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Quantum simulation stands as an important application of quantum computing, offering

insights into quantum many-body systems that are beyond the reach of classical computational

methods. For many quantum simulation applications, accurate initial state preparation is typi-

cally the first step for subsequent computational processes. This dissertation specifically focuses

on state preparation procedures for quantum states with chiral topological order, states that are

notable for their robust edge modes and topological properties. These states are interesting due to

their profound connections to the behavior of electrons and spins in real-world solid-state materi-

als. In this dissertation, we explore a type of state preparation procedure known as entanglement

renormalization circuits. This class of quantum circuits is characterized by its hierarchical ar-

rangement of quantum gates (or quantum operations in general), which systematically organize

and prepare the entanglement of the target states across various length scales.

In the first part of the dissertation, we present an entanglement renormalization circuit for

a non-interacting chiral topological system. The non-interacting chiral topological system we



consider is a continuous Chern insulator model, which can serve as a toy model for the integer

quantum Hall effect. The entanglement renormalization circuit for the continuous Chern insulator

is the continuous multiscale entanglement renormalization ansatz (cMERA). The cMERA circuit,

adapted for field theories, provides a natural framework for quantum systems that are continuous

in momentum space. One of the key findings of this work is that we find a scale-invariant cMERA

for which the continuous Chern insulator is a fixed-point wavefunction, a property that is believed

to be impossible within the traditional lattice multiscale entanglement renormalization ansatz

(MERA) framework. Furthermore, we provide an experimental proposal to realize the cMERA

circuit using cold atoms.

In the second part of this dissertation, we shift our focus to entanglement renormalization

circuits for interacting chiral topologically ordered states. We analytically derive a class of ex-

actly solvable chiral spin liquids, classified under Kitaev’s 16-fold way. Some of these chiral

spin liquids share universal properties with certain fractional quantum Hall states. We then con-

struct entanglement renormalization circuits for these chiral spin liquids by combining traditional

MERA circuits with time-dependent quasi-local Hamiltonians. We refer to this class of circuits

as the multiscale entanglement renormalization ansatz with quasi-local evolution (MERAQLE).
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1/2’s living on the edges surrounding the faces. In order to obtain the interacting
spin model, we bosonize all the terms of the fermionic Hamiltonian, as described
earlier in Sec. 3.4.1. Here, we only draw a small portion of the superlattice, and
the reader should extend the periodic structure horizontally and vertically. . . . . 80

3.19 (a) The circuit CZf
2 ,x

for a single step of horizontal entanglement renormalization,
which happens to be the same as CZ2,x in Fig. 3.5(a). The filled circles represent
qubits (spins) constituting the toric code model. (b,c) The state of the system after
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disentangled by the circuit into ∣0⟩ and ∣+⟩ states, as indicated by the labels in (b).
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stabilize the disentangled qubits, while the black generators stabilize the pure Zf

2

lattice gauge theory defined on the new horizontally elongated square lattice. The
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2 lattice gauge theory un-

der conjugation by the horizontal entanglement renormalization subcircuit CZf
2 ,x
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3.21 (a) The circuit CZf
2 ,y

for a single step of vertical entanglement renormalization,
which happens to be the same as CZ2,y in Fig. 3.7(a). The filled circles represent
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(c) shows the new stabilizer generators. The red single-site Z and X generators
stabilize the disentangled qubits, while the black generators stabilize the pure Zf
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lattice gauge theory defined on the new vertically elongated square lattice. The
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2 lattice gauge theory

under conjugation by the vertical entanglement renormalization subcircuit CZf
2 ,y

in Fig. 3.21(a). (a)(b) Transformation of the emergent fermion parity operators
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3.23 We aim to (a) horizontally and (b) vertically entanglement renormalize the Ising
TQFT model. We want to design subcircuits CIsing, x and CIsing, y such that we
effectively have a new (elongated) square lattice with unit cells doubled in size
in the horizontal direction and the vertical direction, respectively. In the final
state, the spins represented by unfilled circles are disentangled spins in the ∣0⟩
or ∣+⟩ states. The remaining entangled spins of the final state represented by
filled circles form the edges of the new coarse-grained square lattice. In addition,
we want to have the initial and the final spin state having the interpretation of
emergent fermions in the lattice px + ipy topological superconductor state. The
details of the subcircuit CIsing, x are provided in Fig. 3.24. The details of the
subcircuit CIsing, y are provided in Fig. 3.25. . . . . . . . . . . . . . . . . . . . . . . 91
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3.24 The horizontal entanglement renormalization subcircuit CIsing, x is separated into
two circuit components CIsing, x = CZf

2 ,x
Cbosonizedpx+ipy ,x

. (a) The circuit component
Cbosonizedpx+ipy ,x

based on quasi-local evolution illustrated on the right of Fig. 3.2(a).
It can be written as the bosonization of the quantum circuit Cpx+ipy , x constructed
in Sec. 3.3.2. The circuit component Cbosonizedpx+ipy ,x

takes the emergent fermions from
a px + ipy topological superconductor state on both the pink A faces and the blue
B faces to the px + ipy topological superconductor state on the pink A faces only,
leaving the blue B faces with empty emergent fermionic modes. (b) The cir-
cuit component CZf

2 ,x
, i.e. the horizontal entanglement renormalization subcircuit

CZf
2 ,x

described in Fig. 3.19. Initially, the emergent fermionic modes on the blue
B faces are empty and have fermion parity +1. After we apply the circuit com-
ponent CZf

2 ,x
, the bottom and the left spins of the B faces become disentangled,

as in Fig. 3.19(b). The disentangled spins are shown as unfilled circles. The new
lattice is defined by the remaining entangled qubits, represented by filled circles.
Effectively, we have larger faces horizontally. The state of the new emergent
fermions on the new lattice will be the ground state of the px + ipy topological
superconductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.25 The vertical entanglement renormalization subcircuit CIsing, y is separated into two
circuit components CIsing, y = CZf

2 ,y
Cbosonizedpx+ipy ,y

. (a) The circuit component Cbosonizedpx+ipy ,y

based on quasi-local evolution illustrated on the right of Fig. 3.2(a). It can be writ-
ten as the bosonization of the quantum circuit Cpx+ipy , y constructed in Sec. 3.3.2.
The circuit component Cbosonizedpx+ipy , y

takes the emergent fermions from a px + ipy
topological superconductor state on both the pink A faces and the blue B faces
to the px + ipy topological superconductor state on the pink A faces only, leaving
blue B faces with empty emergent fermionic modes. (b) The circuit component
CZf

2 ,y
, i.e. the vertical entanglement renormalization subcircuit CZf

2 ,y
described in

Fig. 3.21. Initially, the emergent fermionic modes on the blue B faces are empty
and have fermion parity +1. After we apply the circuit CZf

2 ,y
, the bottom and the

left spins of the blue B faces become disentangled, as in Fig. 3.21(b). The dis-
entangled spins are shown as unfilled circles. The new lattice is defined by the
remaining entangled qubits, represented by filled circles. Effectively, we have
larger faces vertically. The state of the new emergent fermions on the new lattice
will be the ground state of the px + ipy topological superconductor. . . . . . . . . . 93

3.26 The edge orientation assignments and the corresponding algebra isomorphism
between (a) the theory of fermions coupled to a Zf

2 gauge field and (b) the the-
ory of spins for the new horizontally coarse-grained lattice. After the horizontal
entanglement renormalization circuit component CZf

2 ,x
, some spins are disentan-

gled, as shown in Fig. 3.23(a). We associate edge orientation assignments with
the new lattice edges formed by the remaining spins. Compared to Fig. 3.12, the
lattice is elongated horizontally. We intentionally put the operators on the hori-
zontal edges to the left of the midpoint to remember the original positions of the
corresponding spins on the old lattice before coarse-graining. . . . . . . . . . . . . 99
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3.27 Here we have a new bosonization duality between (a) the pure fermionic theory
and (b) the pure spin theory on the new horizontally coarse-grained (elongated)
square lattice by imposing a new zero-flux constraint Fv = 1 on the spin side. The
fermions live on the horizontally elongated faces of the coarse-grained square
lattice, while the spins live on its edges. . . . . . . . . . . . . . . . . . . . . . . . . 100

3.28 Subfigure (a) shows a single step, Cν, x, of horizontal entanglement renormaliza-
tion of the ν-th Kitaev’s sixteenfold way chiral spin liquid. Subfigure (b) shows
a single step, Cν, y, of vertical entanglement renormalization of the ν-th Kitaev’s
sixteenfold way chiral spin liquid. After a single step of horizontal or vertical
renormalization, half of the spins are disentangled into states ∣0⟩ or ∣+⟩. The dis-
entangled spins are represented by unfilled circles. After renormalization, the
faces of the square lattice are elongated horizontally or vertically and are defined
by the remaining entangled spins represented by the filled circles. The remaining
spins forming the new elongated square lattice are again in the same Kitaev’s six-
teenfold way chiral spin liquid state. The primed emergent fermion layer numbers
mark emergent fermionic modes to be disentangled and removed by the renor-
malization. We also use dimmer colors on primed faces to further distinguish
them from other (unprimed) faces within the same emergent fermion layer. The
subcircuit Cν, x for horizontal entanglement renormalization is described in detail
in Fig. 3.29, while the subcircuit Cν, y for vertical entanglement renormalization
is described in detail in Fig. 3.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.29 The horizontal entanglement renormalization subcircuit Cν, x for the ν-th Kitaev’s
sixteenfold way chiral spin liquid can be decomposed into three circuit compo-
nents: Cν, x ≡ CZf

2 ,x
Cbosonizedν, shuffle, xCbosonizedνf , x

. Faces with dimmer colors and primed
number labels indicate fermionic modes decoupled or waiting to be decoupled
from the rest of the emergent fermions. These primed (and dimly colored) faces
play a role similar to the role of blue B faces in Fig. 3.23. (a) The circuit com-
ponent Cbosonized

νf , x
. The bosonization of a fermionic quantum circuit composed of

quasi-adiabatic circuits (constructed in Sec. 3.3.2) for ν layers of lattice px + ipy
topological superconductors to renormalize them horizontally. After the circuit
component Cbosonized

νf , x
, all the emergent fermionic modes on the primed faces are

empty and therefore disentangled from the rest of the emergent fermionic sys-
tem. The circuit is quasi-local in the sense of Fig. 3.2. (b) The circuit component
Cν, shuffle, x. We perform a series of {SWAPfi, j}

bosonized
gates to shuffle the emer-

gent fermionic degrees of freedom. This circuit component is independent of
ν. (d) The circuit component CZf

2 ,x
. This strictly-local circuit is the same as the

circuit in Fig. 3.5 and Fig. 3.19. The disentangled spins are drawn as unfilled
circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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3.30 The vertical entanglement renormalization subcircuit Cν, y for the ν-th Kitaev’s
sixteenfold way chiral spin liquid can be decomposed into three circuit compo-
nents: Cν, y ≡ CZf

2 ,y
Cbosonizedν, shuffle, yCbosonizedνf , y

. Faces with dimmer colors and primed
number labels indicate fermionic modes decoupled or waiting to be decoupled
from the rest of the emergent fermions. These primed (and dimly colored) faces
play a role similar to the role of blue B faces in Fig. 3.23. (a) The circuit com-
ponent Cbosonized

νf , y
. The bosonization of a fermionic quantum circuit composed of

quasi-adiabatic circuits (constructed in Sec. 3.3.2) for ν layers of lattice px + ipy
topological superconductors to renormalize them vertically. After the circuit
component Cbosonized

νf , y
, all the emergent fermionic modes on the primed faces are

empty and therefore disentangled from the rest of the emergent fermionic sys-
tem. The circuit is quasi-local in the sense of Fig. 3.2. (b) The circuit component
Cν, shuffle, y. We perform a series of {SWAPfi, j}

bosonized
gates to shuffle the emer-

gent fermionic degrees of freedom. This circuit component is independent of
ν. (d) The circuit component CZf

2 ,y
. This strictly-local circuit is the same as the

circuit in Fig. 3.7 and Fig. 3.21. The disentangled spins are drawn as unfilled
circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 A toy model of synthetic selection rules. Bare states ∣s1⟩ and ∣s2⟩ are driven
by a field with Rabi frequency Ω, whereby two dressed states ∣d1⟩ and ∣d2⟩ are
created. In view of the rotating frame, the dressed states are linear combinations
of bare states. As a result, they do not have good quantum numbers to constitute
a selection rule when coupling to another state, say ∣g⟩. A synthetic selection
rule can be generated through applying two driving fields from ∣g⟩ to ∣s1⟩ and ∣s2⟩
with fine-tuned Rabi frequencies χ1 and χ2, respectively. For example, we can
forbid the transition from ∣g⟩ to ∣d1⟩ by choosing χ1 = −χ2. . . . . . . . . . . . . . 120
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A.2 Disentangler engineering. (a) A magnetic field is applied to induce hyperfine
splittings. The excited states are coupled by Raman beams (colored in blue) to
generate an effective spin-orbit interaction. They are chosen from the hyperfine
manifolds 3P2 F = 5/2 and 3P0 F = 1/2, which are long-lived to circumvent
dissipation issues. Their ultra-narrow linewidths are on the order of tens of mil-
lihertz [1–5]. Additionally, we also have two sets of multiple lasers, colored in
light and dark pink, coupling the ground states to the excited states to engineer
the disentangler of our cMERA by creating synthetic selection rules. (b) The
effective couplings between ground states and the dressed excited states are gen-
erated from the scheme shown in (a). We ignore a third dressed state since it is
far off-resonant. Now we effectively create two dressed excited states coupled
by spin-orbit interaction, which are coupled to the ground states by two pairs
of drivings colored in light and dark pink. The synthetic selection rules forbid
∣g1,k⟩ ←→ ∣e2,k⟩ and ∣g2,k⟩ ←→ ∣e1,k⟩. The effective Rabi frequencies and de-
tunings for two pairs of effective drivings are labeled by unprimed and primed
notation. The band structures are ignored in this picture, so by detunings we
mean the detunings at k = 0. The light and dark purple arrows on the bottom
right in (a) and (b) both represent lasers used to cancel unwanted AC Stark shifts
by coupling the ground states to some negative curvature bands of some excited
state, e.g., an unused excited state in the 3P2 F = 5/2 hyperfine manifold. . . . . . 121

A.3 Energy level diagram of neutral atom 171Yb. The hyperfine structure is shown.
We employ the bottom two ground states as our spinor basis of the Chern insula-
tor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.1 We have an alternating pattern of active pink faces and inactive blue faces corre-
sponding to the sublattice structure of the emergent (equivalently dual) fermions
for the case of (a) horizontal entanglement renormalization and (b) vertical en-
tanglement renormalization. The dual fermionic modes on the inactive blue faces
are empty. We want to know how the bosonized generic quadratic fermionic
term on the pink active faces, such as {iγaγ′b}

bosonized
from face a to face b,

transforms under conjugation by (a) CZf
2 ,x

for horizontal entanglement renor-
malization and (b) CZf

2 ,y
for vertical entanglement renormalization. The figure

shows that, under CZf
2 ,x

and CZf
2 ,y

, the bosonized original quadratic fermionic

term {iγaγ′b}
bosonized

maps onto the corresponding bosonized quadratic fermionic

term {iγNa γ′b
N}bosonized defined on the new coarse-grained lattice as if the orig-

inal fermion operators were living on the new elongated faces. The superscript
N is used to label the fermion operators defined on the faces of the new lattice.
The detailed calculations behind this result are shown in Fig. B.2 for CZf

2 ,x
and

Fig. B.3 for CZf
2 ,y

. The prefactorf denotes the constant prefactor that must be
included in front of the product of the fermionic operators shown in the figure in
order to make the quadratic fermionic term under consideration. . . . . . . . . . . 138
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B.2 The subfigures show how the bosonized generators of the fermionic algebra asso-
ciated with the active pink faces change under conjugation by CZf

2 ,x
. Inactive blue

faces are labeled by numbers with primes, while active pink faces are labeled by
numbers without primes. (a) The change of the shortest bosonized horizontal Ma-
jorana hopping term {iγ1γ′2}

bosonized under CZf
2 ,x

. (b) The change of the shortest

bosonized vertical Majorana hopping term {iγ1γ′3}
bosonized under CZf

2 ,x
. (c) The

change of the bosonized fermion parity operator {−iγ1γ′1}
bosonized under CZf

2 x
.

The notation prefactorf denotes the constant prefactor that must be included in
front of the product of the fermion operators shown in the figure in order to make
the quadratic fermionic term under consideration, and the ordering of the fermion
operators is specified above. The notation prefactors denotes the constant pref-
actor that must be included in front of the product of the spin operators shown
in the figure. When an X operator and a Z operator both act on a qubit, the Z
operator acts first. The red single-qubit Pauli-Z operator sitting at the center of
the new face 1 is acting on a disentangled qubit. This operator takes eigenvalue
one in the transformed quantum state CZf

2 ,x
∣Ψ⟩. Therefore, up to this operator

taking eigenvalue one, the transformed generators match the bosonized fermion
operators on the new elongated faces containing the original fermion operators
being transformed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.3 The subfigures show how the bosonized generators of the fermionic algebra asso-
ciated with the active pink faces change under conjugation by CZf

2 ,y
. Inactive blue

faces are labeled by numbers with primes, while active pink faces are labeled by
numbers without primes. (a) The change of the shortest bosonized horizontal Ma-
jorana hopping term {iγ1γ′3}

bosonized under CZf
2 ,y

. (b) The change of the shortest

bosonized vertical Majorana hopping term {iγ1γ′2}
bosonized under CZf

2 ,y
. (c) The

change of the bosonized fermion parity operator {−iγ2γ′2}
bosonized under CZf

2 y
.

The notation prefactorf denotes the constant prefactor that must be included in
front of the product of the fermion operators shown in the figure in order to make
the quadratic fermionic term under consideration, and the ordering of the fermion
operators is specified above. The notation prefactors denotes the constant pref-
actor that must be included in front of the product of the spin operators shown
in the figure. When an X operator and a Z operator both act on a qubit, the Z
operator acts first. The red single-qubit Pauli-Z operator sitting at the center of
the new face 2 is acting on a disentangled qubit. This operator takes eigenvalue
one in the transformed quantum state CZf

2 ,y
∣Ψ⟩. Therefore, up to this operator

taking eigenvalue one, the transformed generators match the bosonized fermion
operators on the new elongated faces containing the original fermion operators
being transformed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
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Chapter 1: Introduction

From the study of black-body radiation and atomic spectra, the field of quantum mechanics

emerged [7]. Its discovery in the early 20th century marked a profound paradigm shift, funda-

mentally altering our understanding of physical reality. Pioneered by luminaries such as Niels

Bohr, Werner Heisenberg, and Erwin Schrödinger, this field has unveiled phenomena that defy

classical intuition, such as superposition and quantum entanglement [8]. The concept of quan-

tum superposition posits that the state of an object can simultaneously be in multiple states, such

as 0 and 1. Meanwhile, quantum entanglement suggests that particles, even when separated by

large distances, can be correlated in ways that have no classical analog. Quantum mechanics has

not only reshaped our scientific perspective but also promises revolutionary applications across

various domains. It has provided explanations for phenomena such as the energy levels and the

band theory of electrons, which underpin many technological applications [9], including solar

panels installed on roofs of houses, semiconductor chips in our computers and smartphones, ma-

glev trains to transport passengers, lasers used for presentations and skin surgeries, atomic clocks

used in Global Positioning System (GPS) satellites, and functional magnetic resonance imag-

ing (fMRI) in hospitals and research institutes to measure neural activity [10, 11] (see Fig. 1.1).

However, it is believed that we have yet to fully harness the power of quantum mechanics.

Around the 1980s, a series of ideas were proposed to develop a new type of computer
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Figure 1.1: Modern technological applications involving quantum mechanics.

based on the principles of quantum mechanics [12–15]. The underlying idea is that it is some-

times challenging for classical computers to compute certain properties of a quantum system, so

why not simulate a quantum system using another quantum system [12, 13]? Later, this new ap-

proach of using quantum mechanics to perform computation gained significant momentum with

Peter Shor’s development [15–17] of an algorithm capable of factoring large numbers—an abil-

ity with profound implications for RSA cryptography. This development challenges the strong

Church-Turing thesis [18, 19], a widely believed statement if restricted to the classical comput-

ing paradigm. Shor’s algorithm bolsters confidence that, if we can successfully build a quantum

computer, we could perform computations for certain tasks much faster than with classical com-

puters.

Since the 2010s, there has been a widespread excitement in the field of quantum infor-

mation research [20, 21]. Recent advancements in quantum technology have captured the atten-

tion of major corporations such as IBM [22], Google [23], and Microsoft [24], each actively
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involved in developing quantum computers. Their efforts have significantly propelled research

forward. Additionally, countries worldwide [25] are increasing their financial support for quan-

tum information projects. Many research teams have discovered methods to manipulate mi-

nuscule quantum particles or utilize exotic collective many-body quantum effects to construct

small quantum computers, demonstrating basic quantum computations. Promising platforms

believed to be candidates for future full-scale quantum computation include trapped ions [26],

Rydberg atom arrays [27, 28], and superconducting qubits [29, 30]. Despite the groundbreaking

success of Shor’s factoring algorithm, realizing it on a practical scale would require a substan-

tial number of qubits [31]. Moreover, the current state of quantum computers, known as noisy

intermediate-scale quantum (NISQ) [32] devices, features qubits and gates prone to errors. It is

widely acknowledged that considerable time is still needed to develop a fault-tolerant quantum

computer [32].

Nevertheless, the realm of quantum simulation [33], proposed by physicists including

Richard Feynman, stands as one of the most promising applications of quantum computing in

the near term. It seeks to unravel complex physical phenomena that are intractable for clas-

sical supercomputers. By leveraging the principles of quantum mechanics, researchers aim to

simulate strongly correlated quantum systems. This application has attracted interest from high-

energy physicists [34], condensed-matter physicists [35], and quantum chemists [36]. Systems of

interest to condensed-matter physicists include systems exhibiting the quantum Hall effect [37],

high-temperature superconductors [38], quantum spin liquids [39], and topological phases of

matter [40]. The research areas involving those systems are not entirely separate. They are inter-

connected and have significant overlaps.

The quantum Hall effects are characterized by quantized Hall conductance plateaus ob-
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served in semiconductors [37, 41], a phenomenon that deviates from classical theories. These

effects are classified into two types: integer quantum Hall effects and fractional quantum Hall ef-

fects. This classification is based on whether the Hall conductance σxy is quantized to an integer

or a fractional value p/q, where p and q are coprime. The measurement of Hall conductance in-

volves calculating the ratio of the voltage drop across the y-direction to the current flowing along

the x-direction in Fig. 1.2(a). High-temperature superconductors are materials that display super-

conducting behavior at temperatures that can be reached with liquid nitrogen [38]. They are often

shown as levitating objects in the presence of a strong magnet, as shown in Fig. 1.2(b). Quantum

spin liquids [39], as illustrated in Fig. 1.2(c), are strongly correlated spins on a lattice where no

apparent local order parameter describes the system. However, they are distinct from states of a

disordered spin system. Spin liquids are more exotic as they feature anyonic excitations and pro-

vide a fertile ground for exploring phenomena outside the traditional fermion-boson dichotomy.

Specifically, the theory of quantum spin liquids was originally proposed to help understand high-

temperature superconductors by Philip Anderson in 1973 [42]. Thus, a better understanding of

spin liquids could potentially deepen our understanding of high-temperature superconductors.

Moreover, some quantum spin liquids can be viewed as lattice analogs of quantum Hall states.

The field of topological phases of matter (or topologically ordered systems) [40] arises

from the study of quantum spin liquids and fractional quantum Hall states [43]. Inspired by

classical phases of matter [44, 45]—like water, vapor, and ice in our kitchens or the disappear-

ance of ferromagnetic properties in a magnet when heated (meaning, at high temperatures, the

magnet no longer sticks to a fridge wall)—researchers are similarly interested in studying and

classifying quantum phases of matter at absolute zero temperature. This new way of classifying

phases of matter is related to concepts in the branch of mathematics called topology. To study
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Figure 1.2: Topics and materials interesting to condensed-matter theorists. (a) Quantum Hall
effects. (b) High-temperature superconductors. (c) Quantum spin liquids.

these phases of matter, we need to compute topological invariants of a system, often related to

generalizations of the winding number [46,47], or employ a special kind of quantum field theory

known as topological quantum field theory [48, 49]. It is believed that a better understanding of

topological phases of matter could aid in building a special type of quantum computer known

as a topological quantum computer. Specifically, if we can control the anyons in quantum Hall

states, quantum spin liquids, or more exotic topological phases of matter, we could achieve what

is called topological quantum computing [48].

Researchers have spent a considerable amount of time searching for solid state materials

suitable for quantum spin liquids [39]. Recently, teams from Harvard [27] and Google [30] have

probed quantum spin liquids using quantum computing devices. This development makes it ex-

citing to explore the preparation of other strongly correlated systems. This dissertation focuses

on one class of such systems: chiral topological phases of matter [40, 49, 50]. Chiral topological
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Figure 1.3: Chiral topological order with edge currents under open boundary conditions.

phases of matter, in essence, are characterized by gapless chiral edge currents when under open

boundary conditions, as shown in Fig. 1.3. These edge currents are resistant to defects and im-

purities. The edge current can be measured by the thermal Hall conductivity: KH = c
πk2B
6h̵ T [40].

The thermal Hall conductivity relates the appearance of a perpendicular thermal current flow in

the presence of a temperature difference. The number c is known as the chiral central charge.

Under certain conditions, the edge theory can be described by a specialized quantum field theory

known as chiral conformal field theory [50, 51], and the chiral central charge is an important pa-

rameter for the corresponding chiral conformal field theory [52,53]. Chiral topologically ordered

systems do not preserve time-reversal symmetry, which can be intuitively observed from the uni-

directional propagating edge state. The study of chiral topological order is deeply connected to

quantum Hall states, both integer and fractional. Well-known fractional quantum Hall states such

as the Laughlin states, the Moore-Read states, and the Read-Rezayi states are all categorized un-

der the umbrella of chiral topological phases [37, 49]. Depending on the system being studied,

chiral topologically ordered systems might or might not support anyonic excitations.

In this dissertation, we aim to explore quantum circuits that can be utilized to prepare chiral

topological phases of matter. As the states we are typically interested in are defined at zero tem-
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Figure 1.4: Two types of quantum circuits considered in this dissertation.

perature, having a quantum circuit to prepare such a state is important when there is no obvious

way to simply cool the system down to near absolute zero. In quantum computing, the phrase

quantum circuit typically refers to the quantum circuit model with a LEGO-like structure [15], as

shown in Fig. 1.4(a). A quantum circuit is chosen as a unitary made up of blocks of smaller dis-

crete unitaries known as quantum gates. Quantum gates are quantum analogs of classical logical

gates that are ubiquitous in electronic devices in our daily life. In this dissertation, we also con-

sider unitaries generated by time-dependent Hamiltonians subject locality and other constraints

in Fig. 1.4(b). We make this choice because, depending on the quantum architecture, one form

of quantum circuit may be more convenient to implement than the other.

In this dissertation, we specifically focus on a class of quantum circuit known as the entan-

glement renormalization circuits [54], where the multiscale entanglement renormalization ansatz
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(MERA) [55,56] is the earliest realization. This approach is based on the concept of the renormal-

ization group, which coarse-grains states to analyze entanglement of quantum systems at various

length scales (see Chapter 2 and Chapter 3 for more introduction to it). This hierarchical circuit

not only embodies the principles of entanglement renormalization but also relates to the intrigu-

ing notion of circuit complexity of states within quantum computing, which aims to characterize

the amount of computational resources required to prepare a given state.

In Chapter 2, we explore the use of a quantum circuit to prepare a non-interacting chiral

system. This system is modeled as a continuous Chern insulator, serving as a theoretical model

for the integer quantum Hall effect. The model, continuous in momentum space, is well-suited

for field-theory treatment. Thus, the circuit developed to prepare the continuous Chern insulator

is an adaptation of the MERA circuit for field theories, termed a continuous MERA (cMERA)

circuit [57, 58]. It is worth noting that the cMERA circuit we present is scale-invariant; that is,

the quantum operations and states at different layers remain the same, only varying by a scaling

transformation. This feature leads us to describe the quantum state of the continuous Chern in-

sulator as a fixed-point wavefunction. The cMERA circuit employs quasi-local interactions and

operates in a continuous-time framework, which enables us to bypass several no-go arguments

against constructing scale-invariant entanglement renormalization circuits for chiral states. Ad-

ditionally, we present an experimental scheme to realize both the state and the circuit using an

analog quantum computing setup.

In Chapter 3, building on the insights from entanglement renormalization circuits for non-

interacting chiral models discussed in Chapter 2, we develop entanglement renormalization cir-

cuits for interacting chiral models. We analytically construct a broad class of exactly solvable chi-

ral spin liquids, classified according to Kitaev’s 16-fold way [6]. Chiral spin liquids are quantum
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spin liquids characterized by chiral edge states when boundaries are open. Interestingly, many

of the chiral spin liquids we consider belong to the same universality class as some well-known

fractional quantum Hall states. Leveraging the exact solvability of our models, we construct

scale-invariant entanglement renormalization circuits for these states. These circuits combine

traditional MERA circuits with quasi-local evolution, where quasi-local evolution is time evolu-

tion driven by time-dependent quasi-local Hamiltonians. We refer to these circuits for chiral spin

liquids as MERA circuits with quasi-local evolutions (MERAQLE). This approach provides a

novel framework for exploring the entanglement properties of chiral topologically ordered states,

a domain where analytical tools are scarce.

The results presented in this dissertation serve as a cornerstone for future studies on the

circuit complexity and entanglement structure of chiral topologically ordered states, including

many well-known fractional quantum Hall states not addressed by our construction of chiral

spin liquids. We hope this work will also inspire further research into circuit complexity and

entanglement structure of various other strongly correlated states, such as other quantum spin

liquids and high-temperature superconducting materials.
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Chapter 2: Scale-Invariant Continuous Entanglement Renormalization of a Chern

Insulator

Abstract: The multi-scale entanglement renormalization ansatz (MERA) postulates the

existence of quantum circuits that renormalize entanglement in real space at different length

scales. Chern insulators, however, cannot have scale-invariant discrete MERA circuits with finite

bond dimension. In this work, we show that the continuous MERA (cMERA), a modified version

of MERA adapted for field theories, possesses a fixed point wavefunction with nonzero Chern

number. Additionally, it is well known that reversed MERA circuits can be used to prepare

quantum states efficiently in time that scales logarithmically with the size of the system. However,

state preparation via MERA typically requires the advent of a full-fledged universal quantum

computer. In this work, we demonstrate that our cMERA circuit can potentially be realized in

existing analog quantum computers, i.e., an ultracold atomic Fermi gas in an optical lattice with

light-induced spin-orbit coupling.
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2.1 Introduction

A quantum many-body system has a Hilbert space whose dimension grows exponentially

with system size, making exact diagonalization of its Hamiltonian impractical. Fortunately, ten-

sor networks [59, 60] are capable of efficiently representing the ground states of many systems

with local interactions [55,56,61–64]. Another powerful tool in many-body physics is the renor-

malization group (RG) [65, 66], which uses the fact that the description of a physical system can

vary at different length scales, forming a hierarchical structure. The RG provides a systematic

prescription to transform an exact microscopic description to an effective coarse-grained descrip-

tion. Applications of RG range from critical phenomena in condensed matter to the electroweak

interaction in high-energy physics [67].

One approach which combines tensor networks and renormalization group is called the

multi-scale entanglement renormalization ansatz (MERA) [55, 56]. MERA proposes a quantum

circuit acting on a state which is initially entangled at many length scales. The two elemen-

tary building-block tensors of the MERA, isometries and disentanglers, are discrete unitary gates

which physically implement RG in real space by successively removing entanglement at progres-

sively larger length scales. Interestingly, since the circuit depth only increases logarithmically

with the system size, a reversed MERA circuit can efficiently prepare a state with finer entangle-

ment structure from a weakly-entangled initial state. In practice, MERAs are most convenient

when the disentanglers and isometries are independent of the length scale [68–74]. The state

that is left unchanged in the thermodynamic limit by these scale-invariant unitaries is termed a

fixed-point wavefunction.

Experimentally, a reversed MERA circuit might be used to prepare exotic states, such as
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chiral topological states, which include integer quantum Hall states and certain fractional quan-

tum Hall states [40, 50]. Some fractional quantum Hall systems are believed to feature anyons

useful for topological quantum computation [48]. Due to their great theoretical interest, it would

be useful to be able to study these systems under highly controlled settings, such as in ultracold

atomic gases. However, to create a chiral topological state in the lab, we must not only engineer

the parent Hamiltonian, but also cool the system down to the ground state. The latter is usually

hard experimentally for topological states due to their long-range entanglement [75]. A reversed

MERA circuit can possibly resolve this issue by directly generating the target chiral topological

state from another state that is easier to obtain by cooling.

Here, as a first step towards finding a MERA for a fractional quantum Hall state, we in-

stead search for a MERA whose fixed-point wavefunction describes an (integer) Chern insulator.

