only if SystemB(k)

does not. In particular, this lemma, which, geometrically, is an application of the hyperplane

separation theorem [483] is as follows:
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Lemma A.4.1 (Farkas-Minkowski). Consider the system

Ax = b, (A.38)

x ≥ 0, (A.39)

with A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. The above system has a solution if and only if there is no

solution y to

A⊤y ≥ 0, (A.40)

⟨b,y⟩ < 0. (A.41)

Therefore, to prove the result it is sufficient to show that System B(k) does not have a

solution if
∑

j>1 |α′
j| ≤ k − 1, where we used that α′

1 = 1. We assume that a solution y

exists and will arrive at a contradiction. Without loss of generality, we assume that |yj| ≥ |yj+1|

for all 1 < j < d. Eq. (A.37) implies
∑

j>1 α
′
jyj < −y1. (T (k))⊤ has a row n∗ given by

τ (n∗) = (1, 0, . . . , 0), so by Eq. (A.36) any solution y to System B has y1 ≥ 0. Therefore,
∣∣∣
∑

j>1 α
′
jyj

∣∣∣ > y1, which, by the triangle inequality, implies

∑

j>1

|α′
j||yj| > y1. (A.42)

Because |α′
j| ≤ 1 for all j, because

∑
j>1 |α′

j| ≤ k − 1, and because |yj| for j > 1 are ordered in
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descending order, the largest the left-hand-side of Eq. (A.42) can be is
∑k

j=2 |yj|, leading to

k∑

j=2

|yj| > y1. (A.43)

This directly contradicts Eq. (A.36) for the row of T (k) given by

τ = (1,−sgn(y2), . . . ,−sgn(yk), 0, 0, . . . ).

Part 2. Using Eq. (A.21), we have that, for any optimal protocol,

F(θ)1j = t

∫ t

0

ds′⟨ψ(s′)|σ̂z1σ̂zj |ψ(s′)⟩, (A.44)

where we recall that |ψ(s)⟩ = U(s)|ψ(0)⟩. Because ⟨ψ(s′)|σ̂z1|ψ(s′)⟩ = 0 for all s′ (see Eq. (A.13)),

the integrand is non-zero if and only if |ψ(s′)⟩ is such that the first qubit is entangled with the

jth. Define the indicator variable

Ej(s
′) =





1 |ψ(s)⟩ entangles qubit j and 1

0 else

, (A.45)

for all j, including any possible ancilla qubits. Here, we define E1 = 1 even though the first qubit

is not “entangled” with itself. Further define

E(s′) =
∑

j

Ej(s
′) ≤ (k − 1), (A.46)
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where E(s′) is the total number of sensor qubits entangled with the first qubit at time s′ and the

upper bound comes from our assumption on the partiteness of our probe states. We then have that

F(θ)1j ≤ t

∫ t

0

ds′Ej(s
′). (A.47)

Furthermore, for any optimal protocol using at most (k − 1)-partite entanglement, we re-

quire that

∑

j

∣∣∣∣
αj
α1

t2
∣∣∣∣ =

∑

j

|F(θ)j1|

≤ t
∑

j

∫ t

0

ds′Ej(s
′) = t

∫ t

0

ds′
∑

j

Ej(s)

≤ t

∫ t

0

ds′(k − 1) = (k − 1)t2. (A.48)

We now have a contradiction, however, as the theorem statement assumed that

∑

j

∣∣∣∣
αj
α1

t2
∣∣∣∣ =
∥α∥1
∥α∥∞

t2 > (k − 1)t2. (A.49)

This concludes the proof that (k−1)-partite entanglement in any form (i.e., not just from cat-like

probe states) is insufficient to generate an optimal protocol.

We also observe that the lower bound on the size of the least entangled state used in an

optimal protocol is really, at its core, a lower bound on the average entanglement required to

saturate the conditions on the quantum Fisher information matrix. Here, average entanglement

refers to weighting the size of the entangled state by the proportion of time it is used in the
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protocol. This lower bound is simply ∥α∥1/α∞. The lower bound on the size of the most-

entangled state, or the bound on instantaneous entanglement, comes from ensuring that this lower

bound on average entanglement is achievable (that is, if the instantaneous entanglement is too

small at each stage, then the average entanglement required cannot be reached).

A.5 Minimum Entanglement Non-Echoed Protocols

In this Appendix, we prove that there exist protocols that minimize both instantaneous and

average entanglement. We recall from Section 2.6 the definition of the non-echoed protocols that

minimize average entanglement.

Definition A.5.1 (Non-Echoed Protocols). Consider some α ∈ Rd encoding a linear function

of interest. Let T be the matrix which describes our families of cat-like probe states, and let p

specify a valid protocol such that p > 0 and Tp = α/∥α∥∞. We say that the protocol defined

by p is “non-echoed” if ∀i such that pi is strictly greater than 0, sgn(Tij) ∈ {0, sgn(αj)}.

We now prove Theorem 2.6.1 from the main text, which we again repeat for simplicity.

Theorem A.5.1. For any function encoding α, there exists a non-echoed optimal protocol with

minimum instantaneous entanglement.

Proof. We proceed with a relatively simple tweak of the proof of the main theorem. As in that

theorem, we assume without loss of generality that α1 = ∥α∥∞ = 1. Also assume, for compu-

tational simplicity, that αi>1 < 1 (i.e. there is only a single maximal-magnitude element of α)

and that αi > 0∀i. These latter assumptions can easily be lifted, as we describe at the end of the

proof.

271



We will again use the Farkas-Minkowski lemma [72, 73] to show that no vector y exists

such that

(T
(k)
+ )⊤y ≥ 0, (A.50)

⟨α,y⟩ < 0, (A.51)

proving the existence of a non-echoed protocol. Here, T (k)
+ is T restricted to non-echoed vectors

(i.e., (T (k)
+ )ij ∈ {0, 1}) with weight at most k, where k = ⌈∥α∥1⌉. Assume a solution y exists.

Noting that (T (k)
+ )⊤ has a row given by (1, 0, . . . , 0), it must be that y1 ≥ 0. Further, for y to be

a valid solution, we must have

⟨α,y⟩ = α1y1 +
∑

i|i ̸=1,yi≥0

αiyi +
∑

i|yi<0

αiyi = y1 +
∑

i|i ̸=1,yi≥0

αiyi +
∑

i|yi<0

αiyi ≤ 0. (A.52)

We proceed with two cases. Suppose that at most k− 1 elements of y are negative. Consider the

row of (T (k)
+ )⊤ that has a 1 in the first index and exactly on the indices where yi < 0 (which exists

because we have sufficiently restricted the number of negative elements of y). Then (T
(k)
+ )⊤y ≥ 0

implies that

y1 +
∑

i|yi≤0

yi ≥ 0. (A.53)

But because αi < 1, this immediately implies that

y1 +
∑

i|yi≤0

αiyi ≥ 0, (A.54)

which means that Eq. (A.52) cannot be true, yielding a contradiction.
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Now suppose that there are at least k elements of y that are negative. Let S be the set of

indices corresponding to the k − 1 largest, in magnitude, yi. Then the row of (T (k)
+ )⊤ with a 1 in

the first index and precisely on the indices in S leads to the condition that

y1 +
∑

i∈S

yi ≥ 0. (A.55)

However, given the constraint that αi>1 < 1, we find that

y1 +
∑

i|i ̸=1,yi≥0

αiyi +
∑

i|yi<0

αiyi ≥ y1 +
∑

i∈S

yi ≥ 0, (A.56)

which is again a contradiction.

We briefly comment on how to lift the two assumptions we mentioned earlier. First, in the

case where there exist multiple maximal elements, the same argument that generalizes the main

theorem will also generalize this argument—see Appendix A.6. Second, if we allow αi < 0, it is

simple to see that a protocol still exists; simply replace (T
(k)
+ )ij = 1 with sgn(αi) (and leave 0s

untouched).

Thus, Lemma 2.6.1 and Theorem 2.6.1 prove there exist protocols that can minimize both

instantaneous entanglement (i.e., the maximum size of a cat-like state used in the protocol) and

the average entanglement over the course of the entire protocol.

A.6 Relaxing the Assumption on a Single Maximum Element

In this Appendix, we will generalize beyond the assumption in the main text that |α1| > |αj|

for all j > 1. Conceptually, nothing is changed by relaxing the assumption, but the algebra
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becomes somewhat more tedious. In the process, we rigorously derive Eq. (2.2) and Eq. (2.8) of

the main text.

A.6.1 Generalizing Eq. (2.8) of the Main Text

We start with specifically generalizing Eq. (2.8). To begin, define

L := {i | |αi| = |α1|}. (A.57)

The assumption |α1| > |αj| for all j > 1, stated in the main text, is equivalent to assuming

|L| = 1. For arbitrary size L, we have the following set of conditions for the single-parameter

bound on q(θ) to be saturable (Eqs. (2.6) and (2.7) of the main text):

F(q)11 =
t2

α2
1

, (A.58)

F(q)1i = F(q)i1 = 0 (∀ i ̸= 1). (A.59)

Recall that F(q) = J⊤F(θ)J , where J is the Jacobian for the basis transformation from θ to

q, q1 = q is the linear function we wish to measure, and the other qj are some other degrees of

freedom we fix. We will show that Eqs. (A.58)-(A.59) are satisfied if and only if

∑

i∈L

sgn(α1)

sgn(αi)
F(θ)jiλi =

αj
α1

t2, (A.60)

where λi ≥ 0 such that
∑

i λi = 1. If |L| = 1, this reduces to Eq. (2.8) of the main text.

It will be important to briefly recount how we obtain the single-parameter bound we are
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trying to saturate [49, 59]. In particular, referring to Eq. (2.3) of the main text, we seek a choice of

basis that minimizes ∥ĝq∥2s, which will yield the tightest possible bound onM, the mean-square

error of q. Let us formally define our basis for Rd as {α(1),α(2), · · · ,α(d)}, where α(1) = α.

We then have that J−1 has rows given by these vectors. Let {β(1),β(2), · · · ,β(d)} be the basis

dual to this one. That is, these vectors form the columns of J and satisfy α(i) ·β(j) = δij . We can

then write

θ⊤ = (JJ−1θ)⊤ = (J−1θ)⊤J⊤, (A.61)

which allows us to rewrite our Hamiltonian in the convenient form

Ĥ =
1

2
θ⊤σ̂ + Ĥc(s) =

1

2

d∑

i=1

(α(i) · θ)β(i) · σ̂ + Ĥc(s), (A.62)

where σ̂ = (σ̂z1, · · · , σ̂zd)⊤. Then

ĝq(0) =
∂Ĥ

∂q
=

∂Ĥ

∂(α(1) · θ) =
β · σ̂
2

, (A.63)

where β = β(1). Because the seminorm is time-independent (see Ref. [38]), we immediately

have that

∥ĝq∥s = ∥β∥1, (A.64)
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and our tightest bound is given by

min
β
∥β∥1,

s.t.α · β = 1. (A.65)

Note that

1 =
∑

i

αiβi ≤
∑

i

|αi||βi| ≤ |α1|
∑

i

|βi| = |α1|∥β∥1. (A.66)

The first inequality is tight if either sgn(βi) = sgn(αi) or βi = 0 for all i. The second is slightly

more complicated to saturate. Recall L = {i | |αi| = |α1|}. Then the second inequality is tight if

and only if

βi = 0 for i /∈ L, (A.67)

∑

i∈L

|βi| =
1

|α1|
. (A.68)

Any solution β specifies the first column of the Jacobian J and allows us to rewrite the conditions

in Eq. (A.58)-(A.59) as

F(q)11 = β⊤F(θ)β =
t2

α2
1

, (A.69)

F(q)1i = F(q)i1 = (β(i))⊤F(θ)β = 0 (∀ i ̸= 1). (A.70)

As α(i) · β(j) = δij , Eq. (A.70) immediately implies that the vector F(θ)β must be proportional
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to α and Eq. (A.69) specifies the constant of proportionality. In particular, we require

F(θ)β =
t2

α2
1

α. (A.71)

Invoking Eqs. (A.67)-(A.68) and the condition that sgn(βi) = sgn(αi) for βi ̸= 0, we write

βi = λisgn(αi)/|α1|, where λi ≥ 0 for i ∈ L and λi = 0 for i /∈ L such that
∑

i λi = 1. The

individual components of Eq. (A.71) imply

∑

i∈L

F(θ)ijsgn(αi)λi =
∑

i∈L

F(θ)jisgn(αi)λi =
t2

|α1|
αj,

∑

i

λi = 1, λi ≥ 0, (A.72)

which, using |α1| = sgn(α1)α1 and that sgn(α1)sgn(αi) = sgn(α1)/sgn(αi) for i ∈ L, yields

∑

i∈L

sgn(α1)

sgn(αi)
F(θ)ijλi =

∑

i∈L

sgn(α1)

sgn(αi)
F(θ)jiλi =

αj
α1

t2,
∑

i

λi = 1, λi ≥ 0, (A.73)

which reduces to Eq. (2.8) of the main text, when |L| = 1, as desired.

A.6.2 Generalizing the Derivation of Eq. (2.13) of the Main Text

At this point, we can generalize the derivation of Eq. (2.13) of the main text to this setting of

more than one maximum element of α. In particular, Lemma A.1.1 can be immediately extended

to the following:

Lemma A.6.1. Any optimal protocol, independent of the choice of control, requires that ⟨Ĥj(t)⟩ =
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0 for all j ∈ L and that the probe state be of the form

|ψ⟩ =

(⊗
j∈L|bj⟩

)
|φ0⟩+ eiϕ

(⊗
j∈L|bj + 1⟩

)
|φ1⟩

√
2

, (A.74)

for all times s ∈ [0, t], where

bj =





0, if sgn(αj) = 1,

1, if sgn(αj) = −1,
(A.75)

and ϕ, |φ0⟩, |φ1⟩ can be arbitrary and s-dependent. The addition inside the second ket of Eq. (A.74)

is mod 2.

Proof. We have the following two facts: (1)
∑

i∈L λi(sgn(αj)/sgn(αi))F(θ)ij = t2 for all j ∈ L

(by Eq. (A.73)); (2) |F(θ)ij| ≤ F(θ)jj for all i (by the fact that the Fisher information matrix

is positive semidefinite). These facts imply that an optimal protocol must have F(θ)jj = t2 for

all j ∈ L. The fact that ⟨Ĥj(t)⟩ = 0 for all j ∈ L and the fact that all sensors in L must be in a

cat-like state over computational basis states follows immediately via an identical calculation to

the proof of Lemma A.1.1 for each j ∈ L. From Eq. (A.21) it follows directly that these cat-like

states over the qubit sensors in L must take the form in the theorem statement in order to achieve

the correct sign on the components of F(θ).

Using Lemma A.6.1, it is clear that we should restrict the set T of states such that τ (n)j =

sgn(αj)/sgn(α1) for all j ∈ L and all τ (n). This is the generalization of the fact that that, when

|L| = 1, we require τ (n)1 = 1 for all τ (n).

In addition, given the required form of the optimal states, it is easy to generalize Eq. (A.22)
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to the condition that
∑

i∈L

[
λi

∫ t

0

ds′⟨ψ(s′)|σ̂zi σ̂zj |ψ(s′)⟩
]
=
αj
α1

t, (A.76)

which implies that, for protocols switching between states in the modified T ,

∑

i∈L

[
λi

n∑

l=0

(t∗l+1 − t∗l )τ (l)j

]
=
αj
α1

t, (A.77)

where we assume that we switch to the state labeled by τ (l) at time t∗l . As before, in our protocols

t∗l+1 − t∗l = plt. In addition,
∑

i λi = 1. So an optimal protocol requires

t
n∑

l=0

plτ
(l)
j =

αj
α1

t =⇒ Tp = α, (A.78)

recovering Eq. (2.13) of the main text for general L, with the addition that we fix Tjn = τ
(n)
j =

sgn(αj)/sgn(α1) for all j ∈ L and all n.

A.6.3 Generalizing the Proof of Theorem 2.5.1 of the Main Text

Recall, we divided the proof into two parts. First, we showed the existence of an optimal

protocol using k-partite entangled cat-like states, subject to the upper bound of the theorem state-

ment. Second, we showed that, subject to the lower bound of the theorem statement, there exists

no optimal protocol using only (k − 1)-partite entanglement.

Let’s begin by addressing how the first part changes upon relaxing the assumption that

|α1| > |αj| for all j > 1. Note that, given our choice that τ (n)j = sgn(αj)/sgn(α1) for all j ∈ L

and all τ (n), the first |L| rows of T (k) yield redundant equations in Eq. (2.19) of the main text.

Therefore, we can define T̃ (k) as T (k) with all rows j ∈ L \ {1} eliminated. Similarly, α̃ is α
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with elements j ∈ L \ {1} eliminated. Further, define the new system of equations, which we

call System Ã:

T̃ (k)p̃(k) = α̃/α1, (A.79)

p̃(k) ≥ 0. (A.80)

System A has a solution if and only if System Ã does. We can proceed as in the proof in Ap-

pendix A.4 to show via the Farkas-Minkowski lemma that System Ã has a solution if

∥α∥1/∥α∥∞ ≤ k =⇒ ∥α̃∥1/∥α̃∥∞ ≤ k − |L|+ 1.

The details of the proof of this part are completely identical with this substitution.

The second part of the proof can similarly be adjusted straightforwardly. In particular, to

satisfy the condition of Eq. (A.73), which is the generalization of Eq. (2.8) in the main text, for

j ∈ L we require

αj
α1

t2 =
sgn(αj)

sgn(α1)
t2 =

∑

i∈L

sgn(α1)

sgn(αi)
F(θ)ijλi, (A.81)

which implies

t2 =
∑

i∈L

sgn(αi)

sgn(αj)
F(θ)ijλi. (A.82)

This in turn implies that for i, j ∈ L

F(θ)ij =
sgn(αi)

sgn(αj)
t2. (A.83)

Therefore, for all i ∈ L we require F(θ)ii = t2. From here, arguments identical to those in
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Appendix A.4 apply to all i ∈ L, not just i = 1. That is, all the probe states must always be fully

entangled on the qubits in L and matrix elements F(θ)ij for i ∈ L, j /∈ L can only accumulate

magnitude if sensor j is also entangled with the qubits in L. Assuming the existence of an optimal

protocol using (k − 1)-partite entanglement, a contradiction arises in an identical way.

Appendix B: Technical details of the results reported in Chapter 3

B.1 Bound for Local Phase Shifts

In this Appendix, we derive lower bounds for the mean square error of measuring a linear

function q(θ) = α · θ of local phase shifts, generated via coupling to the number operator n̂j , as

specified by the Hamiltonian in Eq. (3.1) and Eq. (3.2a).

In particular, we seek to solve the optimization problem in Eq. (3.9), restated here for

convenience:

min
β

max
ρ

[∆(β · ĝ)ρ]2, subject to α · β = 1. (B.1)

Here, ĝ = n̂ = (n̂1, n̂2, · · · , n̂d)T . For fixed particle number N , the Hilbert space on which

possible probe states ρ are defined is finite dimensional, and it holds that [38]

[∆(β · n̂)ρ]2 ≤
∥β · n̂∥2s,N

4
, (B.2)
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where ∥β·n̂∥s,N is the Fock-space-restricted seminorm of β·n̂ (defined as the difference between

the maximum and minimum eigenvalues of β · n̂ restricted to the N -photon subspace). As we

want to maximize the quantum Fisher information with respect to the choice of probe state ρ, and

because Eq. (B.2) is saturable when ρ is an equal superposition of the eigenstates of β · n̂ with

maximum and minimum eigenvalues, we can consider the following optimization problem:

minimize (w.r.t. β) ∥β · n̂∥s,N ,

subject to α · β = 1. (B.3)

To begin, note that the largest eigenvalue of β · n̂ in the N -particle subspace is given by

λmax(β · n̂) = N max
{
max
j
βj, 0

}
=: Nβmax, (B.4)

where we have implicitly defined βmax. This largest eigenvalue corresponds to the eigenstate that

consists of placing all photons in the mode corresponding to the largest positive βj . If all βj ≤ 0,

the largest eigenvalue is zero, obtained by any state with no particles in the sensor modes. Note

that this requires the use of an extra mode (an ancilla or so-called “reference mode”) to “store”

these photons, as we fix the total photon number of our state to be N .

Similarly, the smallest eigenvalue of β · n̂ in the N -particle subspace is given by

λmin(β · n̂) = N min
{
min
j
βj, 0

}
=: Nβmin, (B.5)

where we have implicitly defined βmin.

282



Using the facts above about the maximum and minimum eigenvalues of β · n̂ in the N -

particle subspace we can rewrite the optimization problem in Eq. (3.9) as

minimize N (βmax − βmin) ,

subject to α · β = 1. (B.6)

As in the main text, define P := {j |αj ≥ 0} andN := {j |αj < 0}. We then have the following

lemma.

Lemma B.1.1. The solution β∗ to Eq. (B.6) is such that β∗
j ≥ 0 for all j ∈ P , and β∗

j ≤ 0 for all

j ∈ N . That is, αjβ∗
j ≥ 0 for all j.

Proof. We proceed by contradiction. Let J− = {j |αjβ∗
j < 0} and J+ = {j |αjβ∗

j ≥ 0}. Sup-

pose the solution vector β∗ to Eq. (B.6) has J− ̸= ∅. We can construct an alternative candidate

solution vector β′ as follows: First, let β′ = β∗. Then set β′
j = 0 for all j ∈ J−. In order to still

satisfy the constraint α · β′ = 1, we must reduce the values of some other components in β′. In

particular, it is simple to calculate that a valid solution is, for j ∈ J+,

β′
j =

β∗
j∑

j∈J+
αjβ∗

j

=
β∗
j

1−∑j∈J−
αjβ∗

j

. (B.7)

Again, when j ∈ J−, β′
j = 0.

Let β′
max := max

{
maxj β

′
j, 0
}

and β′
min := max

{
minj β

′
j, 0
}

. By construction, β′
max ≤

β∗
max and 0 = β′

min ≥ β∗
min. Consequently, β′ yields a smaller solution candidate than β∗. This

contradicts the fact that β∗ is the optimal solution. The lemma statement follows as an immediate

consequence.
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Lemma B.1.1 allows us to rewrite the minimization problem in Eq. (B.6) once again as

minimize N
[
max
j∈P

βj −min
j∈N

βj

]
,

where βj ≥ 0 ∀ j ∈ P ,

βj ≤ 0 ∀ j ∈ N ,

subject to α · β = 1. (B.8)

In the above, we define maxj∈P βj (minj∈N βj) to be zero if P = ∅ (N = ∅). A further simplifi-

cation is enabled by another lemma.

Lemma B.1.2. The solution vector β∗ to Eq. (B.8) is such that β∗
j = β∗

max for all j ∈ P and

β∗
j = β∗

min for all j ∈ N .

Proof. We proceed by contradiction. Suppose the solution vector β∗ is such that β∗
i ̸= β∗

j for

some i, j ∈ P . Then we could consider an alternative candidate solution vector β′ where β′
k =

∑
l∈P αlβ

∗
l∑

l∈P αl
for all k ∈ P . Similarly, if β∗

i ̸= β∗
j for some i, j ∈ N we could consider β′

k =

∑
l∈N αlβ

∗
l∑

l∈N αl
for all k ∈ N . Clearly, β′ still satisfies the constraint

α · β′ =
∑

m∈P

αm

(∑
l∈P αlβ

∗
l∑

l∈P αl

)
+
∑

m∈N

αm

(∑
l∈N αlβ

∗
l∑

l∈N αl

)
= α · β∗ = 1. (B.9)

Additionally, β′ also clearly still has β′
j ≥ 0 when j ∈ P and β′

j ≤ 0 when j ∈ N . But, by

construction (because the weighted average of a set is less than its maximum element),

N

[
max
j∈P

β′
j −min

j∈N
β′
j

]
< N

[
max
j∈P

β∗
j −min

j∈N
β∗
j

]
. (B.10)
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So β∗ is not the solution vector and we have arrived at a contradiction.

As a direct consequence of Lemma B.1.2 we can rewrite the optimization problem in

Eq. (B.8) one last time as

minimize (w.r.t. βmin, βmax) N [βmax − βmin] , (B.11)

subject to βmax ≥ 0, βmin ≤ 0, (B.12)

βmax

∑

j∈P

αj + βmin

∑

j∈N

αj = 1. (B.13)

Because this is a linear objective function, the optimal solution will be one of the two

boundary solutions: βmax = 1∑
i∈P αi

, βmin = 0 or βmin = 1∑
i∈N αi

, βmax = 0. Minimizing over

these two candidate solutions, we obtain the final result

∥ĝq∥2s,N =
N2

max(
∑

i∈P αi,
∑

i∈N αi)2
. (B.14)

Consequently, via the quantum Cramér-Rao bound, Eq. (3.10),

M≥ max
{∑

i∈P αi,
∑

i∈N αi
}2

N2t2
=:

max
{
∥α∥21,P , ∥α∥21,N

}

N2t2
, (B.15)

which is Eq. (3.12) of the main text, and where ||α||1,P and ||α||1,N are the one-norm restricted

to positive and negative values, respectively, of α. In the special case of all positive coefficients

(i.e., N = ∅), this reduces to

M≥ ∥α∥
2
1

N2t2
, (B.16)

which, as described in the main text, proves a conjecture from Ref. [9] that this is the minimum
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attainable variance for α ∈ Qd with α ≥ 0.

