
ABSTRACT

Title of Dissertation: QUANTUM ADVANTAGE IN SENSING AND SIMULATION

Adam Ehrenberg
Doctor of Philosophy, 2024

Dissertation Directed by: Professor Alexey V. Gorshkov
Department of Physics

Since the discovery of Shor’s factoring algorithm, there has been a sustained interest in

finding more such examples of quantum advantage, that is, tasks where a quantum device can

outperform its classical counterpart. While the universal, programmable quantum computers that

can run Shor’s algorithm represent one direction in which to search for quantum advantage, they

are certainly not the only one. In this dissertation, we study the theory of quantum advantage

along two alternative avenues: sensing and simulation.

Sensing refers to the task of measuring some unknown quantity with the smallest possible

error. In many cases, when the sensing apparatus is a quantum device, this ultimate achievable

precision, as well as specific protocols producing estimators with this precision, are unknown. In

this dissertation, we help close this gap for both qubit-based and photonic quantum sensors for

the specific task of measuring a linear function of unknown parameters. We use quantum Fisher

information and the quantum Cramér-Rao bound to derive limits on their ultimate precision.

We further develop an algebraic framework that allows us to derive protocols saturating these



bounds and better understand the quantum resources, such as entanglement, that are necessary to

implement these protocols. In doing so, we help clarify how quantum resources like entanglement

lead to more precise sensing.

We also study a specific form of simulation called Gaussian Boson Sampling, which is a

member of the broad framework of random sampling tasks that have become a popular method

for demonstrating quantum advantage. While many of the theoretical underpinnings of these ran-

dom sampling tasks, including Gaussian Boson Sampling, are well understood, many questions

remain. Anticoncentration, which is strongly related to the moments of the output distribution,

is a particularly relevant property when it comes to formally proving the existence of quantum

advantage. We develop a graph-theoretic framework to calculate these moments, and we show

that there is a transition in the strength of anticoncentration as a function of how many of the

photonic modes are initially squeezed. We therefore demonstrate a transition in the evidence for

the so-called approximate average-case hardness of Gaussian Boson Sampling, hence clarifying

in what regimes we have the strongest evidence for quantum advantage.

Finally, we also discuss the simulation complexity of Many-Body Localized systems. Many-

Body Localization is a widely studied phase of matter that is often characterized by the ap-

pearance of a large number of quasilocal integrals of motion (operators that commute with the

Hamiltonian) that interact via exponentially decaying interactions. In this dissertation, we study

a phenomenological form of Many-Body Localization and show three main results. First, we

demonstrate that, for polynomially long evolution times under a Hamiltonian in the Many-Body

Localized phase, there is a quasipolynomial-time classical algorithm that can perform strong

simulation of the output state. On the flip side, our second result is that, when the evolution time

is exponentially long, weak simulation of the output state becomes formally classically hard.



Finally, as a consequence of our classical results, we show the approximate quantum circuit

complexity of these Hamiltonians grows sublinearly in the evolution time (in contrast with the

proposed linear growth for chaotic Hamiltonians). Thus, this work helps clarify whether and how

we might find quantum advantage via simulating certain types of condensed matter systems.
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Chapter 1: Introduction

In this dissertation, we discuss some of the theoretical concepts behind quantum advantage

in various contexts. Quantum advantage, broadly defined, refers to some sort of information-

theoretic task in which a device that operates under the rules of quantum mechanics can outper-

form the best possible classical device.1 Since the development of Shor’s algorithm in 1994 [3],

which shows that there exists a BQP2 algorithm for factoring integers, there has been an ex-

plosion of interest in quantum advantage through the specific lens of quantum computing. This

is because, despite much effort, the best-known (in terms of asymptotic scaling in the size of

the integer) classical factoring algorithm, the General Number Field Sieve (GNFS), runs in su-

perpolynomial time [5]. Therefore, a formal proof that there exists no classical algorithm that

runs in polynomial time (i.e., the decision problem version of factoring is not in either of the

complexity classes P or BPP3, which many conjecture to be equivalent) would demonstrate a

1It is a bit early for a footnote, but we would be remiss not to add: Of course, to the best of our knowledge, all
devices operate by the rules of quantum mechanics; here, we are distinguishing between devices where the use of
quantum mechanics is required to accurately describe the operation of this device versus those that admit an accurate
effective classical theory.

2BQP, or Bounded-Error Quantum Polynomial Time, is the complexity class of languages that can be decided
with error at most 1/3 in quantum polynomial time [4]. More intuitively, it is the class of decision problems that
are efficiently solvable (with high probability) by a quantum computer. It is, in some sense, the quantum version of
BPP, described below.

3P, or Polynomial Time, refers to the complexity class of languages decidable by a Turing machine in polynomial
time. BPP, or Bounded-Error Probabilistic Polynomial Time, is the class of languages decidable with error at most
1/3 using a polynomial-time probabilistic Turing machine [4]. Again, for some intuition, BPP and P are the classes
of decision problems solvable in classical polynomial time with or without the use of randomness, respectively.
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superpolynomial separation between the best quantum and classical algorithms.4 This would dis-

prove the (classical) complexity-theoretic Church-Turing thesis (also referred to as the extended

Church-Turing thesis), which states that any reasonable model of computing can be simulated

up to polynomial overhead by a Turing machine (see, e.g., Ref. [7]). Such a proof of quantum

advantage would have implications beyond just complexity theory, as factoring is at the heart of

the security of the popular Rivest–Shamir–Adleman (RSA) cryptosystem [8]. The existence of an

efficient quantum algorithm for factoring, therefore, places the security of RSA at risk, prompting

the National Institute of Standards and Technology (NIST) to update their cryptography standards

to account for threats posed by Shor’s algorithm [9].