A Chern insulator is an integer quantum Hall state on a lattice and is therefore a simpler system

than the fractional quantum Hall state. However, there are no-go theorems stating that a MERA

cannot have a Chern insulator ground state as its fixed-point wavefunction [76–79]. Since con-

ventional MERA only contains strictly local interactions, adding quasi-local interactions with

quickly decaying tails could possibly circumvent the no-go theorems. A modified formalism

of MERA adapted for field theories called continuous MERA (cMERA) [57] can include such

quasi-local interactions [80]. The distinction between strictly local and quasi-local interactions is

that the interaction range of the former is finite, while the latter are a broader class that includes

interactions decaying faster than any power law with respect to distance, e.g., exponentially de-

caying interactions. In contrast to the MERA paradigm, in which the renormalization circuit

consists of discrete unitary gates, cMERA treats the circuit time, which corresponds to the length

scale, as a continuous variable and generates continuous entanglement renormalization using a
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Hermitian Hamiltonian.

In this work, we show that a type of Chern insulator wavefunction can be generated by a

scale-invariant cMERA circuit. The Chern insulator model we consider is the Bernevig-Hughes-

Zhang model in the continuum limit [81]. In addition, we propose a possible experimental re-

alization of the cMERA circuit with neutral 171Yb atoms in an optical lattice by introducing

spin-orbit coupling.

Our work complements and can be contrasted with Refs. [54, 58]. While Ref. [58] previ-

ously developed a cMERA for the continuous Chern insulator model mentioned above, our work

uses a scale-invariant disentangler. Other prior work in Ref. [54] presented a scale-invariant en-

tanglement renormalization for a two-band Chern insulator model. While Ref. [54] makes use

of the lattice structure and quasi-adiabatic paths between a series of gapped Hamiltonians, our

cMERA approach allows smooth time evolution and emphasizes the continuum physics. An-

other difference is that the RG evolution in Ref. [54] involves interactions decaying with distance

faster than any power-law function but slower than an exponential, whereas our cMERA only

needs an exponentially decaying interaction. Other known methods for representing chiral topo-

logical states include artificial neural network quantum states [82–84], projected entangled pair

states [78, 85–87], matrix product states [88], and polynomial-depth unitary circuits [89].

2.2 Review of cMERA

Review of cMERA.—Within the framework of conventional MERA [55, 56], disentanglers

Vu and isometries Wu are strictly local discrete unitary operators employed to renormalize en-

tanglement at layer u ∈ Z+. In cMERA [57], we simply replace them by continuous uni-
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tary transformations, which are infinitesimally generated by self-adjoint operators K(u) and L:

Vu → e−iK(u)du, Wu → e−iLdu. The notation du denotes an infinitesimal RG step, and u ∈ (−∞,0].

When the continuous variable u approaches zero, the system is said to be at the ultraviolet (UV)

length scale, possessing both short-range and long-range entanglement. As u → −∞, the system

flows to the infrared (IR) length scale, where short-range entanglement is removed and nearly

all degrees of freedom are disentangled from each other. Note that the generator of disentangler

K(u) can in general depend on scale u. A cMERA is called scale-invariant if K(u) is indepen-

dent of u.

To emulate the coarse-graining behavior of isometries in conventional lattice MERA, L

is chosen to be the scaling transformation in field theory. For example, for a single fermion

field ψ(x) in d spatial dimensions, we pick L = − i2 ∫ (ψ†(x)x ⋅ ∇ψ(x) − x ⋅ ∇ψ†(x)ψ(x))ddx

[57,58]; thereby, fermionic operators ψ(x) in real space and ψ(k) in momentum space satisfy the

following scaling transformations: e−iuLψ(x)eiuL = e d
2
uψ(eux), e−iuLψ(k)eiuL = e− d

2
uψ(e−uk).

One can check that the anti-commutation relations {ψ(x), ψ†(x′)} = δ(x − x′) in real space and

{ψ(k), ψ†(k′)} = δ(k − k′) in momentum space are preserved under the scaling transformation.

We will sometimes abuse the terminology to call K(u) and L themselves the disentangler and

the isometry rather than the verbose generator of disentangler and generator of isometry.

The renormalized wavefunction is governed by the Schrödinger equation,

i
∂

∂u
∣ΨS(u)⟩ = [K(u) +L] ∣ΨS(u)⟩ , (2.1)

where the superscript S denotes the Schrödinger picture. In this work, we will focus on the

interaction picture which provides a more convenient way to look at continuous entanglement
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renormalization. We treat L as a “free” Hamiltonian and K(u) as an “interaction” Hamiltonian,

i.e., ∣ΨI(u)⟩ = eiuL ∣ΨS(u)⟩, where the superscript I denotes the interaction picture. Substituting

this equation into Eq. (2.1), we obtain

i
∂

∂u
∣ΨI(u)⟩ = K̂(u) ∣ΨI(u)⟩ , (2.2)

where K̂(u) def= eiuLK(u)e−iuL is the disentangler in the interaction picture. The renormal-

ized wavefunction ∣ΨI(u)⟩ at scale u can be formally written in terms of the IR state ∣ΩI
IR⟩ ≡

∣ΨI(u→ −∞)⟩ as

∣ΨI(u)⟩ = P exp(−i∫
u

−∞
K̂(u′)du′) ∣ΩI

IR⟩ , (2.3)

where P is the path ordering operator. Unless otherwise stated, we will only consider the inter-

action picture; therefore, we will drop the superscript I in the rest of this work.

2.3 A continuous Chern insulator model.

A continuous Chern insulator model.—We begin with a two-band continuous Chern insu-

lator model in two spatial dimensions [81] with Hamiltonian H = ∫ d2kψ†(k)[R(k) ⋅ σ]ψ(k),

where k = (kx, ky) ∈ R2, R(k) = (kx, ky, m−k2), m > 0, k ≡ ∣k∣ =
√
k2x + k2y , and σ = (σx, σy, σz)

is a vector of Pauli matrices. The fermionic operator ψ(k) is a two-component spinor ψ(k) ≡

( ψ1(k) ψ2(k) )
T

whose components satisfy {ψ†
i (k), ψj(k′)} = δij δ(k − k′) for i, j ∈ {1,2}.
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The ground state, which has the lower band filled, is [58]

∣Ψ⟩ =∏
k

(ukψ†
2(k) − vkψ

†
1(k)) ∣vac⟩ , (2.4)

uk =
1√
Nk

((m − k2) +
√
(m − k2)2 + k2) , vk =

1√
Nk

(ke−iθk) ,

whereNk is a k-dependent normalization factor such that ∣uk∣2+∣vk∣2 = 1, and the state ∣vac⟩ is the

vacuum state annihilated by ψ1,2(k). The angle θk is defined via kx = k cos θk and ky = k sin θk,

i.e., it is the polar angle in momentum space. The Chern number of the bottom band of this

two-band system is C = 1
4π ∫R2 d2kn(k) ⋅ (∂n(k)∂kx

× ∂n(k)
∂ky
) = 1, where n(k) ≡ R(k)

∣R(k)∣ and where the

integrand divided by two is called the Berry curvature.

Now, we show how to obtain a scale-invariant cMERA for this model.

Entanglement renormalization of the Chern insulator.—Following the convention in Refs.

[57, 58, 90], we take the Gaussian ansatz for the disentangler in the Schrödinger picture, K(u) =

i ∫ d2k[g(k, u)ψ†
1(k)ψ2(k)+g∗(k, u)ψ1(k)ψ†

2(k)] 1. If we require our disentangler to be scale-

invariant, then g(k, u) should not have explicit u dependence, g(k, u) = g(k). We also take the

ansatz that g(k) = H(k)e−iθk , where H(k) is a real-valued function to be determined. Through

rewriting the disentangler asK(u) = ∫ d2kψ†(k)[H(k)⋅σ]ψ(k)with H(k) = (H(k) sin θk,−H(k) cos θk,0),

we can intuitively understand its action by imagining an effective magnetic field of strengthH(k)

in a clockwise direction about the origin applied to the pseudo-spin at each momentum point. In

1In the cMERA literature, a momentum cutoff Λ is typically provided [57, 58]. With a finite cutoff, the UV state
generated by a cMERA circuit approximates the ground state of the Hamiltonian up to O( 1

Λ
) corrections. Here, we

work in the continuum limit Λ → ∞ to avoid this technical subtlety. In principle, these finite-Λ corrections can be
worked out explicitly.
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the interaction picture, the disentangler becomes

K̂(u) = i∫ d2k[H(e−uk)e−iθkψ†
1(k)ψ2(k) +H(e−uk)eiθkψ1(k)ψ†

2(k)]. (2.5)

Now, we start to renormalize the wavefunction and determine the form of the disentangler.

We assume that the renormalized wavefunction at scale u can be expressed as

∣Ψ(u)⟩ =∏
k

(Pk(u)ψ†
2(k) −Qk(u)ψ†

1(k)) ∣vac⟩ , (2.6)

with ∣Pk(u)∣2 + ∣Qk(u)∣2 = 1. From Eq. (2.2), we get

Pk(u) = Ake
−iφ(e−uk) +Bke

iφ(e−uk), (2.7)

Qk(u) = −ie−iθk [Ake
−iφ(e−uk) −Bke

iφ(e−uk)] .

CoefficientsAk andBk are complex numbers with ∣Ak∣2+∣Bk∣2 = 1
2 , and φ(e−uk) ≡ ∫

∞

ke−uH (t)
dt
t .

At UV scale u = 0, the wavefunction should match the ground state in Eq. (2.4); at IR scale

u → −∞, we would like the renormalized wavefunction to be the product state ∏kψ
†
1(k) ∣vac⟩

or the product state ∏kψ
†
2(k) ∣vac⟩ [57, 58, 90]. By taking Ak = − 1

2i and Bk = 1
2i , the boundary

conditions can be satisfied by requiring

H (k) = k(m + k2)
2 [k4 + k2(1 − 2m) +m2]

. (2.8)

Substituting Eq. (2.8) into Eqs. (2.6) and (2.7), we attain an explicit form of the renormalized
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u=-∞

u=0kxky

Figure 2.1: Berry curvature of the renormalized wavefunction in the interaction picture at dif-
ferent scales u, drawn schematically in momentum space. The blue arrow corresponds to the
direction of the reversed cMERA circuit. The area contributing to the Chern number expands as
one approaches the UV scale.

wavefunction,

∣Ψ(u)⟩ =∏
k

1√
Nk,u

×

[((m − k2e−2u) +
√
(m − k2e−2u)2 + k2e−2u) ψ†

2(k) − k e−ue−iθk ψ
†
1(k)] ∣vac⟩ , (2.9)

where Nk,u is a normalization factor that depends on k and u. The Berry curvature of the renor-

malized wavefunction at different u is shown schematically in FIG. 2.1. The IR state is ∣ΩIR⟩ =

limu→−∞ ∣Ψ(u)⟩ =∏k e
−iθkψ†

1(k) ∣vac⟩, which is equal to∏kψ
†
1(k) ∣vac⟩ =∏xψ

†
1(x) ∣vac⟩ up to

an overall phase. Note that the nonzero Chern number does not survive in the IR state because

the integration operation does not commute with the limit u → −∞. However, at any finite u,

the Chern number is always one. Therefore, there is no phase transition during the entanglement

renormalization process, consistent with the results in Refs. [58, 91, 92].

To analyze the spatial structure of the disentangler, we rewrite the expression for H (k).
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Figure 2.2: A scheme to engineer the cMERA circuit in the interaction picture. The two excited
states are coupled by spin-orbit interaction to each other and by off-resonant lasers to the two
ground states.

We first define λ+ and λ− as the two roots of the equation x2 + (1 − 2m)x + m2 = 0, λ± =

−1+2m±
√
1−4m

2 . They are real and negative when 0 < m < 1/4. Although setting this restriction on

m is not necessary for our disentangler, we will assume it in the following in order to assist our

experimental realization. Now, the expression H (k) can be rewritten as

H (k) =(−1 +
√
1 − 4m

4
√
1 − 4m

) k

k2 − λ+
+ (1 +

√
1 − 4m

4
√
1 − 4m

) k

k2 − λ−
. (2.10)

By inserting this expression into Eq. (2.5) and performing a Fourier transform, it can be shown

that the disentangler in real space decays exponentially with characteristic length e−u/max{
√
−λ+,

√
−λ−}.

Therefore, our cMERA involves quasi-local interactions.

Experimental realization of the cMERA circuit.—We propose a way to realize our reversed

cMERA circuit to prepare a Chern insulator state in an optical lattice with neutral 171Yb, which

are fermionic atoms with two outer electrons. From now on, we will drop the word “reversed”
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for our cMERA circuit when the context is clear. Recall that the cMERA circuit starts with an

initial IR state. As discussed above, the IR state at u → −∞ does not have the correct Chern

number; therefore, we start from a near-IR state with large negative u. In addition, the cMERA

circuit is only valid on a lattice when the continuum approximation holds. Therefore, throughout

the circuit, the physical length scale e−u/max{
√
−λ+,

√
−λ−} should be significantly larger than

the lattice spacing. At the same time, this length scale should be significantly smaller than the

total size of the lattice so that boundary effects do not dominate the bulk physics. Going forward,

we begin with a near-IR state and use our cMERA circuit to obtain the UV state without ever

violating these requirements.

Here, we assume that we already have an initial near-IR state waiting to be inserted into

the cMERA circuit. Since, in finite-size systems, the Berry curvature is concentrated on a few

discrete momentum points near k = 0, the preparation of this near-IR state should be fast if we

can individually create states at each point in momentum space. In Appendix A, we provide one

possible method for generating this initial state.

We now present the cMERA circuit engineering scheme (see Appendix A for details). We

use ∣g1⟩ and ∣g2⟩ as shorthand notations for the two stable hyperfine ground states ∣F = 1/2, mF = −1/2⟩

and ∣F = 1/2, mF = 1/2⟩ in 1S0; these form the basis of our spinor ψ(k) ≡ ( ψ1(k) ψ2(k) )
T

.

We find that if we have two metastable excited states ∣e1⟩ and ∣e2⟩ (e.g. from the 3P manifold) with

quadratic dispersions coupled by spin-orbit interaction and couple them off-resonantly to the re-

spective ground states as shown in FIG. 2.2, then the disentangler in the interaction picture can be

engineered. Intuitively, the spin-orbit interaction allows us to generate a momentum-dependent

effective magnetic field for Eq. (2.5), whereas the off-resonant couplings to quadratic dispersive

bands induce quadratic terms in the denominators of Eq. (2.10). To accomplish this, we utilize

20



the scheme detailed in Refs. [93–96] to create two dressed excited states coupled by spin-orbit

interaction. However, as the two dressed states are linear combinations of bare excited states, the

dressed states do not have good quantum numbers to have clear selection rules to forbid the tran-

sitions ∣g1⟩ ←→ ∣e2⟩ and ∣g2⟩ ←→ ∣e1⟩. Nevertheless, by carefully choosing the driving fields to

couple ground states to the bare excited states, we can create interferences to generate synthetic

selection rules. By varying the laser parameters as the circuit progresses, we can engineer the

disentangler in the interaction picture.

When the UV state is generated by the cMERA circuit, one can then use the experimental

techniques introduced in Refs. [97–99] to measure the Chern number and the Berry curvature.

2.4 Discussion

Discussion.—In this work, we found a quasi-local cMERA whose fixed-point wavefunc-

tion is a Chern insulator. This is a novel and unexpected way to represent systems with chiral

topological order. We also demonstrate that our quasi-local quantum circuit can be realized ex-

perimentally in a cold atom system, despite the common intuition that a quantum circuit should

be strictly local to allow easier implementation.

In our realization, we only explored one possibility to engineer spin-orbit coupling, but it

may be possible to engineer the interaction in other ways, such as using magnetic fields on a

chip [100] or microwaves [101]. Other alkaline-earth atoms could also provide promising exper-

imental platforms. Although our experimental realization took place in the interaction picture,

one could in principle instead use the Schrödinger picture for cMERA, where the lattice constant

must continuously contract in an experiment [102,103]. By using our cMERA circuit, the Chern
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insulator bulk wavefunction can be prepared and detected. We leave it for future work to study

the edge physics, for which one also needs to apply some unitaries on the edge during the initial

state preparation process and to carefully design the corresponding disentanglers; otherwise, the

edge physics might not be preserved under the bulk unitary process [91, 92, 104].

It is also interesting that the Chern insulator ground state is a fixed point of our cMERA

with finite correlation length. This observation seems to contradict the usual intuition that the

fixed point correlation length must be zero or infinity, as the correlation length must decrease

under rescaling of each strictly local RG step in real space. However, since our cMERA involves

continuous time evolution and quasi-local interactions, it has potential to restore the original

correlation length after a finite time evolution. The no-go theorems in Refs. [76–79] are similarly

circumvented by a cMERA construction. Our work suggests that quasi-local RG transformations

are a more powerful framework than strictly local RG transformations. It also might shed light

on some of the key properties of MERA-like formalisms for a wide range of chiral topological

states. In the future, we hope to extend the methods of this work to fractional quantum Hall states.
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Chapter 3: Entanglement Renormalization Circuits for Chiral Topological Or-

der

Abstract: Entanglement renormalization circuits are quantum circuits that can be used to

prepare large-scale entangled states. For years, it has remained a mystery whether there exist

scale-invariant entanglement renormalization circuits for chiral topological order. In this work,

we solve this problem by demonstrating entanglement renormalization circuits for a wide class

of chiral topologically ordered states, including a state sharing the same topological properties as

Laughlin’s bosonic fractional quantum Hall state at filling fraction 1/4 and eight states with Ising-

like non-Abelian fusion rules. The key idea is to build entanglement renormalization circuits by

interleaving the conventional multi-scale entanglement renormalization ansatz (MERA) circuit

(made of spatially local gates) with quasi-local evolution. Given the miraculous power of this

circuit to prepare a wide range of chiral topologically ordered states, we refer to these circuits as

MERA with quasi-local evolution (MERAQLE).
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3.1 Introduction

Quantum many-body systems at zero temperature manifest many phenomena that have no

counterparts in the ordinary classical world. One distinctive feature that prevails only in the quan-

tum realm is the notion of entanglement, which intuitively states that local degrees of freedom

are organized in such a way that the whole system cannot be straightforwardly perceived as an

assembly of uncorrelated individual pieces. However, complete understanding of the structure

and nature of many-body entanglement remains an outstanding challenge for quantum physicists

even today. Several proposals have been put forward in an attempt to capture its essential fea-

tures, including tensor network states [105, 106], neural networks [107], and a wide variety of

entanglement measures [108]. One particularly useful definition of the entanglement structure of

a many-body state is given by investigating the quantum circuits necessary to prepare the state,

sometimes under certain restrictions, such as locality constraints or symmetries. One can start

with a product state or some other easily prepared state and then use the circuit to generate the

desired target state. This operational definition sheds light on the pragmatic aspect of entangle-

ment.

Entanglement renormalization is a class of state-preparation quantum circuits marked by

its repetitive operating procedures at varying length scales [56], generating entanglement suc-

cessively at different ranges. The earliest realization of this concept is the so-called multi-scale

entanglement renormalization ansatz (MERA) [56, 109, 110]. A prototypical one-dimensional

example of MERA composed of three steps (layers) of similar actions on a qubit system is de-

picted in Fig. 3.1. In each step, two sets of quantum gates are applied on the system. While

the isometry unitary operators (blue triangles) act on inputs in state ∣0⟩ and in the state from the
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Figure 3.1: A one-dimensional MERA circuit with time running downward. One starts at the
top (the IR region) with a small system with sparse entanglement on a lattice with a large lattice
constant (qubits represented by unfilled red circles without the ∣0⟩ symbols above) and with many
ancillary qubits (unfilled black circles) in state ∣0⟩. We successively apply layers of entanglement
renormalization consisting of isometries (blue triangles) and disentanglers (red squares) to pro-
gressively include and couple the ancillary qubits, creating a complex system with denser and
more complicated entanglement structure in the UV region at the bottom.

previous step, the disentangler unitary operators (red squares) act on the outputs of neighboring

isometries. If we proceed with this protocol for a sufficiently large number of steps, we can create

a complicated entangled state from an initial state that has almost all of the qubits unentangled,

progressively introducing entanglement at various length scales. The hierarchical structure of

the MERA circuit embodies the fact that entanglement can be present at different length scales.

It is a convention to say that the initial time is at the infrared (IR) scale while the final time is

at the ultraviolet (UV) scale. If we reverse the time arrow, going from UV to IR, the layers of

the conjugated MERA circuit will progressively disentangle degrees of freedom in the order from

smallest to largest scales. Ignoring the disentangled ancillary qubits, we are effectively arriving at

lattices with larger and larger unit cells. This phenomenon is reminiscent of the coarse-graining
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procedure in the renormalization group in classical statistical mechanics, and hence the word

renormalization is included in the name of the circuit. Since this circuit is an ansatz, there is

no fundamental restriction on the gates, except for spatial locality of the gates at each length

scale. One can consider generalizations of this circuit to higher spatial dimensions [54,68,70], to

fermions [111,112], to qudits [54,56,70,109,113–115], and to more types of unitaries [54]. One

can also consider gates acting on three or more qubits or even consider a fermionic system. If one

is able to find an entanglement renormalization circuit for the target state, one is able to generate

the final state from the initial state in time (i.e. circuit depth) logarithmic in the system size. Being

a state with little or no entanglement, the initial state can be prepared by other means, such as adi-

abatic preparation [27, 116–119], dissipative preparation [120, 121], or even a specially designed

quantum process tailored for the structure of the state [122, 123]. Examples of states that en-

tanglement renormalization circuits can prepare are the Greenberger-Horne-Zeilinger state (GHZ

state) and the cluster state [110], which are ground states of the transverse-field Ising model and

the cluster state Hamiltonian, respectively. MERA is also capable of preparing gapless states in

one dimension, such as the Ising model and the Potts model at the critical point [56, 124], which

violate the area law logarithmically.

In Fig. 3.1, despite the fact that we use the same red square symbol for all the disentan-

glers and the same blue triangle symbol for all the isometries, the unitaries can be different at

different length scales and do not have to be translation-invariant. Nevertheless, in practice, if

we study the ground state of a translation-invariant parent Hamiltonian, we can demand the uni-

taries to be translation-invariant. We can also require the MERA circuit to be scale-invariant,

which means that the disentanglers and the isometries do not change from layer to layer, and

see what kind of many-body quantum states keep the same local reduced density matrices af-
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ter each step of the same entangling procedure. Such a scale-invariant circuit is appealing as it

renders the preparation procedure of the corresponding quantum state simple conceptually and

possibly in practice. A quantum state that can be prepared with a scale-invariant MERA circuit is

termed a fixed-point wavefunction. A gapped quantum phase that has a zero-correlation-length

wavefunction can serve as a fixed-point wavefunction of a scale-invariant MERA. After prepar-

ing the fixed-point wavefunction, one can reach any state in the same phase by adding an extra

layer consisting of a finite-depth circuit with some locality constraints [125]. Models with known

scale-invariant entanglement renormalization circuits are the toric code model [126], the quan-

tum double model [68, 126], and, more generally, the Levin-Wen models [70, 125, 127], as well

as certain symmetry-protected topological phases with symmetry conditions imposed on the en-

tanglement renormalization circuits [72].

The concept of entanglement renormalization has a wide range of interesting connections to

other research areas. In particular, it is a unitary way to realize the concept of real space renormal-

ization group without discarding any information. After each coarse-graining step, the informa-

tion about the original wavefunction is encoded in the quantum gates, the present quantum state,

and the ancillas in the ∣0⟩ state. Therefore, it is drastically different from Kadanoff’s real space

renormalization group [128], where the averaging operation to coarse-grain a system erases part

of the information irretrievably. In addition, there have been some efforts to generalize the lattice

version of entanglement renormalization to devise a unitary approach to renormalizing quan-

tum field theories, resulting in the continuous MERA (cMERA) [57] and magic cMERA [129].

Those formulations attempt to resolve the problem existing in traditional renormalization group

approaches, where the integration out of high-momentum modes is an irreversible process.

From the perspective of experimental physics and quantum computing, a MERA circuit
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can serve as a practical quantum circuit to generate an initial quantum state in preparation for

further quantum simulation or computation. One can implement the long-range gates in the

IR with access to long-range interactions [130, 131]. Depending on the specific experimental

architecture, one may also realize these gates by first applying short-range gates to qubits and

then physically increasing the distance between them [28, 132] before applying the next layer of

short-range gates. Therefore, if long-range interactions are sufficiently strong or if qubits can be

physically moved sufficiently quickly, the MERA circuit can allow for the unitary preparation of

a wide range of long-range entangled states in logarithmic time.

Even though entanglement renormalization is a powerful and beautiful concept for making

sense of entanglement at different ranges, there is no guarantee that such structure exists for

all states. In particular, there are phases of matter where a simple application of this concept

does not work [54], such as fracton phases in three dimensions [133] or the Fermi sea in two

dimensions [134]. In those cases, one needs to use a generalized MERA formalism called the

branching MERA [135], where entanglement is organized differently.

In two dimensions, it is hypothesized that log-depth quantum circuits should be able to

prepare all topological phases [54, 125, 136]. We know that the framework of scale-invariant

MERA circuits is capable of preparing many quantum states belonging to the class of non-chiral

topological orders (the toric code model, the quantum double model [68], and the Levin-Wen

models [70] previously mentioned). However, it is still an open question whether we can em-

ploy scale-invariant MERA circuits to prepare chiral topological states, i.e., whether we can find

a MERA circuit that has the desired chiral state as a fixed point of a single-layer application.

(Here, we define chiral topologically ordered phases as quantum phases with nonzero thermal

Hall conductivity [40] .) One can prove no-go theorems under certain assumptions [76, 77, 79].
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For example, Li and Mong [79] have shown that a free-fermionic system with a nonzero Chern

number is incompatible with a scale-invariant MERA circuit with discrete strictly local quantum

gates. One intuitive argument to understand the no-go theorems and the hardness of the problem

is as follows. We first define the correlation length of a state to be the smallest ℓ > 0 such that the

connected two-point correlation function ⟨O(x)O(y)⟩c = ⟨O(x)O(y)⟩− ⟨O(x)⟩⟨O(y)⟩ of any

local observableO(x) of finite support and unit operator norm ∣∣O(x)∣∣ = 1 can be bounded by an

exponentially decaying function C exp(− ∣r∣ /ℓ) with C > 0 (C is possibly dependent on the size

of the support of O), i.e., ∣⟨O(x)O(y)⟩c∣ ≤ C exp (− ∣x − y∣ /ℓ). Suppose that we run a MERA

circuit going from UV to IR. If all quantum gates in each layer of the MERA circuit are strictly

local (i.e. have an interaction range of finite radius), then in order to be scale-invariant under the

coarse-graining operation, a fixed-point wavefunction must either have a zero correlation length

or an infinite correlation length. The reason is that, after each step of the renormalization opera-

tion, the correlation length on the coarse-grained lattice ℓ′ has to be the correlation length on the

original lattice ℓ scaled down by a factor b with b > 1, i.e., ℓ′ = ℓ/b 1. If a chiral wavefunction

stays the same throughout all the coarse-graining operations, there are only two possibilities for

its correlation length: ℓ = 0 and ℓ = ∞. A system with an infinite correlation length means that

1The detailed argument is as follows. Suppose that we start with a state ∣Ψ⟩ with its two-point connected corre-
lation functions bounded by C exp(− ∣r∣ /ℓ) for any local observable, where ℓ is chosen to have the smallest possible
value and where C is possibly dependent on the size of the support of the observable. After a single-layer of the
entanglement renormalization circuit U , we arrive at a coarse-grained state ∣Ψ′⟩ ≡ U ∣Ψ⟩ and denote the connected
two-point correlation function of the coarse-grained state with respect to the original lattice as ⟨O(x)O(y)⟩′c. Since
the circuit U is made up of strictly local gates, the operatorM(y) ≡ U†O(y)U is also a local observable with finite
support and unit operator norm, which leads to the bound ⟨O(x)O(y)⟩′c = ⟨M(x)M(y)⟩c ≤ C exp(− ∣x − y∣ /ℓ)
with respect to the original lattice. In addition, as the expression M(x) explores (as we vary O(x)) all possible
local observables with finite support and unit operator norm, ℓ is actually the optimal length to bound the correla-
tion functions of the coarse-grained state. Therefore, the correlation length of state ∣Ψ′⟩ with respect to the original
lattice is still ℓ. However, because a certain fraction of the degrees of freedom are disentangled by a single layer of
entanglement renormalization, we can define a new coarse-grained lattice with a lattice constant that is b > 1 times
larger than the original one. We refer to this step as re-scaling [45]. Hence, with respect to the new coarse-grained
lattice, the correlation length is ℓ′ = ℓ/b.
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some of its correlation functions cannot be bounded by any exponentially decaying function. For

short-range Hamiltonians, this is generally a signature of gaplessness. As topologically ordered

systems are defined as gapped phases, the case with an infinite correlation length is irrelevant to

us. Hence, the only remaining question is: would it be possible to have a chiral topological state

with a zero correlation length? Recall that, unlike the non-chiral states mentioned above, many

well-known chiral topological states we know, such as many integer and fractional quantum Hall

states, have nonzero correlation lengths. Additionally, it has been shown that a Chern insulator

of free fermions (i.e. non-interacting integer quantum Hall state on a lattice) cannot have a zero

correlation length [77, 137]. Moreover, for an interacting chiral topological system with U(1)

symmetry and finite-dimensional on-site Hilbert spaces, a typical property of many known chiral

topological phases, the Hamiltonian cannot be a sum of locally-commuting terms [138]. As the

condition of the correlation length being zero is usually a harbinger of the existence of a locally-

commuting parent Hamiltonian [127], we expect that finding a representative wavefunction with

zero correlation length for a chiral phase should be a hard, if not impossible, task. With all the

evidence mentioned above, it seems very unlikely that scale-invariant MERA circuits exist for

chiral topological phases.

Despite all the difficulties mentioned above, there are works pointing out how to over-

come the issue mentioned above, at least for non-interacting fermions. The key insight is to

relax the condition that quantum circuits for each layer of entanglement renormalization must be

made up of strictly local and discrete quantum gates assumed in the conventional MERA frame-

work. Instead, we allow the use of continuous time evolution under a time-dependent quasi-local

Hamiltonian. By quasi-locality, we mean that the interactions are no longer restricted to be finite-

range, but their strength should decay with distance faster than any power law. A comparison
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between a quantum circuit based on strictly local discrete quantum gates and one with quasi-

local evolution is shown in Fig. 3.2. With quasi-local evolution, we can circumvent the no-go

Strictly Local Gates Quasi-Local Evolution
t t

U(t) = ! exp (−i∫
t

0
dt′ H(t′ ))

(a)

Hr=0, R=2(t)
Hr=0, R=3(t)
Hr=0, R=4(t)
Hr=0, R=5(t)

Hr=0(t) = ∑
R

Hr=0, R(t)Hr=0, R=1(t)

(b)

Figure 3.2: (a) Left: A traditional local quantum circuit consisting of strictly local (i.e. with
support bounded by a finite radius) discrete quantum gates. Right: A quantum circuit U(t)
based on quasi-local continuous time evolution under a time-dependent Hamiltonian H(t) with
interaction tails decaying faster than any power law function. To be precise, H(t) is a sum of
interaction terms H(t) = ∑rHr(t), where each interaction term Hr(t) centered at position r
has a decomposition in terms of Hermitian operators Hr,R(t) supported on sites within disks of
different radii R ∈ N: Hr(t) = ∑RHr,R(t), and the Hermitian operators Hr,R(t) with large R can
be uniformly bounded by ∥Hr,R(t)∥ = O(1/Rα) for any power α > 0. (b) A schematic diagram of
the decomposition of the interaction term Hr=0(t) = ∑RHr=0,R(t) for two-dimensional square-
lattice systems.

theorems and the intuitive argument of correlation length reduction stated above. A chiral state

with a nonzero correlation length can now be a fixed-point wavefunction of a scale-invariant

entanglement renormalization circuit. For example, in Ref. [54], an entanglement renormaliza-
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tion procedure is demonstrated for a lattice Chern insulator model, which has a nonzero finite

correlation length in its ground state. The circuit is comprised of a series of subroutines, the

so-called quasi-adiabatic evolutions, which are generated by quasi-local Hermitian operators de-

rived from certain adiabatic evolutions of the Chern insulator model. In Ref. [139], a different

approach was presented. The authors used the formalism of cMERA to develop a scale-invariant

entanglement renormalization circuit for a continuous Chern insulator model. The continuous

MERA generalizes the discrete isometry unitaries and disentangler unitaries in the conventional

MERA on a lattice to continuous unitary evolution generated by Hermitian operators acting on a

continuum of spatial modes. The Hermitian operators of the cMERA in Ref. [139] involve inter-

actions with exponentially decaying tails. The evidence above suggests that quasi-locality may

be an essential feature of scale-invariant entanglement renormalization circuits for gapped chiral

topological states, which usually have nonzero finite correlation lengths. Despite the success in

non-interacting chiral systems, designing scale-invariant entanglement renormalization circuits

for interacting chiral topologically ordered systems based on this physics insight still remains a

largely unexplored research area.