B.2 Bound for Local Displacements

In this Appendix, we derive Eq.(3.15) for the mean square error attainable for measuring

a linear function of local displacements, restricting to probe states with fixed average photon

number N .

B.2.1 Separable Bound

To begin, it is helpful to present the bound for the more restricted case where we use

separable input states. Begin by considering the lower bound on the variance of measuring a

displacement φ coupled to a single mode via H = φp̂, following the proof sketched in Ref. [79].

The quantum Fisher information is given by

F(φ) = 4[∆(p̂)ρ]
2, (B.17)

where ρ is the probe state, which is restricted to have an average photon number N . An initial

displacement does not enhance precision [79], so we can consider zero-mean displacement input

states. For such probe states,

(∆p̂)2 = −1

4
⟨(â† − â)2⟩ = −1

4
(⟨â†â†⟩ − ⟨â†â⟩ − ⟨ââ†⟩+ ⟨ââ⟩), (B.18)

(∆x̂)2 =
1

4
⟨(â† + â)2⟩ = 1

4
(⟨â†â†⟩+ ⟨â†â⟩+ ⟨ââ†⟩+ ⟨ââ⟩), (B.19)
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so that

N = ⟨â†â⟩ = (∆p̂)2 + (∆x̂)2 − 1

2
, (B.20)

where we used that ââ† = â†â+ 1. We can then use the uncertainty principle

(∆p̂)2(∆x̂)2 ≥ 1

16
, (B.21)

which follows from our definition of the quadrature operators as x̂ = (â† + â)/2 and p̂ = i(â† −

â)/2. Therefore,

ξ

(
N − ξ + 1

2

)
≥ 1

16
, (B.22)

where we let ξ := (∆p̂)2. Then

−16ξ2 + (16N + 8)ξ − 1 ≥ 0. (B.23)

To maximize ξ, this inequality must be saturated, so we can solve the corresponding quadratic to

obtain the solution

ξ =
−8(2N + 1) +

√
64(2N + 1)2 − 64

−32 =⇒ 4ξ = (
√
N +

√
N + 1)2 ∼ 4N. (B.24)

It is worth noting that the O(N) asymptotic behavior of the maximum variance of p̂ could have

been obtained with no calculation just from examining the constraint in Eq. (B.20) under the
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assumption that (∆x̂)2 can be made negligibly small.

Putting everything back together, we have found that, optimizing over states with fixed

average photon number N , the following holds:

[∆(φ̃)]2 ≥ 1

F ≥
1

t2(
√
N +

√
N + 1)2

=
1

4t2N
+O

(
1

t2N
2

)
. (B.25)

Working in the asymptotic in N limit, we can use Eq. (B.25) to obtain a bound on perfor-

mance for estimating a linear function q(θ) = α · θ with an unentangled protocol as

(∆q̃)2 ≥ 1

t2
min
{Nj}

d∑

j=1

|αj|2
4N j

+O
(

1

N
2

j

)
, (B.26)

where N j = ⟨â†j âj⟩ is the average number of photons used in mode j and
∑

j N j = N . Assume

without loss of generality that |αj| > 0 for all j (that is, no αj = 0) and independent of N . Then

we can optimize (at leading order in 1
N

) the distribution of photons amongst the modes using the

Lagrangian

L =
d∑

j=1

|αj|2
4N j

+ γ

(
d∑

j=1

N j −N
)
, (B.27)

where γ is a Lagrange multiplier. A bit of algebra yields that

∂L
∂N j

= 0 =⇒ N j =
|αj|
2
√
γ
. (B.28)

This further implies that

N =
d∑

j=1

N j =
∥α∥1
2
√
γ
, (B.29)
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allowing us to obtain the optimal division of photons as

N j =
|αj|
∥α∥1

N. (B.30)

We note that this solution is clearly the desired minimum of the Lagrangian, as maximizing the

objective would lead to setting any N j to 0. Plugging this back into Eq. (B.26) we obtain the

(asymptotic in N ) separable bound

[∆q̃]2 ≥ ∥α∥
2
1

4Nt2
+O

(
1

N
2

)
. (B.31)

This bound can be achieved by using the single-mode protocols in Ref. [79] for each mode

and then computing the function of interest classically as a linear combination of the individual

estimators.

B.2.2 General Function Estimation Bound

In this subsection, we turn to our primary task: deriving Eq.(3.15) for the mean square error

attainable for measuring a linear function of local displacements, restricting to probe states with

fixed average photon number N .

To derive this bound, we must solve the optimization problem in Eq. (3.9) for ĝj = p̂j:

min
β

max
ρ

[∆(β · p̂)ρ]2, subject to α · β = 1. (B.32)
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We can write

[∆(β · p̂)]2 =
d∑

i,j=1

βiβjCov(p̂i, p̂j)

≤
d∑

i,j=1

βiβj

√
(∆p̂i)2(∆p̂j)

2

=

[
d∑

j=1

βj∆p̂j

]2

≤ ∥β∥22
d∑

j=1

(∆p̂j)
2, (B.33)

where we applied the Cauchy-Schwarz inequality twice. Using the same assumption of zero-

displacement states we made in the previous section, we can further bound
∑

j(∆p̂j)
2 using the

constraint on average photon number

d∑

j=1

[
(∆p̂j)

2 + (∆x̂j)
2
]
− d

2
=

d∑

j=1

⟨a†jaj⟩ = N, (B.34)

implying that
d∑

j=1

(∆p̂j)
2 ≤ N +

d

2
. (B.35)

Eq. (B.35) is tight when (∆x̂j)
2 = 0 for all j. This is, of course, impossible to achieve, but can

be approached asymptotically with increasing N (N ≫ d). Furthermore, using the fact that α is

dual to β and the Cauchy-Schwarz inequality, it holds that

1 = α · β ≤ ∥β∥2∥α∥2. (B.36)

As we want to minimize with respect to β, we consider the case where this inequality is saturated
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(i.e. β∗ = α
∥α∥22

). Therefore, ∥β∗∥2 = 1
∥α∥2 , and we obtain

[∆(β · p̂)]2 ≤ N

∥α∥22
+O

(
d

∥α∥22

)
. (B.37)

This yields the final bound

M≥ ∥α∥
2
2

4Nt2
−O

(
d∥α∥22
N

2
t2

)
. (B.38)

From the derivation alone, it is not obvious that this bound can be saturated, but the existence of

protocols that achieve it [80] indicate that this bound is, indeed, tight asymptotically in N .

B.3 Quantum Fisher Information Matrix Elements

In this Appendix, we derive the matrix elements of the quantum Fisher information matrix

for generators n̂j and p̂j under the unitary evolution Eq. (3.4). For number operator coupling

ĝj = n̂j ,

Hj = −iU †∂jU = −
M∑

m=1

(
m−1∏

l=1

U (l)V

)†

n̂j

(
m−1∏

l=1

U (l)V

)

=: −
M∑

m=1

n̂j(m), (B.39)

where in the second line we implicitly defined n̂j(m). Consequently, we can compute the quan-

tum Fisher information matrix elements via Eq. (3.23) to be

F(θ)ij = 4

[
M∑

l=1

M∑

m=1

1

2
⟨{n̂i(l), n̂j(m)}⟩ −

(
M∑

m=1

⟨n̂i(m)⟩
)(

M∑

m=1

⟨n̂j(m)⟩
)]

. (B.40)
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When Û (j) = I for all j, this reduces to

F(θ)ij = 4M2 [⟨n̂in̂j⟩ − ⟨n̂i⟩⟨n̂j⟩] . (B.41)

For quadrature operator coupling ĝj = p̂j , essentially identical manipulations yield

F(θ)ij = 4

[
M∑

l=1

M∑

m=1

1

2
⟨{p̂i(l), p̂j(m)}⟩ −

(
M∑

m=1

⟨p̂i(m)⟩
)(

M∑

m=1

⟨p̂j(m)⟩
)]

, (B.42)

where p̂j(l) is defined as in Eq. (B.39) with n̂j → p̂j .

B.4 Protocols for Local Phase Shifts

In this Appendix, we elaborate on the families of optimal protocols for measuring a linear

function of phase shifts that we described in Section IV of the main text.

B.4.1 An Optimal Protocol for Functions with Positive Coefficients

We begin by reviewing a protocol from Ref. [9] for the special case of a linear function

with positive coefficients (i.e., α ≥ 0). Our results in Appendix B.1 show that, as those authors

conjectured, this protocol is optimal. In particular, consider using as the probe state a so-called

proportionally-weighted N00N state over d+ 1 modes:

|ψ⟩ ∝
∣∣∣∣N

α1

∥α∥1
, · · · , N αd

∥α∥1
, 0

〉
+

∣∣∣∣0, · · · , 0, N
〉
, (B.43)
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where we have expressed the state in an occupation number basis over d + 1 modes and have

dropped the normalization for concision. The last mode serves as a reference mode. Observe

that, for this state to be well-defined, it is essential that α
∥α∥1 ∈ Qd and that N is such that the

resulting occupation numbers are integers, which may require that N be large.

Following imprinting of the parameters θ onto the probe state via M passes through the

interferometers, one obtains

|ψM⟩ = e−iMn̂·θ|ψ⟩ ∝
∣∣∣∣N

α1

∥α∥1
, · · · , N αd

∥α∥1
, 0

〉
+ e

iα·θ NM
∥α∥1

∣∣∣∣0, · · · , 0, N
〉
. (B.44)

This process allows us to saturate the bound in Eq. (3.14). In particular, using Eq. (B.40) (which

reduces to Eq. (B.41) because there is no control required), it is straightforward to calculate that

the quantum Fisher information matrix for the probe state is

F(θ) = (MN)2

∥α∥21
ααT , (B.45)

which clearly satisfies the condition in Eq. (3.24) (recalling that ||α||1 = ||α||1,P here because we

have assumed all coefficients are non-negative, and also recalling that ∆t = 1 such that M = t).

While the conditions on the quantum Fisher information matrix for an optimal protocol are

met, a full protocol requires a description of the measurements used to extract the quantity of

interest from the relative phase between the branches of |ψM⟩. As described in the main text, this

can be done via the robust phase estimation protocols of Refs. [66–68] with a small multiplicative

constant overhead relative to the quantum Cramér-Rao bound (we also briefly discuss the idea

behind robust phase estimation in Appendix B.7). The details of implementing the necessary
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parity measurements for N00N-like states are discussed in detail in Appendix A of Ref. [68] and

Ref. [484].

B.4.2 Extending the Optimal Protocol to Negative Coefficients

While not explicitly considered in Ref. [9], it is straightforward to extend the above pro-

tocol to the situation where N ≠ ∅, which we do here. Without loss of generality, assume the

coefficients are ordered so that α1 ≥ α2 ≥ · · · ≥ αd. Using our standard assumption that

∥α∥1,P ≥ ∥α∥1,N , we claim that the following probe state is optimal:

|ψ⟩ ∝
⊗

j∈P

|N αj
∥α∥1,P

⟩|0⟩⊗|N||0⟩+ |0⟩⊗|P|
⊗

j∈N

|N |αj|
∥α∥1,P

⟩|N −N ∥α∥1,N∥α∥1,P
⟩, (B.46)

where, again, the last mode is a reference mode, and we have dropped the normalization of

the state. Interestingly, observe that, if ∥α∥1,P = ∥α∥1,N , the reference mode factors out and

is unnecessary. Similar to the α ≥ 0 case, for this state to be well-defined, we require that

N |αj|/∥α∥1,P ∈ N for all j, which is always true for some sufficiently largeN provided α ∈ Qd.

Consider applying the encoding unitary for M passes through the interferometers. For

∥α∥1,P ≥ ∥α∥1,N , this yields

|ψM⟩ ∝
⊗

j∈P

|N αj
∥α∥1,P

⟩|0⟩⊗|N||0⟩+ e
iα·θ NM

∥α∥1,P |0⟩⊗|P|
⊗

j∈N

|N |αj|
∥α∥1,P

⟩|N −N ∥α∥1,N∥α∥1,P
⟩.

(B.47)

This probe state is optimal in the sense of satisfying the Fisher information condition in Eq. (3.24).

In the main text, we described an even more general family of protocols. Within this more general
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framework, we will prove this optimality.

B.4.3 A Family of Optimal Protocols

Finally, we describe a family of optimal protocols that satisfy the conditions on the quantum

Fisher information matrix given in Eq. (3.24). In the main text, we defined a family of optimal

protocols in terms of vectors from the set

W :=
{
ω ∈ Zd

∣∣ ∥ω∥1,P = N, ∥ω∥1,N ≤ N, ωjαj ≥ 0 ∀ j
}
. (B.48)

In particular, from these vectors, we defined a set T of one-parameter families of probe states

in an occupation number basis where each |ψ(ω;φ)⟩ ∈ T is labeled by a particular choice of ω

such that

|ψ(ω;φ)⟩ ∝ |ω|P⟩|0⟩+ eiφ|−ω|N ⟩|N − ∥ω|N∥1⟩, (B.49)

where φ ∈ R is an arbitrary parameter and the last mode is a reference mode. Recall also that

ωP and ωN are defined in Eq. (3.28) as the restriction of ω to j ∈ P and N , respectively (for

j not in the correct set, the value is set to 0). Note that such states are of the form of those in

Lemma 3.4.1. We claimed that, by explicitly computing the Fisher information matrix for these

states, one could demonstrate that the optimality condition in Eq. (3.24) is satisfied for a protocol

such that

Wr = NM
α

∥α∥1,P
, (B.50)
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where r ∈ Z|T | is as defined in the main text and must obey the conditions

∥r∥1 =M,

r ≥ 0. (B.51)

Recall, W is a matrix whose columns are the vectors ωn ∈ W .

Here we explicitly demonstrate this. We can easily evaluate

⟨n̂j(m)⟩ = ⟨ψ(ω(m);φ)|n̂j|ψ(ω(m);φ)⟩ =
|ω(m)
j |
2

(B.52)

and

⟨n̂i(l)n̂j(m)⟩ = ⟨ψ(ω(l);φ)|n̂iU(m↔ l)n̂j|ψ(ω(m);φ)⟩

=
|ω(l)
i ω

(m)
j |

2
⟨ψl(ω(l);φ)|U(m↔ l)|ψm(ω(m);φ)⟩, (B.53)

where n̂j(m) are defined as in Eq. (B.39), and

U(m↔ l) =





∏l−1
k=m U

(k)V, if l ≥ m

∏m−1
k=l (U

(k)V )†, otherwise,

(B.54)

i.e., it is the unitary that converts between the m-th and l-th probe states. Additionally, ω(m)

refers to the vector associated to the m-th probe state; correspondingly |ψl(ω(l);φ)⟩ is the branch

of |ψ(ω(l);φ)⟩ with non-zero occupation number on mode l and |ψm(ω(m);φ)⟩ is the branch of

|ψ(ω(m);φ)⟩ with non-zero occupation number on mode m. For an optimal protocol, U(m↔ l)
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coherently maps the first (second) branch of |ψ(ω(l);φ)⟩ to the first (second) branch of |ψ(ω(m);φ)⟩;

therefore, we have that the matrix element ⟨ψl(ω(l);φ)|U(m ↔ l)|ψm(ω(m);φ)⟩ is non-zero if

and only if the branches with non-zero occupation on modes l and m are the same. So we have

that

⟨n̂i(l)n̂j(m)⟩ =
|ω(l)
i ω

(m)
j |

2
ξij, (B.55)

where

ξij :=





1, if i, j ∈ P or i, j ∈ N

0, otherwise.

(B.56)

Putting everything together we obtain that

F(θ)ij = (−1)ξij+1

(
M∑

m=1

|ω(m)
i |
)(

M∑

m=1

|ω(m)
j |
)
. (B.57)

To prove the protocols work, we need to show that this Fisher information matrix obeys the

condition in Eq. (3.24). Without loss of generality, consider the case that ∥α∥1,P ≥ ∥α∥1,N . We

have that

∑

j∈P

F(θ)ij = sgn(αi)

(
M∑

m=1

|ω(m)
i |
)
MN, (B.58)

where we used that ∥ω∥1,P = N . So, to obey the condition in Eq. (3.24), we require that

M∑

m=1

|ω(m)
i | =MN

|αi|
∥α∥1,P

. (B.59)
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Or, in vector form:
M∑

m=1

|ω(m)| =MN
|α|
∥α∥1,P

. (B.60)

Protocols in our family satisfy this condition by construction as, for any valid protocol,

M∑

m=1

|ω(m)| = |W |r, (B.61)

where |W | denotes taking the element-wise absolute value of the elements of W . Consequently,

noting that sgn(ω(m)
j ) = sgn(αj) for all m, we require

Wr =MN
α

∥α∥1,P
, (B.62)

which is Eq. (B.50).

B.5 Proof of Lemma 3.4.1

Here we provide a proof of Lemma 3.4.1 in the main text, restated here for convenience.

Lemma B.5.1 (Lemma 3.4.1 of main text). Any optimal protocol usingN photons andM passes

through interferometers with a coupling as in Eq. (3.1) with ĝj = n̂j requires that, for every pass

m, the probe state |ψm⟩ be of the form

|ψm⟩ ∝ |N (m)⟩P |0⟩NR + eiφm|0⟩P |N ′(m)⟩NR, (B.63)

where P , N , and R represent the modes with αj ≥ 0, αj < 0, and the (arbitrary number of)

reference modes, respectively, N (m) and N ′(m) are strings of occupation numbers such that
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|N (m)| = |N ′(m)| = N for all passes m. φm is an arbitrary phase.

Proof. The quantum Fisher information matrix elements for any protocol with ĝj = n̂j are given

by

F(θ)ij = 4

[
M∑

l=1

M∑

m=1

1

2
⟨{n̂i(l), n̂j(m)}⟩ −

(
M∑

m=1

⟨n̂i(m)⟩
)(

M∑

m=1

⟨n̂j(m)⟩
)]

= 4
M∑

l=1

M∑

m=1

Cov (n̂i(l), n̂j(m)) , (B.64)

where the expectation values are taken with respect to the initial probe state, and n̂j(m) are the

number operators on the jth mode in the Heisenberg picture prior to the mth pass, as specified in

Eq. (B.39). Without loss of generality, we make the assumption that ∥α∥1,P ≥ ∥α∥1,N . Summing

over i, j ∈ P , we have that, for an optimal protocol,

∑

i∈P

∑

j∈P

F(θ)ij =
∑

j∈P

(MN)2

∥α∥1,P
αj = (MN)2, (B.65)

where we used the condition in Eq. (3.24) for an optimal protocol, and we recall that, for j ∈ P ,

all αj > 0. For convenience, define

P̂ (m) :=
∑

j∈P

n̂j(m). (B.66)

Armed with this definition, we can upper bound the sum over i, j ∈ P in the explicit expression

from Eq. (B.64) as
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∑

i∈P

∑

j∈P

F(θ)ij = 4
M∑

l=1

M∑

m=1

Cov
(
P̂ (l), P̂ (m)

)

≤ 4
M∑

l=1

M∑

m=1

√
Var(P̂ (l))Var(P̂ (m)) = 4

(
M∑

l=1

√
Var(P̂ (l))

)2

≤ 4

(
M∑

l=1

∥P̂ (l)∥s,N
2

)2

≤ (NM)2, (B.67)

where in the first line we use the Cauchy-Schwarz inequality, in the second line we use that once

restricted to the N -particle subspace Var(A) ≤ ∥A∥2s,N/4 (where, again, ∥A∥s,N is the seminorm

restricted to the N -particle subspace) for any Hermitian operator A, and in the final line we

use that ∥P̂ (l)∥s,N ≤ N . Comparing Eq. (B.67) with Eq. (B.65), we find that, for any optimal

protocol, all inequalities in Eq. (B.67) must be saturated. Specifically,

Cov
(
P̂ (l), P̂ (m)

)2
= Var(P̂ (l))Var(P̂ (m)), (B.68)

Var(P̂ (l)) =
N2

4
. (B.69)

The second condition, Eq. (B.69), means that, at all times, the state of our system must be of the

form

|N (l)⟩P |0⟩NR + eiφl |0⟩P |N ′(l)⟩NR√
2

, (B.70)

where we are using the simplifying notation from the statement of the Lemma. In particular,

the subscripts P ,N ,R refer to the collection of all modes associated with αj ≥ 0, αj < 0,
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and the reference modes, respectively. Therefore, the state |N⟩P |0⟩NR means that all photons

are distributed (in some potentially arbitrary way) amongst the modes with non-negative αj , and

there are no photons in the modes with negative αj or in the reference modes. Contrastingly,

|0⟩P |N ′(l)⟩NR refers to a state where there are N photons in the negative and reference modes,

and there are no photons in the non-negative modes. We have also shifted to the Schrödinger

picture where we move the time-dependence onto the state as opposed to the operators. It is

simple to verify that this state satisfies Eq. (B.69), and it is also simple to verify these are the

most general states that achieve this. Intuitively, |ψm⟩ is a generalized N00N state between the

positive and negative/reference modes.

In addition, we have the following useful characterization of optimal protocols:

Lemma B.5.2. Let |ψi⟩ be a state of the form in Lemma 3.4.1. Refer to the first and second parts

of its superposition as, respectively, the first and second or positive and non-positive branches.

Let Um be the unitary that maps the initial state |ψ1⟩ to the state just before the m-th pass, |ψm⟩,

given by

Um =





∏m−1
i=1 U (i)V, M + 1 ≥ m ≥ 2

I, m = 1.

(B.71)

in agreement with Eq. (3.4). Then, if Um is part of an optimal protocol, it coherently maps the

first (second) branch of |ψ1⟩ to the first (second) branch of |ψm⟩.

Proof. We use the covariance equality in Eq. (B.68). To proceed, we evaluate the expectation
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value of P̂ in the initial state. Here, we will again use the Schrödinger picture.

⟨ψ1|P̂ (l)|ψ1⟩ = ⟨ψl|P̂ |ψl⟩ (B.72)

=
1

2

(
⟨N (l)|P⟨0|NR + e−iφl⟨0|P⟨N ′(l)|NR

)
P̂
(
|N (l)⟩P |0⟩NR + eiφl |0⟩P |N ′(l)⟩NR

)

(B.73)

=
1

2

(
⟨N (l)|P⟨0|NR + e−iφl⟨0|P⟨N ′(l)|NR

)
N (|N (l)⟩P |0⟩NR) (B.74)

=
N

2
. (B.75)

We next evaluate the covariance:

Cov
(
P̂ (l), P̂ (m)

)
= ⟨ψ1|P̂ (l)P̂ (m)|ψ1⟩ − ⟨ψ1|P̂ (l)|ψ1⟩⟨ψ1|P̂ (m)|ψ1⟩ (B.76)

= ⟨ψl|P̂UlU †
mP̂ |ψm⟩ − ⟨ψl|P̂ |ψl⟩⟨ψm|P̂ |ψm⟩ (B.77)

=
N2

2
⟨N (l)|P⟨0|NRUlU

†
m|N (m)⟩P |0⟩NR −

N2

4
, (B.78)

where in the last line we have used the fact that P̂ gives a factor of N when acting on the first

branch of states |ψl⟩ and |ψm⟩, but it annihilates the second branch that has zero photons in the

positive modes.

In order for Eq. (B.68) to be satisfied, and using Eq. (B.69), we therefore require that, for

all pairs of passes l,m,

⟨N (l)|P⟨0|NRUlU
†
m|N (m)⟩P |0⟩NR = 1. (B.79)
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Choosing l = 1, this implies that we require that

U †
m|N (m)⟩P |0⟩NR = |N (0)⟩P |0⟩NR ≡ |ψ1⟩P , (B.80)

where we are defining |ψ1⟩P , |ψ1⟩NR such that |ψ0⟩ ∝ |ψ1⟩P + |ψ1⟩NR in the obvious way.

Moving the unitary onto the right hand side of the equation yields

|ψm⟩P = Um|ψ1⟩P , (B.81)

which of course implies the corresponding equation for the second branch by linearity.

B.6 Fisher Information Matrix Conditions for Quadrature Displacements

In this Appendix, we provide conditions on the quantum Fisher information matrix for

an optimal protocol in the case of quadrature generators. This result yields a simpler form of

the saturability condition of Eq. (3.25), although the set of states that it picks out is less clear

than in the number operator case. This issue is compounded by the fact that the bound is not

actually saturable (it can only be approached asymptotically as N → ∞). Regardless, it allows

us to bring quadrature displacements into our general formalism and suggests a route towards

designing additional optimal protocols beyond those already in the literature.