In this work, we solve this problem by providing explicit circuits for several exactly solv-

able interacting chiral spin models, thus offering a glimpse of the entanglement structure of

interacting chiral topological phases. The key idea—first briefly introduced in Ref. [54] for

a hybrid qubit-fermion system describing Ising topological order—is to marry the MERA cir-

cuits for interacting non-chiral topological states with quasi-local evolution that renormalizes

non-interacting chiral topological states. We start by sketching the underlying logic behind our

proposal. Consider several layers of non-interacting px + ipy topological superconductors on a

lattice [46, 47]. Since the system has a Z2 fermion parity symmetry, we can couple the system to
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a Zf
2 lattice gauge field with Z2 gauge variables and add the Gauss’s law constraint to the coupled

system. The superscript f stands for “fermion” and helps us remember the role the gauge field

plays in the fermion parity symmetry. We will refer to this procedure as gauging. The topological

properties of the whole gauged system, including the original superconductors and the Zf
2 gauge

field, will fall into Kitaev’s sixteenfold way classification [6]. In the classification, the unitary

modular structure of the quasiparticles suggests that it is possible to have bosons or spins (hard-

core bosons) as the fundamental constituents of the theories rather than the original fermions and

gauge field. In fact, inspired by the proposal in Refs. [140, 141], we are able to reformulate the

gauged theory solely in terms of S = 1/2 spins on a lattice. To be more precise, this reformulation

provides a duality between a theory with fermions coupled to a Zf
2 gauge field on the one hand

and an interacting spin theory on a lattice on the other. Because the original fermionic theories

are chiral, the resulting spin theories are also chiral. Therefore, we will sometimes refer to the

ground states of the resulting spin models as chiral spin liquids. The chiral spin liquids con-

structed this way include eight Abelian states and eight non-Abelian states. In particular, they

include a state with the topological properties of Laughlin’s bosonic fractional quantum Hall state

at filling fraction 1/4, a state with the Ising topological quantum field theory (Ising TQFT) fusion

and braiding statistics, a state within the same universality class as the bosonic Moore-Read frac-

tional quantum Hall state at filling fraction one (whose fusion rules are Ising-like), and six other

states with Ising-like topological properties. Since the superconducting fermions in the original

model are non-interacting and since the structure coming from the Zf
2 gauge field is similar to the

well-studied toric code [126] (which can be interpreted as a Z2 lattice gauge theory and as a non-

chiral topologically ordered system), the spin models constructed this way are exactly solvable.

Thanks to this nice property, we are able to analytically work out the corresponding (general-

33



ized) scale-invariant entanglement renormalization circuits. Intuitively speaking, we construct

each layer of the entanglement renormalization circuit by incorporating the conventional MERA

circuit for the interacting non-chiral toric code with quasi-local continuous time evolution that

coarse-grains the non-interacting chiral px + ipy topological superconductors. In fact, under cer-

tain constraints on spins, Refs. [140, 141] provide an additional duality between fermions and

spins called bosonization. In this terminology, the quasi-local continuous time evolution of spins

is simply the bosonization of a fermionic quasi-local continuous time evolution that coarse-grains

layers of non-interacting px+ipy topological superconductors. Even though the spin models have

nonzero finite correlation lengths, due to the quasi-local structure of continuous time evolution,

the resulting quantum circuits can evade the no-go arguments stated above. As shown schemati-

cally in Fig. 3.3, our entanglement renormalization quantum circuits have strictly local quantum

gates interleaved with quasi-local evolution. This figure sums up the core spirit of the entire

manuscript. Note that, in this manuscript, we will consider unitary evolution that disentangles

the state, with time going from UV to IR. One can get the entangling state-preparation unitary

by performing Hermitian conjugation. Inspired by the miraculous power of combining the con-

ventional MERA circuit with quasi-local evolution, we refer to this specific type of (generalized)

entanglement renormalization circuit as MERA with quasi-local evolution (MERAQLE).

Since the notions mentioned above might not be familiar to all the readers, we will pedagog-

ically review them in following sections. We will gradually introduce all the necessary concepts

before presenting our results. The remainder of this work is organized as follows. In Sec. 3.2,

we review the toric code model [126] and its MERA circuit. In Sec. 3.3, we review the px + ipy

topological superconductor model on a lattice [46], which is non-interacting and chiral, and its

entanglement renormalization circuit, which uses the idea of quasi-local evolution. In Sec. 3.4,
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Figure 3.3: A schematic diagram of the scale-invariant MERAQLE framework presented in this
work. At the bottom is a two-dimensional many-body entangled state of spins (represented by
black marbles) to be disentangled by the MERAQLE circuit. The full MERAQLE circuit is a
tower consisting of layers labeled by the number s ∈ N. The number s labeling the layers is,
roughly speaking, the logarithm of the length scale at which the entanglement of the system is
being undone. Each layer s of the circuit consists of two subcircuits Csx and Csy , which represent
a single step of horizontal (i.e. x direction) entanglement renormalization and a single step of
vertical (i.e. y direction) entanglement renormalization, respectively. The subcircuit Csx can be
further decomposed into three circuit components: Csql,x (a circuit based on quasi-local evolution
in the right subfigure of Fig. 3.2(a)), Cs

Zf
2 ,x

(a layer of a conventional MERA circuit with strictly

local gates designed to renormalize the toric code model, which is a pure Zf
2 lattice gauge theory),

and Csaux,x (an auxiliary circuit with strictly local gates designed to locally rearrange the fermionic
modes). The precise definitions and meaning of the circuit components Csql,x, Cs

Zf
2 ,x

, and Csaux,x are
discussed in detail in Sec. 3.5. The subcircuits Csx with different s are essentially the same except
acting on different length scales. A similar decomposition also holds for the subcircuit Csy .

we first pedagogically review how to bosonize a fermionic theory. We describe in detail how

to gauge the fermion parity symmetry of a fermionic theory and rephrase the fermionic modes

and the gauge field purely in terms of spin degrees of freedom. Then, we use the bosonization

technique to construct chiral spin liquid models belonging to Kitaev’s sixteenfold way classifica-

tion. Finally, in Sec. 3.5, we present our main results. We use the entanglement renormalization

circuits from Secs. 3.2 and 3.3 to construct the MERAQLE circuits for all Kitaev’s sixteenfold
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way chiral spin liquids. In Sec. 3.6, we present conclusions and outlook. In Appendix B.1, we re-

view the mathematical framework of quasi-adiabatic evolution, which forms the backbone of our

quasi-local evolution for px + ipy superconductors. In Appendix B.2, we present some technical

calculations related to the MERAQLE circuits and omitted from the main text.

3.2 Toric Code

Before we begin to discuss the framework of MERAQLE circuits, we first discuss an exact

scale-invariant entanglement renormalization circuit for the simplest model with intrinsic topo-

logical order, i.e., the toric code [39, 126], to make the reader more familiar with the notions of

entanglement renormalization and fixed-point wavefunctions in two dimensions. We will first

review the toric code Hamiltonian in Sec. 3.2.1 and then, in Sec. 3.2.2, present its entanglement

renormalization circuit, which will be a simpler variant of the one initially proposed in Ref. [68].

The toric code entanglement renormalization circuit belongs to the family of conventional MERA

circuits with strictly local quantum gates. Despite its simplicity, the MERA circuit presented here

will serve as an inspiration for the MERAQLE circuit constructed in Sec. 3.5.

3.2.1 Model

For the toric code model, we consider qubits living on the edges of a square lattice. The

Hamiltonian is

HTC = −∑
f

∏
e∈f

Ze −∑
v
∏
e∈v

Xe (3.1)

36



with Xe =
⎛
⎜⎜⎜
⎝

0 1

1 0

⎞
⎟⎟⎟
⎠

and Ze =
⎛
⎜⎜⎜
⎝

1 0

0 −1

⎞
⎟⎟⎟
⎠

being Pauli matrices of the qubit on edge e, where

the symbol f labels all faces and the symbol v labels all vertices on the square lattice. In this

matrix representation,

⎛
⎜⎜⎜
⎝

1

0

⎞
⎟⎟⎟
⎠
= ∣0⟩ and

⎛
⎜⎜⎜
⎝

0

1

⎞
⎟⎟⎟
⎠
= ∣1⟩. The notation e ∈ f means that the edge e is

one of the four edges of the face f , while the notation e ∈ v means that the edge e is incident on

the vertex v. We will refer to ∏e∈f Ze as a plaquette operator and ∏e∈vXe as a vertex operator.

The operators are shown in Fig. 3.4. This model is non-chiral and exactly solvable. It can be

Z
Z

Z
Z

X
X

X
X

Figure 3.4: The two sets of interaction terms for the toric code. The first set consists of plaquette
operators. A representative plaquette operator is illustrated as an operator made of four Pauli-
Z operators. The other set consists of vertex operators. A representative vertex operator is
illustrated as an operator made of four Pauli-X operators. All translated versions of the illustrated
plaquette and vertex operators are included in the Hamiltonian. For later convenience, we put Z
operator labels to the right of the qubits and X operator labels to the left. We drop the subscript
from Ze and Xe since it is clear from the figure which qubits they act on.

considered to be a pure Z2 lattice gauge theory [39, 126]. All the plaquette operators and all the

vertex operators commute with one another, so the ground state can be chosen as simultaneous

eigenstate of those operators with eigenvalue one. One can show that the correlation length of
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the toric code ground state is zero.

This model has four types of elementary excitations. Violating the first term while not

violating the second term in Eq. (3.1) implies the existence of an m particle that has bosonic

self-braiding statistics. Violating the second term while not violating the first term in Eq. (3.1)

implies the existence of an e particle that also has bosonic self-braiding statistics . The braiding

of an m particle and an e particle results in a nontrivial (−1) phase. The combination of e and m

gives rise to a fermion f .

For later convenience, we now introduce some quantum information terminology [15,142].

The Pauli group Pn on n qubits is a non-Abelian group with group elements having the form of

tensor products of Pauli matrices ikP1⊗P2⊗⋯⊗Pn with k ∈ {0,1,2,3} and Pj ∈ {Ij,Xj, Yj, Zj}

being a Pauli matrix on the j-th qubit. The multiplication operation is defined using the matrix

multiplication operation for each individual qubit. A stabilizer group, or stabilizer, S on n qubits

is an Abelian subgroup of Pn that does not contain the tensor product of identity matrices with

a minus sign, −I1 ⊗ I2 ⊗ ⋯ ⊗ In, as its element. Sometimes, it is convenient to work with a set

of generators that generate a stabilizer group so that any group element in the stabilizer group

can be written as a product of the generators. Note that the choice of the set of generators is

not unique. In addition, we say that a quantum state is stabilized by an operator if the state is

a +1 eigenvector. We say that a state is stabilized by the stabilizer group S if the state is a +1

eigenvector of all the stabilizer generators. Therefore, in this terminology, the ground state of the

toric code is stabilized by all plaquette operators and all vertex operators. The group generated by

all the plaquette operators and all the vertex operators forms a stabilizer group, which stabilizes

the ground state of the toric code model.
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3.2.2 Entanglement Renormalization Circuit

The full entanglement renormalization circuit for the toric code ground state has a hier-

archical structure of multiple layers of smaller subcircuits, like the one-dimensional MERA in

Fig. 3.1. Each layer represents the length scale at which the entanglement of the ground state is

renormalized. Instead of having the circuit structure with isometries and disentanglers for each

layer, like the toric code MERA initially proposed in Ref. [68], we here have two kinds of sub-

circuits for each layer of entanglement renormalization. One is called a single step of horizontal

entanglement renormalization, and the other is called a single step of vertical entanglement renor-

malization. The structure of the entanglement renormalization circuit is similar to the one shown

in Fig. 3.3.

Those subcircuits for single steps of entanglement renormalization of the toric code consist

of a series of controlled-NOT (CNOT) gates. A CNOT gate is a two-qubit gate defined by the

following action: ∣00⟩ → ∣00⟩, ∣01⟩ → ∣01⟩, ∣10⟩ → ∣11⟩, and ∣11⟩ → ∣10⟩. The first qubit is called

the control qubit, and the second qubit is called the target qubit. The horizontal entanglement

renormalization subcircuit CZ2,x and the vertical entanglement renormalization subcircuit CZ2,y

are shown in Fig. 3.5(a) and Fig. 3.7(a), respectively. To represent a CNOT gate in the figures

throughout the chapter, we will use an arrow pointing from the control qubit to the target qubit.

Note that all CNOT gates shown in Fig. 3.5(a) commute; similarly, in Fig. 3.7(a).

To understand how the ground state ofHTC transforms, it suffices to understand how the in-

dividual terms ofHTC change when conjugated by the subcircuits. In particular, if ∣Ψ⟩ is a ground

state ofHTC and hence an eigenvalue-one eigenvector of the∏e∈f Ze and∏e∈vXe operators, then

CZ2,x ∣Ψ⟩must be an eigenvalue-one eigenvector of the CZ2,x ∏e∈f Ze C†
Z2,x

and CZ2,x ∏e∈vXe C†
Z2,x
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Figure 3.5: (a) The circuit CZ2,x for a single step of horizontal entanglement renormalization for
the toric code. The filled circles represent qubits (spins) constituting the toric code model. (b,c)
The state of the system after the circuit has been applied. Unfilled circles are the qubits (spins)
that have been disentangled by the circuit into ∣0⟩ and ∣+⟩ ≡ 1√

2
( 1 1 )T states, as indicated by

the labels in (b). (c) shows the new stabilizer generators. The red single-site Z and X genera-
tors stabilize the disentangled qubits, while the black 4-qubit generators stabilize the toric code
defined on the new horizontally elongated square lattice. The derivation of the new stabilizer
generators is presented in Fig. 3.6.

operators. Since CZ2,x and the constituent CNOT gates are in the Clifford group [15, 142], the

normalizer of the Pauli group, the operators CZ2,x ∏e∈f Ze C†
Z2,x

and CZ2,x ∏e∈vXe C†
Z2,x

must be

in the Pauli group and therefore generate a new stabilizer group. Instead of directly studying how

the ground state is transformed by CZ2,x, we can investigate how the stabilizer group gets trans-

40



X X
X

X
X

X

ZZ
Z

Z
ZZ

Z
Z

Z
ZZ

Z
Z

Z

X
X

X
X

X
X

X
X

(a) (b)

(c) (d)

Figure 3.6: Transformation of the stabilizer generators of the toric code model under conjugation
by the horizontal entanglement renormalization subcircuit CZ2,x in Fig. 3.5(a). (a)(b) Transforma-
tion of the plaquette operators. (c)(d) Transformation of the vertex operators. The new stabilizer
group generated by the operators on the right-hand sides of the subfigures is the same as the sta-
bilizer group generated by the operators in Fig. 3.5(c). The red Pauli operators in the subfigures
are the red single-qubit stabilizer generators in Fig. 3.5(c) acting on the disentangled qubits.

formed under conjugation by CZ2,x. In quantum information, this approach is called the stabilizer

formalism. A similar statement holds for the vertical entanglement renormalization subcircuit

CZ2,y.

To see the transformation of the stabilizer group, we first notice that, under conjugation,

the CNOT gate transforms two-qubit operators as follows:

1⊗Z ↔ Z ⊗Z Z ⊗ I ↔ Z ⊗ I

1⊗X ↔ I ⊗X X ⊗ I ↔X ⊗X
, (3.2)

where the first qubit is the control qubit and the second qubit is the target qubit. With this in-

sight, one can easily check that, as shown in Fig. 3.5(b,c) and Fig. 3.7(b,c), the stabilizer group is

transformed under CZ2,x and CZ2,y into the stabilizer group of the toric code model defined on an

(elongated) square lattice with larger unit cells, together with red single-qubit generators stabi-

lizing disentangled qubits not associated with the new square lattice. Therefore, the ground state
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Figure 3.7: (a) The circuit CZ2,y for a single step of vertical entanglement renormalization for
the toric code. The filled circles represent qubits (spins) constituting the toric code model. (b,c)
The state of the system after the circuit has been applied. Unfilled circles are the qubits (spins)
that have been disentangled by the circuit into ∣0⟩ and ∣+⟩ states, as indicated by the labels in
(b). (c) shows the new stabilizer generators. The red single-site Z and X generators stabilize the
disentangled qubits, while the black 4-qubit generators stabilize the toric code defined on the new
vertically elongated square lattice. The derivation of the new stabilizer generators is presented in
Fig. 3.8.

is transformed into the ground state of the toric code on the new lattice with some disentangled

qubits. The disentangled ancillary qubits (which can be in either ∣0⟩ or ∣+⟩ ≡ 1√
2
( 1 1 )T ) are

like the ancillary qubits in quantum state ∣0⟩ in the one-dimensional example in Fig. 3.1. Notice

that we will still refer to the qubits in state ∣+⟩ as ancillary qubits since they only differ from ∣0⟩
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Figure 3.8: Transformation of the stabilizer generators of the toric code model under conjugation
by the vertical entanglement renormalization subcircuit CZ2,y in Fig. 3.7(a). (a)(b) Transformation
of the plaquette operators. (c)(d) Transformation of the vertex operators. The new stabilizer group
generated by the operators on the right-hand sides of the subfigures is the same as the stabilizer
group generated by the operators in Fig. 3.7(c). The red Pauli operators in the subfigures are the
red single-qubit stabilizer generators in Fig. 3.7(c) acting on the disentangled qubits.

by single-qubit Hadamard gates 1√
2

⎛
⎜⎜⎜
⎝

1 1

1 −1

⎞
⎟⎟⎟
⎠

.

Following the application of CZ2,y CZ2,x, we thus obtain a toric code ground state that is self-

similar to the original toric-code ground state up to a scale transformations and up to the presence

of disentangled qubits. This means that the toric code ground state is indeed a fixed-point wave-

function under a single layer of entanglement renormalization CZ2,y CZ2,x. If we iterate CZ2,y CZ2,x

to further disentangle qubits at different length scales, we will obtain a scale-invariant entangle-

ment renormalization circuit, which has a tower structure similar to the one shown in Fig. 3.3.

To further compare the circuit here with Fig. 3.3, we introduce a number superscript s ∈ N to

label the length scale (layer) the subcircuits are acting at, i.e., CZ2,x → CsZ2,x
, CZ2,y → CsZ2,y

. We

can therefore say that the circuit components Cs
Zf
2 ,x

and Cs
Zf
2 ,y

in Fig. 3.3 for our purposes here are

CsZ2,x
and CsZ2,y

, respectively, while the other circuit components are trivial, i.e., Csaux, x = Csaux, y = I
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and Csql, x = Csql, y = I . We categorize the whole scale-invariant entanglement renormalization cir-

cuit for the toric code as a conventional MERA circuit. It is a two-dimensional generalization

of the one-dimensional MERA in Fig. 3.1, even though we do not specify which CNOT gates

constitute the isometries and which CNOT gates constitute the disentanglers. The only reason

why we call the circuit a MERA circuit is that it involves strictly local gates within each layer of

the circuit. Since the toric code ground state has a zero correlation length, the fact that it serves

as a fixed-point wavefunction of a conventional MERA circuit is consistent with the correlation

length reduction argument presented in Sec. 3.1.

3.3 Lattice px + ipy Topological Superconductor

Having introduced the entanglement renormalization circuit for the toric code model based

on the conventional MERA framework in the previous section, in this section, we are going to

discuss a different type of entanglement renormalization circuit in two dimensions. We will con-

struct the scale-invariant entanglement renormalization circuit for a lattice px + ipy topological

superconductor model, which is the most elementary non-interacting chiral topologically ordered

system. We will review the model in Sec. 3.3.1 and discuss the entanglement renormalization cir-

cuit for it in Sec. 3.3.2. Following the construction of the entanglement renormalization circuit

for a Chern insulator model in Ref. [54], the circuit will be based on the concept of adiabatic

evolution. In Sec. 3.5, we will use the circuit constructed here together with the idea of con-

ventional MERA circuits from the previous section to construct a wider class of entanglement

renormalization circuits.
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3.3.1 Model

We consider a two-dimensional px+ipy topological superconductor of spinless fermions on

an infinite square lattice. The fermions live on the vertices. We use the vector r = (rx, ry) ∈ Z2 to

label lattice sites, where we have set the lattice spacing to one. We use x̂ = (1,0) and ŷ = (0,1)

to represent horizontal and vertical unit vectors. In real space, the Hamiltonian is [46]

Hpx+ipy = − t∑
r

(c†
r+x̂cr + c

†
r+ŷcr + h.c.) − µ∑

r

c†
rcr +∑

r

(∆ c†
r+x̂c

†
r + i∆ c†

r+ŷc
†
r + h.c.) , (3.3)

where t and ∆ are real positive numbers. We will refer to the parameter µ as chemical potential

even though there is no charge conservation here. This parameter satisfies −4t < µ < 0 2. The

Hamiltonian Hpx+ipy is illustrated in Fig. 3.9.

To analyze the spectrum, we perform a Fourier transformation to momentum space k =

(kx, ky) ∈ [−π,π) × [−π,π) to obtain [46]

Hpx+ipy =
1

2
∑
k

( c†
k c−k )Mk

⎛
⎜⎜⎜
⎝

ck

c†
−k

⎞
⎟⎟⎟
⎠
, (3.4)

where

Mk=
⎛
⎜⎜⎜
⎝

−2t(coskx+cosky)−µ −i2∆ (sinkx+i sinky)

i2∆ (sinkx−i sinky) 2t coskx+2t cosky+µ

⎞
⎟⎟⎟
⎠
. (3.5)

2We will treat this quadratic Hamiltonian as an exact expression for the superconducting model and not as a mean-
field Hamiltonian. Therefore, we will not deal with the gap equation in the following, and U(1) charge-conservation
symmetry will be explicitly broken.
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Figure 3.9: An illustration of the Hamiltonian of the lattice px+ipy topological superconductor in
Eq. (3.3). We have nearest-neighbor hoppings with amplitude −t and nearest-neighbor pairings
with amplitudes ∆ (for horizontal bonds) and i∆ (for vertical bonds). We also introduce a uni-
form chemical potential µ for each site. For hopping and pairing terms, an arrowhead pointing to
a site represents a fermionic creation operator on that site, while a tail of an arrow for a hopping
term represents a fermionic annihilation operator on that site. The Hermitian conjugates of the
non-Hermitian hopping and pairing terms are not shown in the figure to avoid clutter, but are
included in the Hamiltonian.

Here and in future derivations we will be omitting the constant term. In the continuum limit,

where k is close to (kx, ky) = (0,0), we have sinkx+i sinky → kx+iky. This confirms the fact that

the lattice model is indeed a lattice regularization of the continuum px + ipy superconductor. This

model can be solved by the standard Bogoliubov transformation and is gapped and topologically

nontrivial with a nonzero spectral Chern number [46]. If, instead of an infinite lattice, we had a

lattice with a boundary, this model would have had a chiral propagating Majorana edge mode on

the boundary [46]. The chiral central charge is c = 1/2. Hence, this model has chiral topological

order. However, unlike the toric code model in Sec. 3.2, this model does not have intrinsic

topological order in the sense that this model does not have anyonic quasiparticles. One can

show that the ground state has a nonzero finite correlation length. For further details regarding

the px + ipy superconductor, we refer the reader to Refs. [46, 48, 143, 144].
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3.3.2 Entanglement Renormalization Circuit

We now construct the entanglement renormalization circuit for the lattice px + ipy topo-

logical superconductor. Similar to Sec. 3.2.2, a single layer of the entanglement renormalization

procedure will consist of two different kinds of subcircuits. One is for a single step of horizontal

entanglement renormalization; the other is for a single step of vertical entanglement renormal-

ization.

We first demonstrate how to perform a single step of horizontal entanglement renormaliza-

tion of the ground state of the lattice px + ipy topological superconductor. This construction is

a variant of the entanglement renormalization circuit for a Chern insulator model in Ref. [54].

We introduce an AB sublattice structure to the superconductor model, as shown in Fig. 3.10(a).

Each unit cell has a pink A site on the left and a blue B site on the right. Our goal is to de-

sign a renormalization procedure that produces a superconducting state only on the pink A sites,

while disentangling the blue B sites from the pink A sites and from each other. Up to a scale

transformation, the new superconductor state should be the same as the original superconductor

state. The blue B sites will be disentangled by ensuring they are empty. To achieve this goal for

this non-interacting fermionic model, instead of using discrete strictly local gates like the ones

in the Sec. 3.2, we will find an adiabatic path between the initial Hamiltonian (with every site

participating in the superconducting state) and the final Hamiltonian, in which only pink A sites

participate in the superconducting state while blue B sites are kept empty with on-site potential

terms [54]. We require that the Hamiltonian gap along the entire adiabatic path between the initial

and final Hamiltonians remains open in the thermodynamic limit.

In this framework, we can rewrite the initial Hamiltonian Hpx+ipy in Eq. (3.3) using the
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notation induced by the AB sublattice structure:

Hpx+ipy , x, initial = − t∑
r

(c†
BrcAr + c

†
Ar+x̂cBr + c†

Ar+ŷcAr + c
†
Br+ŷcBr + h.c.) − µ∑

r

(c†
ArcAr + c

†
BrcBr)

+∑
r

(∆ c†
Ar+x̂c

†
Br +∆ c†

Brc
†
Ar + i∆ c†

Ar+ŷc
†
Ar + i∆ c†

Br+ŷc
†
Br + h.c.). (3.6)

The x subscript reminds us that we are performing horizontal entanglement renormalization here.

In momentum space, the Hamiltonian becomes

Hpx+ipy , x, initial =
1

2
×

∑
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c†
Ak

c†
Bk

cA−k

cB−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2t cosky − µ −t − te−ikx 2∆sinky −∆ +∆e−ikx

−t − teikx −2t cosky − µ ∆ −∆eikx 2∆sinky

2∆sinky ∆ −∆e−ikx 2t cosky + µ t + te−ikx

−∆ +∆eikx 2∆sinky t + teikx 2t cosky + µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cAk

cBk

c†
A−k

c†
B−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.7)

We choose our final Hamiltonian to be

Hpx+ipy , x,final = − t∑
r

(c†
Ar+x̂cAr + c

†
Ar+ŷcAr + h.c.) −∑

r

(µc†
ArcAr + µ′ c

†
BrcBr) (3.8)

+∑
r

(∆ c†
Ar+x̂c

†
Ar + i∆ c†

Ar+ŷc
†
Ar + h.c.) . (3.9)

Therefore, the Hamiltonian for the pink A sites has the same form as Hpx+ipy in Eq. (3.3). The

ground state for the pink A sites will thus still be the original px + ipy topological superconductor
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up to a horizontal lattice rescaling. On the other hand, the blue B sites in the final Hamilto-

nian are not coupled to pink A sites or each other. We choose the chemical potential µ′ for the

blue B sites to be negative so that they are empty (and therefore disentangled) in the ground

state of Hpx+ipy , x,final. These properties make Hpx+ipy , x,final a proper parent Hamiltonian for a

horizontally entanglement renormalized px + ipy topological superconducting state.

In momentum space, the final Hamiltonian becomes

Hpx+ipy , x,final =
1

2
×

∑
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c†
Ak

c†
Bk

cA−k

cB−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2t coskx − 2t cosky − µ 0 −i2∆ (sinkx + i sinky) 0

0 −µ′ 0 0

i2∆ (sinkx − i sinky) 0 2t coskx + 2t cosky + µ 0

0 0 0 µ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cAk

cBk

c†
A−k

c†
B−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.10)

For a general system, a gapped path between two Hamiltonians can be hard to find. In this

case, however, with a proper choice of parameters (t = 1.0, µ = −2.0, µ′ = −8.0, ∆ = 1.0), a

gapped path from Hpx+ipy , x, initial to Hpx+ipy , x,final can be found using the following simple linear

interpolation:

Hpx+ipy , x(λ) = (1 − λ)Hpx+ipy , x, initial + λHpx+ipy , x,final, (3.11)

with λ ∈ [0,1]. We can use the standard Bogoliubov transformation to analyze the spectrum of

this Hamiltonian. As we show in Fig. 3.11, the system is gapped throughout the whole process.

While the simple linear interpolation as in Eq. (3.11) may not yield a gapped path for some other

choices of the parameters (t, µ, µ′, ∆), we can always find a gapped path by first adiabatically
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Figure 3.10: We introduce an AB sublattice structure for the entanglement renormalization of
the px + ipy topological superconductor (a) in the horizontal direction (i.e. x) and (b) in the the
vertical direction (i.e. y).

tuning the parameters to the case studied above, then using linear interpolation in Eq. (3.11), and

then adiabatically tuning the parameters back to the original desired set of parameters.

The renormalization along the y-direction is similar, and the corresponding AB sublattice

structure is depicted in Fig. 3.10(b). Once again, the pink A sites are for the remaining active

fermions representing the renormalized lattice px + ipy topological superconductor, while the
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Figure 3.11: (a) The Bogoliubov quasiparticle bands of the interpolating Hamiltonian
Hpx+ipy , x(λ) in Eq. (3.11) with t = 1.0, µ = −2.0, µ′ = −8.0, and ∆ = 1.0. Along the entire
path, the many-body ground state has the lower two (i.e. negative-energy) quasiparticle bands
filled and the upper two (i.e. positive-energy) bands empty. Along the entire path, it takes a finite
amount of energy to create a quasiparticle in the upper bands or remove a quasiparticle from the
lower bands. This demonstrates that the many-body system is gapped throughout the adiabatic
evolution for horizontal entanglement renormalization. There is no hopping or pairing for blue
B sites at the end of the adiabatic process, so we get two flat bands at λ = 1. (b) We restrict the
Hamiltonian to the same fermion parity superselection sector as the ground state and, within this
restricted Hilbert space, plot the spectral gap above the many-body ground state.

blue B sites are to be emptied and thus disentangled at the end of the renormalization step. We

will again use a simple linear interpolation like in Eq. (3.11) between the initial Hamiltonian

and the final renormalized Hamiltonian. In fact, if we start with the horizontal renormalization

Hamiltonian Hpx+ipy , x(λ) and map ky → kx, kx → −ky, and cA,B, r → eiπ/4cA,B, r, we will obtain

the desired vertical renormalization Hamiltonian Hpx+ipy , y(λ).

Now that we have a gapped path, we could consider traditional adiabatic evolution along

this path, but perfect state preparation fidelity would require perfect adiabaticity and therefore an

infinite amount of time. Instead of doing this, we will use quasi-adiabatic evolution [145–148].

For any given adiabatic path of gapped Hamiltonians H(λ) with time λ ∈ [0,1], the quasi-
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adiabatic evolution is a unit-time evolution

Uqa = T exp(i∫
1

0
dλD(λ)) (3.12)

generated by a time-dependent Hamiltonian 3 (see Appendix B.1 for details)

D(λ) = −i∫
∞

−∞
dtF (Egapt) eiH(λ)t∂λH(λ)e−iH(λ)t, (3.13)

where T denotes λ-time-ordering and where F (x) is an odd function decaying subexponentially,

i.e., there exist x-independent constants Cα such that ∣F (x)∣ ≤ Cα exp (− ∣x∣α) for any α ∈ (0,1).

The evolution Uqa uses unit time to take the ground state of the initial Hamiltonian H(λ = 0)

to that of the final Hamiltonian H(λ = 1). The parameter Egap of the quasi-adiabatic evolution

is chosen to be the minimum energy gap between the ground state and the first excited state

of H(λ) along the entire path λ ∈ [0,1]. Later, we will refer to the Hamiltonian D(λ) as the

quasi-adiabatic continuation operator. Since the quasi-adiabatic continuation operator D(λ) is

derived from the Hamiltonian H(λ), D(λ) possesses many properties similar to those of H(λ).

In particular, if H(λ) is translationally invariant and has an on-site symmetry, the operator D(λ)

will also be invariant under translations and the on-site symmetry. Using Lieb-Robinson bounds

[149] and the fact that F (x) decays subexponentially, one can also show that, if H(λ) is a

strictly local Hamiltonian (as is the case in this section), then the quasi-adiabatic continuation

operator D(λ) is a sum of interaction terms D(λ) = ∑rDr(λ), where each interaction term

3Following the convention in Refs. [145–147], the quasi-adiabatic evolution in Eq. (3.12) has the opposite sign
in the exponent as compared to the traditional time evolution operator. For convenience, we will still call D(λ) a
Hamiltonian, while keeping in mind that, in order to realize Uqa experimentally, we need to engineer the Hamiltonian
−D(λ).
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Dr(λ) can be further decomposed intoDr(λ) = ∑RDr,R(λ)with the Hermitian operatorDr,R(λ)

supported on sites within a distance R from site r and satisfying ∥Dr,R(λ)∥ ≤ O([Egap]−αR−α+1)

for any integer α > 1 [145, 147]. Therefore, the strength of the operator Dr,R(λ) decays with

R superpolynomially, i.e. faster than any inverse power law. We call such a Hamiltonian quasi-

local (see Fig. 3.2), in contrast to the strict locality of H(λ). We also see that a smaller minimum

energy gap Egap results in a slower decay of the bound on ∥Dr,R(λ)∥ as a function of R. We

present further details regarding quasi-adiabatic evolution in Appendix B.1.

Therefore, for a single layer of entanglement renormalization, we first apply the horizon-

tal entanglement renormalization subcircuit Cspx+ipy , x constructed by inserting the interpolating

Hamiltonian Eq. (3.11) into Eqs. (3.12,3.13). The resulting quasi-adiabatic subcircuit Cspx+ipy , x

renormalizes every other site horizontally. Then, using a similar construction, we apply the ver-

tical entanglement renormalization subcircuit Cspx+ipy , y to renormalize every other site vertically.

We can successively apply the same horizontal and vertical entanglement renormalization subcir-

cuits to get a quantum circuit that renormalizes the degrees of freedom at larger and larger length

scales. The superscript s ∈ N labels the length scale of the entanglement renormalization layer.

The full scale-invariant entanglement renormalization circuit can be succinctly written as

Cpx+ipy =∏
s∈N
(Cspx+ipy , y C

s
px+ipy , x), (3.14)

and the lattice px + ipy superconductor ground state is a fixed-point wavefunction under this

circuit. Note that the product in Eq. (3.14) is taken such that quasi-adiabatic circuits with greater

s appear on the left, i.e. act later. Therefore, we get an entanglement renormalization structure of

Fig. 3.3 but without the auxiliary and discrete Zf
2 lattice gauge theory circuit components. That
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is, we only have the quasi-local-evolution circuit components Csql, x and Csql, y in the subcircuits Csx

and Csy , respectively.

It is worth noting that even though the px + ipy topological superconductor model has

a nonzero finite correlation length, it is still the fixed-point wavefunction of the entanglement

renormalization circuits we constructed above. This is allowed because the quasi-adiabatic cir-

cuits are quasi-local (see Appendix B.1) and the formula ℓ′ = ℓ/b, b > 1 for conventional MERA

circuits with strictly local gates, like the ones presented in Sec. 3.2.2, does not work here. In-

tuitively speaking, we can interpret the result as follows: even though the re-scaling procedure

on the lattice shrinks the correlation length between sites by a factor b, the quasi-locality of the

quasi-adiabatic circuit adds some correlation to the system to remedy that loss of correlation.

3.4 Gauging Fermion Parity Symmetry and Bosonization

In the previous section, we considered a simple non-interacting chiral topologically or-

dered model and its entanglement renormalization circuit. However, our goal in this chapter is to

construct circuits for interacting chiral topologically ordered models. In this section, we there-

fore introduce a formalism involving gauging the fermion parity symmetry to construct several

exactly solvable interacting chiral topologically ordered models. The procedure can be conve-

niently simplified by a procedure called bosonization. In Sec. 3.4.1, we review the formalism of

gauging the fermion parity symmetry and bosonization. Then, in Secs. 3.4.2, 3.4.3, and 3.4.4,

we use the formalism to construct interacting spin models, some of which have chiral topological

order. The models will be presented in the order of increasing construction complexity. The exact

solvability of these models will be used in Sec. 3.5 to analytically construct their entanglement
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renormalization circuits.

3.4.1 Formalism

In this subsection, we review how to obtain an interacting bosonic system from a two-

dimensional fermionic lattice system by gauging the fermion parity symmetry. Even though a

quadratic fermionic system with pairing does not conserve total fermion number Ntotal, it still

conserves global Z2 fermion parity (−1)Ntotal . We can gauge this Z2 symmetry by coupling the

fermionic system to a Z2 gauge field (subject to a Gauss’s law constraint), making the symmetry

transformation local [150]. Specifically, we will introduce new dynamical variables representing

the gauge field and living on the edges connecting the original fermionic lattice sites such that

the new system is invariant under local symmetry transformations. We will refer to these local

symmetry transformations as local gauge transformations. In general, gauging a symmetry of

a gapped quantum system allows us to construct a new topological phase of matter [151–153].

Using this approach, together with an additional ingredient of penalizing non-zero fluxes (to be

discussed below), we will build in the following subsections a wide class of lattice models with

nontrivial topological properties. In this subsection, we will also discuss how to reformulate the

gauged theory in a purely bosonic language [140, 141, 154] with spin-1/2 particles (or hard-core

bosons). This shows how gauged fermionic theories naturally arise when studying quantum spin

systems. If the original fermionic system is gapped, the resulting spin system is, in fact, a gapped

quantum spin liquid [6, 39].

Before discussing the gauging of fermion parity, we first associate an orientation with every

edge, as shown in Fig. 3.12(a). The fermions live on the faces, i.e., on the sites of a dual lattice.
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Figure 3.12: We associate an orientation with every edge of the square lattice. (a) shows fermions
coupled to the Zf

2 gauge field. The fermions live on the faces, while the Zf
2 gauge field lives on

the edges. The Gauss’s law constraint is imposed on the Hilbert space. We can then rewrite the
theory purely in terms of spins (qubits) living on the edges of the square lattice and remove the
Gauss’s law constraint, as shown in (b). The generators of the fermionic theory coupled to the
Zf

2 gauge field in (a) are mapped to the corresponding spin operators in (b). The ordering of the
Majorana operators is defined in the text.

Following the convention of Ref. [140], we decompose complex fermion operators into Majorana

operators cf = (γf + iγ′f)/2, c†
f = (γf − iγ′f)/2, where f denotes faces. (Note that, throughout the

manuscript, the symbol f in a superscript denotes fermion-related objects. On the other hand, the

symbol f appearing as a subscript or in the normal line of type denotes a face on a square lattice.)

The Majorana operators are Hermitian: γ†
f = γf and γ′†f = γ′f . Their anti-commutation relations

are

{γf , γf ′} = 2δf,f ′ , {γf , γ′f ′} = 0. (3.15)

Denoting by Nf = c†
fcf the fermion number operator on face f , the fermion parity operator

on that face is (−1)Nf = −iγfγ′f . We will refer to the operator Se = iγL(e)γ′R(e) as a Majorana
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hopping operator, where the edge e is shared by the adjacent left face L(e) and the adjacent right

face R(e) defined with respect to the edge orientation. Note that the fermion parity operators on

all faces and the Majorana hopping operators on all edges together generate the whole algebra

that preserves the global fermion parity.

To gauge the Z2 fermion parity symmetry of a fermionic system described by a Hamil-

tonian, we couple the fermions living on the faces to a Z2 gauge field living on the edges. To

emphasize that the Z2 gauge field is related to fermion parity, we will refer to it as the Zf
2 gauge

field with an f superscript. We will use σx,e, σy,e, and σz,e to denote the Pauli matrices of the

Zf
2 gauge variables on edge e. By analogy with the ordinary U(1) electromagnetism theory, we

define the local gauge transformation operator acting on the fermion mode on face f and the

nearby Zf
2 gauge variables as

Gf ≡ (−1)Nf∏
e∈f

σz,e.

This operator flips the sign of the fermion mode cf and the surrounding gauge variables σx,e.

Roughly speaking, σx,e is the discrete (meaning a discrete gauge group) analog of eiA(e) in the

ordinary U(1) electromagnetism theory, and σz,e the discrete analog of eiE(e) [39,150,155,156],

where A(e) and E(e) are, respectively, the vector potential and the electric field on edge e

with the lattice constant equal to one. The local fermion parity operator (−1)Nf behaves as

a local charge operator in this discrete theory. The presence of the operator (−1)Nf in Gf

is an indication that we are making the original global symmetry transformation (−1)Ntotal lo-

cal. Note that Gf is both Hermitian and unitary. Now we demand that the physics should not

change under gauge transformations, so all physical operators must commute with Gf [150].

Therefore, to be invariant under all gauge transformations Gf , the original fermionic Hamil-
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tonian must be modified by inserting gauge variables. Unless the fermion terms are on-site,

for a generic term involving distant n-body (n ∈ 2N) fermionic interactions, we need to re-

place fermion operators with Wilson lines by inserting a string of gauge variables σx,e along a

path connecting the fermion operators. For example, a two-body operator γf1γ′f2 with f1 ≠ f2

should be replaced with γf1γ′f2 (∏e∈path(f1,f2) σx,e). The notation path(f1, f2) denotes an unori-

ented path on the dual square lattice connecting faces f1 and f2. The notation e ∈ path(f1, f2)

denotes edges on the square lattice that path(f1, f2) crosses. Similarly, a four-body operator

γf1γ
′
f2
γf3γ

′
f4

with f1, f2, f3, f4 all being different (a sufficient but not necessary condition) should

be replaced with γf1γ′f2γf3γ
′
f4
(∏e∈path(f1,f2) σx,e) (∏e∈path(f3,f4) σx,e). We will use the notation

Ogauged or {O}gauged to denote the gauge-invariant version (obtained using the above procedure)

of a fermion-parity-conserving operator O.

Let us now apply the above procedure to the generators of our fermion theory. Since the

fermion parity operator (−1)Nf commutes with Gf , we can keep (−1)Nf unchanged. However, a

Majorana hopping operator Se = iγL(e)γ′R(e) does not commute with Gf . So, we replace it with

a gauge-invariant operator Sgauged
e = iγL(e)σx,eγ′R(e) instead, which is the shortest Wilson line. A

generic Wilson line can be therefore decomposed into products of (−1)Nf and Sgauged
e . In addi-

tion to (−1)Nf and Sgauged
e , the operator σz,e also commutes with the local gauge transformation

operators Gf . In fact, all operators commuting with local gauge transformations are generated by

(−1)Nf , Sgauged
e , and σz,e.

By analogy with the ordinary U(1) electromagnetism theory, we now impose a discrete
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Gauss’s law constraint on the system [39, 150, 155, 156]:

∏
e∈f

σz,e = (−1)Nf , ∀f.

Note that both sides of this equation are gauge-invariant physical operators. This equation relates

the parity of the local charge operator Nf to the discrete electric field variables σz,e. This is the

exponentiation of the lattice discrete (discrete in the sense of the discrete gauge group) analog

of the familiar Gauss’s law of the continuum U(1) electromagnetism theory: ∇ ⋅ E = Q/ϵ0.

Equivalently, we can write the Gauss’s law constraint as

(−1)Nf∏
e∈f

σz,e ≡ Gf = 1, ∀f. (3.16)

That is, the only allowed quantum states ∣ψf,Zf
2 ⟩ are those invariant under local gauge

transformations: Gf ∣ψf,Z
f
2 ⟩ = ∣ψf,Zf

2 ⟩. (Note that here f in the subscript of Gf refers to face f ,

while the two instances of f in the superscript of ∣ψf,Zf
2 ⟩ stand for fermions.) Note that, due to

this constraint, the generator (−1)Nf is no longer a fundamental generator of the operator algebra

since it is equivalent to the composite operator∏e∈f σz,e, which is built from the four nearby σz,e

operators.

The Zf
2 flux within the smallest loop encircling a vertex v is measured by the gauge-

invariant flux measuring operator

Φv ≡∏
e∈v

σx,e. (3.17)

It picks up a minus sign in the presence of a flux at the vertex v; otherwise, it gives +1. For
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historical reasons, we sometimes call a Zf
2 flux a π flux 4. Note that flux measuring operators

commute with each other and with Wilson lines. We now add a Hamiltonian term that energeti-

cally penalizes non-zero fluxes:

HΦ
penalty = −∆Φ∑

v

Φv = −∆Φ∑
v
∏
e∈v

σx,e, (3.18)

with ∆Φ > 0. If the flux energy parameter ∆Φ is large enough, the flux penalty Hamiltonian

HΦ
penalty ensures that, in the low energy subspace, there is no flux anywhere: Φv = 1, ∀v. How-

ever, we can still consider violations of this condition as vortex excitations of the theory. Note

that a pair of fluxes can be created by applying a string of σz,e operators, which is gauge-invariant

and anti-commutes with the flux measuring operators Φv at the endpoints of the string. A vortex

excitation is then typically found by solving for the ground state of fermions in the presence of

a single π flux with the other π fluxes far away. Therefore, a vortex can be a composite object

consisting of the flux and the response of the fermions to it. Hence, in this new theory, we have

not only fermions living on faces but also vortex quasiparticles living on vertices, as shown in

Fig. 3.13 5. In this chapter, we will assume that the flux energy parameter ∆Φ is much greater

than all the fermionic interactions, leading to a large energy gap for the vortices.

Here, we have to point out that, when we introduce gauge variables to gauge fermion oper-

ators, there can be many equivalent ways of writing down a gauge-invariant operator {O}gauged

corresponding to the fermion operator O involving distant fermionic degrees of freedom. For ex-

4This is because Φv ≡ ∏e∈v σx,e can be roughly thought of as the analog of the quantity cos (∇×A) = cos (B)
for U(1) lattice gauge theory, where A is the vector potential on links and B is the magnetic flux through plaquettes.
The quantity cos (∇×A) becomes −1 when the magnetic flux B is π.

5We follow the terminology of Ref. [6] to refer to the quasiparticles related to π fluxes as vortices despite the fact
that there might be no obvious definition in terms of a winding of a local order parameter.
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Figure 3.13: We can have fermions ψ on the faces and vortices v on the vertices as emergent
quasiparticles. Vortices come from the existence of π fluxes of the Zf

2 gauge field at the vertices.
A vortex could be a composite object that is not strictly localized to a small region, so, when we
associate a vortex with a vertex, we only talk about its center-of-mass position or the position
of the flux at the core. A vortex and an anti-vortex might or might not be the same particle,
depending on how the fermions are organized around a flux.

ample, the gauge-invariant operator {γf1γ′f2}
gauged

corresponding to the two-body operator γf1γ′f2

with distant faces f1 and f2 can be written using any path path(f1, f2) on the dual lattice con-

necting the faces, even though in practice one might conveniently choose the shortest path. For a

four-body operator, γf1γ′f2γf3γ
′
f4

, there are even more equivalent choices for making the gauge-

invariant operator. For example, instead of picking γf1γ′f2γf3γ
′
f4
(∏e∈path(f1,f2) σx,e) (∏e∈path(f3,f4) σx,e)

as {γf1γ′f2γf3γ
′
f4
}gauged, we can equivalently choose γf1γ′f2γf3γ

′
f4
(∏e∈path(f1,f3) σx,e) (∏e∈path(f2,f4) σx,e)

or γf1γ′f2γf3γ
′
f4
(∏e∈path(f1,f4) σx,e) (∏e∈path(f2,f3) σx,e). A large flux energy parameter ∆Φ is im-

portant since it implies that different choices of O are equivalent at low energies due to the

zero-flux condition Φv = 1. The equivalence between different choices simply comes from the

lattice discrete analog of Stokes’ theorem in electromagnetism.
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A large flux energy parameter ∆Φ also allows us to solve the theory as if we only had

fermions and no gauge field at low energies. Under the zero-flux condition Φv = 1, rather than

directly dealing with the theory of fermions coupled to the gauge field, we can observe the fol-

lowing. We first ignore the Gauss’s law constraint and observe that any gauge field variable σx,e

commutes with all the flux measuring operators Φv and all the Wilson line operators derived from

the original fermionic Hamiltonian [6, 157, 158]. Since σ2
x,e = 1, the Hamiltonian can be block-

diagonalized into sectors labeled by the global gauge field configurations {σx,e ∣σx,e = ±1}. We

can satisfy the zero-flux condition by assigning proper gauge field configurations. The simplest

gauge field configuration satisfying the zero-flux condition is σx,e = 1 on every edges, in which

case the Wilson lines now involve only the original fermionic operators. This means that, by this

gauge fixing, we return the Hamiltonian of the gauged fermionic system back to the Hamilto-

nian of the original fermionic system up to a constant −∆Φ∑v 1 coming from the flux penalty

Hamiltonian. Therefore, we just need to solve the original fermionic theory. Denoting by ∣ψf ⟩

an eigenstate of the fermionic system, the corresponding eigenstate of the theory of fermions

coupled to the Zf
2 gauge field is simply ∣ψf ⟩⊗∀e ∣σx,e = 1⟩, where we inserted gauge variables

σx,e = 1 of the edges into the state. However, due to the commutativity of local gauge trans-

formations Gf with other physical gauge-invariant operators, all states obtained by applying any

product of local gauge transformations {Gf} on ∣ψf ⟩⊗∀e ∣σx,e = 1⟩ are also legitimate eigen-

states. In each such legitimate eigenstate, the signs of gauge fields along some closed loops are

flipped, and the fermionic state (written in terms of complex creation operators acting on the

vacuum) has c†
f → −c

†
f for faces f inside the closed loops. All the above states corresponding

to different choices of the product of {Gf} are orthogonal to each other, so they span a large

vector space. To remove the degeneracy, we now impose the Gauss’s law constraint Gf = 1. The
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only state satisfying this constraint within the large degenerate vector space defined above is an

equally weighted superposition of all possible gauge-transformed states:

∣ψf,Z
f
2 ⟩ =
⎛
⎝∏f
(
1 +Gf√

2
)
⎞
⎠
∣ψf⟩⊗

∀e

∣σx,e = 1⟩ . (3.19)

We present this state schematically in Fig. 3.14. To conclude, we can solve the gauged Hamilto-

|ψ f,Zf2⟩ = +⋯

+

+ +

Figure 3.14: A schematic representation of the wavefunction ∣ψf,Zf
2 ⟩ in Eq. (3.19). It is an equally

weighted superposition of wavefunctions with different zero-flux gauge field configurations. We
draw a solid black line along each edge with σx,e = −1. There is no solid black line along edges
with σx,e = 1. In this schematic picture, we omit the modification of the fermionic wavefunction
coming from the fermion parity operator in the local gauge transformation operator Gf . There-
fore, the wavefunction ∣ψf,Zf

2 ⟩ can be thought of as a condensate of loops. We have dropped the
overall normalization constant in this plot.

nian at low energies with large enough ∆Φ by first solving the original fermionic system without

the gauge field and then symmetrizing the wavefunction as in Eq. (3.19) by inserting gauge vari-

ables in the trivial states and summing over all states connected by local gauge transformations.

We will now show that the Zf
2 gauge theory with fermions can be exactly rewritten purely
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in terms of spins (or hard-core bosons) on the edges of the square lattice with the same assignment

of edge orientations. To do this, we demonstrate how the generators are mapped into the pure

spin language. We map the shortest Wilson line involving nearest-neighbor Majorana hopping as

follows:

Sgauged
e = iγL(e)σx,eγ′R(e) → Ue ∶=XeZr(e). (3.20)

We have used the notation (shown in Fig. 3.12) that, if e is oriented east, r(e) is the north-oriented

edge whose arrowhead is at the tail of the e arrow. If e is oriented north, r(e) is the east-oriented

edge whose arrowhead is at the tail of the e arrow. We have chosen a different notation (Xe and

Ze) for the operators in the pure spin systems to distinguish them from the operators (σx,e and

σz,e) of the Zf
2 gauge field, even though they are related. Note that the commutation relations

between the operators Ue on different edges are the same as those of Sgauged
e . For a face f , the

fermion parity operator is mapped as follows:

(−1)Nf = −iγfγ′f →Wf =∏
e∈f

Ze. (3.21)

We will call Wf an emergent fermion parity operator and a bosonized fermion parity operator in-

terchangeably. The word “bosonized" will be explained later. The flux creation operator remains

the same:

σz,e → Ze. (3.22)

The mapping is summarized in Fig. 3.12. One can verify that the mapping above gives an alge-

bra isomorphism by checking that it induces an algebra homomorphism (preserves the algebraic

structure of the physical operators) and is injective (by construction) and surjective (all the op-
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erators on the pure spin side can be generated by Ue, Wf , and Ze). Note that the Gauss’s law

constraint for the operators in the gauged fermion theory is trivially satisfied in the pure spin

language.

Note that any long Wilson line can be decomposed into Sgauged
e and (−1)Nf , so it can

always be mapped to the pure spin language. As a special case, the original flux measuring

operator in Eq. (3.17) can be decomposed into a product of Wilson line segments and fermion

parity operators. Using Eq. (3.20) and Eq. (3.21), we can see that the flux measuring operator is

mapped as follows:

Φv ≡∏
e∈v

σx,e → Fv ≡WNE(v)∏
e∈v

Xe, (3.23)

where NE(v) indicates the face directly to the northeast of vertex v, and the W operator is

defined in Eq. (3.21). The flux penalty Hamiltonian thus becomes

HF
penalty = −∆Φ∑

v

WNE(v)∏
e∈v

Xe.

The zero-flux condition Φv = 1, ∀v at low energies is translated into Fv = 1, ∀v.

To make sure there is a duality between the two theories, we also have to know the mapping

of the Hilbert spaces. This is done by requiring that the quantum state that is an eigenvalue-one

eigenstate of all (−1)Nf , Φv, and Gf operators (i.e. the fermion vacuum state with zero flux and

Gauss’s law constraints) is mapped to the eigenvalue-one eigenstate of all the Wf , Fv 6. The

former state is nothing but a loop condensate of the gauge field shown in Fig. 3.14 with fermions

6To be precise, assuming an infinite 2D lattice, we also require that the quantum state that is being mapped here
is an eigenvalue-one eigenstate of any infinitely long Wilson line consisting of a string of σx,e. We also require that
the quantum state that it is mapped to by Eq. (3.20) and Eq. (3.21) is an eigenvalue-one eigenstate of the operators
corresponding to these infinitely long Wilson lines. These requirements are imposed since we want to rule out the
possibility of a pair (or pairs) of fluxes at two points at infinity.
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in the vacuum state, while the latter has a similar loop-condensate picture in the basis of Xe

but without fermions. Knowing the mapping of a single state, we can derive the mapping of

the other states by applying the generators to the states on both sides. One can verify that the

number of degrees of freedom on both sides matches. For the gauged fermion theory, we have

1 (fermion)+2 (gaugefield)−1 (Gauss′s law) = 2 spins for each vertex, which matches what we

have in the pure spin system.

Let us now summarize what we have done. We have successfully mapped a fermionic

theory coupled to a Zf
2 gauge field on a lattice (subject to the Gauss’s law constraint) to a theory

of spins 7. Notice the similarity of σe,x and σe,z to Xe and Ze. We can interpret the mapping as

“integrating out” the fermions, where we remove the Gauss’s law constraint and rewrite the whole

theory, including the fermions and the gauge field, in terms of the gauge field with purely bosonic

Z2 variables. This kind of statistical transmutation between fermions and bosons by coupling

fermions to a gauge field can be traced back at least to the composite fermion story in fractional

quantum Hall systems [159, 160]. What is interesting here is that the statistical transmutation is

done exactly on a lattice instead of working at the continuum field-theory level. In hindsight, it

is also physically clear why a toric-code-like spin theory should be able to represent fermionic

degrees of freedom 8. Recall (see Sec. 3.2) that, in the toric code model, even though the theory is

made of spins (hard-core bosons), we have fermions as stationary emergent quasiparticles, each

a combination of an e particle and an m particle. By deforming the toric code model to introduce
7In fact, conversely, any theory of S = 1/2 spins on a square lattice can be dual to a theory of fermions coupled

to a Zf
2 gauge field (subject to Gauss’s law constraint). However, this duality might not be especially useful if the

gauge flux for each vertex is not 0 or π at low energies, in which case we have to deal with a difficult problem of
fermions coupled to a fluctuating gauge field with the Gauss’s law constraint.

8We observe that a bosonized model is toric-code-like since it involves a large number of mutually commuting
projectors Fν serving as good quantum numbers of the Hamiltonian, similar to the plaquette operators or vertex oper-
ators in the toric code model. In fact, each Fv is composed of a plaquette operator and a neighboring vertex operator.
The reader will also see the connection between bosonization and the toric code in the following subsections.
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interactions between the emergent fermions, one should be able to rewrite a fermionic theory

fully in terms of spins (hard-core bosons). Any unpaired e or m particle can be interpreted as a

Zf
2 flux.

In the following sections, we will consider physical systems fundamentally defined in terms

of spins and work out quantum circuits that coarse-grain the spin systems and leave behind some

disentangled spins, even though the spin theories will be dual to theories with fermions coupled

to a Zf
2 gauge field. We will treat the dual picture of fermions with the Zf

2 gauge field as a helpful

interpretation of the theory and use it to inspire certain circuit operations on the spin systems.

In later sections, we will sometimes use the word “emergent fermions” for the dual fermions

because they are anyons emergent in the spin models. They have to be created in pairs and not

one at a time.

In particular, in this chapter, we will take advantage of gauging the fermion parity of some

well-understood free fermionic theories to generate new topological theories, which will then be

mapped to the spin language, where they will become exactly solvable interacting chiral topolog-

ically ordered theories. To be specific, we will be interested in gauging non-interacting fermionic

models made of layers of lattice px + ipy topological superconductors to construct sixteen in-

equivalent chiral bosonic topologically ordered theories classified by Kitaev [6]. These bosonic

models are exactly solvable precisely because they are dual to free fermionic theories under the

zero-flux condition. We will use this idea to write down lattice spin models with progressively

increasing complexity.

As we mentioned above, for excitation energies much lower than ∆Φ, we are effectively

in the zero-flux sector. Furthermore, in the remainder of the chapter, we will only be interested

in working on entanglement renormalization circuits that only operate on ground states, which
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contain zero flux. For our purposes, the Hamiltonians constructed using the above approach

simply illustrate that the corresponding ground states can have parent Hamiltonians with any-

onic excitations and thus have topological order. Therefore, for the purposes of studying the

ground states, instead of adding the flux penalty Hamiltonian, for the rest of the chapter, we

can conveniently consider another class of Hamiltonians that have the zero-flux condition as a

hard constraint directly on the Hilbert space [140, 141, 154]. In other words, we will not include

HΦ
penalty described by Eq. (3.18) into the gauged fermion Hamiltonians, and we will not include

HF
penalty described by Eq. (3.4.1) into the corresponding spin Hamiltonians. We simply follow

the procedure of replacing operators in the fermion Hamiltonian with Wilson lines and doing the

algebra isomorphism and require that Φv = 1 on the gauged-fermion side, and that Fv = 1 on the

spin side.

Under the zero-flux constraint, we refer to the successive procedures of gauging a fermionic

Hamiltonian with a Zf
2 gauge field and then integrating out the fermions as bosonization [140,

141, 154] since one can also view the spin-1/2 degrees of freedom in the final spin theory as

hard-core bosons, where infinitely strong on-site repulsion between bosons renders each site ei-

ther unoccupied or occupied by a single boson. The whole bosonization procedure turns a purely

fermionic Hamiltonian into a purely (hard-core) bosonic Hamiltonian with a constraint (the zero-

flux constraint). The flow chart of bosonization to arrive at a bosonic Hamiltonian from a purely

fermionic Hamiltonian is shown in Fig. 3.15. In addition, we can also define bosonization for

any fermionic operator, not just for a fermionic Hamiltonian. This is done similarly by inserting

gauge variables into fermion operators to obtain Wilson lines and integrating the fermions out by

the algebra isomorphism under the zero-flux constraint. We will use the notation {Of}bosonized

to denote the bosonized operator of the fermionic operator Of that conserves fermion parity.
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Pure Fermionic Theory 

Fermions Coupled to the  Gauge Field 
(with Zero Flux)

Zf
2

Gauge Fermion Parity Symmetry

Interacting Spin Theory 
(with Zero Flux)

“Integrating Out” Fermions

Bosonization

Gauge Fixing 

Figure 3.15: Bosonization is composed of two steps. The first step is gauging the fermion parity
of the original fermionic theory under the zero-flux condition as a constraint, Φv = 1. Due to the
zero-flux constraint, different choices of Wilson lines for a fermion operator become equivalent.
Under the constraint and with the gauge choice σx,e = 1 (gauge fixing), we can recover the original
fermionic theory from the gauged theory. The second step of bosonization is integrating out the
fermions by the algebra isomorphism depicted in Fig. 3.12. The non-uniqueness of Wilson lines
in the first step results in the non-uniqueness of bosonization (one-to-many mapping). However,
different choices of the bosonized operator for a given fermion operator are equivalent under the
zero-flux constraint on the spin theory, Fv = 1.

The reader should distinguish the bosonization in two spatial dimensions presented here from the

traditional bosonization for the Luttinger liquid in one dimension [156, 161]. Once again, the

bosonization procedure of fermionic operators {⋅}bosonized is not unique due to different choices

of Wilson lines in the gauging procedure {⋅}gauged; however, when we use bosonization to con-

struct bosonic physical systems, under the zero-flux constraint they will be equivalent. Note that

bosonization gives rise to an exact duality directly between spins with a constraint and the origi-

nal fermions. The bosonization duality isomorphism is determined by the following mapping of
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the generators:

Se↔ Ue, (−1)Nf ↔Wf . (3.24)

The mapping of the operators is depicted in Fig. 3.16. Also, the fermion vacuum state is mapped

iγ γ′ 

iγ

γ′ 

Zero-Flux 
Constraint:

−iγγ′ 

X
Z Z

Z Z
Z

X
Z

No Constraint

Fermion System Spin-1/2 System

= 1
Z

Z Z
Z

X
XX

X

(a) (b)

Figure 3.16: Here we have a bosonization duality between (a) the pure fermionic theory and (b)
the pure spin theory by imposing the zero-flux condition Fv = 1 as a constraint on the spin side.
The fermions live on the faces of the square lattice, while the spins live on the edges of the square
lattice. The three fermionic operators on the left are mapped to the three spin operators on the
right. The ordering of the Majorana operators is defined in the text.

to the simultaneous +1 eigenstate of all the Wf operators on the spin side with the zero-flux

constraint Fv = 1 being satisfied. Not surprisingly, the duality resembles the duality between

fermions coupled to the Zf
2 gauge field and the spin theory without a constraint. The slight

difference is that, compared to the duality in Fig. 3.12, Figure 3.16 does not have the Zf
2 gauge

field on the fermion side, and thus we forbid the Ze generators that create fluxes on the spin side

and that do not commute with the zero-flux constraint. Notice that the exact solvability of the spin
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models with the flux penalty Hamiltonian at low energies previously mentioned now turns into

the exact duality relating the spin theory with a constraint to the original non-interacting fermion

theory.

Let us emphasize once again that this bosonization perspective with the zero-flux constraint

on the Hilbert space merely provides a convenient way to describe the ground states by construct-

ing the corresponding parent Hamiltonians in the presence of the zero-flux constraint. This sim-

plification will help us elucidate the construction of the entanglement renormalization circuits in

the remainder of the chapter. However, in order to realize these systems experimentally, we do

not have to impose the hard constraint on the total spin Hilbert space or the ground states. Instead,

if we want, we are free to replace the zero-flux constraint back with the flux penalty Hamilto-

nian. Therefore, when we discuss entanglement of the spin system, the total Hilbert space is still

assumed to have the structure of a tensor product of local spin Hilbert spaces.

3.4.2 Gauging trivial insulatorÔ⇒ pure Zf
2 lattice gauge theory

Starting from this subsection, we will construct several spin models based on non-interacting

fermionic models using the bosonization technique introduced in the previous subsection. We

will construct models with increasing complexity so the readers can become gradually familiar

with the formalism of gauging the fermion parity symmetry and the formalism of bosonization.

The first non-interacting fermionic model we consider is the following fermionic Hamilto-

nian with a trivial insulating ground state:

Htrivial insulator = −∑
r

(1 − 2c†
rcr). (3.25)
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We can easily see that each term measures the local fermion parity (−1)Nr . Clearly, the ground

state is the vacuum, and the chiral central charge is zero. It is straightforward to gauge the fermion

parity symmetry of the theory since the Hamiltonian Htrivial insulator does not involve interactions

among different sites. We simply introduce the Hilbert space of Zf
2 gauge variables and do not

have to replace the fermionic interacting terms in the Hamiltonian with Wilson lines. In addition,

we can derive the bosonized Hamiltonian with spins living on the edges of a square lattice using

bosonization rules shown in Fig. 3.16:

HZf
2
= {Htrivial insulator}bosonized = −∑

f

∏
e∈f

Ze, (3.26)

with the zero-flux condition Fv = 1 as a constraint. The original lattice sites for the trivial

fermionic insulator labeled by r are sitting at the centers of the faces f of the new square lattice

when we perform the bosonization. The Hamiltonian simply comes from the emergent fermion

parity operators Wf , the bosonization of Eq. (3.25) by using Eq. (3.21). As mentioned previously

in Sec. 3.4.1, we can alternatively include the flux penalty HamiltonianHF
penalty to penalize softly

the sectors with nonzero fluxes rather than imposing the zero-flux condition as a constraint. If we

do that, one can see that this model is a commuting-projector model and behaves almost like the

toric code model with a slight modification of the Hamiltonian.

First, we observe that the emergent fermion parity operators Wf in the Hamiltonian HZf
2

defined in Eq. (3.26) together with the flux measuring operators Fv in the flux penalty Hamilto-

nian HF
penalty define a stabilizer group that stabilizes the ground state, and the stabilizer group is

the same as that of the toric code in Sec. 3.2.1, even though we have a different choice of the sta-

bilizer generators: {Wf =∏e∈f Ze, ∀f} ∪ {Fv = (∏e′∈NE(v)Ze′)(∏e∈vXe), ∀v}. The stabilizer
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generators are shown in Fig. 3.17. Therefore, the ground state stabilized by the stabilizer group

Z
Z

Z
Z

X
X

X
X
Z

Z
Z

Z

Figure 3.17: The stabilizer generators of the pure Zf
2 lattice gauge theory: the emergent fermion

parity operator Wf (the 4-qubit operator on the left) and the flux measuring operator Fv (the 6-
qubit operator on the right). The X operators are written slightly to the left of the qubits, while
the Z operators are written slightly to the right of the qubits. When an X operator and a Z
operator are both associated with the same qubit, the Z operator acts first.

is the same as that of the toric code. Therefore, the ground state is non-chiral and has a zero

correlation length.