In particular, starting with the definition of p̂i(l) from Eq. (B.42), we can bound the sum
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over the quantum Fisher information matrix elements as

d∑

i=1,j=1

F(θ)ij =
d∑

i=1,j=1

4
M∑

l=1

M∑

m=1

Cov(p̂i(l), p̂j(m)) (B.82)

≤ 4
M∑

l=1

M∑

m=1

√√√√Var
( d∑

i=1

p̂i(l)
)
Var
( d∑

i=1

p̂j(m)
)

(B.83)

= 4




M∑

l=1

√√√√Var
( d∑

i=1

p̂i(l)
)



2

(B.84)

≤ 4

(
M∑

l=1

√
N − d

2

)2

= 4M2

(
N − d

2

)
∼ 4M2N. (B.85)

Above, in Eq. (B.83), we used the Cauchy-Schwarz inequality; in Eq. (B.85), we used the un-

certainty relation in Eq. (B.35). Consistent with the rest of [this Appendix and the associated

chapter], the ∼ symbol denotes asymptotically in N (for N ≫ d).

The saturability condition in Eq. (3.25) states that, for an optimal protocol (asymptotically

inN ), it must hold that α is an eigenvector of F(θ) with eigenvalue 4M2N . Thus, for an optimal

protocol,

Tr(F) =
d∑

j=1

λj ≳ 4M2N, (B.86)

where λj are the eigenvalues ofF . This implies that the chain of inequalities leading to Eq. (B.85)

must be saturated (asymptotically in N ) for an optimal protocol and that the largest eigenvalue

of F must be λ1 ∼ 4m2N with all other eigenvalues zero. It immediately follows that the
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saturability condition for quadrature displacements can be written as

F(θ)ij ∼
4M2N

∥α∥22
αiαj. (B.87)

B.7 Approaching the Single-Shot Limit and Robust Phase Estimation

As pointed out in the footnote preceding Eq. (3.8) and in the discussion of what defines

an information-theoretically optimal protocol in Section 3.4.2, it is not, in practice, possible to

construct an unbiased estimator achieving the single shot (µ = 1) quantum Cramér-Rao bound

that we analyze in this [Appendix and the associated chapter], as the quantum Cramér-Rao bound

is only guaranteed to be achievable in the limit of asymptotically large amounts of data (µ→∞).

Resolving this tension while still achieving asymptotic Heisenberg scaling in the total amount of

resources (here, µN photons) requires carefully designed protocols. In particular, extracting a

relative phase from the probe states considered in the protocols in this [work] requires a proper

division of resources so that, asymptotically, the single-shot bound is achieved up to a small

constant.

At best, this constant can be reduced to π2 [71], but the non-adaptive robust phase es-

timation scheme of Refs. [66–68] provides a relatively simple-to-implement approach with a

multiplicative overhead of (24.26π)2. In brief, these protocols work by dividing the protocol into

K stages where in stage j one uses Nj photons (or N j average photons for displacement sens-

ing). In each stage, one imprints the unknown function into the phase between two branches of a

cat-like state of Nj photons and then performs a measurement, as described in the main text. The

experiment is performed νj times, allowing one to obtain an estimate of the unknown phase. This

305



estimate is refined over the course of the K stages, with more photons used in each additional

stage such that the total photon resources are

N =
K∑

j=1

νjNj. (B.88)

An optimal choice of νj and Nj ensures that, asymptotically, NK = Θ(N) and νK =

O(1), and, thus, the asymptotic scaling of the single-shot bound is obtained up to a multiplicative

constant that depends on the details of the optimization. The proof of this and the associated

optimization are detailed in Refs. [66–68].

Appendix C: Technical Details of the Results Reported in Chapter 4

C.1 Justification of Using Single-Parameter Bound

In this section, we elaborate on artificially fixing k − 1 degrees of freedom in order to use

the single-parameter bound in Eq. (4.3) in the main text. We begin by showing that any choice

of β ∈ Rk satisfying α · β = 1 picks out a valid choice of a k − 1 dimensional subspace that

{αn}n={2,...,k} must span such that the full set {αn}n={1,...,k} is a valid basis.

We begin by noting that, formally, the basis of vectors {αn}n={1,...,k} corresponds to the

rows of the Jacobian matrix J = [α1, . . . ,αk]
T of the coordinate transformation between θ′

and q = (q1(θ
′), q2(θ

′), · · · , qk(θ′))T . Further, there exists a dual basis of vectors {βn}n={1,...,k}

corresponding to the columns of the inverse Jacobian matrix J−1 = [β1,β2, . . . ,βk]. Therefore,
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αn · βm = δnm since JJ−1 = I . In particular, we have

α1 · β1 = α · β = 1. (C.1)

Recall that α = ∇q(θ′) is fixed by the quantity we desire to measure. Furthermore, we assume

without loss of generality that q1(θ) = q(θ). Now suppose we pick any β ∈ Rk satisfying Eq.

(C.1). If there is a valid basis {αn}n={1,...,k} corresponding to this choice, we require that the

k − 1 vectors {αn}n={2,...,k} span the orthogonal complement of β. Furthermore, we require

that these vectors be independent of α. This is clearly true for any valid basis {αn}n={2,...,k} for

the orthogonal complement of β as α is not in this subspace via Eq. (C.1). Therefore, we have

reduced the problem to that of picking the optimal choice of β ∈ Rk.

We now show via information theoretic arguments that there is such a choice of β that gives

us no useful information about q and that therefore the sharpest bound obtained by optimizing

over β is in fact saturable. Let F(θ) = (ℓ1, ℓ2, · · · , ℓk) = (ℓ1, ℓ2, · · · , ℓk)T be the Fisher

information matrix with respect to the parameters θ, where we have explicitly indicated it is

symmetric. Then we may use the previously defined Jacobian to obtain the Fisher information

matrix with respect to q = (q1(θ
′) = q(θ′), q2(θ

′), · · · , qk(θ′))T :

F(q) = (J−1)TF(θ′)J−1. (C.2)

We note that, if F(q)1n = F(q)n1 = 0 for all n ̸= 1, then there is no information about the

desired q1(θ′) in the other qn̸=1(θ
′). Therefore, if our bound is saturable, it must be possible to

construct such an F(q).
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Let α1 = α = (a1, · · · , ak)T . Since we know there is a protocol saturating our bound and

since we know what it is, we propose the ansatz

β1 =

(
1

a1
, 0, · · · , 0

)T
. (C.3)

Eq. (C.3) clearly satisfies α1 · β1 = 1. Furthermore, we pick some choice of remaining basis

vectors {αn}n={2,...,k} such that

αT
n̸=1 = (0,vTn), (C.4)

which satisfy αn̸=1·β1 = 0. Define the (k−1)×(k−1)-dimensional matrix V = (v2,v3, · · · ,vk)T .

Then define UT = V −1. Therefore, letting U = (u2,u3, · · · ,uk)T , we have un · vm = δmn.

Defining a = (a2, a3, · · · , ak)T , we then can pick

βTn̸=1 =

(−un · a
a1

,uTn

)
, (C.5)

which clearly satisfies αn · βm = δnm. We then have

F(q)n1 = βTnF (θ
′)β1 = βTn

ℓ1
a1

=
ℓ1 · βn

a1
= F(q)1n. (C.6)

The above equation implies

F(q)11 =
ℓ11
a21
, (C.7)

where we let ℓ11 denote the first component of ℓ1. Furthermore, if our choice of basis is to give
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us no information, we must have, for n ̸= 1,

F(q)1n = un ·
(
−ℓ11
a1

a+ ℓ′1

)
= 0, (C.8)

where ℓ′1 = (ℓ12, ℓ13, · · · , ℓ1k)T . In other words, this gives the off-diagonal elements zero. It

is impossible to have k linearly independent vectors un all orthogonal to
(
− ℓ11

a1
a+ ℓ′1

)
in a k

dimensional space, so we demand

−ℓ11
a1

a+ ℓ′1 = 0. (C.9)

We note that, if F(θ) is diagonal, this is impossible to satisfy. However, if ℓ1 ∝ α1, this is

satisfied, which is in fact what is done in the linear protocol from Ref. [8] that we use as a

subroutine in our protocol. Also note that a1 must be the maximum-magnitude element of α for

this to be satisfiable due to the properties of the Fisher information matrix (namely ℓ11 ≥ ℓ1n for

n ̸= 1). Without loss of generality, we let a1 be this maximum-value element as the order of

indexing our sensors is arbitrary. Therefore, we see that, by insisting that fixing k − 1 degrees of

freedom gives us no useful information, the protocol in Ref. [8] emerges naturally.

We note that one can find a somewhat related argument regarding the results of Ref. [8] in

Ref. [9].

C.2 Proof of Validity of the Consistency Condition

Here we prove that, provided we can estimate θ′, the consistency condition GT (θ′)w = α

[Eq. (4.9) in the main text] is satisfied for some w. We use this result in Sec. C.4 to prove

that using θ̃ (instead of θ′) in the second step of the analytic-function-case protocol of Sec. C.3
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induces negligible errors.

We begin by recalling a standard definition.

Definition C.2.1. An asymptotically unbiased estimator θ̃ of θ is one that asymptotically (in time

t and the number of measurements µ) has IE[θ̃] = θ.

We can now prove the following theorems.

Theorem C.2.1. If we can make an asymptotically unbiased estimate of a function q(θ′) with

arbitrarily small variance, then all β in the null space of G(θ′) lie in the orthogonal complement

of α = ∇q(θ′).

Proof. Proceeding by contradiction, suppose we have a β satisfying G(θ′)β = 0 [i.e. β is in the

null space ofG(θ′)] and α·β ̸= 0 (i.e. β is not in the orthogonal complement of α). We can scale

β by a constant to force α ·β = 1 and maintain G(θ′)β = 0. According to the bound in Eq. (4.7)

of the main text, the MSE of any estimator of q(θ′) then approaches infinity. Thus we can’t make

an asymptotically unbiased estimate with arbitrarily small variance, a contradiction.

Theorem C.2.2. If we can make an asymptotically unbiased estimate of q(θ′) with arbitrarily

small variance, then GT (θ′)w = α = ∇q(θ′) is consistent.

Proof. Theorem C.2.1 implies that α lies in the column space of GT (θ′), as the null space of

G(θ′) is the orthogonal complement of the column space ofGT (θ′). Thus the systemGT (θ′)w =

α is consistent.

Corollary C.2.2.1. If we can make asymptotically unbiased estimates of θ′ with arbitrarily small

variance, then GT (θ′) is full rank.
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Proof. If we can make an estimate of θ′, we can think of this as making an estimate of q(θ′) = θ′i

for any i. Therefore, by Thm. C.2.1, we have that GT (θ′)w = ei is consistent for any element ei

in the standard basis of Rk, which implies that GT (θ′) is full rank.

C.3 Optimal Protocol: Case of Analytic Functions

We use the results of the main text to generalize our optimal protocol to the case where

both f(θ) and q(θ) are analytic in the neighborhood of the true value θ′. Given a total time t,

we consider a two-step protocol that extends the approach of Ref. [102]. In the first step, we

spend time t1 = tp with p ∈ (1/2, 1) to obtain an initial estimate θ̃ of the true value θ′. We then

linearize q about θ̃ to obtain

q(θ) ≈ q(θ̃) +∇q(θ̃) · (θ − θ̃) =: α̃ · θ +K, (C.10)

where α̃ = ∇q(θ̃) and K is a constant with respect to θ. We will show in Sec. C.5 that the error

introduced by this approximation is negligible if θ̃ can be estimated with MSE O(1/t21) in time

t1 (as can be done via phase estimation procedures like in Ref. [66]). After having obtained θ̃ in

the first step, we can compute K.

In the second step, we estimate the remaining linear term α̃ · θ in Eq. (C.10) in time

t2 = t − t1. Define G(θ̃) as in Eq. (4.5) of the main text with θ′ → θ̃. Then following the

procedure of the linear case protocol in the main text, we measure a linear function λ such that

the corresponding estimate λ̃ is an asymptotically unbiased estimate of α̃ · θ. In particular,

here we have λ = w̃ · (f(θ) − C), where the constant vector C is chosen in such a way that

f(θ)−C = G(θ̃)θ +O(∆), with ∆ := θ̃ − θ′ and w̃ a vector of weights that we still need to
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choose. With C defined in this way, we linearize fi(θ) about θ̃ and obtain

λ ≈ w̃ · (G(θ̃)θ) = (G(θ̃)T w̃) · θ. (C.11)

Similar to the linear-case protocol in the main text, we ensure that λ̃ estimates q by choosing w̃

to satisfy G(θ̃)T w̃ = α̃, which we show in Appendix C.4 to be a consistent system of equations.

We then solve the corresponding protocol problem to obtain the optimal vector w̃, given G(θ̃)

and α̃.

Combining steps one and two yields an estimator for q(θ). In Appendix C.5, we show that

the MSE for such a protocol is asymptotically equal to the linear case in Eq. (4.11). The crucial

point is that the process of linearizing f and q(θ) about θ̃ introduces asymptotically negligible

corrections compared to linearizing about the true value θ′. Consequently, asymptotically,

M∼ ∥w̃∥∞
t22

∼ ∥w∥∞
t2

, (C.12)

where we have used t2 ∼ t, and w is the optimal weight vector obtained from the protocol

problem for G = G(θ′) and α = ∇q(θ′). Referring to Eq. (4.5) and the preceding discussion

in the main text, we recall that G and α defined this way are precisely the appropriate input to

the bound problem in order to obtain our ultimate MSE bound. As, asymptotically, our protocol

for an analytic objective and field yields an MSE equivalent to the fully linear case, the same

proofs as in the truly linear case hold, and the asymptotic bound obtained by solving the protocol

problem in Eq. (C.12) is equivalent to the sharpest bound obtained by solving the corresponding

bound problem – therefore the protocol is asymptotically optimal.
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C.4 Proofs on Estimate Asymptotics

In this section, we prove that, in the two-step protocol of Appendix C.3, using the estimate

θ̃ obtained from the first step of the protocol, as opposed to the unknown true value θ′, asymp-

totically yields negligible errors when compared to the determination of the weight vector w that

is the solution of the protocol problem.

Recall that we use time t1 = tp for 1/2 < p < 1 on the first step of the protocol to obtain

an estimate of each θi with MSE O
(

1
t21

)
. We then spend time t2 = t− t1 estimating q(θ′) via a

linearization of q(θ) about our estimate q(θ̃) with a weighted linear (in θ) protocol. We begin by

assuming that our initial estimate θ̃ satisfies

∥θ̃ − θ′∥ = ∥∆∥ ≤ δ (C.13)

for some fixed positive real δ, where we defined ∆ := θ̃ − θ′. From here on, norms without

subscripts denote the Euclidean norm. This means we assume θ̃ lies within or on a ball of radius

δ of the true value θ′ in the parameter space of θ’s. Recall that we also require that both q(θ)

and fi(θ) ∀i are analytic within this ball for some δ. Crucially, asymptotically in time t, we may

make δ an arbitrarily small fixed positive number. That is, as the total time t −→ ∞, the time

spent obtaining our estimate t1 = tp −→ ∞, and therefore the MSE of our estimate θ̃ goes to

zero.

We now prove the following theorem, which guarantees that, asymptotically, G(θ̃), as

defined in Eq. (4.5) of the main text with θ′ → θ̃, has full rank.
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Theorem C.4.1. Given a d× k matrix

G(θ) =




∂f1(θ)
∂θ1

. . . ∂f1(θ)
∂θk

... . . . ...

∂fd(θ)
∂θ1

. . . ∂fd(θ)
∂θk




and an estimate θ̃, asymptotically for t −→∞, G(θ̃) has full rank.

Proof. From Corollary C.2.2.1, we know that all singular values of G(θ′) are nonzero, and thus

the matrix has full rank. Let P be a perturbation matrix such that G(θ̃) = G(θ′)+P . We expand

fi(θ̃) about θ′ as

fi(θ̃) = fi(θ
′) +∇fi(θ′) ·∆+ . . . (C.14)

Thus,

G(θ̃)in =
∂fi(θ̃)

∂θn
=
∂fi(θ

′)

∂θn
+O(∆)

= G(θ′)in +O(∆), (C.15)

which implies Pin = O(∆) and therefore, as dim(∆) = k = O(1), ∥P∥ = O(∆). It is a

well-known result in matrix perturbation theory (see e.g. Ref. [485]) that, if ∥P∥ < σ, where σ is

the minimum singular value of G(θ′), then G(θ̃) has the same rank as G(θ′), i.e. full rank. Since

asymptotically we can make δ arbitrarily small in Eq. (C.13), we can also make ∥P∥ arbitrarily

small; therefore, since σ > 0, we are guaranteed to satisfy this condition asymptotically. Thus,

asymptotically, all singular values of G(θ̃) are nonzero and the matrix has full rank.

Now we consider the solutions to GT (θ′)w = α as compared to GT (θ̃)w̃ = α̃. We begin
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by restating a useful result from Ref. [118], labeled there as Fundamental Theorem 2, with our

notation.

Theorem C.4.2. Given the k × d matrix GT with rank k and the k × 1 vector α, there exists a

k × 1 vector v0 such that

α · v0 = max
∥Gv∥1≤1

α · v = max
∥Gv∥1=1

α · v,

and at least k − 1 components of Gv0 are zero, that is:

gi · v0 = 0 for i ∈ [i1, i2, · · · , ik−1] with 1 ≤ iℓ ≤ d,

where gi denotes the ith column of GT . Furthermore, the set of vectors

[
gi1 , gi2 , · · · , gik−1

]

is linearly independent.

This theorem is about the protocol problem. That is, v0 is the solution vector to the protocol

problem. Furthermore, we recall that, by strong duality,

u′′ = α · v0 = min
GT (θ′)w=α

∥w∥∞ = u′. (C.16)

We now compare how the solution of the protocol problem is perturbed by considering

GT (θ̃) and α̃ as opposed to GT (θ′) and α. To that end, we prove the following theorem.
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Theorem C.4.3. Consider the linear systems of equations GT (θ′)w = α and GT (θ̃)w̃ = α̃,

where we recall α = ∇q(θ′) and α̃ = ∇q(θ̃). Then

∥w̃∥∞ = ∥w∥∞ +O(∆),

where w is the solution to the protocol problem with G(θ′) and α and w̃ is the solution to the

protocol problem with the approximate G(θ̃) and α̃.

Proof. As in Theorem C.4.1, write G(θ̃) = G(θ′)+P with perturbation matrix P . Similarly, we

define a perturbation vector p such that α̃ = α+ p. We expand q(θ̃) about θ′ as

q(θ̃) = q(θ′) +∇q(θ′) ·∆+ . . . (C.17)

We then have

α̃ = ∇q(θ̃) = ∇q(θ′) +O(∆) = α+O(∆). (C.18)

Therefore we have p = O(∆) and (from Theorem C.4.1) P = O(∆).

Now, due to strong duality, we conclude that the solution of the dual protocol problem is

equal to that of the protocol problem. That is,

∥w∥∞ = α · v0,

∥w̃∥∞ = α̃ · (v0 + ϵ0), (C.19)

for the unperturbed and perturbed problems, respectively. We have introduced ϵ0 as the pertur-
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bation in v0 in the solution to the dual protocol problem in response to the perturbations P and

p.

Consider the solution to the unperturbed problem. We introduce the k × (k − 1) matrix

MT =
(
gi1 , gi2 , · · · , gik−1

)
with columns as defined in Theorem C.4.2. By the same theorem,

the solution vector satisfies

Mv0 = 0, (C.20)

where we note that M is a submatrix of G(θ′). Hence the solution vector must be jointly orthog-

onal to all columns of MT . Via a k-dimensional generalization of the determinant formula for a

cross product (obtained from Cramer’s rule), we have the unnormalized solution vector

v = det







e

M





 , (C.21)

where e = (e1, e2, · · · ek)
T represents a vector of the standard-basis vectors. Note that v is

unique up to scalar multiplication. We then have component-wise

vn = (−1)n+1 det(Mn)en (C.22)

where we naturally define Mn as the unique (k − 1)× (k − 1) submatrix of M that results from

eliminating the first row and nth column of the matrix in Eq. (C.21). We normalize the solution

vector to the protocol problem so that it satisfies the condition in Theorem C.4.2 as

v0 =
sgn(α · v)
∥G(θ′)v∥1

v = Nv, (C.23)
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where we have implicitly defined the normalization factor N .

We now consider the perturbed problem. Introduce two k × (k − 1) matrices: M
T

=

(
gj1 , gj2 , · · · , gjk−1

)
, a submatrix of GT (θ′), and Q

T
, the corresponding submatrix of P . That

is, M + Q is a submatrix of G(θ̃). We pick indices jℓ ∈ [1, d] in accordance with Thm. C.4.2

such that the solution vector v0 + ϵ0 of the perturbed protocol problem satisfies

(M +Q)(v0 + ϵ0) = 0. (C.24)

Similar to the unperturbed case, Eq. (C.24) has an unnormalized solution vector given by the

determinant

v + ϵ = det







e

M +Q





 , (C.25)

which component-wise reads

vn + ϵn = (−1)n+1 det(Mn +Qn)en. (C.26)

As in the unperturbed case, Mn+Qn is the submatrix ofM+Q corresponding to eliminating the

first row and nth column of the matrix inside the determinant of Eq. (C.25). The corresponding

normalized solution vector to the perturbed protocol problem is

v0 + ϵ0 =
sgn(α̃ · (v + ϵ))

∥(G(θ′) + P )(v + ϵ)∥1
(v + ϵ) = N (v + ϵ), (C.27)

where we have implicitly defined the normalization factor N .

We now consider several cases for how the unperturbed and perturbed solution vectors are
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related: (1) M = M , (2) M ̸= M and M has full rank, (3) M ̸= M and M does not have

full rank. Intuitively, case (1) corresponds to when the solution vectors of the unperturbed and

perturbed protocol problems are orthogonal (via Thm. C.4.2) to the same set of columns of

GT (θ′) and GT (θ̃), respectively. That is, the solution vector in the perturbed case is merely a

perturbed version of the solution vector in the unperturbed case. In cases (2) and (3), the set

of columns of GT to which the unperturbed and perturbed solution vectors are orthogonal do

not have the same indices. Intuitively, this means that the perturbed problem solution vector is

not simply the perturbed version of the solution vector in the unperturbed problem. These cases

divide into two options. In case (2), this set of columns of GT (θ̃) in the perturbed case (given by

the rows of M + Q) corresponds to a set of unperturbed columns of GT (θ′) (given by the rows

of M ) that are independent – i.e. M has full rank. In particular, this means that the unperturbed

version of the perturbed solution vector is a candidate solution to the unperturbed problem. By

candidate solution we refer to the fact that any choice of independent columns of G(θ′) could

correspond to a possible solution vector according to Thm. C.4.2, in the sense that any such

choice picks out a candidate, unnormalized solution vector via Eq. (C.21). There are at most

(
d

k−1

)
such candidate solutions based on picking the set of k − 1 columns that define a possible

M . In case (3), M does not have full rank – i.e. the corresponding unperturbed columns are

not independent and the unperturbed version of the perturbed solution vector is not a candidate

solution vector to the unperturbed problem.

We now examine the cases one by one in detail and find that we can rule out cases (2) and

(3). Starting with case (1), we may drop the bar on M as M = M . We then use a bound on
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determinants of perturbed matrices from Ref. [486] (see Remark 2.9 therein) and obtain

|det(Mn)− det(Mn +Qn)| ≤ sk−2∥Qn∥, (C.28)

where sk−2 ≤ (k − 1)σ1 · · ·σk−2 is the (k − 2)nd elementary symmetric function in the singular

values σ1 ≥ · · · ≥ σk−1 of Mi [486]. Importantly, σ1 = ∥Mn∥ ≤
√
k − 1∥Mn∥∞ = O(1) and

∥Qn∥ = O(∆) as ∥Qn∥ ≤
√∑

ab (Qn)
2
ab and all elements of Qn are of size O(∆). Therefore,

|det(Mn)− det(Mn +Qn)| = O(∆), (C.29)

which directly implies that ϵ = O(∆). Having established that ϵ = O(∆), we now consider the

normalization factors N and N . Recall that

|N | = 1

∥(G(θ′) + P )(v + ϵ)∥1
. (C.30)

By the triangle inequality,

∥(G(θ′)v∥1 − ∥(G(θ′)ϵ+ P (v + ϵ)∥1 ≤ ∥(G(θ′) + P )(v + ϵ)∥1

≤ ∥(G(θ′)v∥1 + ∥(G(θ′)ϵ+ P (v + ϵ)∥1. (C.31)

Then, using a binomial expansion yields

|N | − O(∆) ≤ |N | ≤ |N |+O(∆), (C.32)
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so N = N + O(∆), where we note that N = O(1). Therefore, for case (1), the perturbed

solution vector is v0 +O(∆), and ϵ0 = O(∆). Equation Eq. (C.19) then yields

∥w̃∥∞ = (α+ p) · (v0 + ϵ0)

= α · v0 +O(∆)

= ∥w∥∞ +O(∆). (C.33)

We now demonstrate that neither case (2) nor case (3) can arise. Starting with case (2),

we recall from the discussion above that M corresponds to a candidate solution for the original

unperturbed problem. The corresponding candidate (unnormalized) solution vector to the unper-

turbed problem, v, can be found by an equation analogous to Eq. (C.21). By the same argument

as in case (1), when we perturb M by Q to obtain the perturbed problem, the unperturbed candi-

date solution vector v may only be perturbed byO(∆) and similarly the corresponding candidate

solution value may also only be perturbed by O(∆). Let the difference between the candidate

solution corresponding to M and the true solution to the unperturbed problem be given by r.