Second, we can see that the the topological data is the same as that of the toric code.

We can either check this from the dual picture of fermions coupled to the Zf
2 gauge field or

by working directly with spins. Notice that a single violation from the first set of stabilizer

generators {Wf , ∀f} with no nearby violation of the second set of generators {Fv, ∀v} implies

the existence of a fermion ψ living on the face whose stabilizer is violated, whereas a single

violation of the second set of stabilizer generators {Fv, ∀v} without violation of the first set of

stabilizer generators {Wf , ∀f} nearby implies the existence of a vortex boson m. The vortex

here is simply a flux since, in the dual picture of fermions coupled to the Zf
2 gauge field, there
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are no interactions between fluxes and fermions. The fusion of a fermion with a nearby vortex

particle gives rise to a boson, which we call an e particle. The vacuum 1 together with the e m ψ

particles constitute the same topological data as in the toric code.

By going from Eq. (3.25) to Eq. (3.26), we turned an non-interacting fermionic model into

an interacting bosonic spin model. We call this model the pure Zf
2 lattice gauge theory. This is

because, in the dual fermionic picture, if we included the flux penalty Hamiltonian HΦ
penalty to

penalize fluxes softly, and if we made the coefficient in front of (−1)Nr much greater than ∆Φ,

the model at low energies would have no matter field excitations, and it would be described by

the pure Zf
2 lattice gauge field. This is also why we add the subscript Zf

2 to the Hamiltonian in

Eq. (3.26).

3.4.3 Gauging lattice px + ipy topological superconductor Ô⇒ lattice Ising

TQFT

In this subsection, we consider the bosonization of a less trivial non-interacting fermionic

model, arriving again at an exactly solvable interacting chiral spin model. The fermionic model

we want to bosonize is the lattice px+ipy topological superconductor modelHpx+ipy in Eq. (3.3) in

Sec. 3.3.1. Even though a px + ipy topological superconductor does not have intrinsic topological

order, it is well-known that, if we gauge the fermion parity symmetry of a px + ipy topological

superconductor, we will have intrinsic chiral topological order with the Ising topological quantum

field theory (Ising TQFT) description at low energies [6, 46, 48].

For the sake of gauging the Hamiltonian Hpx+ipy , we first put the fermionic degrees of

freedom of the HamiltonianHpx+ipy onto the faces of a square lattice and rewrite the Hamiltonian
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in terms of the edge orientation assignments in Fig. 3.12:

Hpx+ipy =∑
ey

(−t c†
R(ey)

cL(ey) − t c†
L(ey)

cR(ey) +∆ c†
R(ey)

c†
L(ey)

+∆ cL(ey)cR(ey)) − µ∑
f

c†
fcf

+∑
ex

(−t c†
R(ex)

cL(ex) − t c†
L(ex)

cR(ex) − i∆cR(ex)cL(ex) + i∆c†
L(ex)

c†
R(ex)
) , (3.27)

where ey labels the vertical edges, ex labels the horizontal edges, and f labels the faces. We can

then rewrite the theory in the language of Majorana operators, gauge the theory by using the short-

est Wilson lines, and decompose the Wilson lines into the generators Sgauged
e = iγL(e)σx,eγ′R(e)

and (−1)Nf = −iγfγ′f . The result is the gauged Hamiltonian

{Hpx+ipy}
gauged

=∑
ey

⎡⎢⎢⎢⎢⎣
− (t +∆

2
) (−iγL(ey)γ′L(ey))(iγL(ey)σx,eyγ

′
R(ey)
)(−iγR(ey)γ′R(ey)) − (

t −∆
2
) (iγL(ey)σx,eyγ′R(ey))

⎤⎥⎥⎥⎥⎦

+∑
ex

⎡⎢⎢⎢⎢⎣
− t
2
(−iγL(ex)γ′L(ex))(iγL(ex)σx,exγ

′
R(ex)
)(−iγR(ex)γ′R(ex)) −

t

2
( iγL(ex)σx,exγ′R(ex))

+ i∆
2
(−iγL(ex)γ′L(ex))(iγL(ex)σx,exγ

′
R(ex)
) − i∆

2
(iγL(ex)σx,exγ′R(ex))(−iγR(ex)γ

′
R(ex)
)
⎤⎥⎥⎥⎥⎦
− µ∑

f

(1 + iγfγ′f) ,

(3.28)

where Gauss’s law is imposed onto the Hilbert space. In order to obtain the dual spin model

of the gauged fermionic theory under the zero flux constraint, we can either “integrate out” the

fermions in Eq. (3.28) to get rid of the Gauss’s law constraint using Eqs. (3.20,3.21) or directly

apply the bosonization mapping in Fig. 3.16 to the fundamental generators, Se and (−1)Nf , that

generate Eq. (3.27) with the shortest paths. Either way, the resulting spin Hamiltonian is given
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by

HIsingTQFT ={Hpx+ipy}
bosonized

=∑
ey

⎡⎢⎢⎢⎢⎣
− (t +∆

2
) (WL(ey))(XeyZr(ey))(WR(ey)) − (

t −∆
2
) XeyZr(ey)

⎤⎥⎥⎥⎥⎦

+∑
ex

⎡⎢⎢⎢⎢⎣
− t
2
(WL(ex))(XexZr(ex))(WR(ex)) −

t

2
(XexZr(ex))

+ i∆
2
(WL(ex))(XexZr(ex)) −

i∆

2
(XexZr(ex))(WR(ex))

⎤⎥⎥⎥⎥⎦
− µ∑

f

(1 −Wf) . (3.29)

As before, we have imposed the zero-flux condition Fv = 1 as a constraint. We have

turned a non-interacting fermionic model Hpx+ipy into an interacting spin model HIsingTQFT. The

parameters (t, µ, ∆) here are chosen to be again in the regime described in Sec. 3.3.1. Since

the Hamiltonian in Eq. (3.29) with the zero-flux constraint is dual to the non-interacting lattice

px + ipy topological superconductor, we can understand the properties of its ground state very

well. In particular the ground state is chiral with c = 1/2 and has a nonzero finite correlation

length. Therefore, we have obtained an exactly solvable chiral spin liquid Hamiltonian.

The presence of the zero-flux condition Fv = 1 as a constraint on the spin system allowed

us to quickly obtain the parent Hamiltonian that describes the ground state of the interacting spin

system by using the bosonization mapping in Fig. 3.16. This simplification is enabled by the

fact that the ground state happens to be in the sector Fv = 1. However, the zero-flux constraint

should not be viewed as something intrinsic to the actual Hilbert space of the spin (qubit) system.

Therefore, instead of imposing the zero-flux condition as a hard constraint, we can alternatively

include the flux penalty Hamiltonian HF
penalty with a large flux energy parameter ∆Φ as a soft

constraint to penalize fluxes. This will allow the constraint to be violated if we add energy to
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the system. A pair of π fluxes will create a pair of vortex quasiparticles, and each will bind a

Majorana zero mode. The existence of a Majorana zero mode around each π flux is typically

shown in the continuum limit [144]; however, it still exists when we introduce a lattice structure

[6]. With the bound Majorana zero modes, the vortices are non-Abelian Ising anyons [156].

Therefore, we expect that the effective description of the low-energy behavior near the ground

state is the Ising TQFT. Hence, we introduce a subscript “Ising TQFT" for the Hamiltonian in

Eq. (3.29). We may also think of this model as a lattice regularization of the continuum Ising

TQFT, so, in the following, we will sometimes call it the lattice Ising TQFT model. As the model

consists of spins and is gapped and topologically nontrivial, we can regard this model as a chiral

spin liquid, whether we impose the zero-flux condition as a hard constraint or as a flux penalty

Hamiltonian.

3.4.4 Gauging layers of px+ ipy superconductorsÔ⇒ Kitaev’s sixteenfold way

chiral spin liquids

After introducing the lattice Ising TQFT model as an example of a chiral spin liquid in the

previous subsection, in this subsection, we are going to introduce more exactly solvable chiral

spin liquids by using bosonization introduced in Sec. 3.4.1.

In Ref. [6], Kitaev proved that any spin theory that is dual to non-interacting fermions with

a spectral Chern number ν coupled to a Zf
2 gauge field should fall into a sixteenfold way classifi-

cation under certain assumptions [47]. From the bulk perspective, we should obtain 16 different

kinds of topological order determined by ν (mod16). The periodicity in ν means that a spin sys-

tem corresponding to the spectral Chern number ν should be topologically indistinguishable from
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ν (number of
px + ipy superconduc-
tors)

anyons fusion rules

0 (mod 4) {1, e,m,ψ} e × e = 1, m ×m = 1, ψ × ψ = 1, ψ × e = m,
ψ ×m = e, e ×m = ψ

1 (mod 4) or 3 (mod 4) {1, σ,ψ} ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ
2 (mod 4) {1, a, ā, ψ} a × a = ψ, ā × ā = ψ, ψ × ψ = 1, a × ā = 1,

a × ψ = ā, ā × ψ = a

Table 3.1: Part of the topological data of the sixteenfold way classification [6]. The symbol 1
stands for the vacuum, and ψ stands for an emergent fermion. The symbols e, m, σ, a, and ā
represent vortices induced by the Zf

2 fluxes. The vortices can be either Abelian or non-Abelian.
For ν = 0 (mod4) and ν = 2 (mod4), the vortices are Abelian anyons. For ν = 1 (mod4) and
ν = 3 (mod4), vortex σ is a non-Abelian anyon due to an unpaired Majorana zero mode at its
core. The topological spins of all the vortices are determined by the formula θ = exp(iπν/8)
that reflects the ν (mod16) periodicity. More data is included in the S and T matrices and other
quantities, which we do not list here.

a spin system with the spectral Chern number ν + 16. Note, however, that, from the boundary

perspective, the chiral central charge c should be determined by ν via the formula c = ν/2 without

periodicity. Some topological data of the sixteenfold way classification in the bulk is provided in

Table 3.1. A review of the sixteenfold way classification is provided in Ref. [47].

In Ref. [6], Kitaev introduced a spin model on a honeycomb lattice (B phase in a magnetic

field) whose dual is a px + ipy topological superconductor (ν = 1) coupled to a Zf
2 gauge field.

Here we construct spin models corresponding to other values of ν. Instead of working with

spins on a honeycomb lattice, we will work with the formalism on the square lattice discussed in

Sec. 3.4.1 since the operator duality between the spin theory and the fermionic theory with the

Zf
2 gauge field is more obvious to us on the square lattice.

A simple way to construct a fermionic system with a higher spectral Chern number is to

consider a stack of px + ipy topological superconductors. Hence, for a fermionic system with

spectral Chern number ν, we can simply consider ν layers of the lattice px + ipy topological
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superconductors in Sec. 3.3, each of which contributes a chiral central charge c = 1/2. Note that,

for each value of ν, we can freely add an arbitrary number of the trivial insulators Htrivial insulator

in Sec. 3.4.2 since they carry zero chiral central charge.

We will now systematically construct all the states in Kitaev’s sixteenfold way classifica-

tion using the technique (introduced in Sec. 3.4.1) of gauging fermion parity and integrating out

fermions on the square lattice. First, we introduce a superlattice structure with lattice periodicity

determined by large 4 × 4 unit cells as shown in Fig. 3.18 to have multiple layers of the lattice

px + ipy topological superconductors and trivial insulators flattened to a square lattice. Here, we

assign a fermionic degree of freedom to the center of each face. We associate different faces

within a unit with different colors corresponding to different layer numbers 1 ≤ i ≤ 16 (which we

also write on the faces) while periodically extending the pattern to the other unit cells. (Notice

that we use the phrase “layer number” to refer to two different things: one is the layer number s

labeling the scale of the entanglement renormalization operation; the other is the layer number i

labeling the layers of the fermionic degrees of freedom.) We then use faces with the same color

(and hence same layer number) to represent the degrees of freedom of either a single layer of

the lattice px + ipy topological superconductor or a single layer of the topologically trivial insu-

lator. For example, if we want the blue faces (layer number i = 4) to describe a single layer of

the lattice px + ipy topological superconductor, we will add chemical potential terms to all blue

(i = 4) faces and introduce horizontal and vertical hopping and pairing terms that directly (and

hence remotely) couple blue (i = 4) faces in adjacent unit cells. As another example, if we want

the green faces (layer number i = 7) to describe a single layer of the trivial insulator, we will only

add chemical potential terms as in Eq. (3.25) to those faces. Therefore, in order to study a system

with spectral Chern number ν, we will use the first ν sublattices (i.e. layers/colors) numbered
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16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1

+  gauge fieldZf
2

flattened lattice realization

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16

Figure 3.18: A way to realize the sixteenfold way states on a square lattice. We flatten 16
fermionic layers onto a superlattice defined on a single square lattice and subsequently apply
the bosonization procedure. Fermions live at the centers of the faces. A single unit cell for the
fermions consists of 16 faces. A sublattice of fermions consists of faces with the same color
(and hence same layer number label). Each sublattice (i.e. layer/color) describes either a layer of
the lattice px + ipy topological superconductor or a layer of the trivial insulator. Therefore, we
introduce hoppings and pairings of fermions only among sites with the same color (and hence
same layer number label). The bosonic degrees of freedom are spin-1/2’s living on the edges
surrounding the faces. In order to obtain the interacting spin model, we bosonize all the terms of
the fermionic Hamiltonian, as described earlier in Sec. 3.4.1. Here, we only draw a small portion
of the superlattice, and the reader should extend the periodic structure horizontally and vertically.
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i = 1,⋯, ν to describe px + ipy superconductors and let the remaining 16 − ν (i = ν + 1,⋯,16)

sublattices describe trivial insulators. We can write this as the following fermionic Hamiltonian:

Hνf =

=
ν

∑
i=1

Hi, px+ipy +
16

∑
i=ν+1

Hi, trivial insulator

=
ν

∑
i=1

⎡⎢⎢⎢⎢⎣
− t∑

r

(c†
i, r+x̂ci, r + c

†
i, r+ŷci, r) − µ∑

r

c†
i, rci, r

+∑
r

(∆ c†
i, r+x̂c

†
i, r + i∆ c†

i, r+ŷc
†
i, r) + h.c.

⎤⎥⎥⎥⎥⎦

+
16

∑
i=ν+1

[−∑
r

(1 − 2c†
i, rci, r)] . (3.30)

The label i running from 1 to 16 indicates the layer (i.e. color/sublattice) number. We used

the subscript νf for the Hamiltonian to denote that we have ν layers of fermions in topological

superconducting states. Once again, the parameters (t, µ, ∆) here are chosen to be in the regime

described in Sec. 3.3.1.

We arrive at the dual interacting spin models, with spins on the edges of the square lattice

shown at the bottom of Fig. 3.18, by coupling the fermions to the Zf
2 gauge field on the edges

of this lattice in the presence of a flux penalty term, and subsequently integrating the fermions

out. As a result, we obtain all the sixteenfold way states 0 ≤ ν ≤ 16 as the ground states of the

interacting spin models. Since the ground states of these interacting spin models are in the sector

Fv = 1, instead of introducing a flux penalty term, we can alternatively impose the zero-flux

condition Fv = 1 as a hard constraint and derive another class of dual parent spin Hamiltonians

Hν = {Hνf}
bosonized that describe the sixteenfold way states using the bosonization technique in

Fig. 3.16. We will not repeat the bosonization here as the principle is the same as in Secs. 3.4.2
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and 3.4.3. The only difference is that the HamiltonianHνf now involves long-range hoppings and

pairings. Since the fermions we started with were non-interacting, the spin models constructed

here are exactly solvable at all energies with the hard zero-flux constraint and at low energies

with a soft flux penalty. The chiral central charge of the spin models will be c = ν/2, coming

from the px + ipy topological superconductors we started with.

We now discuss properties of the sixteenfold way spin states obtained using this construc-

tion. When ν = 0, from the zero chiral central charge, we learn that the theory is non-chiral. It is

nothing but the pure Zf
2 lattice gauge theory discussed in Sec. 3.4.2. For ν ≥ 1, we obtain several

exactly solvable chiral spin liquids with nonzero finite correlation lengths. When ν = 1, we get an

Ising TQFT Hamiltonian similar to Eq. (3.29) in Sec. 3.4.3. Their topological properties are the

same even though they are different lattice realizations of the Ising TQFT. When ν = 2, we obtain

a system with topological order equivalent to Laughlin’s fractional quantum Hall state at filling

fraction 1/4 [162]. When ν = 3, the ground state of our construction belongs to the universality

class of the bosonic Moore-Read fractional quantum Hall state at filling fraction one [163–165].

An intuitive way to understand this is to see that the Moore-Read state has an edge mode com-

posed of a chiral Dirac fermion and a chiral Majorana fermion. Since a chiral Dirac fermion can

be decomposed into two chiral Majorana fermions, the edge mode effectively has three chiral

Majorana fermions and carries a chiral central charge c = 3/2, which is reminiscent of the chi-

ral Majorana fermions from the three layers of px + ipy topological superconductors from our

construction. Since the boundary conformal field theory of the bosonic Moore-Read state and

that of the ν = 3 sixteenfold way state match, we expect the two bulk theories to be in the same

universality class via the bulk-boundary correspondence. However, our construction loses the

U(1) charge conservation symmetry appearing in the Moore-Read state. It will be interesting to
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see whether one can connect the two wavefunctions directly by a constant-depth quantum circuit

respecting some locality constraints. When ν = 16, the bulk topological properties should be

the same as when ν = 0, i.e., the pure Zf
2 lattice gauge theory, even though the boundary chiral

central charge is nonzero.

From the topological data listed in Table 3.1, we can learn that, when ν is even, the topo-

logical order is Abelian. When ν is odd, the topological order becomes non-Abelian since the

fusion of two vortices outputs two possibilities. The topological properties of the vortices are

similar to the topological properties of the vortices of the Ising TQFT at ν = 1 [6, 47]. For later

convenience, we refer to all spin-model ground states derived using this construction as Kitaev’s

sixteenfold way chiral spin liquids, while keeping in mind that the non-chiral case ν = 0 is a

trivial special case.

3.5 Entanglement Renormalization Circuits for Kitaev’s Sixteenfold Way Chi-

ral Spin Liquids

In this section, we will present the scale-invariant entanglement renormalization circuits for

a class of spin states constructed in the previous section using the technique of gauging fermion

parity or bosonization. Many of these states are chiral. In Sec. 3.5.1, we will present the circuit

for the ground state of the non-chiral pure Zf
2 lattice gauge theory model. In Sec. 3.5.2, we will

present the circuit for the ground state of the chiral lattice Ising TQFT model. In Sec. 3.5.3, our

discussion will culminate with a presentation of the scale-invariant entanglement renormalization

circuits for the ground states of all Kitaev’s sixteenfold way chiral spin liquids. In all cases, each

layer of the entanglement renormalization circuit will contain two subcircuits: (1) a single step
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of horizontal entanglement renormalization in the x direction and (2) a single step of vertical

entanglement renormalization in the y direction. We will build the entanglement renormalization

circuits by combining the conventional MERA circuit reviewed in Sec. 3.2 and the quasi-local

evolution discussed in Sec. 3.3. We refer to these types of circuits as MERA with quasi-local

evolution (MERAQLE).

3.5.1 MERAQLE for the pure Zf
2 lattice gauge theory

Before showing the scale-invariant MERAQLE circuits for all Kitaev’s sixteenfold way

chiral spin liquids, we start with the simplest state among them to get a glimpse of the entan-

glement structure of the models constructed from the bosonization technique. Specifically, we

discuss the scale-invariant MERAQLE circuit for the ground state of the pure Zf
2 lattice gauge

theory Hamiltonian in Eq. (3.26), which is obtained by gauging the fermion parity symmetry of

a trivial insulator. Since the ground state of the pure Zf
2 lattice gauge theory is the same as that

of the toric code, the MERAQLE circuit should be the same as the conventional strictly-local

MERA circuit shown in Sec. 3.2. Even though the theory is non-chiral, and the MERAQLE cir-

cuit here has no quasi-local components like the MERAQLE circuits presented in the following

subsections, it is still illuminating to see the action of the circuit on the stabilizer generators. The

insight gained from the calculations done on the stabilizer generators will be useful for the circuit

constructions for other models that don’t have the simple toric code interpretation and that will

be discussed in later subsections.

A single step of horizontal entanglement renormalization in this case is implemented by the

subcircuit CZf
2 ,x

shown in Fig. 3.19. Following Sec. 3.2.2, we again use the stabilizer formalism
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to analyze the transformation of the ground state under CZf
2 ,x

. The generators of the original

stabilizer group of the ground state are shown in Fig. 3.17(a). The generators of the transformed

stabilizer group are shown in Fig. 3.19(c). Even though the subcircuit CZf
2 ,x

is an exact copy

of the subcircuit CZ2,x in Fig. 3.5, the interpretation is different. Here, on each face, there is an

emergent fermion mode (one can think of the fermions as emergent if one takes the spin model

as the original model of interest). It is convenient to introduce an AB sublattice structure for the

emergent fermions modes. The structure of the sublattices is shown in Fig. 3.19(a), where the A

sublattice is associated with the pink faces, and the B sublattice is associated with the blue faces.

Recall that a product of four Z operators around a face measures the emergent fermion parity

of the face. From the stabilizer computation in Fig. 3.20(b), we learn that the emergent fermion

parity operator Wf of a blue B face is transformed into a single Z operator under conjugation

by the subcircuit CZf
2 ,x

. We can intuitively say that, after the renormalization procedure, the

emergent fermion degrees of freedom on the blue B faces are effectively shifted to the ancillary

qubits, and the corresponding fermion parities become single-qubit Pauli-Z operators. Since

the ground state originally has all the emergent fermions frozen in the vacuum state, the qubits

associated with the red single-qubit Pauli-Z operators will be transformed under CZf
2 ,x

to state

∣0⟩, decoupled from the rest of the system. The change of the stabilizer generator corresponding

to an emergent fermion parity operator Wf on a pink A face is computed in Fig. 3.20(a). One can

also compute the change of the flux measuring operators Fv in Fig. 3.20(c,d). One can recombine

the results of the conjugation of the stabilizer generators under the subcircuit CZf
2 ,x

in Fig. 3.20 to

get a new set of stabilizer generators shown in Fig. 3.19(c). For the transformed state stabilized

by the new set of stabilizer generators shown in Fig. 3.19(c), we can see that, in addition to

the ∣0⟩ states to the left of the blue B faces corresponding to the stabilizer generators equal to
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the red single-qubit Pauli-Z operators, we also get disentangled qubits in the ∣+⟩ states at the

bottom of the blue B faces corresponding to the stabilizer generators equal to the red single-qubit

Pauli-X operators. The red single-qubit Pauli-X operators are a result of the original emergent

fermion parity operators Wf acting on the blue B faces and the flux measuring operators Fv with

NE(v) being blue B faces. The disentangled qubits are represented by the unfilled circles in

Fig. 3.19(b). For the remaining entangled qubits, the stabilizer generators are colored in black in

Fig. 3.19(c). These are nothing but the emergent fermion parity operator Wf and flux measuring

operator Fv defined on the new horizontally elongated square lattice. If one follows the algebra

transformation carefully, one can find that the new emergent fermion parity operator on the new

lattice composed of the remaining entangled qubits originally comes from the emergent fermion

parity operator of a pink A face together with the emergent fermion parity operator of a blue B

face next to it. In this case, since all emergent fermionic modes of the ground state on the original

lattice are empty, the emergent fermion parity operator on the new lattice takes eigenvalue one

for the transformed ground state.

A single step of vertical entanglement renormalization is implemented by the subcircuit

CZf
2 ,y

shown in Fig. 3.21(a), which is the same as the subcircuit in Fig. 3.7. We can perform

analysis similar to horizontal entanglement renormalization. After vertical entanglement renor-

malization, we obtain a new set of stabilizer generators shown in Fig. 3.21(c) and computed by

recombining the results of the transformation of the old stabilizer generators in Fig. 3.22. The

new generators in Fig. 3.21(c) are red single-qubit Pauli operators stabilizing the states ∣0⟩ and

∣+⟩ of disentangled qubits between and below blue B faces and emergent fermion parity opera-

tors and flux measuring operators (colored in black) with respect to the new vertically elongated

lattice defined by the remaining entangled qubits. The disentangled qubits are represented by the
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Figure 3.19: (a) The circuit CZf
2 ,x

for a single step of horizontal entanglement renormalization,
which happens to be the same as CZ2,x in Fig. 3.5(a). The filled circles represent qubits (spins)
constituting the toric code model. (b,c) The state of the system after the circuit has been applied.
Unfilled circles are the qubits (spins) that have been disentangled by the circuit into ∣0⟩ and ∣+⟩
states, as indicated by the labels in (b). (c) shows the new stabilizer generators. The red single-
site Z and X generators stabilize the disentangled qubits, while the black generators stabilize
the pure Zf

2 lattice gauge theory defined on the new horizontally elongated square lattice. The
derivation of the new stabilizer generators is presented in Fig. 3.20.

unfilled circles in Fig. 3.21(b).
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Figure 3.20: Transformation of the stabilizer generators of the pure Zf
2 lattice gauge theory un-

der conjugation by the horizontal entanglement renormalization subcircuit CZf
2 ,x

in Fig. 3.19(a).
(a)(b) Transformation of the emergent fermion parity operators Wf . (c)(d) Transformation of
the flux measuring operators Fv. The new stabilizer group generated by the operators on the
right-hand sides of the subfigures is the same as the stabilizer group generated by the operators
in Fig. 3.19(c). The red Pauli operators in the subfigures are the red single-qubit stabilizer gener-
ators in Fig. 3.19(c) acting on the disentangled qubits.
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(b)

Figure 3.21: (a) The circuit CZf
2 ,y

for a single step of vertical entanglement renormalization,
which happens to be the same as CZ2,y in Fig. 3.7(a). The filled circles represent qubits (spins)
constituting the toric code model. (b,c) The state of the system after the circuit has been applied.
Unfilled circles are the qubits (spins) that have been disentangled by the circuit into ∣0⟩ and ∣+⟩
states, as indicated by the labels in (b). (c) shows the new stabilizer generators. The red single-
site Z and X generators stabilize the disentangled qubits, while the black generators stabilize the
pureZf

2 lattice gauge theory defined on the new vertically elongated square lattice. The derivation
of the new stabilizer generators is presented in Fig. 3.22.
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Figure 3.22: Transformation of the stabilizer generators of the pure Zf
2 lattice gauge theory un-

der conjugation by the vertical entanglement renormalization subcircuit CZf
2 ,y

in Fig. 3.21(a).
(a)(b) Transformation of the emergent fermion parity operators Wf . (c)(d) Transformation of
the flux measuring operators Fv. The new stabilizer group generated by the operators on the
right-hand sides of the subfigures is the same as the stabilizer group generated by the operators
in Fig. 3.21(c). The red Pauli operators in the subfigures are the red single-qubit stabilizer gener-
ators in Fig. 3.21(c) acting on the disentangled qubits.

If we alternately apply the subcircuits CZf
2 ,x

and CZf
2 ,y

at different length scales labeled by

s, we arrive at the scale-invariant entanglement renormalization circuit tower shown in Fig. 3.3.

However, it contains only the strictly-local circuit components Cs
Zf
2 ,x

and Cs
Zf
2 ,y

and still does not

have the quasi-local evolution and the auxiliary circuit components. The ground state of the

pure Zf
2 lattice gauge theory is a fixed-point wavefunction throughout the whole scale-invariant

entanglement renormalization procedure.

3.5.2 MERAQLE for the lattice Ising TQFT

So far, we have not harnessed the full power of the MERAQLE circuit as promised in

Sec. 3.1. We have only used either the conventional MERA layers involving only strictly local
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gates illustrated as Cs
Zf
2 ,x

(Cs
Zf
2 ,y

) for the toric code in Sec. 3.2.2 9 and the pure Zf
2 lattice gauge

theory in Sec. 3.5.1 or the quasi-local evolution circuit components illustrated as Csql, x (Csql, y) in

Fig. 3.3 for the entanglement renormalization of the lattice px+ ipy topological superconductor in

Sec. 3.3.2. We have not combined the concept of MERA and the concept of quasi-local evolution

yet. In addition, the models we have renormalized so far were either chiral but non-interacting

or interacting but non-chiral. Starting from this subsection, we are going to see the power of

MERAQLE circuits to entanglement-renormalize interacting chiral models.

In this subsection, we describe the MERAQLE circuit for the lattice Ising TQFT model

constructed in Sec. 3.4.3. We will formulate the subcircuit for a single step of horizontal en-

tanglement renormalization and the subcircuit for a single step of vertical entanglement renor-

malization separately. Our goal for a single step of horizontal entanglement renormalization of

the lattice Ising TQFT is shown in Fig. 3.23(a). We aim to construct a quantum circuit CIsing, x

such that, when we apply it to the ground state of the lattice Ising TQFT Hamiltonian HIsingTQFT

in Eq. (3.29) under the zero-flux condition Fv = 1, the subcircuit disentangles half of the spins,

effectively generating a horizontally coarse-grained lattice with the size of the unit cells doubled

horizontally. Furthermore, the state becomes the ground state of HIsingTQFT defined on the new

(elongated) square lattice under a new zero-flux condition. It means that we again have an in-

terpretation of emergent fermions defined on the faces of the new lattice in the ground state of

the lattice px + ipy topological superconductor. Our goal of a single step of vertical entanglement

renormalization is similarly shown in Fig. 3.23(b).

The central idea that we will use to realize this goal is that, for our lattice construction

of the Ising TQFT, we have the dual interpretation in terms of emergent fermions living on the

9Recall that CsZ2,x
= Cs

Zf
2 ,x

.
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Figure 3.23: We aim to (a) horizontally and (b) vertically entanglement renormalize the Ising
TQFT model. We want to design subcircuits CIsing, x and CIsing, y such that we effectively have
a new (elongated) square lattice with unit cells doubled in size in the horizontal direction and
the vertical direction, respectively. In the final state, the spins represented by unfilled circles
are disentangled spins in the ∣0⟩ or ∣+⟩ states. The remaining entangled spins of the final state
represented by filled circles form the edges of the new coarse-grained square lattice. In addition,
we want to have the initial and the final spin state having the interpretation of emergent fermions
in the lattice px + ipy topological superconductor state. The details of the subcircuit CIsing, x are
provided in Fig. 3.24. The details of the subcircuit CIsing, y are provided in Fig. 3.25.

faces and prepared in the lattice px + ipy topological superconducting state with the quantum Zf
2

gauge field background containing no flux. We will use as our inspiration the lessons learned in

Sec. 3.5.1 for the pure Zf
2 lattice gauge theory, which is the bosonization of a trivial insulator.

Specifically, if we can empty half of the emergent fermion modes, then we can disentangle half of

the constituent spins corresponding to those empty modes using the subcircuits CZf
2 ,x

and CZf
2 ,y

for

the pureZf
2 lattice gauge theory. This is expected because, intuitively, the area around the emptied
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Figure 3.24: The horizontal entanglement renormalization subcircuit CIsing, x is separated into
two circuit components CIsing, x = CZf

2 ,x
Cbosonizedpx+ipy ,x

. (a) The circuit component Cbosonizedpx+ipy ,x
based on

quasi-local evolution illustrated on the right of Fig. 3.2(a). It can be written as the bosonization
of the quantum circuit Cpx+ipy , x constructed in Sec. 3.3.2. The circuit component Cbosonizedpx+ipy ,x

takes
the emergent fermions from a px + ipy topological superconductor state on both the pink A faces
and the blue B faces to the px + ipy topological superconductor state on the pink A faces only,
leaving the blue B faces with empty emergent fermionic modes. (b) The circuit component
CZf

2 ,x
, i.e. the horizontal entanglement renormalization subcircuit CZf

2 ,x
described in Fig. 3.19.

Initially, the emergent fermionic modes on the blue B faces are empty and have fermion parity
+1. After we apply the circuit component CZf

2 ,x
, the bottom and the left spins of the B faces

become disentangled, as in Fig. 3.19(b). The disentangled spins are shown as unfilled circles. The
new lattice is defined by the remaining entangled qubits, represented by filled circles. Effectively,
we have larger faces horizontally. The state of the new emergent fermions on the new lattice will
be the ground state of the px + ipy topological superconductor.
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Figure 3.25: The vertical entanglement renormalization subcircuit CIsing, y is separated into two
circuit components CIsing, y = CZf

2 ,y
Cbosonizedpx+ipy ,y

. (a) The circuit component Cbosonizedpx+ipy ,y
based on quasi-

local evolution illustrated on the right of Fig. 3.2(a). It can be written as the bosonization of the
quantum circuit Cpx+ipy , y constructed in Sec. 3.3.2. The circuit component Cbosonizedpx+ipy , y

takes the
emergent fermions from a px + ipy topological superconductor state on both the pink A faces
and the blue B faces to the px + ipy topological superconductor state on the pink A faces only,
leaving blue B faces with empty emergent fermionic modes. (b) The circuit component CZf

2 ,y
,

i.e. the vertical entanglement renormalization subcircuit CZf
2 ,y

described in Fig. 3.21. Initially,
the emergent fermionic modes on the blue B faces are empty and have fermion parity +1. After
we apply the circuit CZf

2 ,y
, the bottom and the left spins of the blue B faces become disentangled,

as in Fig. 3.21(b). The disentangled spins are shown as unfilled circles. The new lattice is defined
by the remaining entangled qubits, represented by filled circles. Effectively, we have larger faces
vertically. The state of the new emergent fermions on the new lattice will be the ground state of
the px + ipy topological superconductor.
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fermionic modes locally behaves like the ground state of the pure Zf
2 lattice gauge theory. To be

mathematically more precise, recall that, from the calculations in Fig. 3.20(a) and Fig. 3.22(a),

we know that, intuitively, the emergent fermionic degrees of freedom in the empty modes of

the blue B faces can be shifted to the disentangled qubits in state ∣0⟩ on the left of the blue B

faces under CZf
2 ,x

or at the bottom of the blue B faces under CZf
2 ,y

. Furthermore, from the zero-

flux condition Fv = 1 with NE(v) being blue B faces and from the emptiness of the emergent

fermionic modes on the blue B faces, through the calculations in Fig. 3.20(a,c) (Fig. 3.22(a,c)),

we deduced that the qubits sitting at the bottom (on the left) of the blue B faces should be in the

∣+⟩ state after the circuit CZf
2 ,x

(CZf
2 ,y

). To achieve a similar goal for the lattice Ising TQFT model,

we here again introduce an AB sublattice structure to the emergent fermions on the faces of the

lattice Ising TQFT model. The sublattice structures for horizontal renormalization and vertical

renormalization are both shown on the left-hand sides of the subfigures in Fig. 3.23. We require

that the blue B faces here play the same role as the blue B faces in the pure Zf
2 lattice gauge

theory and want to disentangle the spins to the left and at the bottom of the blue B faces, as

claimed in Fig. 3.23. Therefore, we need to find a way to empty the emergent fermionic modes

on the blue B faces. However, the way to empty half of the fermionic modes from a lattice

px + ipy topological superconductor is nothing but the quasi-adiabatic evolution we introduced in

Sec. 3.3.2! Recall that the quasi-adiabatic evolution empties the blue B fermionic modes while

keeping the remaining modes in the lattice px + ipy topological superconducting state. The only

difference between Sec. 3.3.2 and the present section is that, in the former, the fermions are the

fundamental constituents, whereas in the latter they serve as the emergent degrees of freedom on

the faces. Thus, we need to adapt the quasi-adiabatic evolution from Sec. 3.3.2 to the spin system

studied here. To construct the corresponding spin circuit, we will use the bosonization duality,
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with the zero-flux condition Fv = 1 as a hard constraint on the spin side.

We first study the process that will horizontally entanglement-renormalize the emergent

px + ipy superconducting fermions. Here, we only want to work in the zero-flux sector Fv = 1

and change only the emergent fermion configuration, so, for our convenience, we temporarily

impose a hard zero-flux constraint on the Hilbert space. Since there exists a gapped adiabatic

process between the px + ipy superconductor Hamiltonians before and after the coarse-graining

process in Sec. 3.3.2, there should also be a corresponding gapped adiabatic process for spins

under the zero-flux constraint by choosing the interpolating spin Hamiltonian as the bosonization

of the interpolating fermionic Hamiltonian Hpx+ipy , x(λ) in Eq. (3.11). The bosonization duality

ensures that the energy spectra on both sides are the same. With this gapped adiabatic path, we are

able to construct the quasi-adiabatic quantum circuit that takes the ground state of the bosonized

px+ipy topological superconductor Hamiltonian, i.e.,HIsingTQFT in Eq. (3.29), to the ground state

of the bosonized Hamiltonian of the px + ipy superconductor with active fermionic hoppings and

pairings on every other site horizontally. The resulting state is nothing but the desired state with

Fv = 1 and an alternating pattern of pink A sites being in the px+ ipy topological superconducting

state and blueB sites representing empty emergent fermionic modes on the faces. (Note that here

we only entanglement-renormalize the emergent fermionic modes. The underlying spins are still

entangled.)

To be mathematically more precise, the adiabatic gapped path for spins with λ ∈ [0,1] is

described by the interpolating spin Hamiltonian

Hbosonized
px+ipy , x (λ) ≡ {Hpx+ipy , x(λ)}

bosonized
. (3.31)
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We define the quasi-adiabatic circuit corresponding to this gapped path of spins as Cbosonizedpx+ipy , x
with

the quasi-adiabatic continuation operator given by

Dbosonized
px+ipy , x (λ) ≡ −i∫

∞

−∞
dtF (Egapt) eiH

bosonized
px+ipy,x (λ)t ∂λH

bosonized
px+ipy , x (λ) e

−iHbosonized
px+ipy,x (λ)t. (3.32)

The quasi-adiabatic continuation operator is quasi-local in the sense of Fig. 3.2. From the

bosonization duality, the quasi-adiabatic circuit is just the bosonization of the unitary operator

Cpx+ipy , x discussed in Sec. 3.3.2 (with the layer number s superscript dropped):

Cbosonizedpx+ipy , x = {Cpx+ipy , x}
bosonized

. (3.33)

We constructed the circuit Cbosonizedpx+ipy , x
under the zero-flux constraint. However, as we men-

tioned before, the actual spin Hilbert space, composed of a tensor product of spins, does not

inherently have the zero-flux constraint 10. The constraint is a convenient tool for deriving the

desired circuit using the bosonization duality. One might ask whether the circuit constructed here

is not a unitary operator if the zero-flux constraint is lifted. In general, an operator being uni-

tary under a constraint does not necessarily imply that it remains unitary when the constraint is

lifted. However, in our case, this is still true. This is because the operator generating the circuit

described in Eq. (3.32) remains Hermitian even in the absence of the zero-flux constraint since

the bosonization mapping described in Fig. 3.16 preserves Hermiticity of operators.

Using a similar construction, we can obtain a quasi-adiabatic circuit Cbosonizedpx+ipy , y
for vertical

entanglement renormalization of the emergent px + ipy topological superconducting fermions

10In fact, the MERA subcircuit CZf
2 , x, which will be discussed in the following paragraphs, does not commute

with the zero-flux constraint. In fact, CZf
2 , x creates a new zero-flux constraint on the new coarse-grained square

lattice.
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by directly bosonizing the fermionic quasi-adiabatic unitary operator Cpx+ipy , y for entanglement

renormalization in the y direction in Sec. 3.3.2.

Experimentally, instead of using the quasi-adiabatic circuit, we can implement the adiabatic

evolution itself over a long but finite time period and incur an error. In that case, instead of

having the zero-flux constraint, we can add back the flux penalty Hamiltonian HF
penalty with a

strong enough flux energy parameter ∆Φ such that the vortices are gapped along the entire path

of interpolating Hamiltonians and Fv = 1 is satisfied for their ground states. At the same time, we

would like to keep ∆Φ small enough to be experimentally realizable 11.

As we claimed above, the situation of the unoccupancy of the blue B faces subsequent

to the application of Cbosonizedpx+ipy , x
(Cbosonizedpx+ipy , y

) is similar to blue B faces of the ground state of the

trivial fermionic insulator Htrivial insulator, which in turn is the state of the emergent fermions in

the pure Zf
2 lattice gauge theory described by HZf

2
. It is therefore tempting to apply the MERA

subcircuits CZf
2 ,x

and CZf
2 ,y

used for the pure Zf
2 lattice gauge theory in Sec. 3.5.1 as our next

step of the entanglement renormalization procedure to disentangle the qubits on the left and at

the bottom of the blue B faces. We now confirm that CZf
2 ,x

and CZf
2 ,y

are indeed the right circuits.

Notice that the emptiness of the blue B faces guarantees that the ground state is stabilized by

the emergent fermion parity operator Wf on the blue B faces. In addition, the ground state is

stabilized by all the flux measuring operators Fv: Fv = 1. Hence, we can use the transformation

of the stabilizer generators shown in Fig. 3.20(a,c,d) and Fig. 3.22(a,c,d)for the case of the pure

11In fact, even though we say that we need the flux penalty Hamiltonian HF
penalty and a vortex gap from a large

flux energy parameter ∆Φ for adiabatic evolution, they are not strictly necessary. Indeed, the interpolating Hamil-
tonian commutes with the flux measuring operator Fv and will therefore keep the quantum state in the zero flux
sector throughout the evolution, independently of whether we have a flux penalty Hamiltonian or not. However, for
experimental realizations, it might be hard to perfectly engineer a Hamiltonian commuting with the flux measuring
operators Fv . In such cases, the addition of the flux penalty Hamiltonian with a large flux energy parameter might
be helpful, as the vortex gap would ensure the stability of the adiabatic evolution to experimental imperfections.
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Zf
2 lattice gauge theory to deduce how the ground state transforms in the present case. Putting

together the results of the transformations in Fig. 3.20(a,c) and Fig. 3.22(a,c), we find that the

red single-qubit Pauli operators in Fig. 3.19(c) and Fig. 3.21(c) are again stabilizer generators in

the present case. These single-qubit Pauli operators require again that the qubits on the left and

at the bottom of the B faces are disentangled into the ∣0⟩ and ∣+⟩ states, as claimed in Fig. 3.23.

Here, the remaining entangled qubits form a new (elongated) square lattice with qubits defined

on the edges. By following the transformation of the flux measuring operators in Fig. 3.20(d)

and Fig. 3.22(d), we obtain new flux measuring operators defined on the new elongated square

lattice up to single-qubit Pauli operators colored in red. Since those single-qubit Pauli operators

are already stabilizer generators, we can safely remove them and conclude that the new flux

measuring operators are indeed stabilizer generators.

Having obtained, as a result of horizontal entanglement renormalization, a spin model for

the remaining spins defined on a new coarse-grained (elongated) square lattice, let us reinterpret

this model in the dual picture consisting of fermions coupled to a Zf
2 gauge field. We again

assign edge orientations to the new coarse-grained lattice system, where all horizontal edges are

oriented east, and all vertical edges are all oriented north. These edge orientation assignments are

shown in Fig. 3.26, where the emergent fermionic modes live on the new horizontally elongated

faces and the Zf
2 gauge variables live on the edges of the new horizontally elongated lattice. The

existence of the new flux-measuring operators as stabilizer generators indicates that the new state

satisfies the new zero-flux condition on the coarse-grained lattice, which allows us to define an

associated new bosonization duality between pure fermions and pure spins for the coarse-grained

lattice as shown in Fig. 3.27, provided that we impose the new zero-flux constraint Fv = 1 on

the spin side. The edge orientation assignments and the bosonization duality under the new
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Figure 3.26: The edge orientation assignments and the corresponding algebra isomorphism be-
tween (a) the theory of fermions coupled to a Zf

2 gauge field and (b) the theory of spins for the
new horizontally coarse-grained lattice. After the horizontal entanglement renormalization cir-
cuit component CZf

2 ,x
, some spins are disentangled, as shown in Fig. 3.23(a). We associate edge

orientation assignments with the new lattice edges formed by the remaining spins. Compared to
Fig. 3.12, the lattice is elongated horizontally. We intentionally put the operators on the horizon-
tal edges to the left of the midpoint to remember the original positions of the corresponding spins
on the old lattice before coarse-graining.

zero-flux constraint of the vertically coarse-grained square lattice can be drawn similarly. So,

what is the behavior of the fermions of the horizontally coarse-grained lattice in Fig. 3.26 or

Fig. 3.27 and the behavior of the fermions of the vertically coarse-grained lattice? Since our

goal is to have horizontal and vertical entanglement renormalization subcircuits with the lattice

Ising TQFT ground state as a fixed-point wavefunction, we hope that the emergent fermions

defined on the new faces of the horizontally or vertically coarse-grained lattice are still in the

lattice px + ipy topological superconducting state. In Appendix B.2, we show that this is indeed

the case. In fact, Appendix B.2 shows a stronger statement. There, we show that, with the AB
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Figure 3.27: Here we have a new bosonization duality between (a) the pure fermionic theory
and (b) the pure spin theory on the new horizontally coarse-grained (elongated) square lattice by
imposing a new zero-flux constraint Fv = 1 on the spin side. The fermions live on the horizontally
elongated faces of the coarse-grained square lattice, while the spins live on its edges.

sublattice structure on the faces of the original square lattice, whether horizontal or vertical, if

the emergent fermionic modes on the blue B faces are empty, and if the zero-flux condition

Fv = 1 is satisfied, the emergent fermion on a given elongated face of the new lattice will be

just the original emergent fermion on the pink A face of the old square lattice enclosed by that

elongated face. Effectively, we can say that the coarse-graining operation CZf
2 ,x
(CZf

2 ,y
) makes

the blue B faces disappear and elongates the pink A faces. Figuratively speaking, the pink A

faces “consume" the blue B faces 12. Since, before the application of CZf
2 ,x
(CZf

2 ,y
), the emergent

12We can also see this phenomenon via the following argument. Fig. 3.20(b) and Fig. 3.22(b) show how the
emergent fermion parity operators on the pink A faces transform under coarse-graining, while Fig. 3.20(a) and
Fig. 3.22(a) show the corresponding transformation for the blue B faces. We see that the emergent fermion parity
operator of a new elongated face f is equal to the product of transformed parity operators (i.e. the total parity
operator) on the old pink A face and the old blue B face within face f . Since the old emergent fermion parity of the
blue B face is even for the old ground state, the emergent fermion parity operator of the new face f corresponds to
the emergent fermion parity on the old pink A face.
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fermions on the pink A faces are in the lattice px+ ipy topological superconducting state, the final

emergent fermionic modes on the faces of the new elongated lattice are also in the lattice px + ipy

topological superconducting state.

To summarize, the subcircuit CIsing, x for a single step of horizontal entanglement renor-

malization of the lattice Ising TQFT model is composed of two circuit components, CIsing, x =

CZf
2 ,x
Cbosonizedpx+ipy ,x

, whereas the vertical counterpart CIsing, y is composed of CIsing, y = CZf
2 ,y
Cbosonizedpx+ipy ,y

.

The entanglement renormalization subcircuits are schematically shown in Fig. 3.24 and Fig. 3.25.

Roughly speaking, the reason why the subcircuits have such decompositions is that the bosonic

spin model HIsingTQFT is dual to superconducting fermions in the Zf
2 gauge field with no flux.

Thus, in hindsight, it is natural to have separate circuit components related to the fermions and to

the Zf
2 gauge field.

The whole MERAQLE circuit will be a repeated application of the circuits CIsing, x and

CIsing, y. We disentangle half of the spins each time when we apply either CIsing, x or CIsing, y. To

formalize this construction, we use s ∈ N as a label for the scale (more precisely, the logarithm of

the length scale) at which the system resides. Then the whole circuit can be written as

CIsing =∏
s∈N
(CsIsing, y CsIsing, x) .

Therefore, we obtain a scale-invariant entanglement renormalization circuit for the lattice Ising

TQFT system, which has intrinsic chiral topological order. The whole entanglement renormal-

ization circuit CIsing follows the structure shown in Fig. 3.3. The quasi-local evolution circuit

components Csql, x and Csql, y are Cbosonizedpx+ipy , x
and Cbosonizedpx+ipy , y

, respectively; the auxiliary circuit compo-

nents are trivial here, Csaux, x = Csaux, y = I .
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It is worth noting that, much like its dual px + ipy topological superconductor in Sec. 3.3,

the ground state of the lattice Ising TQFT Hamiltonian does not have a zero correlation length.

However, this ground state nevertheless serves as the fixed-point wavefunction of the MERAQLE

circuit we constructed. This is enabled by the quasi-locality of the MERAQLE circuit which

increases the range of correlations reduced by the lattice coarse-graining procedure.

3.5.3 MERAQLE for all the sixteenfold way chiral spin liquids

Having discussed entanglement renormalization of the lattice Ising TQFT as the simplest

demonstration of the power of MERA with quasi-local evolution to renormalize interacting chiral

topologically ordered states, we are now ready to present the MERAQLE circuits for all Kitaev’s

sixteenfold way chiral spin liquids introduced in Sec. 3.4.4.

Recall that Kitaev’s sixteenfold way chiral spin liquids can be constructed by bosonizing

a stack of trivial fermionic insulators and lattice px + ipy topological superconductors under the

zero-flux condition. Hence, the MERAQLE circuits for these chiral spin liquids will be gen-

eralizations of the MERAQLE circuit [Sec. 3.5.1] for the pure Zf
2 lattice gauge theory as the

bosonized trivial fermionic insulator and of the MERAQLE circuit [Sec. 3.5.2] for the lattice

Ising TQFT as the bosonized lattice px + ipy topological superconductor. Our goal, shown in

Fig. 3.28, is to realize single steps of entanglement renormalization of the ν-th chiral spin liquid

horizontally and vertically. Similar to Sec. 3.5.2, in order to ensure that the chiral spin liquid is a

fixed-point wavefunction, we want to find coarse-graining operations that disentangle half of the

spins and leave the remaining spins in the same chiral spin liquid state defined on a new elongated

square lattice. For the new elongated square lattice, we have a redefinition of how the spins are
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!ν, x

1’ 2’ 3’ 4’ 1’ 2’ 3’ 4’ 1’ 2’ 3’ 4’ 1’ 2’ 3’ 4’

5’ 6’ 7’ 8’ 5’ 6’ 7’ 8’ 5’ 6’ 7’ 8’ 5’ 6’ 7’ 8’
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5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
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!ν, y

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

(a) (b)

<latexit sha1_base64="IcLM5VTox0XmYwteOcSlpdqWYFw=">AAAB/nicbVDLSsNAFL3xWesrKq7cBIvgopREfHRZ6MZlBfuAJoTJdNIOnUzCzEQsoeCvuHGhiFu/w51/46TNQlsPDBzOuZd75gQJo1LZ9rexsrq2vrFZ2ipv7+zu7ZsHhx0ZpwKTNo5ZLHoBkoRRTtqKKkZ6iSAoChjpBuNm7ncfiJA05vdqkhAvQkNOQ4qR0pJvHrsRUiOMWNac+pnL06pbfZz6ZsWu2TNYy8QpSAUKtHzzyx3EOI0IV5ghKfuOnSgvQ0JRzMi07KaSJAiP0ZD0NeUoItLLZvGn1plWBlYYC/24smbq740MRVJOokBP5mHlopeL/3n9VIV1L6M8SRXheH4oTJmlYivvwhpQQbBiE00QFlRntfAICYSVbqysS3AWv7xMOhc157p2dXdZadSLOkpwAqdwDg7cQANuoQVtwJDBM7zCm/FkvBjvxsd8dMUodo7gD4zPH04dlbA=</latexit>C⌫, x
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Figure 3.28: Subfigure (a) shows a single step, Cν, x, of horizontal entanglement renormalization
of the ν-th Kitaev’s sixteenfold way chiral spin liquid. Subfigure (b) shows a single step, Cν, y,
of vertical entanglement renormalization of the ν-th Kitaev’s sixteenfold way chiral spin liquid.
After a single step of horizontal or vertical renormalization, half of the spins are disentangled into
states ∣0⟩ or ∣+⟩. The disentangled spins are represented by unfilled circles. After renormaliza-
tion, the faces of the square lattice are elongated horizontally or vertically and are defined by the
remaining entangled spins represented by the filled circles. The remaining spins forming the new
elongated square lattice are again in the same Kitaev’s sixteenfold way chiral spin liquid state.
The primed emergent fermion layer numbers mark emergent fermionic modes to be disentan-
gled and removed by the renormalization. We also use dimmer colors on primed faces to further
distinguish them from other (unprimed) faces within the same emergent fermion layer. The sub-
circuit Cν, x for horizontal entanglement renormalization is described in detail in Fig. 3.29, while
the subcircuit Cν, y for vertical entanglement renormalization is described in detail in Fig. 3.30.

associated with the edges such that the face lengths are doubled horizontally or vertically. For

the horizontally coarse-grained lattice, the dual picture of fermions coupled to a Zf
2 gauge field

is defined by the new duality mapping through the new edge orientation assignments depicted in

Fig. 3.26. The dual picture for vertically coarse-grained lattice is defined similarly. After hor-

izontal or vertical renormalization, the emergent fermions live on the newly defined elongated
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faces.

Let us now describe this procedure in more detail. As in Sec. 3.5.2, we start with the

observation that, if some of the emergent fermionic modes on the faces were empty, then some

of the spins on the edges adjacent to these fermionic modes would behave like the ground state

of the pure Zf
2 lattice gauge theory. This means that we can apply the quantum circuit CZf

2 ,x
or

CZf
2 ,y

, initially designed for the pure Zf
2 lattice gauge theory, to disentangle these spins. Hence,

we can directly apply circuits CZf
2 ,x

or CZf
2 ,y

to disentangle some of the spins bordering half of the

faces associated with trivial fermionic insulator layers. On the other hand, for fermionic modes

associated with each px+ipy topological superconductor layer, as in Sec. 3.5.2, we make use of the

quasi-adiabatic evolution circuit developed in Sec. 3.3.2 to get a renormalized state with half of

the emergent fermionic modes empty, at which point we can again disentangle half of the adjacent

spins. Therefore, as shown at the top of Fig. 3.28(a,b), we introduce a sublattice structure for each

layer of emergent fermions, including the layers with emergent trivial insulators. To avoid clutter

associated with A and B symbols, we instead use the prime symbol and dimmer colors (instead

of label B) to label the fermionic modes to be emptied and removed. We do this for all sixteen

fermionic layers, independently of whether a given layer is associated with a superconductor or

a trivial insulator.

We now work out more precisely the interpolating spin Hamiltonian for emptying half

of the fermionic modes associated with superconductor layers. We first consider the (quasi-

)adiabatic evolution for horizontal entanglement renormalization. As before, since we want to

work in the zero-flux sector, we impose the zero-flux condition Fv = 1 as a hard constraint on

the spin system. Adapting the notation in Sec. 3.4.4, we start by writing down an interpolating
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fermionic Hamiltonian for 16 layers of fermions:

Hνf , x(λ) =
ν

∑
i=1

Hi, px+ipy , x(λ) +
16

∑
i=ν+1

Hi, trivial insulator (3.34)

with λ ∈ [0,1]. For each fermion layer i = 1,⋯, ν, Hi, px+ipy , x(λ) is nothing but the original

Hpx+ipy , x(λ) in Eq. (3.11), where the A and B labels are now replaced by the absence and pres-

ence of the prime symbol, respectively. For the layers i = ν + 1,⋯,16 with trivial insulator

Hamiltonians, we also impose horizontally alternating patterns of fermionic modes labeled by

the absence and presence of the prime symbol. Therefore, we can express the trivial insulator

Hamiltonians as

Hi, trivial insulator = −∑
r

[(1 − 2c†
i, rci, r) + (1 − 2c

′†
i, rc

′
i, r)] . (3.35)

The HamiltonianHνf , x(λ) is periodic in r. For each r, we have a unit cell of 16 (number of layers)×

2 (withandwithoutprime symbols) = 32 fermionic sites. Notice that the trivial insulator part of

the Hamiltonian does not depend on the parameter λ. The gap of Hf
ν, x(λ) is guaranteed by the

gap of each individual term. For the initial state of ν layers of lattice px + ipy topological super-

conducting states and 16 − ν layers of trivial insulating states, after the adiabatic evolution under

Hνf , x(λ), the primed fermionic modes of the superconducting layers are emptied. Note that the

primed fermionic modes of the trivial insulating layers are empty throughout the whole adiabatic

evolution.

Under the zero-flux constraint, the interpolating spin Hamiltonian for the ν-th Kitaev’s
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sixteenfold way chiral spin liquid is then given by

Hbosonized
νf , x (λ) ≡ {Hνf , x(λ)}

bosonized
. (3.36)

The spin operator {Hνf , x(λ)}
bosonized

is the bosonization of the fermionic Hermitian operator

Hνf , x(λ) with respect to the square lattice shown in Fig. 3.29(a).

Similar to the adiabatic evolution for lattice Ising TQFT in Sec. 3.5.2, due to the bosoniza-

tion duality, the gap of the interpolating spin Hamiltonian is guaranteed by the existence of the

gap in the fermionic Hamiltonian Hνf , x(λ). As a consequence, if we were to implement the adi-

abatic evolution given by Hbosonized
νf , x

(λ), we would have emptied the emergent fermionic modes

on all the primed faces, which corresponds to setting emergent fermion parity operators on these

faces to Wf = 1.

Having derived the gapped Hamiltonian path, we can use Eqs. (3.12, 3.13) to write down

the quasi-adiabatic circuits on both the fermionic side and the spin side. The quasi-adiabatic cir-

cuit for the i-th layer of superconducting fermions Ci, px+ipy , x is generated by the quasi-adiabatic

continuation operator Di, px+ipy , x(λ) obtained by replacing H(λ) → Hi, px+ipy , x(λ) in Eq. (3.13).

Similarly, the quasi-adiabatic continuation operator on the spin side Dbosonized
νf , x

(λ) is defined by

replacingH(λ)→Hbosonized
νf , x

(λ) in Eq. (3.13). The corresponding quasi-adiabatic circuit, defined

as the time evolution under Dbosonized
νf , x

(λ) for λ from 0 to 1, is Cbosonized
νf , x

. Since the bosonizations

of the interpolating fermionic Hamiltonian for each of the 16 layers commute with each other

and with the zero-flux constraint, following an argument similar to the one from Eq. (3.31) to

Eq. (3.33) in Sec. 3.5.2, we can simplify the expression for Cbosonized
νf , x

by writing it in terms of the
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Cbosonized
⌫f , x

Figure 3.29: The horizontal entanglement renormalization subcircuit Cν, x for the ν-th Kitaev’s
sixteenfold way chiral spin liquid can be decomposed into three circuit components: Cν, x ≡
CZf

2 ,x
Cbosonizedν, shuffle, xCbosonizedνf , x

. Faces with dimmer colors and primed number labels indicate fermionic
modes decoupled or waiting to be decoupled from the rest of the emergent fermions. These
primed (and dimly colored) faces play a role similar to the role of blue B faces in Fig. 3.23. (a)
The circuit component Cbosonized

νf , x
. The bosonization of a fermionic quantum circuit composed

of quasi-adiabatic circuits (constructed in Sec. 3.3.2) for ν layers of lattice px + ipy topological
superconductors to renormalize them horizontally. After the circuit component Cbosonized

νf , x
, all the

emergent fermionic modes on the primed faces are empty and therefore disentangled from the
rest of the emergent fermionic system. The circuit is quasi-local in the sense of Fig. 3.2. (b)
The circuit component Cν, shuffle, x. We perform a series of {SWAPfi, j}

bosonized
gates to shuffle

the emergent fermionic degrees of freedom. This circuit component is independent of ν. (d)
The circuit component CZf

2 ,x
. This strictly-local circuit is the same as the circuit in Fig. 3.5 and

Fig. 3.19. The disentangled spins are drawn as unfilled circles.

fermionic quasi-adiabatic circuits Ci, px+ipy , x for the different fermion layers labeled by i:

Cbosonizedνf , x =
ν

∏
i=1

{Ci, px+ipy , x}
bosonized

,
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where the ordering of the product does not matter since all the factors commute. Because we

flattened sixteen layers of fermions into a single square lattice, the bosonized unitary operator

{Ci, px+ipy , x}
bosonized

involves Wilson lines that cross other colors (i.e. layers) to connect neigh-

boring faces of the same color (i.e. layer). The circuit Cbosonized
νf , x

is schematically illustrated in

Fig. 3.29(a). From Eq. (3.5.3), we see that Cbosonized
νf , x

is quasi-local in the sense of Fig. 3.2. As in

Sec. 3.5.2, notice that the zero-flux constraint commutes with all spin Hamiltonians obtained by

bosonizing fermionic Hamiltonians. This means that the spin Hamiltonians we have derived and

the resulting renormalization circuits are independent of the presence of the constraint. Topolog-

ically, after the application of the quasi-adiabatic circuit, the spin system without the constraint is

still in the same Kitaev’s sixteenfold way spin liquid phase but with additional emergent fermions

in the vacuum state.

The interpolating spin Hamiltonian Hbosonized
νf , y

(λ) and the quasi-adiabatic circuit Cbosonized
νf , y

in the vertical direction can be constructed in the same way. The circuit Cbosonized
νf , y

is schematically

shown in Fig. 3.30(a).

We are almost ready to apply CZf
2 ,x

or CZf
2 ,y

to disentangle half of the spins. However,

looking more closely at the entanglement structure that CZf
2 ,x

or CZf
2 ,y

can renormalize—and by

following the corresponding stabilizer transformations in Fig. 3.20(a,c,d) and Fig. 3.22(a,c,d) as

well as the spin disentangling arguments in Sec. 3.5.1 for the pure Zf
2 lattice gauge theory and

Sec. 3.5.2 for the lattice Ising TQFT—we realize that we need to first prepare an entanglement

pattern that has an empty emergent fermionic modes on every other face horizontally or vertically.

Making the primed sites empty by applying Cbosonized
νf , x

and Cbosonized
νf , y

does not produce such an

entanglement structure. The solution is to shuffle the emergent fermionic modes after performing

the quasi-adiabatic circuits. As shown in Fig. 3.29(b) (Fig. 3.30(b)), we want to shuffle the
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!Zf2, y
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9’ 10’ 11’ 12’ 9’ 10’ 11’ 12’ 9’ 10’ 11’ 12’ 9’ 10’ 11’ 12’

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12
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5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

0 0 00 0 0 0 0
+ + ++ + + + +

0 0 00 0 0 0 0
+ + ++ + + + + +

= = CNOT
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Cbosonized
⌫f , y

Figure 3.30: The vertical entanglement renormalization subcircuit Cν, y for the ν-th Kitaev’s
sixteenfold way chiral spin liquid can be decomposed into three circuit components: Cν, y ≡
CZf

2 ,y
Cbosonizedν, shuffle, yCbosonizedνf , y

. Faces with dimmer colors and primed number labels indicate fermionic
modes decoupled or waiting to be decoupled from the rest of the emergent fermions. These
primed (and dimly colored) faces play a role similar to the role of blue B faces in Fig. 3.23. (a)
The circuit component Cbosonized

νf , y
. The bosonization of a fermionic quantum circuit composed

of quasi-adiabatic circuits (constructed in Sec. 3.3.2) for ν layers of lattice px + ipy topological
superconductors to renormalize them vertically. After the circuit component Cbosonized

νf , y
, all the

emergent fermionic modes on the primed faces are empty and therefore disentangled from the
rest of the emergent fermionic system. The circuit is quasi-local in the sense of Fig. 3.2. (b)
The circuit component Cν, shuffle, y. We perform a series of {SWAPfi, j}

bosonized
gates to shuffle the

emergent fermionic degrees of freedom. This circuit component is independent of ν. (d) The cir-
cuit component CZf

2 ,y
. This strictly-local circuit is the same as the circuit in Fig. 3.7 and Fig. 3.21.

The disentangled spins are drawn as unfilled circles.

modes such that we get an alternating pattern of unprime-prime columns (rows) for horizontal

(vertical) entanglement renormalization. In addition, we require that primed faces immediately
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to the right of (above) to unprimed faces should be in the same emergent layers for horizontal

(vertical) entanglement renormalization. By doing so, we arrive at the desired emergent empty

mode structure on every other horizontal or vertical face.

To realize the shuffling operation Cbosonizedν, shuffle, x, we first note that, if we want to swap two

fermionic labeled by i and j, we can use the following fermionic swap gate [166–168]:

SWAPfi, j = 1 + c
†
i cj + c

†
jci − c

†
i ci − c

†
jcj.

The fermionic swap gate is both unitary and Hermitian. It satisfies the property that

SWAPfi, j ci SWAPfi, j = cj,

SWAPfi, j cj SWAPfi, j = ci. (3.37)

With this gate applied multiple times for different pairs of fermion sites, we can achieve an

arbitrary permutation of the fermionic degrees of freedom. However, the fermions in our case are

emergent, so we have to bosonize the swap gates {SWAPfi, j}
bosonized

. It can be shown that the

spin operator {SWAPfi, j}
bosonized

is both unitary and hermitian regardless of the presence of the

zero-flux constraint Fv = 1.

We now use the {SWAPfi, j}
bosonized

gates constructed above to shuffle the fermionic de-

grees of freedom. As we have already mentioned above, the horizontal Cbosonizedν, shuffle, x and ver-

tical Cbosonizedν, shuffle, y shuffling operations for the emergent fermions are shown in Fig. 3.29(b) and

Fig. 3.30(b), respectively. The shuffling operation puts next to each other the primed and un-

primed faces belonging to the same fermionic layer i and the same enlarged unit cell r.
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Now we can apply CZf
2 ,x

and CZf
2 ,y

. We again use the stabilizer transformation shown in

Fig. 3.20(a,c,d) and Fig. 3.22(a,c,d). From theWf = 1 condition on the primed faces and the zero-

flux condition on every vertex, we see that half of the spins disentangle, as shown by the unfilled

circles in the bottom plots of Fig. 3.29(c) and Fig. 3.30(c). This achieves our goal indicated in

the bottom plots of Fig. 3.28. Roughly speaking, the empty fermionic modes on the primed faces

are shifted to the qubits labeled by unfilled circles and red state labels 0 since the fermion parity

operators Wf are transformed into single-qubit Pauli-Z operators on these qubits under CZf
2 ,x

and CZf
2 ,y

. In addition, the transformation of the zero-flux condition Fv = 1, with NE(v) being

a primed face, together with the single-qubit Pauli-Z operators, leads to single-qubit Pauli-X

operators on the qubits at the bottom of primed faces.