As asymptotically we can make ∆ arbitrarily small we may always make ∥∆∥ ≪ r. This con-

tradicts the fact that the solution vector M + Q is the solution to the perturbed problem as an

approach like case (1) is guaranteed to offer a better solution than case (2) for sufficiently small

perturbations. Therefore case (2) cannot arise.

Similarly, we can show that case (3) cannot arise. In this case, M is rank-deficient and

consequently does not correspond to a candidate solution to the original unperturbed problem.

Also, due to its rank deficiency, we know there exists a linear combination of rows via O(1)

coefficients such that we may transform M using row operations into a form that it has a row of
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all zeros. Call this transformation T . We then have that T (M + Q) has a row with all elements

of size O(∆). Consider det(Mn + Qn) = det(T (Mn + Qn)) as in Eq. (C.26), where we

eliminate the nth column of T (M + Q) to obtain T (Mn + Qn). Eliminating this column does

not change the fact that T (Mn + Qn) has a row with all elements of size O(∆). Consequently,

det(Mn+Qn) = det(T (Mn+Qn)) = O(∆) and, therefore, all components of the unnormalized

perturbed problem solution vector must be O(∆). Let this unnormalized solution vector be v.

From before, we haveN = N +O(∆) and α̃ = α+O(∆), so the solution corresponding to v

is

N (α̃ · v) = N (α · v) +O(∆) = O(∆). (C.34)

In the second equality we used that N = O(1) and v = O(∆). Furthermore, let v be the

unnormalized solution vector for the unperturbed problem, then

N (α · v) ≤ N (α · v), (C.35)

which implies that, asymptotically,

N (α̃ · v) ≲ N (α · v). (C.36)

The right-hand side of this inequality is O(1), whereas the left-hand side is O(∆). Therefore,

asymptotically, the perturbed solution is no longer withinO(∆) of the solution to the unperturbed

problem. As a result, asymptotically, an approach like case (1) is guaranteed to result in a better

candidate solution vector than a candidate arising from case (3). Thus case (3) cannot lead to a

solution, concluding the proof.
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Theorem C.4.3 has immediate consequences that we use in evaluating our protocol perfor-

mance and in the proofs in Appendix C.5. It also implies the following useful corollary.

Corollary C.4.3.1. ∥w̃∥ can, asymptotically, be upper bounded by a constant.

Proof. ∥w∥ = O(1), and, asymptotically, δ—which bounds ∥∆∥ (see Eq. (C.13))—can be made

arbitrarily small. This directly implies the result.

C.5 Proof of Protocol Optimality

Using the results of the previous section, we rigorously demonstrate that the two-step pro-

tocol described in Appendix C.3 is optimal. In particular, we focus on the effects of using the

estimate θ̃ from step 1 of the protocol, as opposed to the true θ′, for step 2 of the protocol and

demonstrate that, asymptotically, the errors introduced are negligible.

We begin by sketching how the two-step protocol saturates the MSE bound in Eq. (4.7) and,

therefore, yields an optimal estimate of the function q(θ′). We then fill in the details to rigorously

obtain the result. The MSE of the full protocol is given by

M = E
[
(q̃ − q(θ′))2

]

=M1 +M2, (C.37)

with

M1 = Eθ̃[Varλ̃[λ̃]], (C.38)

M2 = Eθ̃

[
(q(θ̃) + λ− α̃ · θ̃ − q(θ′))2

]
. (C.39)
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The variance of the estimation of λ, for fixed θ̃, is ∥w̃∥2∞/t22 [8]. We then show that

M1 =
∥w∥2∞
t22

(
1 +
C
t1

+O
(
t−2
1

))
, (C.40)

with some constant C. Given t1 = tp with p ∈ (1/2, 1), we conclude thatM1 is asymptotically

given by ∥w∥∞
t22
∼ ∥w∥∞

t2
. On the other hand, we also show that M2 is of order O(t−4

1 ) and is

therefore asymptotically negligible. Thus, we asymptotically have

M∼ ∥w∥∞
t2

, (C.41)

where we recall that w is the optimal weight vector obtained from the protocol problem for

G = G(θ′),α = ∇q(θ′).

The point of the asymptotics is that the problem we actually solve in practice with our

estimate θ̃ introduces asymptotically negligible corrections. Via the same proofs as in the linear

case, we know that the protocol problem used to obtain w gives a solution equivalent to the

corresponding bound problem, and therefore the protocol is asymptotically optimal. We now fill

in the details and derive the asymptotic behavior ofM1 andM2.

Derivation ofM1. An immediate consequence of Theorem C.4.3 is

IEθ̃[Varλ̃[λ̃]] =
IE[∥w̃∥2∞]

t22
=
∥w∥2∞
t22

IE
[
(1 + B∆)2

]
(C.42)

324



for some constant B. Note that we can expand

IE[(1 + B∥∆∥)2] = 1 + B2IE[∥∆∥2] + 2BIE[∥∆∥]. (C.43)

Since IE[∥∆∥2] is the sum of the squared deviations of the individual θi, it is O
(

1
t21

)
. Similarly,

IE[∥∆∥] is O
(

1
t1

)
. As a result, we can expand Eq. (C.42) to

M1 = IEθ̃[Varλ̃[λ̃]] =
∥w∥2∞
t22

(
1 +
C
t1

+O
(
t−2
1

))
(C.44)

for some constant C, in agreement with Eq. (C.40).

Derivation ofM2. We begin with

M2 = IEθ̃

[
(q(θ̃) + λ− α̃ · θ̃ − q(θ))2

]
. (C.45)

We define the vector C(θ̃) to store constants which simplify our derivation through Ci(θ̃) =

fi(θ̃)− θ̃ · ∇fi(θ̃). We then define

λ(f) = w̃ · (f −C(θ̃)) (C.46)

as the linear function we measure in step 2 of our protocol. Similar to Eq. (C.17), we expand

q(θ) about θ̃:

q(θ) = q(θ̃)−∇q(θ̃) ·∆+
T2
2

+ · · · , (C.47)

325



where Tn = O(∆n). Inserting this expansion into Eq. (C.45), where we use the definition of α̃,

we find thatM2 is equivalent to

IEθ̃

[(
λ− α̃ · θ̃ + α̃ ·∆− T2

2
+
T3
3
− · · ·

)2
]
= IEθ̃




λ− α̃ · θ′
︸ ︷︷ ︸

(∗)

−T2
2

+
T3
3
− · · ·




2
 .

(C.48)

To simplify the term labeled (∗), we insert Eq. (C.46) and use α̃ ·θ′ = GT (θ̃)w̃ ·θ′ = w̃ ·G(θ̃)θ′.

This yields

λ− α̃ · θ = w̃ ·
(
f −C(θ̃)−G(θ̃)θ′

)
. (C.49)

Now consider the quantity f − C(θ̃)−G(θ̃)θ′. For the ith component, we have

f i − Ci(θ̃)− [G(θ̃)θ′]i = (fi − fi(θ̃)) +∇fi(θ̃) ·∆, (C.50)

where we employed the definitions of C(θ̃) and G(θ̃). Since fi(θ) is an analytic function in a

δ-ball around θ′, we can expanded it about θ′ as in Eq. (C.14). Substituting this expansion into

Eq. (C.50) we arrive at

Eq. (C.50) =
(
∇fi(θ̃)−∇fi(θ′)

)
·∆− S2

2
+O(∆3) (C.51)

with Sn = O(∆n). From Eq. (C.14), we conclude that

(
∇fi(θ̃)−∇fi(θ′)

)
·∆ = S2 +O(∆3) = O(∆2). (C.52)
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Therefore, Eq. (C.50) is of order O(∆2). Furthermore, Corollary C.4.3.1 implies that, asymp-

totically, ∥w̃∥∞ can be upper bounded by a constant, i.e. the magnitude of each element of w̃ is

upper bounded by a constant. Combining these facts, we find that Eq. (C.49) is of order O(∆2).

Together with Eq. (C.48), this, in turn, implies thatM2 is O(∆4) = O(t−4
1 ).

C.6 Review of the Protocol by Eldredge et. al.

In this section, we briefly summarize one of the protocols for optimal estimation of a linear

combination of parameters from Eldredge et. al. [8], because it is as a subroutine in our protocols

to obtain an estimate of Eq. (4.8) and Eq. (C.11) in the main text with variances given by Eq.

(4.11) and Eq. (C.12), respectively. We seek to measure a linear combination (up to a constant

shift) of the form

λ = w · f . (C.53)

Several specific protocols to obtain the optimal MSE estimate of such a linear combination are

given in Ref. [8]. Here we present the first and simplest such protocol.

In this protocol, we suppose to have access to a time-dependent control over our evolution.

We begin with a d-qubit GHZ input state of the quantum sensors given by

|ψ0⟩ =
1√
2

(
|0⟩⊗d + |1⟩⊗d

)
. (C.54)

Under evolution by σ̂z as in Eq. (4.1) in the main text, each qubit sensor accumulates a relative

phase between the |0⟩ and |1⟩ states. We perform a partial time evolution so that each qubit sensor

is evolved for a time proportional to the corresponding weight wi on that sensor. We realize this
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by applying σ̂xi to the ith qubit at time ti = t(1 + wi)/2. This results in an effective evolution of

our state by the unitary

Û(t) = e−i
t
2

∑d
i=1 wifi(θ)σ̂

z
i . (C.55)

We note that this scheme assumes that wi ∈ [−1, 1] and that the largest |wi| is equal to 1. We can

always achieve this by rescaling the vector w. Under this unitary evolution, the final state of the

qubits is

|ψf⟩ =
1√
2

(
e−itλ/2|0⟩⊗d + eitλ/2|1⟩⊗d

)
. (C.56)

We then make a measurement of the overall parity of the state using P̂ =
⊗d

i=1 σ̂
x
i . Note that this

measurement can be performed locally at each site. Furthermore, measurement of the expectation

value ⟨P̂ ⟩(t) allows for estimation of λ with the optimal accuracy given by Eq. (4.11) [487].

Appendix D: Technical Details of the Results Reported in Chapter 5

D.1 Derivation of Signed Sensor Symmetric Bound

In this appendix, we demonstrate that the explicit calculation of the inverse of the quantum

Fisher information in Ref. [53] for sensor symmetric states can be extended to the signed sensor

symmetric states of Eq. (5.19). The calculation largely follows that in that reference.

Begin by defining the symmetric matrix Ω = ωωT for ω a vector with all elements ±1, as
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defined in the main text. For example,

Ω =




1

−1

1




(
1 −1 1

)
=




1 −1 1

−1 1 −1

1 −1 1



. (D.1)

Now, given an orthonormal basis {êi}i∈[1,d] for the real space where our vectors of coeffi-

cients {αi} are defined, we can write, for pure signed, sensor symmetric states,

FQ(θ) =
d∑

i,j=1

t2
(
⟨σzi σzj ⟩ − ⟨σzi ⟩⟨σzj ⟩

)
êiê

T
j

= 4

(
v

d∑

i=1

êiê
T
i + c

∑

i ̸=j

Ωij êiê
T
j

)

= 4 [(v − c)I + cΩ] = 4v [(1− J )I + JΩ] , (D.2)

where FQ(θ) is the quantum Fisher information with respect to the parameters θ and v and c are

defined as in Eqs. (5.16) and (5.19) of the main text. We note this is equivalent to Eq. (22) of

Ref. [53] but with 11T → Ω, where 1 is the vector of d (+1)s. To invert FQ(θ) and evaluate the

quantum Cramér-Rao bound, we need the Fisher information matrix to be positive definite—i.e.

we require its eigenvalues to be strictly positive. The characteristic equation for the eigenvalues

λ of FQ(θ) is

det [4v ((1− J − λ/4v)I + JΩ)] = 0. (D.3)

We then use the determinant identity [210]: det(X + xyT ) = (1 + xTX−1y) det(X), with
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X = [4v(1− J )− λ]I , x = 4vJω, and y = ω. With a bit of algebra, we obtain

[4v(1 + (d− 1)J )− λ] [4v(1− J )− λ]d−1 = 0, (D.4)

which is identical to Eq. (24) in [53]. Here, we used that ωTω = d. Therefore, the eigenvalues of

FQ(θ) are 4v[1 + (d− 1)J ] with multiplicity one and 4v(1− J ) with multiplicity d− 1. If we

insist that the eigenvalues are positive (so that FQ(θ) is invertible), we then have the condition

on J that J ∈
(

1
1−d , 1

)
.

The inverse of FQ(θ) is given by

F−1
Q (θ) =

[1 + (d− 1)J ]I − JΩ
4v(1− J )[1 + (d− 1)J ] . (D.5)

We can verify this by computing

F−1
Q FQ =

[1 + (d− 1)J ]I − JΩ
4v(1− J )[1 + (d− 1)J ] (4v) [(1− J )I + JΩ]

= I, (D.6)

where we used that Ω2 = ωωTωωT = Ωd. We then may evaluate the quantum Cramér-Rao

bound

M≥
n∑

ℓ=1

wℓ(F−1
Q (g))ℓℓ =

n∑

ℓ=1

wℓ(AF−1
Q (θ)AT )ℓℓ. (D.7)

Plugging Eq. (D.5) into Eq. (D.7) and using 4v = t2 for our Hamiltonian from Eq. (5.17),
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we obtain

M≥
n∑

ℓ=1

[1 + (d− 2)J ]wℓ(AAT )ℓℓ − wℓJ [A(Ω− I)AT ]ℓℓ
t2(1− J )[1 + (d− 1)J ]

=
[1 + (d− 2)J ]N −NJG(ω)

t2(1− J )[1 + (d− 1)J ]

=
N
t2

1 + (d− 2− G(ω))J
(1− J )[1 + (d− 1)J ] , (D.8)

where we introduced the generalized geometry parameter

G(ω) =
1

N
n∑

ℓ=1

wℓ[A(Ω− I)AT ]ℓℓ

=
1

N
n∑

ℓ=1

wℓ
[
(AωωTAT )ℓℓ − 1

]

=
1

N
n∑

ℓ=1

wℓ
[
(αℓ · ω)2 − 1

]

=
1

N
n∑

ℓ=1

wℓ
(
d cos2 ϕω,ℓ − 1

)
. (D.9)

Here N is the normalization factor as introduced in Eq. (5.14) in the main text and ϕω,ℓ is the

angle between the linear functions specified by αℓ and ω. Note that G(ω) ∈ [−1, d − 1]. As in

Appendix C of Ref. [53], we can find the optimal J in Eq. (D.8), provided J ∈
(

1
1−d , 1

)
, to be

Jopt(ω) =

1

G(ω) + 2− d

[
1−

√
(G(ω) + 1)(d− 1− G(ω))

d− 1

]
. (D.10)
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The ultimate best bound is found using

Mss = min
ω
Mss(ω). (D.11)

D.2 Optimal Time Allocation

In this appendix, we consider the problem of optimal time division amongst the nmeasured

functions. In particular, given some matrix C, we want to compute the optimal times {t1, . . . , tn}

in

M(C) = min
{t1,··· ,tn}

[
n∑

ℓ=1

n∑

m=1

wmC
2
mℓ

(
µ′
ℓ

tℓ

)2
]

= min
{t1,··· ,tn}

[
n∑

ℓ=1

t−2
ℓ

n∑

m=1

kmℓ

]
, (D.12)

subject to the constrain
∑n

ℓ=1 tℓ = t. In the second line, we define kmℓ = wmC
2
mℓµ

′
ℓ
2. Introducing

a Lagrange multiplier γ0, we obtain the n+ 1 equations

n∑

ℓ=1

tℓ = t, (D.13a)

− 2

t3ℓ

n∑

m=1

kmℓ = γ0 ∀ ℓ. (D.13b)

Solving the latter equations for each tℓ and inserting the solution into the first equation yields

t =

(
− 2

γ0

) 1
3

n∑

ℓ=1

(
n∑

m=1

kmℓ

) 1
3

. (D.14)
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We can rearrange this to find the Lagrange multiplier

γ0 = −
2

t3




n∑

ℓ=1

(
n∑

m=1

kmℓ

) 1
3




3

. (D.15)

Together with Eq. (D.13b) this gives the optimal time allocation

tℓ = t
(
∑n

m=1 kmℓ)
1
3

∑n
ℓ=1 (

∑n
m=1 kmℓ)

1
3

(D.16)

= t
(
∑n

m=1wmC
2
mℓ)

1/3
µ′
ℓ
2/3

∑n
k=1 (

∑n
m=1wmC

2
mk)

1/3
µ′
k
2/3

(D.17)

and the time optimized figure of merit

M(C) =
1

t2




n∑

ℓ=1

(
n∑

m=1

kmℓ

) 1
3




3

. (D.18)

For the naive sequential protocol, we have C = ⊮ and µ′ = µ, so that

Mnaive =
1

t2

(
n∑

ℓ=1

w
1/3
ℓ µ

2/3
ℓ

)3

. (D.19)
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D.3 Nearly Overlapping Functions

Here we derive Eq. (5.40) from Eq. (5.39). For this, consider the minimization over C in

Eq. (5.39). To bound the expression, first note that, for any integer ℓ ∈ [1, n], we have

1 =
n∑

m=1

δℓm =
n∑

m=1

n∑

p=1

Cℓp(C
−1)pm

≤
n∑

p=1

|Cℓp||
∑

m

(C−1)pm|

=⇒ 1 ≤
(

n∑

p=1

|Cℓp||
∑

m

(C−1)pm|
)2

. (D.20)

This inequality is true for all C. Also note that

(
n∑

p=1

|Cℓp||
∑

m

(C−1)pm|
)2

≥
n∑

p=1

|Cℓp|2|
∑

m

(C−1)pm|2. (D.21)

This inequality is an equality when
∑

m(C
−1)pm = 0 for all but one single p = p∗. When this

condition is satisfied, we consequently have

1 ≤
n∑

p=1

|Cℓp|2|
∑

m

(C−1)pm|2. (D.22)

Now take a weighted sum over ℓ in Eq. (D.22) and obtain

n∑

ℓ=1

wℓ ≤
n∑

ℓ=1

wℓ

n∑

p=1

|Cℓp|2|
∑

m

(C−1)pm|2

=
n∑

p=1

|
∑

m

(C−1)pm|2, (D.23)
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where in the second line we used the normalization from Eq. (5.29). Next use subadditivity,

∑
p |xp| ≤ (

∑
p |xp|1/3)3, to obtain

n∑

ℓ=1

wℓ ≤
[

n∑

p=1

|
n∑

ℓ=1

(C−1)pℓ|
2/3
]3

(D.24)

valid for all C. The expression on the right is the one we need to minimize (over C) in Eq. (5.39).

Consequently, if we can saturate the last inequality, we have found the minimum of the expres-

sion, and arrive at

Mopt =
maxm ā

2
m

t2

n∑

ℓ=1

wℓ +O
(N δ2

t2

)
(D.25)

for nearly overlapping functions. We can, in fact, saturate the inequality (D.24). Recall that, in

order to saturate Eq. (D.21), we require the existence of an index p∗ such that

n∑

ℓ=1

(C−1)pℓ = 0 (D.26)

for p ̸= p∗ and otherwise (
n∑

ℓ=1

C−1
p∗ℓ

)2

=
n∑

ℓ=1

wℓ. (D.27)

Furthermore, we must satisfy the normalization condition in Eq. (5.29) for each column of C.

Geometrically, this normalization constraint forces each column of C to be on the surface of an

ellipsoid in n-dimensional space.

Suppose the row vector C−1
p∗ = (

√∑n
ℓ=1wℓ/n)1

T . This clearly satisfies Eq. (D.27). We

can satisfy Eq. (D.26) by noting that Eq. (D.26) can be written as 1 · C−1
p ̸=p∗ = 0. Therefore,
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Eq. (D.26) is satisfied if the rows p ̸= p∗ of C−1 are orthogonal to C−1
p∗ —that is, they exist in 1⊥.

It remains to show that we can choose such a C that satisfies Eq. (5.29). We have then that

the column vector of C, Cp∗ = (1/
√∑n

ℓ=1wℓ)1
T which satisfies both Cp∗ · C−1

p∗ = 1 and

n∑

ℓ=1

wℓC
2
ℓp∗ = 1. (D.28)

The remaining columns of C exist in 1⊥ and must exist on the n-dimensional ellipsoid specified

by Eq. (5.29).

As 1⊥ is a subspace geometrically represented as a hyperplane through the origin, it neces-

sarily intersects the ellipsoid (centered on the origin) specified by Eq. (5.29) forming an ellipsoid

of dimension n− 1. Therefore, we can satisfy all constraints and saturate Eq. (D.21).

Furthermore, we can confirm this choice of C also saturates Eq. (D.20) as

(
n∑

p=1

|Cℓp||
∑

m

(C−1)pm|
)2

= |Cℓp∗|2|
∑

m

(C−1)p∗m|2

=
1∑n
ℓ=1wℓ

n∑

ℓ=1

wℓ = 1, (D.29)
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and so we have confirmed we may obtain the equality as in Eq. (D.25).

Appendix E: Technical Details of the Results Reported in Chapter 7

E.1 Fully-Symmetric, Stoquastic Hamiltonians

Consider a Hamming-symmetric, stoquastic Hamiltonian on n qubits of the form

H(s) = −a(s)
n

∑

j

Xj + b(s)V
(∑

j

Z̄j

)
, (E.1)

where a(s) and b(s) define the adiabatic schedule as a function of parameter s ∈ [0, 1] with the

constraint that a(0) = b(1) = 1 and a(1) = b(0) = 0, and Z̄ = (I − Z)/2 = |1⟩⟨1| is the

Hamming weight operator. Since the potential V is a function only of Hamming weight, the

Hamiltonian can be written in a basis such that it is block diagonal [488, 489].

A Hamiltonian of this form commutes with the operator J2 = J2
x + J2

y + J2
z where

Jx =
1

2

∑

j

Xj Jy =
1

2

∑

j

Yj Jz =
1

2

∑

j

Zj, (E.2)

so J2 is a conserved quantity and we can use a basis of states |jmγ⟩ : J2|jmγ⟩ = j(j+1)|jmγ⟩

with total spin j and z-projectionsm ∈ {−j,−j+1, ..., j−1, j}with γ labeling the degeneracies.

Introducing a parameter σ ∈ {0, 1, ..., ⌊n
2
⌋} to label each total spin subspace, we have j = n

2
−σ.

The degeneracy for a given total spin j and z-projection m is determined by the number of
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representations of the group of permutations: Γ =
(
n
σ

)
−
(
n
σ−1

)
. Noting that m can be written in

terms of Hamming weight w as m = w − n
2

we can express the basis states as

|wσγ⟩ = 1√(
n
w

)
∑

|x|=w

k(x)|x⟩. (E.3)

Here, the quantities k(x) are numerical constants defining the weights of the appropriate bit

strings so that we have an orthonormal basis. For the σ = 0 (j = n/2) subspace k = 1 ∀ x.

Upon defining raising and lowering operators J± = Jx±iJy and noting
∑

j Xj = J++J−,

one finds

H =
∑

w,σ,γ

[
− a(s)

n

[
C+|w, σ, γ⟩⟨w + 1, σ, γ|+ C−|w σ γ⟩⟨w − 1σ γ|

]

+ b(s)V (w)|w σ γ⟩⟨w σ γ|
]
, (E.4)

whereC+ =
√
(w − σ + 1)(n− σ − w) andC− =

√
(w − σ)(n− σ − w + 1) are the standard

raising and lowering coefficients. For a given subspace σ ∈ {0, 1, ..., ⌊n
2
⌋}, w ∈ [σ, n− σ]. This

Hamiltonian is block diagonal with each block corresponding to a subspace. The σ = 0 block

is a permutation-symmetric block of dimension (n + 1) × (n + 1). As permutation of bits is a

symmetry of the Hamiltonian in E.1, and by the Perron-Frobenius theorem the ground state is

non-degenerate, the ground state of the Hamiltonian must exist in this block. Therefore the only

relevant gap is within this subspace, so one can directly diagonalize this permutation symmetric

subspace to analyze the performance of AQC on Hamiltonians of the form of Eq. (E.1) up to a

large number of qubits.
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E.2 Relabeling Bases for Three or Fewer Hamming-Symmetric Wells

Consider Hamiltonians such as given by Eq. (7.1),

H(s) = −a(s)
n

∑

j

Xj +
K∑

k=0

bk(s)Vk

(∑

j

X k̄Z̄jX
k̄
)
,

for the simplest non-trivial cases, K = 2, 3. For these two cases, it is possible to relabel the

bit strings in a manner which preserves Hamming separations and makes possible efficient exact

calculations of the relevant spectral gaps.