However, we here encounter a problem similar to the one in the previous subsection. It

is not obvious whether the remaining entangled spins on the new lattice are still in the ν-th

Kitaev’s sixteenfold way chiral spin liquid after CZf
2 ,x

or CZf
2 ,y

. Note that we can make edge

orientation assignments, like the ones shown in Fig. 3.26, for the new elongated square lattice

for the purpose of dualizing the spin theory to a theory of fermions coupled to a Zf
2 gauge field.

Even though the dual gauge flux is zero everywhere (as can be seen from the transformation

of stabilizer generators), the dual fermions might not correspond to ν layers of lattice px + ipy

topological superconductors and 16 − ν layers of trivial insulators. Once again, this issue is

addressed in Appendix B.2. There, we show that, with the alternating pattern of primed faces

being in the emergent empty modes, under the circuit CZf
2 ,x

and CZf
2 ,y

, the primed faces effectively

disappear, while the unprimed faces become larger by consuming the original space occupied by

the primed faces. This is also reflected in Fig. 3.29(c) and Fig. 3.30(c). Since, before CZf
2 ,x

and
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CZf
2 ,y

, the unprimed faces are in the ν-th Kitaev’s sixteenfold way chiral spin liquid following

Cbosonized
νf , x

and Cbosonized
νf , y

, and since the shuffling operations Cbosonizedν, shuffle, x and Cbosonizedν, shuffle, y respect this

structure, we can conclude that the final state is indeed the ν-th Kitaev’s sixteenfold way chiral

spin liquid. Hence, the subcircuit for a single step of horizontal entanglement renormalization of

the ν-th Kitaev’s sixteenfold way chiral spin liquid is Cν, x ≡ CZf
2 ,x
Cbosonizedν, shuffle, xCbosonizedνf , x

. Similarly,

the vertical entanglement renormalization subcircuit is Cν, y ≡ CZf
2 ,y
Cbosonizedν, shuffle, yCbosonizedνf , y

.

Finally, we can write down the entire scale-invariant entanglement renormalization circuit.

It consists of successive applications of the same quantum subcircuits Cν, x and Cν, y but at different

length scales. If we use an additional superscript s ∈ N to label the scale at which those subcircuits

operate, the full circuit is

Cν =∏
s∈N
(Csν, y Csν, x) .

The ν-th Kitaev’s sixteenfold way chiral spin liquid is a fixed-point wavefunction of this circuit.

The application of a single layer of the MERAQLE circuit (Csν, x Csν, y) disentangles 3/4 of the

original spins and leaves the remaining 1/4 of the spins in the same ν-th Kitaev’s sixteenfold way

chiral spin liquid but on a lattice with the unit cell length twice the size of the original one. The

circuit has the structure displayed in Fig. 3.3: the quasi-local evolution circuit component Csql, x

is Cbosonized
νf , x

; the auxiliary circuit component Csaux, x is the shuffling circuit Cbosonizedν, shuffle, x consisting of

strictly local gates {SWAPfi, j}
bosonized

; the circuit component Cs
Zf
2 ,x

is the strictly-local subcircuit

CZf
2 ,x

for the pure Zf
2 lattice gauge theory. We can see the corresponding structure for Csql, y, Csaux, y,

and Cs
Zf
2 ,y

in the vertical direction as well. Here, we finally see the full power of the MERAQLE

framework for chiral spin liquids with nonzero finite correlation lengths. Due to its quasi-local

evolution circuit components, we circumvent the correlation-length-based no-go argument for
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conventional MERA circuits.

3.6 Conclusions

In this work, we solved the problem of finding scale-invariant entanglement renormaliza-

tion circuits for interacting chiral topological states. We presented a new type of quantum circuit

called MERAQLE to renormalize the entanglement structure of several chiral spin liquids be-

longing to Kitaev’s sixteenfold way classification. Even though the chiral topological states we

considered have nonzero finite correlation lengths and thus cannot be fixed-point wavefunctions

of conventional scale-invariant MERA circuits, by inserting continuous time evolutions gener-

ated by time-dependent quasi-local Hamiltonians into the skeletons of conventional MERA cir-

cuits, we are able to overcome this issue. The reason is that quasi-local evolution can generate

correlations between distant sites, and the conventional wisdom of correlation length reduction

ℓ′ = ℓ/b, b > 1 for each layer of entanglement renormalization with strictly-local discrete gates no

longer applies here. In other words, coarse-graining operations involving quasi-local evolutions

are capable of preserving correlation lengths. It is interesting to see that the distinction between

a quantum circuit based on strictly-local gates and one also equipped with quasi-local evolutions

can be profound. Our analysis demonstrates that the locality constraint of a quantum circuit can

be subtle, and requiring a circuit to respect strict locality or quasi-locality could have a significant

difference.

We can also rephrase our result in the quantum computing language. Recall that we can de-

fine a quantum complexity class for a set of tasks that can be accomplished with access to a set of

quantum operations and a certain amount of computational resources [15,169]. The tasks we care
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about here are preparing large-scale entangled quantum states [170–173] by incorporating fresh

ancillary qubits under the condition that the states must be fixed-point wavefunctions throughout

certain scale-invariant procedures. Therefore, in this terminology, if we define locality with re-

spect to the (coarse-grained) lattice of each layer, then we conclude that our result separates the

complexity class with access to strictly local quantum gates and quasi-local Hamiltonians from

the complexity class with access to strictly local quantum gates only, provided that every layer

of the scale-invariant procedures has a constant depth. This is because preparing sixteenfold way

chiral spin liquids can not be done with constant depth in each layer solely using the latter set of

quantum operations.

Our result also offers a new perspective on chiral topological order. Chiral topologically

ordered states are interesting since they have different topological properties as compared to non-

chiral topologically ordered states. For example, chiral topologically ordered states can have

framing anomalies [174] and gapless boundary modes [156]. Also, because of these features,

when compared to non-chiral topologically ordered states, we so far do not have many analytical

tools to study the entanglement structures of chiral topologically ordered states on lattices [175].

Our analytical work of constructing exact state preparation quantum circuits adds an important

cornerstone to the study of quantum many-body behavior of chiral topological order. It is worth

mentioning a related demonstration of the existence of locally-commuting parent Hamiltonians

for chiral U(1) symmetry-protected topological states (no anyons) using infinite-dimensional

on-site Hilbert spaces [176], which evades the no-go theorem in Ref. [138]. In comparison with

their result, our MERAQLE circuits give fixed-point wavefunctions for intrinsic chiral topological

states with a finite-dimensional Hilbert space on each site.

In this work, we focused on constructing quantum circuits for states within Kitaev’s six-
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teenfold way classification on square lattices, which is in contrast with other circuit constructions

involving also mid-circuit measurements and feedback [177]. While we focused on the case of a

square lattice, we expect our approach to be immediately generalizable to other lattices, including

the honeycomb lattice [6,163,164,178–180]. It is an open question whether we can use the MER-

AQLE framework to produce a chiral topological state outside the sixteenfold way classification.

With an eye towards topological quantum computing, it would be useful to have entanglement

renormalization circuits for chiral models with the ability to perform braiding-based universal

quantum computation, such as many Read-Rezayi fractional quantum Hall states [181–183]. On

the practical side, it is also interesting to develop implementations of our scheme in the Noisy

Intermediate-Scale Quantum (NISQ) era [32] for preparing chiral topological states in synthetic

quantum matter, where non-chiral Z2 spin liquid states have already been prepared using super-

conducting qubit quantum processors [30] and Rydberg atom arrays [27, 28]. We leave these

questions to our future work.
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Appendix A: Appendices Associated with Chapter 2

In this appendix, we provide details on scale invariance as well as the experimental realiza-

tion discussed in Chapter 2. In Section A.1, we show that the wavefunction ∣Ψ⟩ in Eq. (2.4) in the

main text remains scale-invariant under our cMERA quantum circuit in the Schrödinger picture.

In Section A.2, we show how to engineer a synthetic selection rule between dressed states in the

absence of any good quantum number. With that technique in mind, we show a scheme to realize

the cMERA circuit in Section A.3. After that, in Section A.4, we provide one way to prepare the

initial state for the cMERA circuit by using spatial light modulators [184, 185].

A.1 Scale Invariance of the Wavefunction in the Schrödinger picture

In this section, we demonstrate explicitly that the wavefunction ∣Ψ⟩ described by Eq. (2.4)

in the main text is actually scale-invariant under the cMERA quantum circuit in the Schrödinger

picture. Notice that the wavefunction can also be defined as the wavefunction satisfying

(ukψ†
2(k) − vkψ

†
1(k)) ∣Ψ⟩ = 0, ∀k.
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Under a small time δu, the transformed wavefunction e−i δu(L+K) ∣Ψ⟩ is governed by the equation

e−i δu(L+K) (ukψ†
2(k) − vkψ

†
1(k)) e+i δu(L+K)(e−i δu(L+K) ∣Ψ⟩ ) = 0, ∀k.

Note that

e−i δu(L+K) (ukψ†
2(k) − vkψ

†
1(k)) e+i δu(L+K)

≈ (ukψ†
2(k) − vkψ

†
1(k)) − i δu [L +K,ukψ

†
2(k) − vkψ

†
1(k)]

= (ukψ†
2(k) − vkψ

†
1(k)) − δu[uk (1 + k ⋅ ∇k)ψ†

2(k) − vk (1 + k ⋅ ∇k)ψ†
1(k)

− (g(k)ukψ†
1(k) − g∗(k) vkψ

†
2(k))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=k⋅∇kukψ

†
2(k)−k⋅∇kvkψ

†
1(k)

]

≈ e−δu (uke−δuψ†
2(ke−δu) − vke−δuψ

†
1(ke−δu)) . (A.1)

Therefore, we can see that Eq. (A.1) is nothing but Eq. (A.1) after a change of variable k→ k e−δu.

In other words, e−i δu(L+K) ∣Ψ⟩ = ∣Ψ⟩.

A.2 Synthetic Selection Rules

In this section, we introduce a trick that will be useful for engineering the disentangler in a

real atomic system. Suppose that we have a three-level system composed of states ∣s1⟩, ∣s2⟩, and

∣g⟩. In the presence of an on-resonance driving with Rabi frequency Ω between bare states ∣s1⟩

and ∣s2⟩, two dressed states ∣d1⟩ and ∣d2⟩ are formed. We are going to show that by fine-tuning the

Rabi frequencies χ1 and χ2, we can generate a synthetic selection rule from state ∣g⟩ to the two

dressed states ∣d1⟩ and ∣d2⟩, e.g., ∣g⟩ → ∣d2⟩ is allowed while ∣g⟩ → ∣d1⟩ is forbidden. (Once we
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prove this, the converse case where ∣g⟩ → ∣d1⟩ is allowed and ∣g⟩ → ∣d2⟩ is forbidden is a trivial

generalization.) We consider a driving Hamiltonian, which under rotating wave approximation is

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 χ∗1e
i(ω1−Ω+δ)t χ∗2e

i(ω2−Ω+δ)t

χ1e−i(ω1−Ω+δ)t ω1 Ωe−i(ω1−ω2)t

χ2e−i(ω2−Ω+δ)t Ωei(ω1−ω2)t ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The order of the columns (rows) is ∣g⟩, ∣s1⟩, ∣s2⟩. We have assumed that ∣ω1 − ω2∣≫ Ω, allowing

us to neglect some transitions that are far off-resonant. The level diagram is illustrated in FIG.

A.1.

Going to the rotating frame defined by the unitary matrix

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 e−i(ω1−ω2)t 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

we obtain the effective Hamiltonian

U †hU − i∂tU †U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 χ∗1e
i(ω2−Ω+δ)t χ∗2e

i(ω2−Ω+δ)t

χ1e−i(ω2−Ω+δ)t ω2 Ω

χ2e−i(ω2−Ω+δ)t Ω ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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After diagonalizing the 2 × 2 block on the bottom right, we obtain the following Hamiltonian:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1√
2
(χ∗1 + χ∗2)ei(ω2−Ω+δ)t 1√

2
(χ∗1 − χ∗2)ei(ω2−Ω+δ)t

1√
2
(χ1 + χ2)e−i(ω2−Ω+δ)t ω2 +Ω 0

1√
2
(χ1 − χ2)e−i(ω2−Ω+δ)t 0 ω2 −Ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We denote the dressed state with energy ω2 + Ω as ∣d1⟩, and the dressed state with energy

ω2 − Ω as ∣d2⟩. We can see that if we fine-tune χ1 = −χ2, we synthesize a selection rule where

only the transition between ∣d2⟩ and ∣g⟩ is allowed. The synthetic Rabi frequency is then
√
2χ1.

This synthetic selection rule can be understood by considering two separate rotating frames

with respect to states ∣s1⟩ and ∣s2⟩, as shown in FIG. A.1. In each rotating frame, we have dressed

states ∣d1⟩ and ∣d2⟩. We can couple ∣g⟩ to dressed states either by driving ∣g⟩ to dressed states in

the ∣s1⟩ rotating frame or in the ∣s2⟩ rotating frame. By creating interference between the two

channels, we obtain a synthetic selection rule.

A.3 The Continuous MERA Circuit Engineering

In this section, we show that by using the scheme shown in FIG. A.2(b), we can engineer

the disentangler in the interaction picture. Here, we choose the two hyperfine ground states of

171Yb shown in FIG. A.3 as our spinor basis of the Chern insulator and effectively couple them

to some dressed excited states by two pairs of driving fields. The meaning of “dressed” excited

states will become clear shortly. Additionally, the dressed excited states are coupled by spin-

orbit interaction, while transitions ∣g1,k⟩ ←→ ∣e2,k⟩ and ∣g2,k⟩ ←→ ∣e1,k⟩ are forbidden. In

order to implement this idea in neutral 171Yb atoms, we need to use techniques introduced in
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Figure A.1: A toy model of synthetic selection rules. Bare states ∣s1⟩ and ∣s2⟩ are driven by a
field with Rabi frequency Ω, whereby two dressed states ∣d1⟩ and ∣d2⟩ are created. In view of the
rotating frame, the dressed states are linear combinations of bare states. As a result, they do not
have good quantum numbers to constitute a selection rule when coupling to another state, say ∣g⟩.
A synthetic selection rule can be generated through applying two driving fields from ∣g⟩ to ∣s1⟩
and ∣s2⟩ with fine-tuned Rabi frequencies χ1 and χ2, respectively. For example, we can forbid
the transition from ∣g⟩ to ∣d1⟩ by choosing χ1 = −χ2.
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Figure A.2: Disentangler engineering. (a) A magnetic field is applied to induce hyperfine split-
tings. The excited states are coupled by Raman beams (colored in blue) to generate an effective
spin-orbit interaction. They are chosen from the hyperfine manifolds 3P2 F = 5/2 and 3P0

F = 1/2, which are long-lived to circumvent dissipation issues. Their ultra-narrow linewidths are
on the order of tens of millihertz [1–5]. Additionally, we also have two sets of multiple lasers,
colored in light and dark pink, coupling the ground states to the excited states to engineer the
disentangler of our cMERA by creating synthetic selection rules. (b) The effective couplings
between ground states and the dressed excited states are generated from the scheme shown in
(a). We ignore a third dressed state since it is far off-resonant. Now we effectively create two
dressed excited states coupled by spin-orbit interaction, which are coupled to the ground states
by two pairs of drivings colored in light and dark pink. The synthetic selection rules forbid
∣g1,k⟩ ←→ ∣e2,k⟩ and ∣g2,k⟩ ←→ ∣e1,k⟩. The effective Rabi frequencies and detunings for two
pairs of effective drivings are labeled by unprimed and primed notation. The band structures are
ignored in this picture, so by detunings we mean the detunings at k = 0. The light and dark purple
arrows on the bottom right in (a) and (b) both represent lasers used to cancel unwanted AC Stark
shifts by coupling the ground states to some negative curvature bands of some excited state, e.g.,
an unused excited state in the 3P2 F = 5/2 hyperfine manifold.
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Figure A.3: Energy level diagram of neutral atom 171Yb. The hyperfine structure is shown. We
employ the bottom two ground states as our spinor basis of the Chern insulator.

Refs. [93, 94] and Section A.2. To create states coupled by spin-orbit coupling, we will utilize

the method discussed in Refs. [93,94]. However, the dressed states created by that scheme do not

have good quantum numbers to enforce selection rules. Therefore, we use the technique outlined

in Section A.2 to create a synthetic selection rule. In this part of the Supplemental Material, we

show how to combine those techniques consistently in neutral 171Yb.

First, we show how FIG. A.2(b) arises from FIG. A.2(a), inducing the disentangler inter-

action. We first consider the case with the set of lasers colored in dark pink in FIG. A.2(a) with

additional Raman lasers coupling the bare excited states. This will give rise to the effective un-

primed pair of drivings in FIG. A.2(b). We will find that this scheme generates one term in our

disentangler with H (k) described by Eq. (2.10) in the main text. Therefore, to produce another

term, we will use another set of lasers with different parameters, which will effectively induce
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the primed pair of drivings in FIG. A.2(b).

We assume that states ∣g1⟩ and ∣g2⟩ have flat bands, whereas the chosen bare excited states

are weakly trapped. In the continuum, low-energy limit, atoms in the bare excited states can be

described by non-relativistic particles with mass M . After appropriate Raman transitions for the

bare excited states, we obtain the effective Hamiltonian in the rotating frame of the basis ∣g1⟩,

∣g2⟩, ∣ebare,1⟩, ∣ebare,2⟩, and ∣ebare,3⟩ under the rotating wave approximation:

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 χ∗1,1e
i∆t χ∗1,2e

i∆t χ∗1,3e
i∆t

0 0 χ∗2,1e
i∆t χ∗2,2e

i∆t χ∗2,3e
i∆t

χ1,1e−i∆t χ2,1e−i∆t
(k+k1)

2

2M Ωeiϕ1,2 Ωe−iϕ3,1

χ1,2e−i∆t χ2,2e−i∆t Ωe−iϕ1,2 (k+k2)
2

2M Ωeiϕ2,3

χ1,3e−i∆t χ2,3e−i∆t Ωeiϕ3,1 Ωe−iϕ2,3 (k+k3)
2

2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The order of the columns is ∣g1,k⟩, ∣g2,k⟩ ∣ebare,1,k + k1⟩, ∣ebare,2,k + k2⟩, and ∣ebare,3,k + k3⟩.

The notation ∆ is the common detuning of all the lasers coupling the two ground states to the

excited states, whereas χi,j represents the Rabi frequencies of those lasers. We define the detuning

at the zero momentum energy of the bare excited state. Here, k1, k2, and k3 are subject to the

condition ∣k1∣ = ∣k2∣ = ∣k3∣ = kSOC, k1+k2+k3 = 0, and kj = kSOC[cos(2πj/3)ex+sin(2πj/3)ey].
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We apply the following unitaries to conjugate the single body Hamiltonian

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 e−i2π/3/
√
3 e−i4π/3/

√
3 1/

√
3

0 0 e−i4π/3/
√
3 e−i8π/3/

√
3 1/

√
3

0 0 s1/
√
3 1/

√
3 1/

√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 ei(ϕ1,2+ϕ2,3+ϕ3,1)/3 0 0

0 0 0 ei(−ϕ1,2+2ϕ2,3+2ϕ3,1)/3 0

0 0 0 0 eiϕ3,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and assume the following to obtain a synthetic selection rule:

χ1,2 = e2πi/3e−i (2ϕ1,2−ϕ2,3−ϕ3,1)/3χ1,1

χ1,3 = e−2πi/3e−i (ϕ1,2+ϕ2,3−2ϕ3,1)/3χ1,1

χ2,1 = e2πi/3ei (2ϕ1,2−ϕ2,3−ϕ3,1)/3χ2,2

χ2,3 = e−2πi/3ei (ϕ1,2−2ϕ2,3+ϕ3,1)/3χ2,2. (A.2)
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The Hamiltonian becomes

(U ′U)†hU ′U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 Ω∗1e
i∆t 0 0

0 0 0 Ω∗2e
i∆t 0

Ω1e−i∆t 0
k2+k2SOC

2M + 2Ωcos(2π3 − ϕ)
kSOC

M (kx − iky)
kSOC

M (kx + iky)

0 Ω2e−i∆t
kSOC

M (kx + iky)
k2+k2SOC

2M + 2Ωcos(4π3 − ϕ)
kSOC

M (kx − iky)

0 0 kSOC

M (kx − iky)
kSOC

M (kx + iky)
k2+k2SOC

2M + 2Ωcos(ϕ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(A.3)

where Ω1 ≡ −
√
3e−iπ/3e−i(ϕ1,2+ϕ2,3+ϕ3,1)/3χ1,1, Ω2 ≡ −

√
3e−iπ/3ei(ϕ1,2−2ϕ2,3−2ϕ3,1)/3χ2,2, and ϕ ≡

(ϕ1,2 + ϕ2,3 + ϕ3,1)/3. The order of the columns is ∣g1,k⟩, ∣g2,k⟩, ∣e1,k⟩, ∣e2,k⟩, and ∣e3,k⟩.

States ∣e1,k⟩, ∣e2,k⟩, ∣e3,k⟩ are dressed excited states which are linear combinations of the bare

excited states ∣ebare,1,k + k1⟩, ∣ebare,2,k + k2⟩, and ∣ebare,3,k + k3⟩. By adiabatically eliminating

the dressed excited state representing the third column (row) to the zeroth order and expanding ϕ

to the first order, we obtain the effective Hamiltonian

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 Ω∗1e
i∆t 0

0 0 0 Ω∗2e
i∆t

Ω1e−i∆t 0 k2

2M +ESOC +
√
3Ωϕ kSOC

M (kx − iky)

0 Ω2e−i∆t
kSOC

M (kx + iky)
k2

2M +ESOC −
√
3Ωϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (A.4)

where ESOC ≡ k2SOC/2M −Ω. The order of the columns is ∣g1,k⟩, ∣g2,k⟩, ∣e1,k⟩, and ∣e2,k⟩. By

inspecting the matrix elements, one can see that a spin-orbit interaction and a synthetic selection
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rule shown in FIG. A.2(b) have been consistently generated as we claimed.

Now, we are going to show that with this Hamiltonian, we can almost generate the dis-

entangler. First, we go to a frame in which ∣e1,k⟩ and ∣e2,k⟩ rotate with frequency ∆. The

Hamiltonian becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 Ω∗1 0

0 0 0 Ω∗2

Ω1 0 k2

2M +ESOC −∆ +
√
3Ωϕ kSOC

M (kx − iky)

0 Ω2
kSOC

M (kx + iky)
k2

2M +ESOC −∆ −
√
3Ωϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

For the sake of later convenience, we denote ∆1 ≡ ESOC−∆+
√
3Ωϕ and ∆2 ≡ ESOC−∆−

√
3Ωϕ:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 Ω∗1 0

0 0 0 Ω∗2

Ω1 0 ∆1 + k2/2M kSOC

M (kx − iky)

0 Ω2
kSOC

M (kx + iky) ∆2 + k2/2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A.5)

We can see that ∆1 and ∆2 correspond to the effective detunings at k = 0. Define α = kSOC/M

and k, θk such that k cos θk = kx and k sin θk = ky to simplify our calculations. Notice that we

have chosen a different sign convention of the detunings ∆1 and ∆2 from the normal convention.

We will assume that ∆1,∆2 > 0 in our system so that the effective drivings are red-detuned. Now
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we conjugate the Hamiltonian with the following unitary matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 − α2k2

2(∆1−∆2)2
−αke−iθk∆1−∆2

0 0 αkeiθk
∆1−∆2

1 − α2k2

2(∆1−∆2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+O (( αk

∆1 −∆2

)
3

) , (A.6)

and the effective Hamiltonian to order ( αk
∆1−∆2

)3 becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 Ω∗1 (1 − α2k2

2(∆1−∆2)2
) −Ω∗1αke

−iθk

∆1−∆2

0 0
Ω∗2αke

iθk

∆1−∆2
Ω∗2 (1 − α2k2

2(∆1−∆2)2
)

Ω1 (1 − α2k2

2(∆1−∆2)2
) Ω2αke

−iθk
∆1−∆2

∆1 + α2k2

∆1−∆2
+ k2/2M 0

−Ω1αke
iθk

∆1−∆2
Ω2 (1 − α2k2

2(∆1−∆2)2
) 0 ∆2 − α2k2

∆1−∆2
+ k2/2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(A.7)

If we assume that M ≫ k2SOC

∆1−∆2
, we can ignore the terms α2k2

∆1−∆2
in the (3,3) and (4,4) entries.

Now, we also drop O (( αk
∆1−∆2

)2) terms in the (1,3), (2,4), (3,1), and (4,2) entries. The re-

maining Hamiltonian is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 Ω∗1 −Ω∗1αke
−iθk

∆1−∆2

0 0
Ω∗2αke

iθk

∆1−∆2
Ω∗2

Ω1
Ω2αke

−iθk
∆1−∆2

∆1 + k2/2M 0

−Ω1αke
iθk

∆1−∆2
Ω2 0 ∆2 + k2/2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A.8)

We adiabatically eliminate the state in the first and second columns (rows). The remaining Hamil-
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tonian of the subspace spanned by dressed states ∣g̃1,k⟩, and ∣g̃2,k⟩ is

⎛
⎜⎜⎜
⎝

− ∣Ω1∣
2

∆1+k2/2M
− ∣Ω1∣

2

∆2+k2/2M
( αk
∆1−∆2

)2 αke−iθkΩ∗1Ω2

(∆1−∆2)(∆1+k2/2M)
− αke−iθkΩ∗1Ω2

(∆1−∆2)(∆2+k2/2M)

αkeiθkΩ1Ω
∗
2

(∆1−∆2)(∆1+k2/2M)
− αkeiθkΩ1Ω

∗
2

(∆1−∆2)(∆2+k2/2M)
− ∣Ω2∣

2

∆1+k2/2M
( αk
∆1−∆2

)2 − ∣Ω2∣
2

∆2+k2/2M

⎞
⎟⎟⎟
⎠
. (A.9)

We have assumed ∆1, ∆2,≫ Ω1, Ω2. A necessary condition of this assumption is that Ω ≫

Ω1, Ω2. Now, supposing that we can tune ∆1 ≫∆2, and that the region of the Brillouin zone we

consider satisfies ∆1 ≫ k2/2M , by dropping terms to quadratic order in αk
∆1−∆2

, we obtain the

Hamiltonian
⎛
⎜⎜⎜
⎝

0 − αke−iθkΩ∗1Ω2

∆1(∆2+k2/2M)

− αkeiθkΩ1Ω
∗
2

∆1(∆2+k2/2M)
− ∣Ω2∣

2

∆2+k2/2M

⎞
⎟⎟⎟
⎠
. (A.10)

To make this approximation, we have assumed that the off-diagonal elements of Eq. (A.10) are

much greater than the terms in Eq. (A.9) being dropped in Eq. (A.10). There is a mismatch

between the diagonal elements. To make states ∣g̃1,k⟩ and ∣g̃2,k⟩ rotate at the same speed, we

might either couple the state ∣g̃1,k⟩ to a band with positive curvature to induce an AC Stark shift

to cancel the first diagonal entry or couple the state ∣g̃2,k⟩ to some band with negative curvature

to induce an AC Stark shift to cancel the second diagonal entry. The curvatures of those auxiliary

bands have to be tuned properly during the whole process.

Now, we have engineered one term in our disentangler withH (k) described by Eq. (2.10).

We can choose a different Ω′1, Ω
′
2, ∆

′
1, ∆

′
2 to generate the second term. We have to assume that

the beat note between the two schemes satisfies ∣∆2 −∆′2∣ ≫ ∣
αke−iθkΩ∗1Ω2

∆1(∆2+k2/2M)
∣ , ∣ αke

−iθkΩ′∗1Ω
′
2

∆′1(∆
′
2+k

2/2M) ∣ to

avoid crosstalk. Applying both of them at the same time, we have the Hamiltonian in the ∣g̃1,k⟩,
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∣g̃2,k⟩ basis:

⎛
⎜⎜⎜
⎝

0 − αke−iθkΩ∗1Ω2

∆1(∆2+k2/2M)
− αke−iθkΩ′∗1Ω

′
2

∆′1(∆
′
2+k

2/2M)

− αkeiθkΩ1Ω
∗
2

∆1(∆2+k2/2M)
− αkeiθkΩ′1Ω

′∗
2

∆′1(∆
′
2+k

2/2M) 0

⎞
⎟⎟⎟
⎠
. (A.11)

Now we list all the assumptions that have been made:

1. The energy splittings of the dressed excited states, which are of order Ω, have to be much

smaller than the hyperfine splittings of all the states that we used. Otherwise, in FIG.

A.2(a), we cannot use frequency selection to control each transition to engineer synthetic

selection rules.

2. All the momentum kicks should allow atoms to be in the same Brillouin zone so that the

continuum limit applies. That is, kSOC a≪ 1, where a is the optical lattice constant.

3. αk
∆1−∆2

= kSOCk
M(∆1−∆2)

≪ 1 and k2SOC

M(∆1−∆2)
≪ 1 as well as the primed version.

4. ∆1 ≫∆2, k2/2M as well as the primed version.

5. ∆1, ∆2 ≫ Ω1,Ω2 and ∆′1, ∆
′
2 ≫ Ω′1,Ω

′
2. These two conditions imply that Ω≫ Ω1,Ω2, Ω′1,Ω

′
2.

6. The off-diagonal elements of Eq. (A.10) are much greater than the terms in Eq. (A.9) being

dropped in Eq. (A.10).

7. ∣∆2 −∆′2∣ ≫ ∣
αke−iθkΩ∗1Ω2

∆1(∆2+k2/2M)
∣ , ∣ αke

−iθkΩ′∗1Ω
′
2

∆′1(∆
′
2+k

2/2M) ∣ to avoid crosstalk between the scheme deter-

mined by Ω1, Ω2, ∆1, ∆2 and the scheme determined by Ω′1, Ω
′
2, ∆

′
1, ∆

′
2.

We remind the readers that we engineer the cMERA circuit entirely in the interaction picture;

therefore, the action of the isometry is absorbed into that of the disentangler. The price that
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we have to pay is that the disentangler is not scale-invariant at all in the interaction picture. In

principle, one can also engineer the cMERA circuit in the Schrödinger picture. We leave this as

a question for future research.

A.4 Preparation of the Initial Near-IR State

The near-IR state with a large but finite negative u is described by Eq. (2.9). We imagine

the state to be infrared enough that the Berry curvature is concentrated on a few momentum

points near k = 0. Here, we describe how it can be created to use as input to the MERA circuit. A

strong magnetic field should be applied to induce hyperfine splitting in the ground-state manifold.

We start with all states in the ∣g1⟩ state, which is easy to prepare by dissipation techniques. We

then use a long-lived clock state 3P0 ∣F = 1/2, mF = 1/2⟩ [1–4] as a “bus” state ∣e⟩ to transfer

amplitude from ∣g1⟩ to ∣g2⟩. Seeing that S states and P states are well separated, we can use a

two-dimensional optical lattice to tightly trap atoms in the S states and let the atoms in the P

states propagate nearly freely. We assume that the z direction is tightly confined for all states,

so the corresponding degrees of freedom can be ignored. The energy bands of ∣g1⟩ and ∣g2⟩ are

flat. Here, we assume that the ∣e⟩ state is highly stable with a natural linewidth much smaller than

the energy splitting between the spatial ground state and the first spatial excited state, allowing

individual momentum states to be resolved and manipulated.

In the following, we are going to use the spatial ground state of ∣e⟩ as a bus state. Due to

open boundary conditions of optical lattices, the Bloch waves are no longer energy eigenstates

for the excited state ∣e⟩ and we must use standing waves instead. Note that since the eigenstates

in position space of the hyperfine ground states ∣g1⟩ and ∣g2⟩ are tightly trapped and highly de-

130



generate, we can still make superpositions of standing waves to create Bloch waves as energy

eigenstates. Intuitively, since particles in the hyperfine ground states ∣g1⟩ and ∣g2⟩ are tightly

trapped, particles far from the boundary cannot distinguish between different boundary condi-

tions. Our procedure to prepare the IR state is to transfer partial amplitude from state ∣g1⟩ to ∣g2⟩

in the Brillouin zone for each k. We denote the lowest energy point of ∣e⟩ as ∣e,0⟩, which is a

standing wave with small amplitude on the boundary. We couple that state resonantly to ∣g1,k⟩

and ∣g2,k⟩ successively by different light fields, i.e., ∣g1,k⟩ ←→ ∣e,0⟩ and then ∣e,0⟩ ←→ ∣g2,k⟩.

Other standing waves of ∣e⟩ are decoupled from the process due to driving frequency mismatch.

Here, we also need to ensure that other states ∣g1,k′⟩ and ∣g2,k′⟩ with different momenta do not

interfere with the process. As a consequence, the light fields must create a momentum selection

rule for the transitions ∣g1,k⟩←→ ∣e,0⟩ and ∣e,0⟩←→ ∣g2,k⟩.