K = 2 : Given any two n-bit strings βa and βb we can always introduce a relabeling that

preserves the Hamming distance n1 between them, such that these two bit strings have the form

βa = |0..0 0..0⟩

βb = | 1..1︸︷︷︸
n1

0..0︸︷︷︸
n2

⟩. (E.5)

By construction, n1 is the Hamming distance between the bit strings and n2 = n−n1. We identify

the subset of the first n1 relabeled bits as S1 and the remaining n2 bits as the subset S2 = S̄1. For

a general relabeled bit string, define h1 to be the number of ones in S1, and the quantity h2 the

number of ones in S2. For each subset, the parameters σ1, σ2, γ1, and γ2 may be defined as in the

Hamming symmetric case. This defines a new labeling of basis states given by |h1h2σ1σ2γ1γ2⟩.

From the Perron-Frobenius theorem and symmetry we know the ground state exists in the

σ1 = σ2 = 0 subspace. In particular, the Perron-Frobenius theorem guarantees a non-degenerate

ground state with non-negative amplitudes. Additionally, the symmetry group for this Hamil-
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tonian is the direct sum of symmetric groups Sn1 ⊕ Sn2 acting on the sets S1 and S2 respec-

tively. The trivial representation is associated with our product state basis |h1h2σ1σ2γ1γ2⟩ for

σ1 = σ2 = γ1 = γ2 = 0. However we could also write a basis diagonal in the total “spin” σ

which for σ = 0 is the 1D representation of the group consistent with the non-negative ampli-

tude requirements of the Perron-Frobenius theorem. Therefore the ground state is guaranteed to

transform within this one-dimensional representation group of the Hamiltonian. As σ1 + σ2 ≤ σ

this subspace is fully within the σ1 = σ2 = 0 subspace in the product basis.

Therefore, as the ground state exists in this σ1 = σ2 = 0 subspace, the relevant gap is also

in this subspace, which has dimension (n1 + 1)(n2 + 1) × (n1 + 1)(n2 + 1). The relevant gap

can be exactly computed by direct diagonalization of a matrix of dimension polynomial in both

K and n.

With σ and γ labels dropped for compactness the Hamiltonian in this space can be exactly

written as

H =
∑

h1h2σ1σ2γ1γ2

[
− a(s)

n

[
C+

1 |h1h2⟩⟨h1 + 1h2|

+ C−
1 |h1h2⟩⟨h1 − 1h2|+ C+

2 |h1h2⟩⟨h1 h2 + 1|

+ C−
2 |h1h2⟩⟨h1 h2 − 1|

]
+
∑

i∈{1,2}

bi(s)Vi(h1, h2)

]
(E.6)

where C± act just on the relevant subset.
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K = 3 : For this case, the three selected bit strings are relabeled as follows:

βa = |1..1 0..0 0..0 0..0⟩

βb = |0..0 1..1 0..0 0..0⟩

βc = | 0..0︸︷︷︸
n1

0..0︸︷︷︸
n2

1..1︸︷︷︸
n3

0..0︸︷︷︸
n4

⟩. (E.7)

As was the case for two wells, a basis of the form
⊗

k={1,2,3,4}|hkσkγk⟩ exists. Again via sym-

metry of the Hamiltonian, the ground state exists in the σk = 0∀ k subspace, whose dimension is

polynomial in K and n.

E.3 Tight-Binding Matrix Elements

Consider 7.4 reproduced here

H
(TB)
ij = (E.8)

⟨ψi|Hd +
∑

h1h2

[Vi(h1, h2) + Vj(h1, h2) + Vc(h1, h2)]|ψj⟩

where Hd is the driver part of the Hamiltonian in the appropriate basis Vi and Vj are the diagonal

potential terms corresponding to the ith and jth wells and

Vc =

∑
k ̸=i,j

∑n
rk=0N(h1, h2, n1, Rik, Rjk, rk)Vk(rk)√(

n1

h1

)(
n−n2

h2

) . (E.9)

Note that this is equivalent to E.6 with the additional correction factor Vc. Recall that n1,

Rik and Rjk are the Hamming distance between the ith and jth wells, the ith and kth wells and

341



the jth and kth wells, respectively, rk is the distance from the kth well and Vk(rk) is the potential

due to the kth well at distance rk. The function N(h1, h2, n1, Rik, Rjk, rk) gives the number of

points of intersection between Hamming spheres of radius ri = h1 + h2 and rj = h2 + (n1− h1)

centered on the ith and jth wells respectively and the Hamming sphere of radius rk centered on

the kth well.

To find the function N(h1, h2, n1, Rik, Rjk, rk), without loss of generality consider 3 wells

i, j, k shifted so they are in the form of E.7 where we label the corresponding sets of qubits as

n′
1, n

′
2, n

′
3, n

′
4 to differentiate from n1 and n2 in the 2 well basis for wells i and j.

n1 = n′
1 + n′

2 Rik = n′
1 + n′

3 Rjk = n′
2 + n′

3. (E.10)

which we can solve for n′
1, n

′
2, n

′
3 in terms of the input parameters.

Define h′1, h
′
2, h

′
3, h

′
4 as the number of ones in each of the 4 subsets of qubits. Therefore

ri = (n′
1 − h′1) + h′2 + h′3 + h′4

rj = h′1 + (n′
2 − h′2) + h′3 + h′4

rk = h′1 + h′2 + (n′
3 − h′3) + h′4. (E.11)

This is a system of linear Diophantine equations whose solutions satisfy

h′2 =
1

2
(n′

2 + ri − rj − n′
1) + h′1 (E.12)

h′3 =
1

2
(n′

3 + ri − rk − n′
1) + h′1 (E.13)

h′4 =
1

2
(n′

2 + n′
3 − rj − rk)− h′1. (E.14)
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It is straightforward to then count the solutions for h′1 ∈ [0, n′
1]. We try each possible

h′1 and check that h′2 ∈ [0, n′
2] and h′3 ∈ [0, n′

3]. Each solution found is then multiplied by the

combinatoric factor
(
n′
1

h′1

)(
n′
2

h′2

)(
n′
3

h′3

)(
n′
4

h′4

)
. The total result is N .

E.4 Proof of Possible Subspaces for First Excited State

Here we prove that the first excited state for a single Hamming symmetric well must exist

in either the σ = 0 or σ = 1 subspace. Consider an eigenstate |ψ⟩ = ∑
wσγ α(w, σ, γ)|wσγ⟩.

Then

H|ψ⟩ =
∑

wσγ

[
− 1− s

n

(
α(w + 1, σ, γ)

√
(w − σ + 1)(n− σ − w)

+ α(w − 1, σ, γ)
√

(w − σ)(n− σ − w + 1)

)
− sα(w, σ, γ)V (w)

]
|wσγ⟩ (E.15)

which implies that for α(w, σ, γ) ̸= 0 that

E(s) = −1− s
n

(
r+C+ + r−C−)+ sV (w) (E.16)

where r± = α(w±1,σ,γ)
α(w,σ,γ)

for all w, σ, γ and C± are the raising and lowering coefficients. Now con-

sider the energy difference between candidate first excited states with different σ. The potential

term is independent of σ and thus does not affect which subspace is energetically favored. For a

subspace σ and a subspace σ′ > σ, C±(σ′ > σ) < C±(σ) so if r± were independent of σ then

the σ = 0 subspace would always be favored. Now consider the difference in energy between the
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candidate first excited states:

∆E(s) = Eσ′(s)− Eσ(s) =
1− s
n

[r+σ C
+
σ + r−σ C

−
σ − r+σ′C

+
σ′ − r−σ′C

−
σ′ ] (E.17)

The above equation is true for all w. We take w = σ′ so C−
σ′(w = σ′) = 0 eliminating

one term. For σ > 0, r± must be nonnegative (by the Perron-Frobenius theorem) so ∆E(s) is

nonnegative unless r+σ′ is large relative to r±σ . We will now show a contradiction. Consider the

w = σ′ element of the eigenvector equation in both subspaces. In the σ′ subspace

−1− s
n

C+
σ′(w = σ′)α(w = σ′ + 1, σ′) + sV (w = σ′)α(w = σ′, σ′) = Eσ′α(w = σ′, σ′)

(E.18)

and in the σ subspace

−1− s
n

[
C+
σ (w = σ)α(w = σ′ + 1, σ) + C−

σ (w = σ)α(w = σ′ − 1, σ)
]

+ sV (w = σ′)α(w = σ′, σ) = Eσα(w = σ′, σ) (E.19)

Rearranging and dropping the arguments of the functions for compactness we obtain from the

fact C+
σ′ < C+

σ

(
Eσ′ − sV

) 1

r+σ′
>
(
Eσ − sV

) 1

r+σ
+

1− s
n

C−
σ

r−σ
r+σ
. (E.20)
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The last term is positive definite so we can drop it and get the inequality

Eσ′ − sV
Eσ − sV

>
r+σ′

r+σ
. (E.21)

Both sides are positive definite for σ, σ′ > 0. And as sV is the same in both subspaces, if

Eσ′ < Eσ then r+σ′ < r+σ but this contradicts the result from E.17 that for this to be true r+σ < r+σ′ .

Therefore the first excited state must always exist either in the σ = 0 or σ = 1 subspaces.

Appendix F: Technical Details of the Results Reported in Chapter 8

F.1 Minimal Example

Here we give a minimal, working example of our algorithm. We consider a Hamming-

symmetric Hamiltonian

H = −
∑

∥b∥H=1

Xb +
∑

∥b∥H=1

Zb, (F.1)

and define the Hamming-symmetric Hamiltonian with base v as Hv = XvHXv, yielding

Hv = −
∑

∥b∥H=1

Xb +
∑

∥b∥H=1

(−1)v·bZb. (F.2)

This corresponds to a graph Γ where V ∗
Γ is a hypercube with all edge weights αb =

1. The vertex {∞} is connected to every vertex u ∈ V ∗
Γ by an edge weight w(u,∞) =

∑
|b|=1(−1)v·b+u·b. In practice, this graph Γ is too large to handle, but for illustrative purposes, we
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consider only 3 qubits so that we can track the whole algorithm by hand. Furthermore, in order

to be specific, we assume that v = 010. That is we obtain,

H010 = −X100 −X010 −X001 + Z100 − Z010 + Z001

= −X0 −X1 −X2 + Z0 − Z1 + Z2

which has a corresponding graph Γ depicted in Fig. F.1.

X000

X001

X100

X010

X011

X110

X101 X111

1

−1

3

−1

1

−3

1

−1

Figure F.1: Γ for H010. Each vertex is labeled by a member of Xb. The disconnected edges
connect to the boundary vertex∞ and are labeled by their weights.

Below, we follow the steps in the main paper to obtain the clausal theory graph for H010

excluding assignments, M1(EG) (See Fig. F.2).

In particular, as we have three qubits we introduce the six literal vertices

Z
(a)
0 ,−Z(a)

0 , Z
(a)
1 ,−Z(a)

1 , Z
(a)
2 , and − Z(a)

2 .

We also have three single bit flip edge generators X0, X1 and X2. Each generator has an as-

sociated vertex in the clausal theory graph, which joins its respective literals by an undirected

edge. That is, since X0 maps the computational basis state 00 . . . 0 to 10 . . . 0, we use a gadget to
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connect Z0 to Z1.

As there are no Pauli-Y terms in the Hamiltonian, we introduce no weight generators.

Finally, we add clause vertices corresponding to the diagonal potential terms of the Hamiltonian.

In particular, from Eq. (F.2), we introduce three clause cluster vertices Z(zb=1)
0 ,−Z(zb=1)

1 and

Z
(zb=1)
2 corresponding to to their respective terms in the Hamiltonian. For each clause cluster

vertex, we identify the associated set of clause vertices. Recall for a particular choice of b ∈

{100, 010, 001}, we have the associated clause cluster set

Cb =

{{
(−1)b′iZi

}(d )

bi ̸=0
|(−1)b·b′ = sign(κb)

}

b′∈{0,1}n
. (F.3)

where in our case κ100 = κ001 = 1 and κ010 = −1. Consider, for example, the Cb=100 case

corresponding to the clause cluster vertex Z(zb=1)
0 . Then, (−1)b·b′ = sign(κb) = 1, whenever

b′ ∈ {000, 001, 010, 011}. Hence, noting that bi ̸= 0 only when i = 0, C100 =
{
{Z0}(d )

}
.

Similarly, the clause cluster vertices −Z(zb=1)
1 and Z(zb=1)

2 have single associated clause vertices

{−Z1}(d ) and {Z2}(d ) respectively. The clause cluster vertices connect their associated clause

vertex to its corresponding literal vertices or, in this case, vertex.

Fig. F.2 shows the final construction. One can see that including assignments for u, v ∈ Γ

demonstrates u ≡ v ⇐⇒ G(u) ≃ G(v). This will be shown explicitly in the following

walk-through of the algorithm.

We start by calling Algorithm 1 with a null argument, or FINDEFFECTIVEVERTICES(∅).

Then, in Line 3, we choose a random vertex u ∈ V ∗
Γ . Suppose that u = X100; then Line 4 adds

it to V ′, so that now V ′ = {X100}. We now reach Line 5 with N(X100) = X000, X110, X101. The

loop proceeds to recursively check each neighbor v ∈ N(X100). Line 6 calls Algorithm 3 with
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Z~0

−Z~0

Z~1

−Z~1

Z~2

−Z~2

X~0 X~2X~1

Z~0

{Z~0}

Z~1

{−Z~1}

Z~2

{Z~2}

Figure F.2: Full example of M1(EΓ) for H010.

argument (v, V ′) and if v is not equivalent to an element already in V ′, Line 7 adds v to V ′. Then,

in Line 8, the Algorithm 1 calls itself with argument (v, V ′).

To walk through these steps, suppose that in the first iteration of the loop, the first neighbor

we query is v = X000. We generate G(X100) and G(X000) as shown in Fig. F.3a and Fig. F.3b,

respectively. One can see that these graphs are not isomorphic, so we add X000 to V ′. At this

point, V ′ = {X100, X000}.

Having addedX000 to V ′, we continue the recursion and call FINDEFFECTIVEVERTICES(X000, V
′).

Since v ̸= ∅, we immediately proceed to the loop in Line 5 and begin checking the neighbors

of X000. Suppose the first neighbor called is X001. (See Fig. F.3c for the corresponding clausal

theory graph.) Now, we see that G(X001) ≃ G(X100), so that X001 ≡ X100. Because X100 ∈ V ′,

we do not add X001 to V ′, this branch of the recursion terminates, and we continue checking the
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remaining neighbors of X000.

Next, we check X010, find that it is not equivalent to any member of V ′, and add to V ′.

Now, we call FINDEFFECTIVEVERTICES(X010, V
′). Note that in this call, all of the members

of N(X010) are already equivalent to members of V ′. Thus, Lines 5-8 complete without adding

any new members to V ′, and we return V ′ unchanged. We now return to the parent process,

which had been considering members of N(X000). Since each member of N(X000) has been

queried, Line 9 returns V ′ to its parent process, which was checking the members of N(X100).

We next query X110 and find X110 ≡ X000, so X110 is not added to V ′. In the next iteration of

the loop, however, X101 is not equivalent to anything already in V ′ so it is added and we call

FINDEFFECTIVEVERTICES(X101, V
′).

The remaining unchecked neighbor of X101 is X111, which is equivalent to X100, so we

return V ′ to its parent process and, in turn, the algorithm completes and exits, returning V ′ =

{X100, X000, X010, X101}. Thus, as expected, we have one representative of each equivalence

class of vertices of the original graph Γ in Fig. F.1.

We note that in this example every vertex is checked, so it may not be immediately obvious

that this procedure is efficient in general. However, as described in the main text, this algorithm

requires checking only a polynomial number of vertices (provided the symmetries lead to a poly-

nomial sized effective subspace). See Fig. F.4 to see which vertices need to be checked by this

algorithm for a Hamming symmetric example Hv = H{00...0} with 5, 6, and 7 qubits. It is clear

that while the number of vertices in the graph increases exponentially with the number of qubits,

only polynomially many vertices are actually queried.

Once we have our effective set of vertices we proceed to calculate the weights Ωuv in the
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}
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A(X001)

(c) G(X001)

Figure F.3: Some clausal theory graphs used in the minimal example. Comparing Fig. F.3a to
Fig. F.3b shows G(X100) ̸≃ G(X000) ⇐⇒ X100 ̸≡ X000. Comparing Fig. F.3a to Fig. F.3c
shows G(X100) ≃ G(X001) ⇐⇒ X100 ≡ X001.

main loop of Algorithm 2. One can walk through this loop by hand with ease obtaining the matrix

Ω =




0 2 0 1

2 0 1 0

0 3 0 0

3 0 0 0




where the rows and columns are in the same order as listed above in V ′. Given Ω and V ′ we can

calculate

H ′ =




−1 −2 0 −1

−2 1 −1 0

0 −3 3 0

−3 0 0 −3




from which we can compute the ground state in the symmetric subspace, ϕ′. We can also compute
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(a) n = 5 (b) n = 6

(c) n = 7

Figure F.4: Visited vertices of Γ in FINDEFFECTIVEVERTICES for Hamming symmetric example
on a hypercube for n = 5, 6, 7 as in Eq. (F.1). Green vertices are effective vertices, red vertices are
checked, but not added to the set of effective vertices, and black vertices are unchecked. Columns
of vertices are in Hamming weight order. Note the number of vertices grows exponentially in n,
but the number of checked vertices grows only polynomially.

the size of each equivalence class using Eq. (8.8) from the main text (repeated here)

|JuK|∑
v∈V ′|JvK|

=


∑

v∈V ′

∏

e∈P (u,v)

ωe0Je1K

ωe1Je0K




−1

(F.4)
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which yields

|JX100K| = |JX000K| = 3

|JX010K| = |JX101K| = 1.

Finding the ground state eigenvector ofH ′ gives ϕ′ = (3+2
√
2, 1+

√
2, 1, 7+5

√
2). Now,

we compute the probability of sampling each equivalence class using equation Eq. (8.7) from the

main text (repeated here),

Pr (JuK) = |JuK|ϕ(u)2 = |JuK|ϕ′(JuK)2∑
v∈V ′ |JvK|ϕ′(JvK)2

. (F.5)

That is,

Pr(|JX100K|) ≈ 0.32 Pr(|JX000K|) ≈ 0.055

Pr(|JX010K|) ≈ 0.003 Pr(|JX101K|) ≈ 0.622.

We then return a member of V ′ according to the above-stated probability distribution. We

can easily verify that this agrees with the probability that, upon computational-basis measure-

ments, we return a member of the corresponding equivalence class of the full Hamiltonian.

In addition to this minimal full example we also provide a depiction of a more complicated

clausal theory graph that includes all the different gadget described in the main text (see Fig. F.5).

Note that this example is not stoquastic so that all the different types of gadgets can be shown

clearly on one graph. Thus this example is for illustrative purposes only.
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Z~0

{
−Z~0
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Figure F.5: Full example of M1(EΓ) for H = −X001 − Y110 − Z100 + Z011. Note, H is not
stoquastic as to have a legible graph with all relevant types of vertices/edges.

F.2 Additional Gadgets

Generality: In addition to the gadgets corresponding to individual Xb, Yb, Zb terms of the

Hamiltonian one must also consider additional composite gadgets to achieve full generality for

stoquastic Hamiltonians with symmetries between “like” terms – i.e. those with interactions be-

tween the same number of qubits. Such a gadget is constructed as follows. We note that for

each double-typed term of the form XbYb′ , XbZb′′ , or Yb′Zb′′ appearing in H , one would need

to introduce re-colored versions of the gadgets G1(b), G2(b
′), and G3(b

′′) in order to avoid con-

flicting with other terms that might appear independently, such as Xb. Similarly, for each term

of the form XbYb′Zb′′ one would need to introduce yet another color to avoid conflicting with

single-typed and double-typed terms. Alternatively, as long as one is consistent for all terms, if

XbYb′ appears and G1(b) is already included in the clausal theory graph, one might just adjoin

an indicator vertex with a unique color to indicate that both single- and double-typed terms exist.

See Fig. F.6.

Furthermore, as noted in the main text, one could imagine similar constructions that al-

low for the detection of even more complicated symmetries including those between “non-like”
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G1(b) ∪G2(b
′) ∪G3(b

′′)∪




Xb

Yb′Zb′′




Figure F.6: Construction of a composite gadget for a Hamiltonian term of the form XbYb′Zb′′ .
G1(b), G2(b

′), and G3(b
′′) are as defined in the main text (see Table 1).

Hamiltonian terms. While the current work presented here covers all cases previously described

in the literature, it is of interest to consider these more general constructions. This combined

with a full accounting for algorithms to deal with approximate symmetries would serve to fully

generalize the work here. We leave details of such constructions to forthcoming work.

Optimality: The gadgets in this paper were chosen for simplicity, but are suboptimal from

the perspective of GI. For instance, one could combine the gadgets for XX (G1(11)) and Y Y

(G2(11)) into a re-colored version of G2(11). One can similarly include ZZ terms in a gadget

of this form. (See the Y110 and Z011 gadgets of Fig. F.5 and note that the structure of a potential

Z110 gadget would also be captured by Y110 by deleting edges pointing towards literals ±Z0 and

±Z1.)

If one wishes to make the algorithm as efficient as possible, one would ideally choose such

a minimalist construction.

F.3 Proofs

Proof of Theorem 8.7.1. By construction M : Γ 7→ G is unique, so we only need to show that

the M−1 exists. First, note that M0 : VΓ −→ M0[VΓ] ⊂ VG is bijective and provides a unique

mapping from vertices to assignments of literals. Hence, we only need to show how to derive

w(u, v) from G for all (u, v) ∈ VΓ × VΓ.
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For any u ∈ VΓ, we calculate w(u,∞) by considering all shortest paths Pb connecting

A(u)(b) to each clause cluster vertex Z(zb)
b through G. In particular we obtain

w(u,∞) = 2
∑

b:|Pb|̸=∥b∥H

|κb| −
∑

b

|κb| (F.6)

where we recall that we can extract |κb| from the color zb of each clause cluster vertex.

Similarly, we can consider any pair (u,Xbu) ∈ VΓ × VΓ. We consider M(u,Xbu) =

(L ∪ −L) \ (M0(u) ∩M0(v)) and construct S = M(u,Xbu) ∪M1({u,Xbu}). Let Pb be the

number of shortest paths connecting A(u)(b) to A(Xbu)
(b) through S. Then,

w(u,Xbu) =





αb + (−1)
|Pb|
∥b∥2

H βb ifG1(b) ∪G2(b) ⊂ G

0 otherwise

(F.7)

Hence, ∃M−1 : G 7→ Γ and M is bijective.

Recall G(u) =M0(u)∪M1(EΓ). We now provide a straightforward lemma that we use to

prove Theorem 8.7.2. In the below proofs we drop the (b) superscript on assignment vertices to

avoid notational clutter.

Lemma F.3.1. There exists a color-preserving automorphism g of G with g ◦ A(u) = A(v) iff

G(u) ≃ G(v).

Proof. When u = v, this is trivial. We now assume u ̸= v.

Suppose g is an automorphism of G with g ◦ A(u) = A(v). Then, clearly, g
∣∣
VG(u)

:

VG(u) −→ VG(v) is a color-preserving isomorphism between G(u) and G(v).

Conversely, suppose there exists a color-preserving isomorphism g
∣∣
VG(u)

: VG(u) −→ VG(v)
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such that G(u) ≃ G(v). We note that by construction G(u) ∩ G(v) = M1(EΓ) and color-

consistency requires g
∣∣
VG(u)

◦ A(u) = A(v). Therefore, g
∣∣
VG(u)

is an automorphism of M1(EΓ).

Extend g
∣∣
VG(u)

to g : VG −→ VG such that g ◦ A(Xb) =
{
g
(
(−1)biZ(a)

i

)}n−1

i=0
= A(Xb′). Then,

g is an isomorphism between M0(Xb) ∪M1(EΓ) and M0(Xb′) ∪M1(EΓ) for any choice of b.

Hence, g is an automorphism of G.

Now, we can prove Theorem 8.7.2.

Proof of Theorem 8.7.2. Suppose u ≡ f(u) ∈ VΓ. By definition, f ∈ Aut(Γ). By construction,

we have that g is a color-preserving isomorphism G(u) ≃ G(f(u)).

Now, suppose that g
∣∣
VG(u)

is a color-preserving isomorphism G(u) ≃ G(v). Then, by

Lemma F.3.1, there exists some color-preserving automorphism g : VG −→ VG of G. Define

f = A−1 ◦ g ◦ A. Then, by Theorem 8.7.1, f is an automorphism of Γ and, thus, u ≡ f(u).

F.4 Smooth Transitions

We apply the result of [175] under very weak constraints to show that families of Hamilto-

nians almost invariably encounter an exponentially small gap, unless they undergo very smooth

phase transitions. These results are similar to but, in terms of gap-analysis, stronger than those of

[182]. Here, we reference only the behavior of the ground state and show that most phase transi-

tions, like those we expect out of adiabatic optimization, produce exponentially small gaps. The

following simple theorem is sufficiently illustrative, although its statement could be improved

asymptotically and easily generalized to include more than k-local Hamiltonians.
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Theorem F.4.1. If H is a k-local Hamiltonian with ground state ϕ, ∥H∥ ≤ 1, and there exists a

set S0 such that

1. S0 =
{
u | |ϕ(u)| < 2−n

c}
with absolute constant c > 0,

2.
∑

u∈S0
|ϕ(u)|2,∑u/∈S0

|ϕ(u)|2 = Ω
(

1
poly(n)

)
,

3. and
∣∣S0

∣∣ = O (poly(n));

then γ(H) = 2−Ω(nc).

Proof. Note that by [175], the weighted Cheeger constant h bounds γ(H), as 2h ≥ γ(H). In

particular, h = minS hS where hS is the weighted Cheeger ratio

hS =

∑
u∈S,v /∈S ℜ (−Huvϕ(u)ϕ(v))

min
{∑

u∈S|ϕ(u)|
2,
∑

u/∈S|ϕ(u)|
2} .

Now, consider S0,

hS0 ≤ O

(
maxv0∈S0|ϕ(v0)|

∑
u∈S0,v /∈S0

|−Huv||ϕ(u)|
min

{∑
u∈S0
|ϕ(u)|2,∑u/∈S0

|ϕ(u)|2
}

)

= O

(
poly(n)maxv∈S0|ϕ(v)|

min
{∑

u∈S0
|ϕ(u)|2,∑u/∈S0

|ϕ(u)|2
}
)

= O

(
poly(n)2−n

c

min
{∑

u∈S0
|ϕ(u)|2,∑u/∈S0

|ϕ(u)|2
}
)

= 2−Ω(nc).

Since the weighted Cheeger constant h = minS hS < hS0 = 2−Ω(nc), γ(H) = 2−Ω(nc).

Thus, if we are interpolating over a family of Hamiltonians H(s) and we ever encounter

a ground state ϕ such that (1) there exists a set S where we have substantial probability of re-
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turning a sample from either S or S, (2) for any u ∈ S it is unlikely that we will sample u

in time O (poly(n)), and (3) S is small, we encounter an exponentially small gap. Since we

typically interpolate over a family of Hamiltonians H(s) such that the ground state ϕ0 of H(0)

has |ϕ0(u)|2 = O
(
2−n/2

)
for any u and end in a Hamiltonian H(1) such that the ground state

ϕ1 satisfies
∑

u∈S|ϕ1(u)|2 = Ω(1/poly(n)) for some small set of computational basis states

|S| = O (poly(n)), avoiding the constraints of Theorem F.4.1 with naive families H(s) is un-

likely.

Appendix G: Technical Details of the Results Reported in Chapter 9

G.1 Some Properties of the Star Product

Here we demonstrate a number of useful identities regarding the star product introduced

in the main text. Some of these properties do not seem to be well documented in the literature

on generalized Bloch vectors due to the focus on single density matrices. In these contexts, only

star products between the same Bloch vector arise, which obscures some of the more general

properties of the product. In particular, we emphasize that the product is non-associative.

We define the star product of two vectors a, b ∈ Rd2−1 component-wise as

(a ∗ b)ξ = dµνξaµbν , (G.1)

where dµνξ are totally symmetric structure constants for su(d). Observe that this product is basis-
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dependent due to the structure constants.

The star product has the following properties which can be verified by explicit component-

wise computation:

a ∗ b = b ∗ a (commutative)

(a ∗ b) ∗ c ̸= a ∗ (b ∗ c) (non-associative)

a ∗ (b+ c) = a ∗ b+ a ∗ c (distributive)

(a ∗ b) · c = (b ∗ c) · a = (a ∗ c) · b.

The last identity can be used to show that

(a ∗ b) · (c ∗ d) = ((a ∗ b) ∗ c) · d

= ((a ∗ b) ∗ d) · c

= ((c ∗ d) ∗ a) · b

= ((c ∗ d) ∗ b) · a. (G.2)

This result generalizes: the dot product of any combination of star products can be rearranged

such that the dot product is just with a single vector at the end of the computation, provided one

is careful with the non-associativity of the star product.

When it is not misleading, it can be convenient to adopt the convention that multiplication

proceeds from left to right so we can drop the parenthesis and have, for instance, that

(((a ∗ b) ∗ c) ∗ d) = a ∗ b ∗ c ∗ d. (G.3)
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Finally, we introduce the notation that b∗k denotes the k-fold star product b ∗b ∗ · · · b, such

that b∗1 = b, b∗2 = b ∗ b and so on.

G.2 Proof of Sufficient Word Length for Unitary Similarity of a Pair of Hermi-

tian Matrices

Theorem G.2.1. Two Hermitian matrices H,H ′ ∈ Cd×d are unitarily similar if and only if

Tr[Hk] = Tr[H ′k] for k ∈ [1, d].

Proof. In general, from Theorem 9.3.1, it is necessary to check the trace conditions for all words

Hk, H ′k. We show it is only necessary to check the first d such words. That is, Tr[Hk] = Tr[H ′k]

for k ∈ [1, d] implies Tr[Hk] = Tr[H ′k] for k > d.

Observe that traces are basis-independent so we may write the given set of equivalences for

k ∈ [1, d] as

Tr[Hk] = Tr[H ′k] =⇒
d∑

j=1

λkj =
d∑

j=1

λ′kj , (G.4)

where {λj}, {λ′j} are the eigenvalues of H,H ′, respectively. Because H,H ′ are Hermitian these

are real. The sums in Eq. (G.4) are known as the power sums pk(λ1, · · · , λd) and pk(λ′1, · · · , λ′d).

Via the Newton-Girard identities, one can explicitly write the first d elementary symmetric poly-

nomials e1, · · · ed in these eigenvalues in terms of the power sums pk for k ∈ [1, d]. By the

equivalence of the power sums between the variables {λj}, {λ′j}, the elementary symmetric

polynomials in these two variables are also equivalent.

The elementary symmetric polynomials then allow us to write the chain of equalities via a
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standard expansion of a polynomial in some variable x with roots {λj}:

d∏

j=1

(x− λj) =
n∑

k=0

(−1)kek(λ1, · · · , λn)xn−k

=
n∑

k=0

(−1)kek(λ′1, · · · , λ′n)xn−k =
d∏

j=1

(x− λ′j). (G.5)

This implies that λj = λ′j for all j ∈ [1, d]. This in turn implies that Tr[Hk] = Tr[H ′k] for k > d,

proving the result.

We remark that Theorem G.2.1 is often stated without proof in the context of giving the

independent trace invariants of density matrices ρ ∈ Cd×d [203, 216, 217]. Given that Hermitian

matrices have d eigenvalues, the theorem is intuitively obvious, but we have not seen the explicit

proof of this statement in the physics literature.

We also provide an alternative statement of the theorem and a corresponding proof which

makes use of the Bloch vector formalism for trace invariants.

Theorem G.2.2. Two traceless Hermitian matrices H,H ′ ∈ Cd×d are unitarily similar if and

only if a∗k · a = b∗k · b for k ∈ [1, d − 1], where a, b are the Bloch vectors corresponding to

H,H ′, respectively.

Proof. Consider the infinite set of vectors A = {a,a ∗ a,a ∗ a ∗ a, · · · }. The invariants of A

under unitary transformations are v · a for any v ∈ span(A).

Any Hermitian matrix can be diagonalized via a unitary matrix and the invariants are un-

changed under this transformation so assume that we have diagonalized A. Suppose we are using

a generalized Gell-Mann basis, as described in the main text. Then the corresponding a has

aj = 0 for j ∈ X ,Y . That is, a is in a subspace T of dimension d − 1 spanned by λ̂
(diag)

, with
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corresponding indices D. We have that

(a ∗ a)k = dijkaiaj, (G.6)

where the only non-zero terms in the sum correspond to non-zero dijk with i, j ∈ D. The only

non-zero dijk satisfying this condition have k ∈ D. Therefore, a ∗ a ∈ T . This is true for all

v ∈ A. As T is of dimension of d−1, only up to d−1 of the vectors inA are independent. Adding

in the traceless condition, this makes for a maximum of d independent invariants. Therefore, to

determine the simultaneous similarity of H,H ′ it is sufficient to check the equivalence of only

the d invariants in the theorem statement.

We remark if H,H ′ are not traceless one can merely check if the matrices have the same

trace and then apply the theorem above.

G.3 Bound on the Length of Words

This section seeks to prove the bound on ℓmax, the maximum length of word we need to

check to capture all independent invariants, given in Eq. (9.5). This proof is just an application

of the bound and construction provided in Ref. [200].

The idea of simultaneous unitary similarity is derived in Ref. [200], starting from whether

two complex matrices are unitarily similar. It is a known result that two n× n complex matrices,

A and B (with A∗ and B∗ denoting their complex conjugates), are unitarily similar if and only

if Tr[w({A,A∗})] = Tr[w({B,B∗})] for every word w({s, t}) of two non-commuting matrices
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whose length is less than or equal to

ℓ′max = min





⌈n2+2
3
⌉

n
√

2n2

n−1
+ 1

4
+ n

2
− 2.

(G.7)

The O(n2) bound is due to Paz [212] and the asymptotically better O(n3/2) bound is due to

Pappacena [213]. This result holds for arbitrary complex matrices, and as we discussed in the

preceding section, the bound on considered words can be much tighter if we consider just the

unitary similarity of two Hermitian matrices. However, this more general bound is important in

the context of the unitary similarity of sets of matrices. In Ref. [200], the authors produce an

encoding of sets of matrices into two larger matrices such that if those two larger matrices are

unitarily similar then all the individual pairs of matrices from the two sets must be unitarily sim-

ilar under the same transformation. Furthermore, the word trace condition for unitary similarity

of these larger matrices is equivalent to a word trace condition on all words of that same length

compared between words made entirely of one of the sets and words made entirely from the other

set.

Specifically, given two sets of matrices S = {s1, s2, . . . , sm} and S ′ = {s′1, s′2, . . . , s′m}

where each matrix is of size d × d, we can encode these sets into matrices A and B. A will be

a block matrix constructed of d × d matrices, and the diagonal and all blocks below it are zero.

Immediately above the diagonal are d× d identity matrix blocks, and into the remaining portion

of the upper triangular portion, we slot the matrices from S into the blocks. In order to do this,

we need m spaces remaining in the upper triangle. If the A matrix is c blocks long, then there

will be (c2 − 3c + 2)/2 spaces for matrices from our set S. Thus, we must choose c such that
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(c2 − 3c + 2)/2 ≥ m. Any unused blocks are set to zero. The B matrix is constructed similarly

except using S ′ instead of S. These matrices will both be of size n = cd.

In Ref. [200] it is proven that the matrices A and B are unitarily similar if and only if the

sets S and S ′ are unitarily similar. Furthermore, the trace word conditions on A and B being

unitarily similar is equivalent to the condition that all words have equal traces between sets S

and S ′ with the lengths of these necessary words being bounded by the same length as the words

necessary to check unitary similarity of A and B. Therefore, it is sufficient to check words up to

length based off Eq. (G.7) with n = cd, recovering Eq. (9.5).

G.4 Trace Invariants in Terms of Bloch Vectors

In this section, we demonstrate the claim from the main text that all trace invariants under

simultaneous unitary transformations can be expressed as linear combinations of invariants v ·b(j)

for v ∈ B and b(j) a Bloch vector corresponding to the Hamiltonian Hj . Recall, we define B to

be the set of all possible star products between Bloch vectors in B.

Furthermore, recall that for a trace invariant for a word of arbitrary length we have

Tr[w(S)] = Tr




|w|∏

j=1

d2−1∑

µj=1

b(wj)
µj

λ̂µj


 , (G.8)

where we have denoted the j-th element of w as wj . We can flip the order of the product and the

sum and write

Tr[w(S)] =
∑

{µ1···µ|w|}

Tr




|w|∏

j=1

b(wj)
µj

λ̂µj


 , (G.9)

where the sum is over all ordered sets (with replacement) of indices ∈ [1, d2 − 1]. We now
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make use of Eq. (9.2) to evaluate the products of basis elements of su(d). Due the sum over all

ordered sets the antisymmetric terms in each product of λ̂µj cancel and we are left to consider

the identity terms and the terms with symmetric structure constants. As the basis elements are all

traceless, what ultimately survives the trace once we fully expand out all products are the terms

proportional to identity.

Under an expansion of the products and evalaution of the trace the term with the most

symmetric structure constants is proportional to

(dµ1µ2ν1dµ3ν1ν2dµ4ν2ν3 · · · dµ|w|−1ν|w|−3ν|w|−2
δν|w|−2µ|w|)

× (b(wj)
µ1
· · · b(w|w|)

µ|w| ), (G.10)

where we use the convention of summing over repeated indices. After staring at the proliferation

of indices, one observes that this term can be compactly written as

(((b(w1) ∗ b(w2)) ∗ b(w3)) ∗ · · · ∗ b(w|w|−1)) · b(w|w|) (G.11)

All other terms in the expansion of the products of basis elements of su(d) consist of fewer

symmetric structure constants and more Kronecker deltas. These other terms amount to dot

products between terms similar to this one but with smaller word length. Therefore, this term is

the only one that is not dependent on invariants established from smaller length words. By the

commutativity of the star product we may permute any products we like, provided we respect the

lack of associativity. From this, and the fact that all words yield trace invariants, we establish the

intended claim.
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This result implies a nice geometric interpretation of the trace invariants. In particular, the

relative angles between all vectors in B are the invariants under unitary transformations. This is

a manifestation of the fact that SU(d) ⊂ SO(d2 − 1). Due to the asymmetry in Bloch space

of the symmetric structure constants, the set of star products B are not, in general, rotationally

invariant—the rotations where this infinite set of vectors do rotate rigidly picks out the rotations

corresponding to SU(d).

G.5 Simultaneous Stoquasticizability is Rare

For all the proofs in this section it will be necessary to identify the non-zero symmetric

structure constants of su(d) in the generalized Gell-Mann basis. We take the explicit form of

these from Ref. [221], with some slight differences in indexing to account for our conventions

differing from those used by those authors.1 We identify these symmetric structure constants

based on whether the indices correspond to symmetric (Eq. 9.3a), skew-symmetric (Eq. 9.3b),

or diagonal (Eq. 9.3c) basis elements. In particular, we give a one-to-one mapping between

indices i ∈ [1, d2 − 1] and indices Xjk,Yjk and Dj corresponding to the sets of symmetric,

1In particular, relative to the conventions of Ref. [221], we do the following: (a) we index our diagonal basis
elements of the generalized Gell-Mann basis [1, d − 1] as opposed to to [2, d]; (b) we index the symmetric and
anti-symmetric basis elements in increasing, rather than decreasing order. For instance, for λ̂(x)

ij we have i < j, not
i > j; (c) our basis elements are a factor of two larger and therefore our trace orthonormality condition is four times
larger. That is, they have Tr(λ̂iλ̂j) = δij/2, whereas we have Tr(λ̂iλ̂j) = 2δij . Despite this, the normalization of
the structure constants agree
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skew-symmetric and diagonal basis element, respectively, as follows:

Xjk = k2 + 2(j − k)− 1 (G.12)

Yjk = k2 + 2(j − k) (G.13)

Dj = j(j + 2), (G.14)

where 1 ≤ j < k ≤ d. LetX = {Xjk}, Y = {Yjk}, andD = {Dj}. Given such an identification,

we have the following non-zero symmetric structure constants:

dXjkXljXlk
= dXjkYljYlk

= dXjkYklYjl
= −dXjkYjlYlk

=
1

2

dXjkXjkDj−1
= dYjkYjkDj−1

= −
√
j − 1

2j

dXjkXjkDl−1
= dYjkYjkDl−1

=

√
1

2l(l − 1)
, j < l < k

dXjkXjkDk−1
= dYjkYjkDk−1

=
2− k√
2k(k − 1)

dXjkXjkDl−1
= dYjkYjkDl−1

=

√
2

l(l − 1)
, k < l

dDj−1Dk−1Dk−1
=

√
2

j(j − 1)
, k < j

dDj−1Dj−1Dj−1
= (2− j)

√
2

j(j − 1)
(G.15)

We shall find for the following proofs that it is sufficient to observe which symmetric structure

constants are non-zero, but for explicit application of these theorems these analytic expressions

would be convenient.

As implied by the structure constants being considered, we will make use of the generalized
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Gell-Mann basis throughout these proofs, but we observe that all trace invariants are basis inde-

pendent. Consequently, the dimensions of spaces spanned by the star products of Bloch vectors

are also basis independent quantities.

We begin with a simple theorem describing the maximum size of the set of star products

arising from simultaneously stoquastic matrices.

Theorem G.5.1 (Theorem 4 from the main text). Let S = {H1, · · · , Hm} be a set of Hermitian

matrices with corresponding Bloch vectors B = {b1, b2, · · · bm}. Let B be the set of all pos-

sible star products between elements of B. A necessary condition for the elements of S to be

simultaneously stoquastizable is that dim(span(B))) ≤ (d2 + d− 1)/2.

Proof. SupposeH ∈ Stoq for allH ∈ S. Observe from the list of non-zero symmetric structure

constants in Eq. (G.15) that any star products between elements of B necessarily have all compo-

nents j ∈ Y equal to zero. That is, any star product between vectors in the X ,D subspace remain

in that subspace. Therefore, dim(span(B)) ≤ (d2+d−1)/2, where (d2+d−1)/2 is the dimen-

sion of this subspace. The dimension of this subspace is preserved under unitary transformations

as the relative angles between all elements of B are preserved under unitary transformations. This

establishes the necessary condition for simultaneous stoquasticity in the theorem statement.

From here, our goal will be to look at the space of star products arising from general Bloch

vectors and show that this space is generally much larger than the space spanned by simultane-

ously stoquastic Bloch vectors. We begin with a useful lemma.

Lemma G.5.1. Let H be a traceless Hermitian matrix with corresponding Bloch vector b. Let

B = {b∗k | k ∈ Z+} be the (infinite) set of all possible star products of b. Then dim(span(B)) ≤

d− 1
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Proof. As dim(span(B)) is a basis-independent property, assume that H is diagonal without loss

of generality. Therefore, the generalized Gell-Mann basis bj = 0 for all j ∈ {X ,Y}. From the

definition of the star product and the form of the structure constants in Eq. (G.15) observe that

the only non-zero components of the star b∗b are those with index j ∈ D. This holds for the star

product of any pair of vectors u,v with uj, vj = 0 for all j ∈ {X ,Y}. Therefore, all v ∈ B are

necessarily contained in the d− 1 dimensional subspace with indices D.

IfH in the above lemma is generic—i.e. has non-degenerate eigenvalues—dim(span(B)) =

d − 1. For non-generic Hamiltonians, there exist additional symmetries which leads to depen-

dence between the elements of B and, consequently, a reduction in the dimension of span(B). For

instance, in the extreme case ofH corresponding to a pure state density matrix ρ—which has zero

as a (d−1)-fold degenerate eigenvalue—we have that b∗b = b, implying that dim(span(B)) = 1

[204].

We will also make use of the following lemma, proving a linear algebra fact that will be

useful later on.

Lemma G.5.2. Let R ∈ R2n×2n be a diagonal matrix with all non-zero, 2-fold degenerate matrix

elements such that Rjj = Rkk for k = 2j and Rjj ̸= Rkk otherwise. Let u,v ∈ R2n be vectors

with all unique elements such that uj∗ = 0, v2j∗ = 0 for some particular j∗. Then the vectors in

the set {Rku, Rkv} for k ∈ Z+ span R2n.

Proof. With the exception of the zero vector, span({Rku}) is completely disjoint from span({Rkv})

from the uniqueness conditions on R,u,v and the fact that uj∗ = 0, v2j∗ = 0. In particular, there

exists no non-trivial qk, rk ∈ R such that
∑

k qkR
ku =

∑
k rkR

kv =⇒ ∑
k qku =

∑
k rkv, as

this would require
∑

k qku2j∗ = 0 and
∑

k rkvj∗ = 0, implying
∑

k qk =
∑

k rk = 0.
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Now consider the span of {Rku}. As the components of u are unique and R has n unique

components, these vectors will span a space of dimension n. This is because for Rku to be

linearily dependent on {Rlu} for l < k requires that there not exist constants cl ∈ R such

Rku =
∑k−1

l=1 clR
lu, which, by the uniqueness of the components of u implies we require Rk =

∑k−1
l=1 clR

l for dependence. Such constants only exist for k ≥ n due to the uniqueness conditions

on R.

An identical argument holds for the span of {Rku}. As the two spans are completely

disjoint, together they span the full vector space of dimension 2n.

Armed with the preceding two lemmas, we are now prepared to prove the following impor-

tant theorem.. Here, “almost every” is used in a technical sense, in that the set of possibilities not

obeying the given condition are (Lebesgue) measure zero.

Theorem G.5.2. Let S = {H1, · · · , Hm} be a set of Hermitian matrices with corresponding

Bloch vectors B = {b(1), b(2), · · · b(m)}. Let B be the (infinite) set of all possible star products

between elements of B. For almost every S with m ≥ 2, d ≥ 3, dim(span(B)) = d2− 1. That is,

B spans the full Bloch vector space for almost every S.

Proof. It is sufficient to consider m = 2 as the dimension of the space spanned by this subset is

less than or equal to that of the full set B. Without loss of generality, assume that H1 is diagonal

so that in the generalized Gell-Mann basis b(1)j = 0 for all j ∈ {X ,Y}. By Lemma G.5.1 and the

discussion that follows it, the star products (b(1))∗k for k ∈ Z+ span the d− 1 dimensional space

corresponding to indices j ∈ D for any H1 with non-degenerate eigenvalues. Hermitian matrices

with degenerate eigenvalues are measure zero in the space of traceless, Hermitian matrices2 and,

2In particular, Hermitian matrices with repeated eigenvalues have codimension three (c.f. [490])
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therefore, almost every H1 is such that (b(1))∗k for k ∈ Z+ span the full d− 1 dimensional space

corresponding to indices j ∈ D.

As these products of the form (b(1))∗k span the d − 1 dimensional space corresponding

to indices j ∈ D, we now seek to show that other elements of B span the remaining X ,Y

components for almost every b(2). To this end, consider the vectors b(2) and b(2) ∗ b(2). Then,

consider just the components of these vectors in the X ,Y subspace. Call these restricted vectors

u,v. That is, uj = 0 for j ∈ D and uj = b
(2)
j for j ∈ {X ,Y}, and similarly for v. For almost

all b(2), the corresponding u,v are linearily independent. Therefore, we can construct via linear

combinations two new vectors u′,v′ such that u′X12
= 0, v′Y12

= 0. Such linear combinations are,

by definition, in the span of B.

Now, consider acting from the right on this linear combinations by star products of the

form (b(1))∗k—i.e. consider elements in the span of B of the form ((u′ ∗ b(1)) ∗ b(1)) ∗ · · · . From

the definition of the star product, the fact that b(1)j = 0 for all j ∈ {X ,Y}, and the form of the

structure constants in Eq. (G.15) we observe that such star products by (b(1))∗k (from the right)

act to scale the X ,Y components of u′, v′ by symmetric structure constant-dependent factors.

We can write this scaling behavior as

u(k) = Rku′, (G.16)

where R is a diagonal matrix with components given by

Rjj =





∑
i∈D djjib

(1)
i , j ∈ {X ,Y}

0, j ∈ D
(G.17)
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which comes from identifying the non-zero terms in the corresponding star product. There is an

identical equation to Eq. (G.16) for v′. Importantly, we observe that Rjj = Rkk for j = Xlm,

k = Ylm. This can be determined by observing in Eq. (G.15) that dXlmXlmj = dYlmYlmj for all

j ∈ D. Otherwise, for almost every H1, Rjj ̸= Rkk for j, k ∈ {X ,Y}. From Lemma G.5.2,

{u′(k),v′(k)} span the X ,Y subspace of Bloch vector space for almost all H1, H2.

Finally, we arrive at the following theorem which establishes that simultaneous stoquastic-

ity is rare.

Theorem G.5.3 (Theorem 3 from main text). Let S = {H1, · · · , Hm} be a set of Hermitian

matrices. For almost every S with m ≥ 2, d ≥ 3, S is not simultaneously stoquasticizable.