We imagine a square well with wavefunction amplitude vanishing on the periphery. This

can be done by tuning the potential with spatial light modulators [184,185]. In the following, we

work in the basis of the Wannier functions of the ground states and the excited state, modeling the

system by aN+2 byN+2 square lattice. We can label the lattice points by the vector x = (x1, x2),

where 0 ≤ x1, x2 ≤ N + 1, while the wavefunction vanishes at points with x1 = 0, N + 1 or

x2 = 0, N + 1. Therefore, the active degrees of freedom for the hyperfine ground states ∣g1⟩ and

∣g2⟩ will be at 1 ≤ x1, x2 ≤ N . In this case, the unnormalized single-particle wavefunction of the

ground state ∣g1,k⟩ is [186]

ψg1(x) = ⟨x ∣g1,k⟩ = exp (ik ⋅ x) ,

where k = 2π (n1, n2) /N with n1, n2 ∈ {n ∣ n ∈ Z,−N/2 < n ≤ N/2}, and 1 ≤ x1, x2 ≤ N . The
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counterpart for the excited state ∣e⟩ is

ψe(x) = ⟨x ∣e,0⟩ = sin(
π

N + 1
x1) sin(

π

N + 1
x2) .

Using spatial light modulators [184, 185], we create the following light field:

Eg1(x) =
exp (−iq ⋅ x)

sin ( π
N+1x1) sin (

π
N+1x2)

,

where q = 2π (m1, m2) /N, m1,m2 ∈ Z. A momentum selection rule for ∣g1,k⟩ ←→ ∣e,0⟩ can

now be engineered:

∑
x

ψe(x)Eg1(x)ψg1(x) =∑
x

sin( π

N + 1
x1) sin(

π

N + 1
x2)

exp (−iq ⋅ x)
sin ( π

N+1x) sin (
π

N+1x2)
exp (ik ⋅ x)

=∑
x

exp (i (k − q) ⋅ x)∝ δk,q. (A.12)

Notice that since the points where the denominator of E(x) becomes zero are excluded from

our consideration, the light field is well defined. A similar selection rule can be derived for

∣e,0⟩←→ ∣g2,k⟩.

With this technique in mind, we can adjust the relative amplitude between ∣g1⟩ and ∣g2⟩

in the Brillouin zone to create the near-IR state described in Eq. (2.9) by fine-tuning phases

and durations of the light field pulses. Given that the Berry curvature is concentrated on a few

momentum points near k = 0, we can limit this procedure to only a few small momentum points

without too much error.
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Appendix B: Appendices Associated with Chapter 3

B.1 Details of quasi-adiabatic evolution

In this appendix, we offer a detailed introduction to quasi-adiabatic evolution.

Traditionally, if there is a gapped path between the initial Hamiltonian and the final Hamil-

tonian, the adiabatic theorem dictates that, starting from the ground state of the initial Hamil-

tonian, we can reach the ground state of the final Hamiltonian with an arbitrarily small error

provided that the adiabatic evolution is slow enough. However, for practical purposes, it is con-

venient to be able to implement the adiabatic process faster without introducing too much error.

The idea of quasi-adiabatic evolution solves this problem. For an adiabatic gapped path

H(λ) parameterized by λ, we can use the quasi-adiabatic continuation operator to take the ground

state of the initial Hamiltonian H(λ = 0) to the ground state of the final Hamiltonian H(λ = 1)

exactly in finite time. We define the quasi-adiabatic continuation operator as [145–147]

D(λ) = −i∫
∞

−∞
dtF (Egapt) ⋅ exp (iH(λ)t)∂λH(λ) exp (−iH(λ)t) . (B.1)

The parameter Egap is chosen to be the smallest energy gap of the Hamiltonian H(λ) along the

adiabatic gapped path. The function F (t) satisfies the following condition: its Fourier trans-

form F̃ (ω) is an odd function and decays as F̃ (ω) = −1/ω when ∣ω∣ ≥ 1. Our continuous
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Fourier transform and inverse Fourier transform conventions are F̃ (ω) = ∫
∞

−∞
dtF (t)eiωt, and

F (t) = 1
2π ∫

∞

−∞
dω F̃ (ω)e−iωt. The function F (t) is constructed as follows [146, 187]. Given

a monotonically decreasing positive function ϵ(y) with a convergent integral ∫
∞

1 ϵ(y)/y dy (for

example, ϵ(y) = 1
log((2+y)2) or ϵ(y) = 1

log(log((2+y)4)) ), we construct the function F :

F (t) = i
2 ∫

du (δ(u) − gϵ,{ρn}(u)) sign(t − u), (B.2)

with the function gϵ,{ρn}(u) defined as [187]

gϵ,{ρn}(u) =
1

N

∞

∏
n=1

sinρnu

ρnu
,

where the sequence of parameters, {ρn}∞n=1, is carefully chosen such that:

1. Each term is positive: ρn > 0.

2. The sequence is monotonically decreasing: ρn ≥ ρn+1.

3. The term ρn satisfies ρn ≥ e ϵ(n)/n for all n ≥ n0 with n0 a positive integer and e being

Euler’s number.

4. The series ∑∞n=1 ρn converges with ∑∞n=1 ρn ≤ 1.

Note that g(u) is a continuous even function. The parameter N is set such that the Fourier

transform of gϵ,{ρn} satisfies g̃ϵ,{ρn}(ω = 0) = 1.

With all the requirements mentioned above being satisfied, it can be shown that gϵ,{ρn}

decays as [187]

gϵ,{ρn}(y) = O (e−∣y∣ϵ(∣y∣)) . (B.3)
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In addition, the Fourier transform g̃ϵ,{ρn}(ω) of this function is identically zero for ∣ω∣ ≥ 1.

It is easy to see from Eq. (B.3) that, for all 0 < α < 1, we can find a positive constantCα such

that ∣gϵ,{ρn}(y)∣ ≤ Cα exp (− ∣y∣
α). We say that the function gϵ,{ρn} decays subexponentially [188].

We should always keep in mind that the function F , the function gϵ,{ρn}, and the resulting quasi-

adiabatic continuation operator are ϵ- and {ρn}-dependent. However, we will drop the symbols

ϵ and {ρn} from the subscript of gϵ,{ρn}, assuming that we have chosen some function ϵ and a

specific set of parameters {ρn} satisfying the requirements mentioned above. Using the fact that

the function g decays subexponentially, it is not hard to show, from the definition of F , that the

function F also decays subexponentially [146].

Since the function F decays subexponentially, it also decays superpolynomially, which

means it decays faster than any polynomial function. We say that a Hamiltonian H consists of

superpolynomially decaying interactions if we can write it as H = ∑r∑RHr,R, where (i) Hr,R

is an operator supported on sites within the disk of radius R ∈ N centered at position r and (ii)

for any function decaying polynomially in R, the operator norm ∥Hr,R∥ is bounded by some

constant times this function. In Ref. [146], it is shown that, if the Hamiltonian H(λ) consists

of superpolynomially decaying interactions, the quasi-adiabatic continuation operator D(λ) also

consists of superpolynomially decaying interactions. If the Hamiltonian is finite-range or consists

of subexponentially decaying interactions,D(λ) is composed of subexponential interactions, i.e.,

∥Dr,R(λ)∥ ≤ Cα exp(−Rα) for any α < 1 and some α-dependent constant Cα > 0 [145, 146].

It can be shown that ∂λ ∣ψ0(λ)⟩ = iD(λ) ∣ψ0(λ)⟩, where ∣ψ0(λ)⟩ is the ground state of

H(λ). Therefore, we can transfer the ground state of H(λ = 0) to the ground state of H(λ = 1)

via time evolution under D(λ) for finite time λ ∈ [0,1].
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B.2 Emergent fermions after a single step of entanglement renormalization

In Sec. 3.5.2, when we discussed the entanglement renormalization of the lattice Ising

TQFT, we encountered the following question: for the spins that remain entangled after the appli-

cation of the subcircuit CIsing, x (CIsing, y), are the dual fermions defined on the new coarse-grained

square lattice [see e.g. Fig. 3.26] still in the lattice px + ipy superconducting state with the right

parameters? In addition, in Sec. 3.5.3, when we discussed the entanglement renormalization of

the ν-th Kitaev’s sixteenfold way chiral spin liquid, we also encountered a similar question: after

the application of Cν, x (Cν, y), are the remaining entangled spins in the ν-th Kitaev’s sixteenfold

way chiral spin liquid defined on the new coarse-grained square lattice? In other words, are the

dual fermions in a quantum state with ν layers of topological superconductors and 16−ν layers of

trivial insulators? In this appendix, we will answer these questions affirmatively by considering

a very generic setup that will apply to all the cases just mentioned.

Recall that, before the circuit components CZf
2 ,x

or CZf
2 ,y

are applied, we have a quantum

state whose emergent (equivalently dual via the bosonization map) fermionic modes are empty on

every other horizontal or vertical face. As for the fermionic modes on remaining active faces, in

the lattice Ising TQFT case, they together form a lattice px + ipy superconducting state, whereas,

in the case of the ν-th Kitaev’s sixteenfold way chiral spin liquid, they behave as a flattening

of ν layers of topological superconductors and 16 − ν layers of trivial insulators. Our goal is to

show that the circuit components CZf
2 ,x

and CZf
2 ,y

remove the empty fermionic modes and keep

the active fermionic modes on the faces of the new coarse-grained lattice. This would realize our

goal of having the lattice Ising TQFT state and the ν-th Kitaev’s sixteenfold way chiral spin liquid

as fixed-point wavefunctions of the renormalization circuit. Therefore, in this appendix, to prove
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this functionality of CZf
2 ,x

and CZf
2 ,y

, we consider a generalized setup of an alternating pattern

of inactive blue faces, associated with empty fermionic modes, and active pink faces, associated

with fermionic modes in the ground state of a quadratic fermionic Hamiltonian composed of

hoppings and pairings that are not necessarily translation-invariant. For the case of horizontal

entanglement renormalization, the setup is shown on the left of Fig. B.1(a). Here, the inactive

(frozen in the empty fermionic state) blue faces correspond to the B faces in Fig. 3.24(b) and the

primed faces in Fig. 3.29(c) before the application of CZf
2 ,x

. A similar setup for the case of vertical

entanglement renormalization is shown on the left of Fig. B.1(b). Here, the inactive (frozen in

the empty fermionic state) blue faces correspond to the B faces in Fig. 3.25(b) and the primed

faces in Fig. 3.30(c) before the application of CZf
2 ,y

.

We want to prove now that, after the circuit component CZf
2 ,x

(CZf
2 ,y

), the new dual fermions

are in the state of the old dual fermions associated with the original active pink faces. The

emergent (equivalently dual) fermionic mode on an elongated face of the new lattice will be

just the original emergent fermionic mode on the active pink face of the old lattice enclosed

by that elongated face. Effectively, we make the inactive blue faces disappear, while the active

pink faces become larger by consuming the original area occupied by the primed faces. This

intuitive explanation of our objective here is reflected in the coloring of the faces of the new

lattice in Fig. B.1. Our strategy for showing this is to work with the transformation of the parent

Hamiltonian of the whole spin system under conjugation by CZf
2 ,x

(CZf
2 ,y

). Specifically, we want

to show that the bosonized quadratic fermionic terms on the active pink faces under the zero-

flux condition are mapped to the same bosonized quadratic fermionic terms on the new lattice

under the corresponding new zero-flux condition as if the associated fermionic modes were just

living on bigger elongated faces. Figure B.1 demonstrates a typical situation. Initially, we have
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Figure B.1: We have an alternating pattern of active pink faces and inactive blue faces corre-
sponding to the sublattice structure of the emergent (equivalently dual) fermions for the case of
(a) horizontal entanglement renormalization and (b) vertical entanglement renormalization. The
dual fermionic modes on the inactive blue faces are empty. We want to know how the bosonized
generic quadratic fermionic term on the pink active faces, such as {iγaγ′b}

bosonized
from face a to

face b, transforms under conjugation by (a) CZf
2 ,x

for horizontal entanglement renormalization and
(b) CZf

2 ,y
for vertical entanglement renormalization. The figure shows that, under CZf

2 ,x
and CZf

2 ,y
,

the bosonized original quadratic fermionic term {iγaγ′b}
bosonized

maps onto the corresponding

bosonized quadratic fermionic term {iγNa γ′b
N}bosonized defined on the new coarse-grained lattice

as if the original fermion operators were living on the new elongated faces. The superscript N
is used to label the fermion operators defined on the faces of the new lattice. The detailed calcu-
lations behind this result are shown in Fig. B.2 for CZf

2 ,x
and Fig. B.3 for CZf

2 ,y
. The prefactorf

denotes the constant prefactor that must be included in front of the product of the fermionic op-
erators shown in the figure in order to make the quadratic fermionic term under consideration.
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a bosonized hopping term {iγaγ′b}
bosonized

for the emergent fermions on distant active pink faces

a and b. We want to prove that, under conjugation by CZf
2 ,x

(CZf
2 ,y

), this operator turns into the

bosonized hopping term {iγNa γ′Nb }
newbosonized

. The notation γNa or γ′Na indicates a Majorana

fermion operator on the face of the new lattice that encloses the old active pink face a (the

superscript N stands for “new"). The bracket notation {⋅}newbosonized denotes the bosonization

procedure with respect to the edge orientation assignments on the new elongated square lattice,

as shown in Fig. 3.27 for the horizontally coarse-grained lattice. Instead of directly working

with the generic operator {iγaγ′b}
bosonized

with arbitrary faces a and b, we can break such an

operator into a product of the generators of the algebra coming from the bosonization of the

parity-conserving fermionic algebra acting only on the active pink faces. These generators are the

shortest bosonized horizontal Majorana hopping terms, the shortest bosonized vertical Majorana

hopping terms, and the bosonized fermion parity operators 1, all of which in the fermionic picture

act on the fermionic modes associated only with the active pink faces. We will compute the

transformation of these generators.

The computation will be long but straightforward. We will treat the cases of horizontal en-

tanglement renormalization (Sec. B.2.1) and vertical entanglement renormalization (Sec. B.2.2)

separately. The zero-flux condition Fν = 1 on the original square lattice will be assumed. Fol-

lowing the notation in the main text, throughout our computations below, we will sometimes still

use the letter B or the prime symbols to label the inactive blue faces. We will also use the letter

A to label the active pink faces.

1Recall that “the bosonized fermion parity operator” is the same as “the emergent fermion parity operator.” The
former term emphasizes the fact that the operator is constructed using the bosonization technique, whereas the latter
term emphasizes the fact that the operator measures the parity of the emergent fermionic mode on a face.
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B.2.1 Horizontal Entanglement Renormalization

In this subsection, we study the action of CZf
2 ,x

, which is part of horizontal entanglement

renormalization.

Under the zero-flux condition Fv = 1, let ∣Ψ⟩ be the ground state of a bosonized fermionic

Hamiltonian that freezes the emergent fermionic modes on inactive blue faces in the empty state:

Hbosonized
AB,x = {Hf

AB,x}
bosonized

(B.4)

with

Hf
AB,x = −∑

ZA

hZA
−∑
IB

(−iγIBγ′IB) .

The notation ZA is used to label different quadratic terms hZA
associated with emergent

fermionic modes on the active pink faces, and IB is used to label emergent fermionic modes

on the inactive blue faces. Note that the ground state ∣Ψ⟩ is in the sector Fv = 1, ∀v and has

{−iγIBγ′IB}
bosonized = ZN(IB)ZE(IB)ZS(IB)ZW (IB) = 1. The notation N(f) denotes the adjacent

qubit north of face f , and E(f), S(f), and W (f) denote the adjacent qubits east of, south of,

and west of face f , respectively. The fermionic Hamiltonian component −∑ZA
hZA

need not to

be translationally invariant under shifting the labels of the sites associated with the active pink

faces, as is the case of the ν-th Kitaev’s sixteenfold way chiral spin liquid.

Now we investigate CZf
2 ,x
∣Ψ⟩. Our objective is to show that CZf

2 ,x
∣Ψ⟩ is dual (via bosoniza-

tion) to the ground state of the same fermionic Hamiltonian −∑ZA
hZA

, but now defined on the

faces of the new coarse-grained lattice. Notice that CZf
2 ,x
∣Ψ⟩ will be the ground state of the uni-

tarily transformed Hamiltonian CZf
2 ,x
Hbosonized
AB,x C†

Zf
2 ,x

. Therefore, in order to study CZf
2 ,x
∣Ψ⟩, we
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will study this new Hamiltonian, CZf
2 ,x
Hbosonized
AB,x C†

Zf
2 ,x

. We first study the transformation of the

component involving active pink faces, CZf
2 ,x
{hZA

}bosonized C†
Zf
2 ,x

. As mentioned above, a generic

quadratic term involving distant active pink faces, such as {iγaγ′b}
bosonized

on the left-hand side

of Fig. B.1(a), can be written as a product of the shortest bosonized Majorana hopping operators

and the bosonized fermion parity operators that, in the fermionic picture, are only supported on

the fermionic sites on the active pink faces. Therefore, it is sufficient to study how these gen-

erators transform under conjugation by CZf
2 ,x

. For the shortest bosonized horizontal Majorana

hopping operator between active pink faces, we take as an example the shortest bosonization of

the operator iγ1γ′2 depicted on the left-hand side of Fig. B.2(a):

{iγ1γ′2}
bosonized

=i{γ1γ′1′γ′1′γ1′γ1′γ′2}
bosonized

= − {iγ1γ′1′}
bosonized {−iγ1′γ′1′}

bosonized {iγ1′γ′2}
bosonized

= − (XE(1)ZS(1)) (ZN(1′)ZE(1′)ZS(1′)ZW (1′)) (XE(1′)ZS(1′))

= (ZS(1)ZN(1′)ZE(1′)ZW (1′)) (XE(1)XE(1′)) . (B.5)

We used γ2f = γ′2f = 1. The corresponding bosonized result is illustrated on the left-hand side of

Fig. B.2(a). Note that our way of denoting qubits is redundant: e.g., E(1) = W (1′). We now
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conjugate {iγ1γ′2}
bosonized by CZf

2 ,x
:

CZf
2 ,x
{iγ1γ′2}

bosonized C†
Zf
2 ,x

=CZf
2 ,x
(ZS(1)ZN(1′)ZE(1′)ZW (1′))C†

Zf
2 ,x
⋅ CZf

2 ,x
(XE(1)XE(1′))C†

Zf
2 ,x

=ZS(1)ZW (1′)XE(1′) = ZW (1′) (XE(1′)ZS(1)) = ZW (1′) {iγN1 γ′N2 }
newbosonized

. (B.6)

The bracket with a superscript {⋅}newbosonized denotes bosonization on the new horizontally elon-

gated square lattice, and the superscript N for γNf denotes an emergent Majorana fermion oper-

ator on face f of the new lattice. We used labels on the old active pink face to indicate the new

faces containing them since we expect there will be a correspondence between the new faces and

the old active pink faces. Note that, throughout the calculation, for the subscripts of all the X

and Z operators, the qubit labeling N(f), E(f), S(f), and W (f) is associated with face f of

the old lattice. It is only for the new Majorana operators γNf and γ′Nf do we use the face labeling

on the new lattice. We will also use this convention throughout the later calculations. The result

of the above computation is shown on the right-hand side of Fig. B.2(a).

With the same labeling of the lattice faces, we now consider the shortest bosonized vertical

Majorana hopping operator {iγ1γ′3}
bosonized. We can easily see that

CZf
2 ,x
{iγ1γ′3}

bosonized C†
Zf
2 ,x

=CZf
2 ,x
(XS(1)ZW (3))C†

Zf
2 ,x
=XS(1)ZW (3) = {iγN1 γ′N3 }

newbosonized
. (B.7)

This is shown in Fig. B.2(b).
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Figure B.2: The subfigures show how the bosonized generators of the fermionic algebra associ-
ated with the active pink faces change under conjugation by CZf

2 ,x
. Inactive blue faces are labeled

by numbers with primes, while active pink faces are labeled by numbers without primes. (a) The
change of the shortest bosonized horizontal Majorana hopping term {iγ1γ′2}

bosonized under CZf
2 ,x

.

(b) The change of the shortest bosonized vertical Majorana hopping term {iγ1γ′3}
bosonized under

CZf
2 ,x

. (c) The change of the bosonized fermion parity operator {−iγ1γ′1}
bosonized under CZf

2 x
.

The notation prefactorf denotes the constant prefactor that must be included in front of the prod-
uct of the fermion operators shown in the figure in order to make the quadratic fermionic term
under consideration, and the ordering of the fermion operators is specified above. The notation
prefactors denotes the constant prefactor that must be included in front of the product of the spin
operators shown in the figure. When an X operator and a Z operator both act on a qubit, the Z
operator acts first. The red single-qubit Pauli-Z operator sitting at the center of the new face 1 is
acting on a disentangled qubit. This operator takes eigenvalue one in the transformed quantum
state CZf

2 ,x
∣Ψ⟩. Therefore, up to this operator taking eigenvalue one, the transformed genera-

tors match the bosonized fermion operators on the new elongated faces containing the original
fermion operators being transformed.
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For the bosonized fermion parity operator on face 1, we have

CZf
2 ,x
{−iγ1γ′1}

bosonized C†
Zf
2 ,x

=CZf
2 ,x
ZN(1)ZE(1)ZS(1)ZW (1)C†

Zf
2 ,x
= ZN(1)ZE(1)ZS(1)ZW (1)ZE(1′)

=ZE(1) (ZN(1)ZS(1)ZW (1)ZE(1′)) = ZW (1′) {−iγN1 γ′N1 }
newbosonized

. (B.8)

This is shown in Fig. B.2(c). We can see that the old bosonized hopping and fermion-parity

operators are mapped to the corresponding new bosonized hopping and fermion-parity operators

on the new lattice up to some Pauli-Z operators. Therefore, a generic bosonized quadratic term

{hZA
}bosonized will be mapped to {hN

ZA
}newbosonized

up to a product of Pauli-Z operators acting

on qubits residing on the left edges of inactive blue faces. We use the notation hN
ZA

to mean the

same as hZA
but with all the Majorana operators replaced according to γf → γNf , γ′f → γ′Nf .

We will now analyze the transformation of the operator {−iγIBγ′IB}
bosonized

on the inactive

blue faces:

CZf
2 ,x
{−iγIBγ′IB}

bosonized C†
Zf
2 ,x

=CZf
2 ,x
ZN(IB)ZE(IB)ZS(IB)ZW (IB)C

†
Zf
2 ,x
= ZW (IB). (B.9)

This is nothing but the computation done in Fig. 3.20(a).
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Combining the above results, we finally obtain the transformation of the full Hamiltonian:

CZf
2 ,x
Hbosonized
AB,x C†

Zf
2 ,x

= −∑
ZA

⎛
⎝ ∏
IB∈SB[hZA

]

ZW (IB)
⎞
⎠
⋅ {hNZA

}newbosonized −∑
IB

ZW (IB), (B.10)

where

SB[hZA
] ≡ {IB ∣ZW (IB) ∈ CZf

2 ,x
{hZA

}bosonized C†
Zf
2 ,x
}. (B.11)

The operator product (∏IB∈SB[hZA
]ZW (IB)) in front of {hN

ZA
}newbosonized

is simply due to the

single-qubit Pauli-Z operators resulting from the transformation of the bosonized horizontal hop-

pings and fermion parity operators in Eq. (B.6) and Eq. (B.8).

We are now prepared to state some properties of the state CZf
2 ,x
∣Ψ⟩. Due to the emptiness

of the old inactive blue faces in the ground state ∣Ψ⟩, we have ZN(IB)ZE(IB)ZS(IB)ZW (IB) = 1.

From Eq. (B.9), we learn that ZW (IB) = 1 in the transformed ground state CZf
2 ,x
∣Ψ⟩. In ad-

dition, the transformation of the zero-flux condition Fv = 1 computed in Fig. 3.20(c,d) gives

F
[Fig.3.20(c)]RHS

vN
= 1 and F

[Fig.3.20(d)]RHS

vN
= 1 for CZf

2 ,x
∣Ψ⟩. The notation vN denotes a vertex

on the new lattice. The shorthand notation F [Fig.3.20(c)]RHS

vN
denotes the operator shown on the

right-hand side of Fig. 3.20(c), whereas the notation F [Fig.3.20(d)]RHS

vN
denotes the operator shown

on the right-hand side of Fig. 3.20(d). Therefore, with ZW (IB) = 1 and F [Fig.3.20(c)]RHS

vN
= 1, we

obtain XS(IB) = 1 for CZf
2 ,x
∣Ψ⟩. That is, W (IB) and S(IB) are disentangled qubits in states ∣0⟩

and ∣+⟩, respectively. Additionally, from ZW (IB) = 1, XS(IB) = 1, and F [Fig.3.20(d)]RHS

vN
= 1, we

see that, for CZf
2 ,x
∣Ψ⟩, we have FN

vN
= 1, where FN

vN
is the flux measuring operator associated

with the vertex vN defined on the new coarse-grained lattice shown as the black 6-qubit opera-
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tor in Fig. 3.19(c). That is, the state CZf
2 ,x
∣Ψ⟩ satisfies the new zero-flux condition on the new

coarse-grained lattice. The new zero-flux condition justifies the definition of the new bosoniza-

tion mapping {⋅}newbosonized for the new lattice.

Putting together the above properties of CZf
2 ,x
∣Ψ⟩, we arrive at the desired result that

CZf
2 ,x
∣Ψ⟩ is the ground state of the Hamiltonian

HN newbosonized
A,x −∑

IB

ZW (IB) −∑
IB

XS(IB) (B.12)

with

HN newbosonized
A,x ≡ {HN f

A,x}
newbosonized

HN f
A,x ≡ −∑

ZA

hNZA
(B.13)

under the new zero-flux condition FN
vN
= 1. The operator product (∏IB∈SB[hZA

]ZW (IB)) in

Eq. (B.10) is not shown here since it is equal to one for CZf
2 ,x
∣Ψ⟩, so CZf

2 ,x
∣Ψ⟩ is the ground state of

Eq. (B.12) both with and without (∏IB∈SB[hZA
]ZW (IB)). The Hamiltonian in Eq. (B.12) has the

simple interpretation as the bosonized original Hamiltonian −∑ZA
hZA

on the active pink faces

but now defined on the new faces and with the new zero-flux condition. The terms −∑IB ZW (IB)

and −∑IB XS(IB) describe the disentangled qubits.

B.2.2 Vertical Entanglement Renormalization

In this subsection, we present a similar argument for vertical entanglement renormalization.

Under the zero-flux condition Fv = 1, let ∣Ψ⟩ be the ground state of the following parent
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Hamiltonian with a vertically alternating pattern of active pink faces and inactive blue faces:

Hbosonized
AB,y = {Hf

AB, y}
bosonized

, (B.14)

where

Hf
AB, y = −∑

ZA

hZA
−∑
IB

(−iγIBγ′IB) .

We can borrow all the arguments from our discussion of horizontal entanglement renor-

malization above and show that the transformed quantum state CZf
2 ,y
∣Ψ⟩ is the ground state of

HN newbosonized
A,y −∑

IB

XW (IB) −∑
IB

ZS(IB) (B.15)

with

HN newbosonized
A,y ≡ {HN f

A, y}
newbosonized

HN f
A, y ≡ −∑

ZA

hNZA
. (B.16)

The bracket with a superscript {⋅}newbosonized denotes bosonization on the new vertically elon-

gated square lattice under the new zero-flux condition FN
vN
= 1, where the operator FN

vN
is the flux

measuring operator associated with the vertex vN defined on the new vertically coarse-grained

lattice shown as the black 6-qubit operator in Fig. 3.21(c). The qubits W (IB) and Z(IB) are

disentangled qubits. Through the computations in Fig. 3.22(a,c,d), we find that XW (IB) = 1,

ZS(IB) = 1, and FN
vN
= 1 for CZf

2 ,y
∣Ψ⟩. The quadratic fermionic term hN

ZA
is the same as hZA

but with all the Majorana operators replaced according to γf → γNf , γ′f → γ′Nf . Here the su-
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perscript N for Majorana fermion operators labels the fermionic operators defined on the faces

of the vertically coarse-grained lattice, and we used the label f on the old active pink face to

denote the new face containing it. The Hamiltonian in Eq. (B.15) has a simple interpretation as

the bosonized original Hamiltonian −∑ZA
hZA

on the old active pink faces but now defined on

the new vertically elongated faces with the new zero-flux condition. The terms −∑IB XW (IB)

and −∑IB ZS(IB) describe the disentangled qubits.

Just as in the case of horizontal entanglement renormalization, we need to analyze the trans-

formed bosonized quadratic fermionic term CZf
2 ,x
{hZA

}bosonized C†
Zf
2 ,x

. The transformation of a

typical quadratic term like {iγaγ′b}
bosonized

on the left-hand side of Fig. B.1(b) can be computed

from the transformations of the generators of the bosonized fermionic algebra supported on the

active pink faces, as shown in Fig. B.3. For the shortest bosonized horizontal Majorana hopping

operator between active pink faces like {iγ1γ′3}
bosonized on the left-hand side of Fig. B.3(a), its

conjugation by CZf
2 ,y

is

CZf
2 ,y
{iγ1γ′3}

bosonized C†
Zf
2 ,y

=CZf
2 ,y
(XE(1)ZS(1))C†

Zf
2 ,y
=XE(1)ZS(1) = {iγN1 γ′N3 }

newbosonized
. (B.17)

The qubit labeling subscripts of all the X and Z operators are associated with the faces of the old

lattice. It is only for the new Majorana operators γNf and γ′Nf do we use the face labeling on the

new vertically coarse-grained lattice. The result of the computation is shown on the right-hand

side of Fig. B.3(a).

For the shortest bosonized vertical Majorana hopping operator, like {iγ1γ′2}
bosonized on the
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prefactorf : i prefactorf : iprefactors : 1 prefactors : 1
(a)

(b)

(c)

1 3

2 4

1’ 3’

1 3

2’ 4’
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Figure B.3: The subfigures show how the bosonized generators of the fermionic algebra associ-
ated with the active pink faces change under conjugation by CZf

2 ,y
. Inactive blue faces are labeled

by numbers with primes, while active pink faces are labeled by numbers without primes. (a) The
change of the shortest bosonized horizontal Majorana hopping term {iγ1γ′3}

bosonized under CZf
2 ,y

.

(b) The change of the shortest bosonized vertical Majorana hopping term {iγ1γ′2}
bosonized under

CZf
2 ,y

. (c) The change of the bosonized fermion parity operator {−iγ2γ′2}
bosonized under CZf

2 y
.

The notation prefactorf denotes the constant prefactor that must be included in front of the prod-
uct of the fermion operators shown in the figure in order to make the quadratic fermionic term
under consideration, and the ordering of the fermion operators is specified above. The notation
prefactors denotes the constant prefactor that must be included in front of the product of the spin
operators shown in the figure. When an X operator and a Z operator both act on a qubit, the Z
operator acts first. The red single-qubit Pauli-Z operator sitting at the center of the new face 2 is
acting on a disentangled qubit. This operator takes eigenvalue one in the transformed quantum
state CZf

2 ,y
∣Ψ⟩. Therefore, up to this operator taking eigenvalue one, the transformed genera-

tors match the bosonized fermion operators on the new elongated faces containing the original
fermion operators being transformed.
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left-hand side of Fig. B.3(b), we first express it in terms of spin operators:

{iγ1γ′2}
bosonized

= − {iγ1γ′1′}
bosonized {−iγ1′γ′1′}

bosonized {iγ1′γ′2}
bosonized

= − (XS(1)ZW (2′)) (ZN(2′)ZE(2′)ZS(2′)ZW (2′)) ⋅ (XS(2′)ZW (2))

= (ZN(2′)ZE(2′)ZS(2′)ZW (2)) (XS(1)XS(2′)) . (B.18)

The conjugation of {iγ1γ′2}
bosonized under CZf

2 ,y
is therefore

CZf
2 ,y
{iγ1γ′2}

bosonized C†
Zf
2 ,y

=CZf
2 ,y
(ZN(2′)ZE(2′)ZS(2′)ZW (2))C†

Zf
2 ,y
⋅ CZf

2 ,y
(XS(1)XS(2′))C†

Zf
2 ,y

=ZS(2′)ZW (2)XS(1) = ZS(1′) {iγN1 γ′N2 }
newbosonized

. (B.19)

The result of the computation is shown on the right-hand side of Fig. B.3(b).

For bosonized fermion-parity operators on active pink faces like the one on the left-hand

side of Fig. B.3(c), we have its conjugation under CZf
2 ,y

given by

CZf
2 ,y
{−iγ2γ′2}

bosonized C†
Zf
2 ,y

=CZf
2 ,x
ZN(2)ZE(2)ZS(2)ZW (2)C†

Zf
2 ,y
= ZN(2)ZE(2)ZS(2)ZW (2)ZN(2′)

=ZN(2) (ZN(2′)ZE(2)ZS(2)ZW (2)) = ZS(1′) {−iγN2 γ′N2 }
newbosonized

. (B.20)

These calculations for the generators show that a generic bosonized quadratic fermionic term

{hZA
}bosonized can be mapped to {hN

ZA
}newbosonized

up to a product of Pauli-Z operators acting on
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qubits that live on bottom edges of inactive blue faces.

As in the case of horizontal entanglement renormalization, we can put these results together

to argue that CZf
2 ,y
∣Ψ⟩ is the ground state of the Hamiltonian in Eq. (B.15).
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