Proof. This is an immediate consequence of Theorem G.5.1 and Theorem G.5.2.

G.6 Results on Simultaneous Diagonalizability

Similar results to those in the previous section can also be obtained for the problem of

determining the simultaneous diagonalizability of a set of Hermitian matrices. This problem

is, of course, well-known to be related to the problem of mutual compatibility of observables.

Therefore, while taking an approach similar to that in our paper for this problem is largely over-

complicated compared to applying the simple condition that a set of Hermitian matrices are si-

multaneously diagonalizable if and only if they all commute, it is useful to compare the formalism

established in this work to such conditions.

In particular, as discussed in the main text, we expect that a deeper understanding of how

our conditions relate to commutator conditions will enable connections to the dynamical Lie
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algebra of quantum optimal control theory. The case of simultaneous diagonalizability, with its

well-known commutation condition provides a possible route forward.

We have the following theorem, which is analogous to Theorem G.5.1 (Theorem 9.5.2

from the main text). The logic is also similar to that of Lemma G.5.1, but extended to multiple

matrices.

Theorem G.6.1. Let S = {H1, · · · , Hm} be a set of Hermitian matrices with corresponding

Bloch vectors B = {b(1), b(2), · · · b(m)}. Let B be the (infinite) set of all possible star prod-

ucts between elements of B . A necessary condition for the elements of S to be simultaneously

diagonalizable is that dim(span(B)) ≤ d− 1.

Proof. The proof is identical to that of Theorem G.5.1, except, in this case, the star products

of Bloch vectors corresponding to simultaneously diagonal Hermitian matrices are confined to

the d − 1 dimensional subspace of Bloch vector space with all components j ∈ X ,Y equal to

zero. Therefore, a set of simultaneously diagonal Hermitian matrices has dim(span(B)) ≤ d−1.

Again, the dimension of this subspace is preserved under unitary transformations, proving the

result.

Combined with Theorem G.5.2 we have the following corollary as an immediate conse-

quence.

Corollary G.6.1.1. Let S = {H1, · · · , Hm} be a set of Hermitian matrices. For almost every S

with m ≥ 2, d ≥ 3, S is not simultaneously diagonalizable.

One also expects that amongst simultaneously stoquastic Hamiltonians simultaneously di-

agonalizable Hamiltonians are vanishingly rare. Proving this would follow a similar line of rea-

soning to that in the previous section. In particular, it would be sufficient to prove that for almost
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every set of stoquastic Hamiltonians the inequality in Theorem G.5.1 is tight. Unfortunately, the

approach in Theorem G.5.2 doesn’t immediately apply here since we can’t diagonalize one of the

matrices in a set of stoquastic Hamiltonians and keep all Hamiltonians stoquastic.

Appendix H: Technical Details of the Results Reported in Chapter 12

H.1 Equivalence of Error Metrics

Our choice of error metric is the average difference between matrix elements of Bs—[see]

Eq. (12.4)—calculated from an ensemble of unitaries generated by random circuits and those

obtained from an ensemble of unitaries that form an exact 2-design, as given in Eq. (12.5). This

difference is normalized by a factor of ds(d2s − 1) where ds is the dimension of the relevant

symmetry block. Because of the otherwise prohibitive cost, in practice, for large N we compute

the error by only averaging over a sample of all matrix indices of Bs, where we increase the

number of indices sampled until we see convergence. Mathematically,

ϵ =
ds(d

2
s − 1)

|S|
∑

S

∣∣(BsE)i
′j′k′l′

ijkl − (Bs2-des.)
i′j′k′l′

ijkl

∣∣, (H.1)

where S is the set of indices i, j, k, l, i′, j′, k′, l′ sampled and the subscripts on Bs denote the

ensemble with which the expectation values are taken with respect to in the definition of Bs.

This choice of quantifying the error between our random ensemble of circuits and an exact

unitary 2-design was chosen for two reasons: (1) it enables a computationally tractable approach
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wherein we sample a subset of matrix elements until we see convergence; (2) once normalized

(by a factor of ds(d2s − 1)), it is manifestly dimension independent once our random ensemble

of circuits has converged to an approximate unitary 2-design. Despite these benefits, it is not the

only reasonable choice of error metric, nor is it a standard one. Therefore, in this Appendix, we

demonstrate analytically that it is equivalent to more typical definitions, up to a rescaling of the

approximation ratio for the case where S is the set of all index combinations. We then numerically

demonstrate that sampling (the non-zero) matrix elements is also a valid (and computationally

accessible) choice of error metric.

A particularly common definition of an approximate unitary k-design states that an ensem-

ble E of unitaries forms a δ-approximate unitary k-design if and only if [491]

√
|F (k)

E −F
(k)
Haar| ≤

δ

dks
, (H.2)

where F (k) is the k-th frame potential for an ensemble of unitaries, defined as

F (k)
E =

∫

U,V ∈E
dUdV

∣∣Tr(U †V )
∣∣2k . (H.3)

For the Haar ensemble F (k)
Haar = k! for k ≤ ds [492].

Ultimately, we will numerically compare our error metric to the frame potential definition,

but for the purposes of analytically showing equivalence of our error metric it is convenient to use

a different formulation known to be equivalent to this one up to a rescaling of the approximation

factor [493]. In particular, an ensemble E of unitaries forms a δ-approximate k-design if and only
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if for all balanced monomials M(U) of degree ≤ k in the matrix elements of U

∣∣⟨M(U)⟩E − ⟨M(U)⟩k
∣∣ ≤ δ

dks
, (H.4)

where the subscript k denotes an expectation value with respect to an exact k-design. A balanced

monomial of degree k in the matrix elements of U is defined as any product in the matrix elements

of the form

M = Ui1j1 ...UikjkU
∗
k1l1

...U∗
kklk

, (H.5)

for some choice of indices.

To show the equivalence between Eq. (H.1) and Eq. (H.4) we return explicitly to the case

of k = 2. An ensemble E that forms a δ-approximate 2-design necessarily also forms a δ-

approximate 1-design, so in Eq. (H.4) we can restrict our attention to balanced monomials of

degree 2. Consequently, for unitaries U s acting on a symmetry sector s, and a general degree 2

balanced monomial M = U s
ijU

s∗
i′j′U

s
klU

s∗
k′l′ , we can write

∣∣(BsE)i
′j′k′l′

ijkl − (Bs2)i
′j′k′l′

ijkl

∣∣ =
∣∣∣∣⟨M

i′j′k′l′

ijkl ⟩E − ⟨M i′j′k′l′

ijkl ⟩2

+
d2s

d2s − 1

[
(As2)i

′j′

ij (As2)k
′l′
kl + (As2)k

′l′
ij (As2)i

′j′

kl − (AsE)i
′j′

ij (AsE)k
′l′
kl − (AsE)k

′l′
ij (AsE)i

′j′

kl

]∣∣∣∣

≤
∣∣∣∣⟨M

i′j′k′l′

ijkl ⟩E − ⟨M i′j′k′l′

ijkl ⟩2
∣∣∣∣

︸ ︷︷ ︸
I

+
d2s

d2s − 1

[ ∣∣∣(As2)i
′j′

ij (As2)k
′l′
kl − (AsE)i

′j′

ij (AsE)k
′l′
kl

∣∣∣
︸ ︷︷ ︸

II

+
∣∣∣(As2)k

′l′
ij (As2)i

′j′

kl − (AsE)k
′l′
ij (AsE)i

′j′

kl

∣∣∣
︸ ︷︷ ︸

II∗

]
(H.6)

where the matrix elements (Bs2)i
′j′k′l′

ijkl are the matrix elements for an exact unitary 2-design, as
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defined in Eq. (12.5) and, as noted in the main text, (As)klij ≡ ⟨U s
ijU

s∗
kl ⟩. The subscript 2 denotes

an average taken with respect to an exact unitary 2-design and the subscript E denotes an average

taken with respect to the corresponding ensemble of unitaries.

For a δ-approximate unitary k-design the term labeled I is bounded via Eq. (H.4). The

terms labeled II and II∗ are equivalent up to the choice of indices. Recalling that for an exact

1-design (and thus also for a 2-design) (As2)klij = (As1)klij =
δijδkl
ds

and applying Eq. (H.4) for an

approximate unitary 1-design, we can bound these terms as

II =
∣∣∣(As2)i

′j′

ij

(
(AsE)k

′l′

kl − (As2)k
′l′

kl

)
+ (As2)k

′l′

kl

(
(AsE)i

′j′

ij − (As2)i
′j′

ij

)

+
(
(AsE)i

′j′

ij − (As2)i
′j′

ij

)(
(AsE)k

′l′

kl − (As2)k
′l′

kl

)∣∣∣

≤
∣∣∣(As2)i

′j′

ij

(
(AsE)k

′l′

kl − (As2)k
′l′

kl

)∣∣∣+
∣∣∣(As2)k

′l′

kl

(
(AsE)i

′j′

ij − (As2)i
′j′

ij

)∣∣∣

+
∣∣∣
(
(AsE)i

′j′

ij − (As2)i
′j′

ij

)(
(AsE)k

′l′

kl − (As2)k
′l′

kl

)∣∣∣

≤ δ

d2s
+

δ

d2s
+
δ2

d2s
. (H.7)

Plugging back into Eq. (H.6) we obtain

∣∣(BsE)i
′j′k′l′

ijkl − (Bs2)i
′j′k′l′

ijkl

∣∣ ≤ δ

d2s
+

2d2s
d2s − 1

(
2δ + δ2

d2s

)

=
δ

d2s

(
d2s(5 + 2δ)− 1

d2s − 1

)
, (H.8)

for any choice of indices. It is straightforward to go through the converse of this argument and

show that if |BE −B2| < δ
d2s

and |AE −A2| < δ
ds

(indices suppressed), then the approximate two-

design property for ⟨M⟩E holds, up to a rescaling of δ. Consequently, up to an inconsequential

rescaling of the approximation factor, any norm on the difference of the tensors (BsE) − (Bs2)
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is a valid choice for defining an approximate unitary 2-design consistent with the definition in

Eq. (H.4).

Our error metric, if all indices are sampled, is just such a norm (namely, an element-wise

1-norm, up to dimension-dependent factors). For the sake of computational tractability, however,

we randomly sample a collection of the non-zero matrix elements of Bs until we see convergence.

If the sampled average has converged statistically, i.e. has small error bars, this is a good indica-

tion that the sampled average accurately reflects the total average, since the total is simply a sum

of sample averages. Since the matrix elements of Bs2 can take only a handful of values and are

all either zero or of order d−3
s , we expect there are no “outlier” matrix elements whose errors are

systematically larger than others. We have explicitly verified that the sampling scheme converges

to the results obtained by evaluating all index combinations, including those where Eq. (12.5)

yields zero. In all our numerics, we ensure that the number of samples taken is such that this

convergence occurs.

Numerical results demonstrating the equivalence of our error metric when using finite sam-

ples of the non-zero matrix elements ofBs, as given in Eq. (H.1), to the error metric in terms of the

frame potential in Eq. (H.2) are shown in Fig. H.1. Here, we consider a system of N = 10 sites

with particle number symmetry as presented in Sect. 12.2 of the main text. For this comparison,

we compare the two error metrics as a function of the number of unitariesNE drawn directly from

CUE within each symmetry sector. In the next section, we elaborate on how we demonstrated

that the random circuits we describe in the main text do, in fact, converge to sampling from the

CUE for a sufficient number of layers. However, temporarily leaving this aspect aside allows us

to purely compare the two error metrics. We find that the two error metrics are equivalent up to a

rescaling of the approximation ratio by a factor ∼ ds for a sufficiently large ensemble of random
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Figure H.1: Ratio of our error metric ϵ [given in Eq. (H.1)] to the more standard frame potential
error metric ϵf [given in Eq. (H.2)], for an approximate unitary 2-design per symmetry sector
(labeled by particle number nf ), normalized by ds, versus number of unitaries NE sampled, in-
dicating that the two error metrics are equivalent up to a rescaling of the approximation ratio for
sufficiently large NE . Results are for a system of N = 10 sites with particle-number symmetry
as described in Sect. 12.2. For both error metrics, we sample directly from the CUE within each
symmetry sector. Our error metric is computed by averaging over |S| = 2000 non-zero matrix
elements.

unitaries. This is consistent with, but tighter, than our analytic results. Also consistent with our

analytics, the numerics indicate sub-leading ds-dependent factors in the rescaling of the error.

H.2 Particle Number Analysis

In this Appendix, we provide additional details for the particle number symmetry analysis,

presented in Sect. 12.2 of the main text. In particular, we present the numerical evidence that

sufficiently deep random symmetry-respecting circuits of the sort we describe there form an

approximate 2-design and provide details on the numerics leading to Fig. 12.3.

For both of these purposes, we compute the error ϵ as defined in Eq. (H.1) for ensembles E

of NE random unitaries generated both by our random circuits and by drawing directly from the

CUE. Note that in the latter case, the error is purely due to the fact that these ensembles have only

a finite number of elements NE , as for NE →∞ the ensemble will be a 2-design by construction.
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Consequently, as can be seen in Fig. H.2a, the error ϵ scales as ∼ 1/
√
NE .

For a sufficient number of layers, the ensembles generated by our random circuits have

identical error ϵ as the ensembles drawn directly from CUE, indicating that these circuits indeed

generate samples that form an approximate 2-design. This is demonstrated in Fig. H.2b, where

we plot the difference between the error ϵ obtained by taking NE = 8192 samples from the

random circuits and taking NE = 8192 samples directly from the CUE versus number of layers

used in the circuits. Within a short depth ℓ ≈ 15, the difference reaches a floor set by NE (i.e. the

standard 1/
√
NE sampling error), indicating that at this depth, drawing samples from our circuits

is equivalent to drawing samples directly from CUE. All of the remaining error in approximating

a 2-design is purely due to the finite number of samples NE .

While the saturation point (in terms of number of layers required) in Fig. H.2(b) shows a

slight dependence on the dimension ds and similar numerics for smaller system sizes shows a

dependence on the number of sites N , the fact that our numerics are limited to around N ≤ 10

sites prevents us from extracting an asymptotic scaling form of these dependencies. For the prag-

matic approach taken in this work—namely, demonstrating that our approach is a viable one for

extracting quantities of interest for specific systems with symmetries of interest, such as Z2 LGT,

for small to moderate system sizes—these numerics are sufficient. However, a detailed analytic

analysis of the scaling of the error with the number of layers for the particular models consid-

ered here (or, perhaps, generally for random symmetry-respecting circuits), remains a compelling

prospect for future work. Such analyses have been done for symmetry-ignorant designs [494] and

similar approaches should apply here [478].
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H.2.1 Details for Figure 3(a)

Fig. H.2 demonstrates that ℓ = 128 is well past the number of layers needed to faithfully

sample from a 2-design on each of the symmetry blocks. Thus, in this large layer limit, the scaling

with NE is independent of the circuit construction, as every block simply represents a random

CUE matrix in this limit. Fitting the curves in the lower right panel of Fig. H.2a (ℓ = 128) and

similar curves for N = 4, 6, 8 sites and, then, extrapolating to determine the number of samples

NE needed to reach an error of ϵ = 0.01 leads to Fig. 12.3(a).

In the large layer limit, the scaling with Hilbert space dimension ds observed in this figure

applies equally well to symmetry-ignorant schemes if ds is replaced with the full Hilbert space

dH, i.e. the scaling observed is simply a property of sampling from any set of unitaries that

forms a unitary 2-design in the NE → ∞ limit. We use this fact and the fit in Eq. (12.6) to

generate the inset of Fig. 12.3(a) showing the relative gain rs in number of circuit samples for the

symmetry-conscious over a symmetry-ignorant scheme.

H.2.2 Details for Figure 3(b)

We now turn to providing additional details for Fig. 12.3(b), which shows the sample cost

scaling for estimating sector-wise k-purities for subsystems of sizeNA = N/2 for a system in the

ground state of the particle-number symmetry-preserving Hamiltonian in Eq. (12.7). Recall, that

we consider periodic boundary conditions and systems of size N = 4, 6, 8, 10, 12, 14, 16, 18 with

couplings such that ma = 0.05 (i.e., a parameter regime where the ground state is entangled).

k-purities can be extracted via randomized measurement schemes by utilizing the identities in

Eq. (12.8), which hold when the expectation values ⟨PU(b, s)k⟩ taken with respect to the ensemble
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Figure H.2: (a) Error relative to an exact unitary 2-design ϵ (Eq. (12.5)) per particle number
symmetry sector (labeled by nf ) versus number of unitaries NE . For clarity only particle number
sectors nf ≤ 5 are shown; as they are of equivalent dimension, particle number sectors for nf > 5
have the same behavior as the particle number sector (10−nf ). The ensemble E is sampled both
from the particle number symmetry-respecting random circuits with different numbers of layers
ℓ ∈ {4, 8, 16, 128} (triangles) and sampled directly from the CUE within each symmetry sector
(squares). Results shown are for n = 10 sites and the error is averaged over 2000 non-zero
matrix elements. Extrapolation of fits to the error as a function of NE at ℓ = 128 layers for the
data pictured here and equivalent data for N = 4, 6, 8 sites is used to produce Fig. 12.3a of the
main text. (b) The difference between the error ϵ obtained by taking NE = 8192 samples from
the random circuits and taking NE = 8192 samples directly from the CUE versus number of
layers used in the circuits. By ℓ ≈ 15, the difference reaches a floor set by NE (i.e. the standard
sampling error) with a small dependence on the dimension ds of the corresponding sector.
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of random unitaries E converge to the value obtained for an ensemble that is an exact unitary k-

design.

A sufficient condition for this convergence is that E forms an approximate unitary k-design;

however, note that it is possible that these expectation values converge to a fixed error for a

smaller number of samples NE than is needed to converge to the same fixed error in being a

unitary k-design. This is indeed what is observed, as can be seen by comparing the number of

samples needed for a convergent estimate of the k-purities, shown in Fig. H.3(a), to the number of

samples needed to reach an approximate unitary k-design, shown in Fig. H.2(a). This is because

an approximate unitary k-design will reproduce expectation values of all operators of degree k,

whereas for this scheme, we must only reproduce the k-purities. It is also important to note

that the accuracy is inherently dependent on the state under consideration; the k-design bound

provides a worst case scenario.

In Fig. H.3(a), we have shown the number of ensembles NE required to estimate the 2-

and 3-purities to a relative error of ϵ = 0.05 in the infinite shot limit NM → ∞. The necessary

number of ensembles peaks and then begins to decrease as a function of block dimension. This

trend cannot continue indefinitely (one must always implement at least one random unitary); con-

sequently, we expect this behavior to saturate for large enough block dimension, as the variance

of the infinite shot purity estimator approaches a constant in the large Hilbert space dimension

limit [340].

To create Fig. 12.3(b) we fix the number of ensembles NE = 1428, well beyond the the

number of ensembles needed to predict the 2-purity and 3-purity to within 5 percent for all cases

considered. Since NE is constant, this allows us to consider the scaling of the sample cost to

purely depend on the number of shots per random unitary from the ensemble (i.e. the number of
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Figure H.3: (a) The number of ensembles NE required, in the infinite shot limit, to estimate
the 2-purity and 3-purity of a single block to 5 percent error. (b) Actual k-purities for reduced
density matrices on subsystems of size NA = N/2 for each particle number symmetry block for
the (normalized) states used in Fig. 12.3(b).

measurements NM made in each random basis). Therefore the cost NM plotted in Fig. 12.3(b) is

representative of the full sample cost of estimating the 2-purity of the subsystem states ρA.

As a sanity check on the NE scaling, in Fig. H.3(b) we plot the true k-purities for the states

used to create Fig. 12.3(b) and Fig. H.3(a). Note that the states, even for large Hilbert space

dimension, have purities of order one. As the cost in NE for purity estimation is expected to be

largest in the pure state case [340], this shows that the trend in Fig. H.3(a) is not simply because

states at large N (large ds) are less pure.
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Figure H.4: Average error ϵ in 2-design matrix elements (Eq. (12.5)), normalized by ds(d2s − 1),
versus number of random unitaries NE sampled from either the symmetry-respecting random
circuits of Section 12.3.1 of depth ℓ = 32 (triangles) or from direct sampling from the CUE
within each symmetry sector (squares) for Z1+1

2 LGT for a subsystem of size NA = 5 (N = 10).
Number of indices sampled is 900.

H.3 Details for the (1+1)d Z2 LGT Example

In the main text, we presented circuits forming symmetry-conscious k-designs for Z2 LGT

in (1+1)d with matter. We demonstrated that these circuits allow to measure k-purities and von

Neumann entropies within each symmetry sector, as well as separately extracting the symmetry

and distillable entanglement, and the symmetry-resolved Schmidt spectrum using classical shad-

ows. A sufficient, but not necessary condition for such randomized measurement schemes to be

successful is that the randomizing circuits form approximate unitary k-designs. In this Appendix,

we explicitly demonstrate that the circuits in question do, in fact, form a sector-wise approximate

unitary 2-design. In particular, we show that they reproduce the correct 2-design matrix elements

(see Eq. (12.5)) for sufficiently deep circuits.

Representative results are shown in Fig. H.4 for a subsystem of size NA = 5 (9 qubits)

of a N = 10 (matter) site system (20 qubits). As described in the main text, Gauss laws at
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the entanglement boundaries lead to symmetries of ρA in the subsystem. We demonstrate that,

within each sector, the random circuits described in Sect. 12.3.1 form a 2-design, by computing

the error defined in Eq. (H.1) with respect to NE random circuits with ℓ = 32 layers for all non-

trivial symmetry sectors calculated.1 To compute this error, we average over |S| = 900 random

non-zero matrix elements. We see good agreement between sampling from our random circuits

versus sampling directly from the CUE, indicating that our circuits do indeed form approximate

unitary 2-designs.

H.4 Details of the (2+1)d Z2 LGT Example

In this Appendix, we provide details of the analysis of Z2+1
2 , discussed in the main text.

H.4.1 Approximate Unitary k-designs and k-purities

The determination of k-purities follows exactly that in (1+1) spacetime dimensions. We ex-

plicitly show that the (2+1)d circuits in Fig. 12.7(b) explicitly realizes a 2-design by repeating the

analysis of Section 12.2. Representative results for a subsystem of size 3× 2 are summarized in

Fig. H.5 showing the error Eq. (H.1), for every symmetry sector s, demonstrating agreement be-

tween sampling from our circuits for a sufficient number of layers and sampling directly from the

CUE in each sector. Further, we see convergence with increasing samples NE with the standard

1/
√
NE scaling.

1Filling sectors nA = 0 and nA = NA are trivial as they have unit block size and are not shown.
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Figure H.5: Average error ϵ in 2-design matrix elements (Eq. (12.5)), normalized by ds(d2s − 1),
versus number of random unitariesNE sampled from either symmetry-respecting random circuits
of depth ℓ = 64 (triangles) or from direct sampling from the CUE within each symmetry sector
(squares) for Z2+1

2 LGT for a subsystem of size 3 × 2 (with fixed boundary conditions in y).
Number of indices sampled is 900.

H.4.2 Classical Shadow Analysis

The classical shadow analysis for Z2+1
2 ground states follows the previously discussed

(1+1)d case. Fig. H.6 shows the sectorwise relative entropy,

S(ρ̄A,s||σ̄A,s) ≡ −trs[ρ̄A,s(log(ρ̄A,s)− log(σ̄A,s)] (H.9)

where ρ̄A,s and σ̄A,s are the exact and shadow-reconstructed reduced density matrices (projected

onto symmetry block s) of the Z2+1
2 ground state at ϵ = 0.2, with Nx ×Ny = (3 + 5)× 2, fixed

BC in y, and ℓ = 64 layers; bars indicate normalization i.e. ρ̄A,s = ρA,s/ps where ps = trs[ρA,s];

Trs denotes the trace over sector s ∈ {↑/↓}22Ny . An accuracy of up to 10−2−10−3 is achieved for

the largest samples (where ps · NS ⪆ 104); the BW-EHT ansatz at similar cost typically reaches

a precision better than 10−5 − 10−6 for the same configuration. Convergence with increasing

shadow number NS of the shadow-reconstructed density matrix towards the exact one is evident
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Figure H.6: Relative entropy between exact and shadow-reconstructed symmetry-resolved ρA,s
for the Z2+1

2 LGT ground state at ϵ = 0.2, with Nx×Ny = (3+5)× 2 and fixed BC in y, ℓ = 64
circuit layers. Data for NS = 216 are shown in Fig. 12.8(b) of the main text.

and shows a power-law behavior consistent with the scaling of the (1+1)d case within error bars.

H.4.3 Entanglement Hamiltonian Tomography Analysis

Finally, our Bisognano-Wichmann theorem based entanglement Hamiltonian tomography

(BW-EHT) protocol follows Ref. [336], except that we perform the optimization in every symmetry-

sector s separately. The approach is based on an alternative representation of a reduced density

matrix with Schmidt representation ρA =
∑

λ Pλ|λ⟩⟨λ|. In particular, one defines an Entangle-

ment Hamiltonian as

HA = − log[ρA]. (H.10)

Eigenvalues are given by Pλ = exp(−ξλ), where ξλ are the eigenvalues of HA.

Because ρA can be split into its corresponding symmetry sectors as ρA =
⊕

s ρA,s it follows

that alsoHA =
⊕

sHA,s, where s labels quantum numbers of the spectrum ξλ,s ofHA,s. Inserting

Eq. (12.23), for the Entanglement Hamiltonian we obtain the following BW-EHT ansatz for the
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Figure H.7: Left column: Symmetry resolved Schmidt spectrum Ps,λ, reconstructed using BW-
EHT, for ϵ = 0.075, 0.3, 0.5 and with Nx ×Ny = (3 + 3)× 2 and periodic boundary conditions
in y (and x), ℓ = 64, NE = 50, NM = 1024. Right column: Symmetry resolved Entanglement
spectrum.

state within symmetry sector labeled by quantum number s:

ρ̄A,s[{βi}] ≡
exp{−HA,s[βi]}

Trs[exp{−HA,s[βi]}]
(H.11)

where HA,s is is a deformation of the physical Hamiltonian, i.e. local couplings βi replace the

physical couplings. The ansatz is such that the state is normalized within each symmetry sector,

i.e., Trs[ρ̄s] = Trs[ρ]/ps = 1, where ps is the probability of being in sector s. We find the optimal
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couplings {βi} by minimizing the following functional

∑

b

〈(
PU(b, s)− Trs

[
ρ̄A,sUs|b, s⟩⟨b, s|U †

s

])2〉
E
, (H.12)

separately for each s. Here, E = {Us} is the ensemble of random circuits restricted to the block

labeled by s, and PU(b, s) is the probability of measuring outcome bit string b, normalized such

that
∑

b PU(b, s) = 1 for all s. PU(b, s) is determined by classically simulating an (ideal) circuit

for a given number of shots. In practice, the optimization is performed using python’s simplicial

homology global optimization (scipy.optimize.shgo) [495] with the following parameters

scipy.optimze.shgo(chi_squared, bounds,n=32,

sampling_method=’sobol’, options=opt_dict)

with sampling method ‘sobol’, and n = 32 sampling points in the construction of the simplicial

complex, and very large bounds i.e. typically βi ∈ [−30.0, 30.0]; all other options are set to their

default values.

An example of the results of this analysis is shown in Fig. H.7, where we show the symmetry-

resolved Schmidt Ps,λ and entanglement spectrum ξλ,s of the Z2+1
2 ground state at ϵ = 0.075, 0.3,

0.5, for Nx ×Ny = (3 + 3) × 2, periodic boundary conditions in y and ℓ = 64. To estimate the

error from applying a finite number of random circuits and estimating the effect of shot noise on

obtaining PU(b, s), we additionally perform the following analysis: We compute the exact state

using exact diagonalization. We then numerically minimize, within each symmetry sector s, the

relative entropy between the exact density operator σ̄s, normalized so that Trs[σ̄] = 1, and the
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BW ansatz ρ̄s,

S(σ̄s||ρ̄s) ≡ Trs[σ̄s(log(σ̄s)− log(ρ̄s))]

= −S(σ̄s) + Γ(ρ̄s||σ̄s) ≥ 0 , (H.13)

S(σ̄s) is the exact von Neumann entropy and

Γ(ρ̄s||σ̄s) ≡ log(Trs[ρ̄A,s]) +
∑

i

βiTrs[Hiσ̄s]), . (H.14)

can be easily computed. Minimizing Eq. (H.13) with the exact same numerical optimization as

used for Eq. (H.12) provides the BW-EHT result in the infinite measurement bases and infinite

shot limit. The deviation of our circuit simulation from this result provides the error that we show

in Fig. 12.8(c).
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[132] L. Pezzè, M. A. Ciampini, N. Spagnolo, P. C. Humphreys, A. Datta, I. A. Walmsley,
M. Barbieri, F. Sciarrino, and A. Smerzi, Phys. Rev. Lett. 119, 130504 (2017).

[133] M. J. W. Hall, J. Phys. A: Math. Theor. 51, 364001 (2018).

[134] M. Tsang, arXiv preprint arXiv:1911.08359 (2019).

397

https://doi.org/10.1103/PhysRevA.95.063829
https://doi.org/10.1103/PhysRevA.95.012326
https://doi.org/10.1103/PhysRevLett.98.090401
https://doi.org/10.1103/PhysRevLett.98.090401
https://arxiv.org/abs/2004.07470
https://doi.org/10.1137/0710053
https://doi.org/10.1137/0711087
https://doi.org/10.1016/0021-9045(77)90019-3
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevA.57.4004
https://doi.org/10.1103/PhysRevA.79.062320
https://doi.org/10.1103/PhysRevA.93.063804
https://doi.org/10.1103/PhysRevA.93.063804
https://doi.org/10.1103/PhysRevLett.121.043604
https://doi.org/10.1103/PhysRevLett.121.043604
https://doi.org/10.1103/PhysRevLett.105.120501
https://doi.org/10.1103/PhysRevX.10.031023
https://doi.org/10.1103/PhysRevA.90.043818
https://doi.org/10.1103/PhysRevA.94.062312
https://doi.org/10.1103/PhysRevA.94.062312
https://doi.org/10.1080/23746149.2016.1230476
https://arxiv.org/abs/https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1103/PhysRevLett.119.130504
https://iopscience.iop.org/article/10.1088/1751-8121/aad50f/meta?casa_token=GCtgLYVNWHoAAAAA:YIH90Hu9byoDnLw2ko1aoBKQlRocR6lwyhmiU4fGlfKxEXXEKavBB5c1y29n67-P5sbrYjxudQ
https://arxiv.org/abs/1911.08359


[135] F. Albarelli, M. Tsang, and A. Datta, arXiv preprint arXiv:1911.11036 (2019).

[136] M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W. S. Kolthammer, M. S. Kim,
A. Datta, M. Barbieri, and I. A. Walmsley, Nat. Commun. 5, 1 (2014).

[137] E. Roccia, V. Cimini, M. Sbroscia, I. Gianani, L. Ruggiero, L. Mancino, M. G. Genoni,
M. A. Ricci, and M. Barbieri, Optica 5, 1171 (2018).

[138] M. Valeri, E. Polino, D. Poderini, I. Gianani, G. Corrielli, A. Crespi, R. Osellame, N. Spag-
nolo, and F. Sciarrino, arXiv preprint arXiv:2002.01232 (2020).

[139] H. Hofmann, Phys. Rev. A 79, 033822 (2009).

[140] N. Shettell, E. Kashefi, and D. Markham, Phys. Rev. A 105, L010401 (2022).

[141] H. Kasai, Y. Takeuchi, H. Hakoshima, Y. Matsuzaki, and Y. Tokura, J. Phys. Soc. Jpn. 91,
074005 (2022).

[142] M. T. Rahim, A. Khan, U. Khalid, J. u. Rehman, H. Jung, and H. Shin, Sci. Rep. 13, 11630
(2023).

[143] S.-I. Amari and M. Kumon, Ann. Stat. 16, 1044 (1988).

[144] A. Atkinson, A. Donev, and R. Tobias, Optimum experimental designs, with SAS, Vol. 34
(OUP Oxford, 2007).

[145] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, and B. M. Terhal, Quant. Inf. Comp. 8, 0361
(2008).

[146] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv preprint quant-ph/0001106
(2000).

[147] S. Jansen, M.-B. Ruskai, and R. Seiler, J. Math. Phys. 48, 102111 (2007).

[148] A. Elgart and G. A. Hagedorn, J. Math. Phys. 53, 102202 (2012).

[149] M. Jarret, S. P. Jordan, and B. Lackey, Phys. Rev. A 94, 042318 (2016).

[150] E. Farhi, J. Goldstone, and S. Gutmann, arXiv preprint quant-ph/0201031 (2002).

[151] L. T. Brady and W. van Dam, Phys. Rev. A 94, 032309 (2016).

[152] B. W. Reichardt, in Proceedings of the 36th annual ACM Symposium on Theory of Com-
puting (STOC) (2004) pp. 502–510.

[153] E. Crosson and M. Deng, arXiv:1410.8484 (2014).

[154] S. Muthukrishnan, T. Albash, and D. Lidar, Phys. Rev. X 6, 031010 (2016).

[155] Z. Jiang, V. N. Smelyanskiy, S. V. Isakov, S. Boixo, G. Mazzola, M. Troyer, and H. Neven,
Phys. Rev. A 95, 012322 (2017).

398

https://arxiv.org/abs/1911.11036
https://doi.org/10.1038/ncomms4532
https://doi.org/10.1364/OPTICA.5.001171
https://arxiv.org/abs/2002.01232
https://doi.org/10.1103/PhysRevA.79.033822
https://doi.org/10.1103/PhysRevA.105.L010401
https://doi.org/10.7566/JPSJ.91.074005
https://doi.org/10.7566/JPSJ.91.074005
https://doi.org/10.1038/s41598-023-38802-6
https://doi.org/10.1038/s41598-023-38802-6
https://doi.org/10.1214/aos/1176350947
https://dl.acm.org/doi/abs/10.5555/2011772.2011773
https://dl.acm.org/doi/abs/10.5555/2011772.2011773
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1063/1.2798382
https://doi.org/10.1063/1.4748968
https://doi.org/10.1103/PhysRevA.94.042318
https://arxiv.org/abs/quant-ph/0201031
https://doi.org/10.1103/PhysRevA.94.032309
https://doi.org/10.1145/1007352.1007428
https://doi.org/10.1145/1007352.1007428
https://arxiv.org/abs/1410.8484
https://doi.org/10.1103/PhysRevX.6.031010
https://doi.org/10.1103/PhysRevA.95.012322


[156] G. Fix and R. Heiberger, SIAM Numer. Anal. 9, 78 (1972).

[157] C. Jiang and Z. Bai (2015), http://cmjiang.cs.ucdavis.edu/publications/FHtemp.pdf.

[158] https://github.com/jbringewatt/PolyTimeAlgorithms forAQC.

[159] J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002).

[160] M. Jarret, B. Lackey, A. Liu, and K. Wan, arXiv preprint arXiv:1810.04686 (2018).

[161] M. Slutskii, T. Albash, L. Barash, and I. Hen, New J. Phys. 21, 113025 (2019).

[162] DWave System Documentation.

[163] C. Davis and W. M. Kahan, SIAM Journal on Numerical Analysis 7, 1 (1970).

[164] S. Bravyi, D. P. Divincenzo, R. Oliveira, and B. M. Terhal, Quantum Info. Comput. 8, 361
(2008).

[165] M. B. Hastings, Quantum Information and Computation 13, 1038 (2013).

[166] S. Bravyi and D. Gosset, Phys. Rev. Lett. 119, 100503 (2017).

[167] S. Bravyi, D. P. DiVincenzo, D. Loss, and B. M. Terhal, Phys. Rev. Lett. 101, 070503
(2008).

[168] E. Crosson and A. W. Harrow, Quantum 5, 395 (2021).

[169] E. Crosson and S. Slezak, arXiv preprint arXiv:2002.02232 (2020).

[170] J. Bringewatt, W. Dorland, and S. P. Jordan, Phys. Rev. A 100, 032336 (2019).

[171] L. Babai, in Proceedings of the forty-eighth annual ACM symposium on Theory of Com-
puting (2016) pp. 684–697.

[172] H. A. Helfgott, J. Bajpai, and D. Dona, arXiv preprint arXiv:1710.04574 (2017).

[173] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1990).

[174] E. BrianDavies, G. Gladwell, J. Leydold, and P. F. Stadler, Linear Algebra Its Appl. 336,
51 (2001).

[175] M. Jarret, arXiv preprint arXiv:1804.06857 (2018).

[176] E. Luks, Permutation groups and polynomial-time computation (American Mathematical
Society, 1993) p. 139–175.

[177] J. Crawford, in AAAI Workshop on Tractable Reasoning (1992) pp. 17–22.

[178] V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich, J. Math Sci. 29, 1426 (1985).

[179] Y. Yu, T. Wang, and R. J. Samworth, Biometrika 102, 315 (2015).

399

https://www.jstor.org/stable/2156341
http://cmjiang.cs.ucdavis.edu/publications/FHtemp.pdf
https://github.com/jbringewatt/PolyTimeAlgorithmsforAQC
https://doi.org/10.1103/PhysRevA.65.042308
https://arxiv.org/abs/1810.04686
https://doi.org/10.1088/1367-2630/ab51f9
https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://doi.org/10.1137/0707001
https://dl.acm.org/doi/abs/10.5555/2011772.2011773
https://dl.acm.org/doi/abs/10.5555/2011772.2011773
https://dl.acm.org/doi/10.5555/2535639.2535647
https://doi.org/10.1103/PhysRevLett.119.100503
https://doi.org/10.1103/PhysRevLett.101.070503
https://doi.org/10.1103/PhysRevLett.101.070503
https://doi.org/10.22331/q-2021-02-11-395
https://arxiv.org/abs/2002.02232
https://doi.org/10.1103/PhysRevA.100.032336
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://arxiv.org/abs/1710.04574
https://doi.org/https://doi.org/10.1016/S0024-3795(01)00313-5
https://doi.org/https://doi.org/10.1016/S0024-3795(01)00313-5
https://arxiv.org/abs/1804.06857
https://www.semanticscholar.org/paper/A-theoretical-analysis-of-reasoning-by-symmetry-in-Crawford/f9c3b3bbfeea89b97a48a9e3e51c724f5f24c41b?p2df
https://doi.org/10.1007/BF02104746
https://doi.org/10.1093/biomet/asv008


[180] R. Bhatia, Matrix analysis, Vol. 169 (Springer Science & Business Media, 2013).
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[217] I. Bengtsson and K. Życzkowski, Geometry of quantum states: An introduction to quantum
entanglement (Cambridge University Press, 2017).

[218] J. Canny, in Proceedings of the twentieth annual ACM symposium on Theory of computing
(1988) pp. 460–467.

[219] V. Jurdjevic and H. J. Sussmann, Journal of Differential Equations 12, 313 (1972).

[220] V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz, and A. Peirce, Phys. Rev. A 51,
960 (1995).

[221] D. Bossion and P. Huo, arXiv preprint arXiv:2108.07219 (2021).

[222] I. Hen, Phys. Rev. Research 3, 023080 (2021).

[223] S. Aaronson, arXiv preprint arXiv:2209.06930 (2022).

[224] E. Farhi, J. Goldstone, and S. Gutmann, arXiv preprint arXiv:1411.4028 (2014).

[225] E. Crosson and D. Lidar, Nat. Rev. Phys. 3, 466 (2021).

[226] A. Braida, S. Martiel, and I. Todinca, Phys. Rev. A 109, 022415 (2024).

[227] S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini,
A. Omran, J.-G. Liu, R. Samajdar, et al., Science 376, 1209 (2022).

[228] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).

401

https://doi.org/10.1016/S0375-9601(03)00941-1
https://doi.org/10.1007/s11080-005-0919-y
https://doi.org/10.1088/1751-8113/41/23/235303
https://doi.org/10.1088/1751-8121/aacb93
https://doi.org/10.1063/1.4954230
https://doi.org/10.1016/0001-8708(76)90027-X
https://doi.org/10.1080/03081088408817585
https://doi.org/10.1006/jabr.1997.7140
https://doi.org/10.1016/j.laa.2006.03.002
https://doi.org/https://doi.org/10.1016/S0375-9601(96)00803-1
https://doi.org/10.1017/CBO9780511535048
https://doi.org/10.1017/CBO9780511535048
https://doi.org/10.1145/62212.62257
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1103/PhysRevA.51.960
https://doi.org/10.1103/PhysRevA.51.960
https://arxiv.org/abs/2108.07219
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023080
https://doi.org/10.48550/arXiv.2209.06930
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.1038/s42254-021-00313-6
https://doi.org/10.1103/PhysRevA.109.022415
https://doi.org/10.1126/science.abo6587
https://doi.org/10.1103/RevModPhys.86.153


[229] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, Chem. Rev. 120, 12685 (2020).

[230] C. W. Bauer, Z. Davoudi, A. Balantekin, T. Bhattacharya, M. Carena, W. A. de Jong,
P. Draper, A. El-Khadra, N. Gemelke, M. Hanada, D. Kharzeev, et al., PRX Quantum 4,
027001 (2023).

[231] Nuclear Physics and Quantum Information Science: Report by the NSAC QIS Subcommit-
tee, Tech. Rep. (NSF & DOE Office of Science, 2019).

[232] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

[233] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A 64, 022319 (2001).
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[295] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph classes: a survey (SIAM, 1999).

[296] IBM, https://research.ibm.com/blog/heavy-hex-lattice.

[297] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W. Cross, Phys. Rev. X 10,
011022 (2020).

[298] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo,
F. G. Brandao, D. A. Buell, et al., Nature 574, 505 (2019).

[299] R. Machleidt and D. R. Entem, Physics Reports 503, 1 (2011).

[300] T. Byrnes and Y. Yamamoto, Phys. Rev. A 73, 022328 (2006), arXiv:quant-ph/0510027
[quant-ph] .

[301] H. Lamm, S. Lawrence, Y. Yamauchi, N. Collaboration, et al., Phys. Rev. D 100, 034518
(2019).

[302] A. F. Shaw, P. Lougovski, J. R. Stryker, and N. Wiebe, Quantum 4, 306 (2020).

[303] D. Paulson, L. Dellantonio, J. F. Haase, A. Celi, A. Kan, A. Jena, C. Kokail, R. van Bijnen,
K. Jansen, P. Zoller, and C. A. Muschik, PRX Quantum 2, 030334 (2021).

[304] A. Ciavarella, N. Klco, and M. J. Savage, Phys. Rev. D 103, 094501 (2021).

[305] A. Kan and Y. Nam, arXiv preprint arXiv:2107.12769 (2021).

[306] C. Hamer, Z. Weihong, and J. Oitmaa, Phys. Rev. D 56, 55 (1997).

[307] E. Zohar and J. I. Cirac, Phys. Rev. D 99, 114511 (2019).

[308] Z. Davoudi, I. Raychowdhury, and A. Shaw, Phys. Rev. D 104, 074505 (2021).

[309] N. Klco and M. J. Savage, Phys. Rev. D 103, 065007 (2021).

[310] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-
Guzik, and J. L. O’Brien, Nat. Commun. 5, 1 (2014).

[311] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gam-
betta, Nature 549, 242 (2017).

[312] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik,
P. Silvi, R. Blatt, C. F. Roos, et al., Nature 569, 355 (2019).

[313] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger,
G. H. Booth, et al., Phys. Rep. 986, 1 (2022).

[314] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and
E. Kashefi, Nat. Rev. Phys. 2, 382 (2020).

[315] N. Friis, G. Vitagliano, M. Malik, and M. Huber, Nat. Rev. Phys. 1, 72 (2019).

405

https://doi.org/10.1137/1.9780898719796
https://research.ibm.com/blog/heavy-hex-lattice
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevA.73.022328
https://arxiv.org/abs/quant-ph/0510027
https://arxiv.org/abs/quant-ph/0510027
https://doi.org/10.1103/PhysRevD.100.034518
https://doi.org/10.1103/PhysRevD.100.034518
https://doi.org/10.22331/q-2020-08-10-306
https://doi.org/10.1103/PRXQuantum.2.030334
https://doi.org/10.48550/arXiv.2107.12769
https://doi.org/10.1103/PhysRevD.56.55
https://doi.org/10.1103/PhysRevD.99.114511
https://doi.org/10.1103/PhysRevD.104.074505
https://doi.org/10.1103/PhysRevD.103.065007
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-018-0003-5


[316] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Oz-
eri, S. Seidelin, and D. J. Wineland, Phys. Rev. A 77, 012307 (2008).

[317] M. Paini and A. Kalev, arXiv preprint arXiv:1910.10543 (2019).

[318] H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).

[319] H.-Y. Huang, R. Kueng, and J. Preskill, Phys. Rev. Lett. 127, 030503 (2021).

[320] H.-Y. Hu, S. Choi, and Y.-Z. You, Phys. Rev. Res. 5, 023027 (2023).

[321] A. Zhao, N. C. Rubin, and A. Miyake, Phys. Rev. Lett. 127, 110504 (2021).

[322] J. Kunjummen, M. C. Tran, D. Carney, and J. M. Taylor, Phys. Rev. A 107, 042403 (2023).

[323] R. Levy, D. Luo, and B. K. Clark, Phys. Rev. Res. 6, 013029 (2024).

[324] J. Helsen, M. Ioannou, J. Kitzinger, E. Onorati, A. Werner, J. Eisert, and I. Roth, Nat.
Comm. 14, 5039 (2023).

[325] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush,
R. Kueng, J. Preskill, et al., Science 376, 1182 (2022).

[326] G. Hao Low, arXiv preprint arXiv:2208.08964 (2022).

[327] H. Pichler, G. Zhu, A. Seif, P. Zoller, and M. Hafezi, Phys. Rev. X 6, 041033 (2016).

[328] M. Dalmonte, B. Vermersch, and P. Zoller, Nat. Phys. 14, 827 (2018).

[329] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 120,
050406 (2018).

[330] B. Vermersch, A. Elben, M. Dalmonte, J. I. Cirac, and P. Zoller, Phys. Rev. A 97, 023604
(2018).

[331] A. Elben, B. Vermersch, C. F. Roos, and P. Zoller, Phys. Rev. A 99, 052323 (2019).

[332] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt,
and C. F. Roos, Science 364, 260 (2019).

[333] A. Elben, R. Kueng, H.-Y. R. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese,
B. Kraus, J. Preskill, P. Zoller, et al., Phys. Rev. Lett. 125, 200501 (2020).

[334] Y. Zhou, P. Zeng, and Z. Liu, Phys. Rev. Lett. 125, 200502 (2020).

[335] A. Neven, J. Carrasco, V. Vitale, C. Kokail, A. Elben, M. Dalmonte, P. Calabrese, P. Zoller,
B. Vermersch, R. Kueng, et al., npj Quantum Inf. 7, 1 (2021).

[336] C. Kokail, R. van Bijnen, A. Elben, B. Vermersch, and P. Zoller, Nat. Phys. 17, 936 (2021).

[337] A. Rath, R. van Bijnen, A. Elben, P. Zoller, and B. Vermersch, Phys. Rev. Lett. 127, 200503
(2021).

406

https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.48550/arXiv.1910.10543
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevLett.127.030503
https://doi.org/10.1103/PhysRevResearch.5.023027
https://doi.org/10.1103/PhysRevLett.127.110504
https://doi.org/10.1103/PhysRevA.107.042403
https://doi.org/10.1103/PhysRevResearch.6.013029
https://doi.org/10.1038/s41467-023-39382-9
https://doi.org/10.1038/s41467-023-39382-9
https://doi.org/10.1126/science.abn7293
https://doi.org/10.48550/arXiv.2208.08964
https://doi.org/10.1103/PhysRevX.6.041033
https://doi.org/10.1038/s41567-018-0151-7
https://doi.org/10.1103/PhysRevLett.120.050406
https://doi.org/10.1103/PhysRevLett.120.050406
https://doi.org/10.1103/PhysRevA.97.023604
https://doi.org/10.1103/PhysRevA.97.023604
https://doi.org/10.1103/PhysRevA.99.052323
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevLett.125.200501
https://doi.org/10.1103/PhysRevLett.125.200502
https://doi.org/10.1038/s41534-021-00487-y
https://doi.org/10.1038/s41567-021-01260-w
https://doi.org/10.1103/PhysRevLett.127.200503
https://doi.org/10.1103/PhysRevLett.127.200503


[338] C. Kokail, B. Sundar, T. V. Zache, A. Elben, B. Vermersch, M. Dalmonte, R. van Bijnen,
and P. Zoller, Phys. Rev. Lett. 127, 170501 (2021).

[339] T. V. Zache, C. Kokail, B. Sundar, and P. Zoller, Quantum 6, 702 (2022).

[340] S. J. van Enk and C. W. Beenakker, Phys. Rev. Lett. 108, 110503 (2012).

[341] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, New J. Phys. 14, 095022 (2012).

[342] J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, in Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing (2016) pp. 913–925.

[343] R. O’Donnell and J. Wright, in Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing (2016) pp. 899–912.

[344] S. Chen, W. Yu, P. Zeng, and S. T. Flammia, PRX Quantum 2, 030348 (2021).

[345] D. E. Koh and S. Grewal, Quantum 6, 776 (2022).

[346] M. C. Tran, D. K. Mark, W. W. Ho, and S. Choi, arXiv preprint arXiv:2212.02517 (2022).

[347] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).

[348] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267 (2012).

[349] C. Gross and I. Bloch, Science 357, 995 (2017).
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