However, quantum advantage, conceptually, need not be restricted to solving some sort of

decision problem like factoring. Indeed, an insular focus on Shor’s algorithm and the factoring

problem would crucially overlook many of the other potential benefits that quantum devices can

provide. For one thing, actually implementing Shor’s algorithm requires using quantum error

correction, which is a method by which quantum information can be preserved despite its natural

tendency to decohere over time. While the threshold theorem [10–12], shows that quantum error

correction is possible (that is, it is possible to correct errors at a rate faster than they reappear

through the correction process), these schemes can be quite complicated, and they often require

huge overheads in the number of qubits or gates. While fundamental improvements in quantum

error correction, gate design, or qubit architecture might eventually improve fidelity enough to

4We note one more small subtlety here. The problem of finding a factor of or listing all factors of a given integer
is not actually a decision problem, but instead a function problem. Therefore, if phrased in this way, factoring is
technically not in BQP. However, one can easily turn this function version of factoring into a decision problem;
does there exist a factor of the given integer that is between 1 and some other given value? Being able to solve this
decision problem also allows one to solve the functional version by a sort of binary search procedure. Therefore,
Shor’s algorithm, which does actually produce a factor of the integer, can easily be turned into a BQP algorithm,
which is why we refer to the decision problem version of factoring. See Ref. [6] for a discussion of this matter.
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lower these numbers to a more reasonable regime, the time required to achieve these gains is

undetermined.

Therefore, while there is strong interest in developing more examples of quantum advan-

tage in the quantum computation realm, there is also an interest in exploring the advances that

quantum advantage can provide in other domains, such as cryptography, communication, sens-

ing, and non-universal simulation. In this dissertation, we focus on the latter two topics of sensing

and simulation. Accordingly, this dissertation contains two main parts, the first of which consists

of two Chapters and two associated Appendices, and the latter of which contains three of each.

Each individual Chapter contains its own introduction that provides even more details and ref-

erences regarding the topics at hand. Therefore, here we find it appropriate to discuss the broad

strokes of what is contained in those Chapters with a focus on the main contributions and new

results that are proven therein.

The first part of this dissertation, which consists of Chapters 2 and 3 and their respective

Appendices A and B, discusses quantum advantage in the domain of quantum sensing, specif-

ically for the problem of measuring a linear function of unknown parameters. We assume that

there are d unknown parameters {θi}di=1 that are coupled to d quantum sensors, and the goal is to

construct an estimator q̃ of the function q = ∑di=1αiθi, where αi ∈ R are arbitrary real parameters

that define the linear function. Simple examples include the case where αi = δij , meaning we are

actually only interested in a single parameter, and αi = 1/d, where we are actually interested in

an average of all the parameters. Additionally, it is desired that this estimator q̃ be unbiased (i.e.,

for E[q̃] = q, where the expectation value is taken with respect to the probabilistic outcomes of

the positive operator-valued measure that is used to construct the estimator), and for the mean-

squared error of the estimator to be as small as possible. This is a problem that has been studied
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before [13–22], and it is known that one can use quantum entangled states to improve on the

achieveable mean-squared error of the estimator compared to an unentangled strategy.5

We study this problem for both the case of qubit-based (Chapter 2) and photonic (Chap-

ter 3) sensors. Furthermore, we study each type of sensor from two complementary perspectives:

bounds and protocols. Bounds refer to lower limits on how precise q̃ can be as measured by

its mean-squared error M. The bounds proven in this dissertation are based on the quantum

Cramér-Rao bound, which itself follows from the calculation of the quantum Fisher information

with respect to the function q, F(q): M ≥ 1/F(q).6 In Chapters 2 and 3, we calculate the

quantum Fisher information with respect to q, and we use the quantum Cramér-Rao bound to

find the ultimate precision limits of quantum sensors, which we can then compare to unentangled

strategies, thus demonstrating an advantage via entanglement.

Protocols, on the other hand, refer to specific sequences of operations that actually construct

an estimator for the function of interest. Ideally, these protocols lead to an estimator that achieves

the proven bounds (that is, an estimator whose mean-squared error is as small as possible). For

quantum sensors, there are, typically, four main steps to these protocols: state preparation, unitary

control, measurement, and classical postprocessing of the measurement results. While each of

these steps is important, our main focus in this dissertation is on the second stage, unitary control.

5Here, we are technically not comparing quantum vs. classical strategies, but instead entangled vs. unentangled
strategies. Strictly speaking, even without entanglement the device itself is still quantum, as the sensor still consists
of qubits or photonic modes (in Fock or squeezed states, not semiclassical coherent states), and we still treat the
problem in a fully quantum mechanical way. However, we still consider this separation an example of quantum
advantage because it is known that entanglement, a purely quantum resource, is necessary for quantum sensors to
outperform those that are connected by only classical correlations [23, 24]. Because unentangled strategies achieve
a scaling given by the classical summing of errors in quadrature, we treat the unentangled strategy as a proxy for an
equivalent classical sensor.

6Technically, this is the single-shot quantum Cramér-Rao bound; the full bound contains a factor µ in the de-
nominator, where µ is the number of samples. The quantum Cramér-Rao bound is only saturable in the limit of
asymptotically many shots, but one can get around this subtlety at the expense of a multiplicative constant. This is
discussed in depth in both Appendices A and B.
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The reasoning for this is as follows: we can absorb the initial state preparation into this unitary

control (assuming some fiducial initial state, such as ∣0⟩d in the case of qubit sensors). The

measurement and classical postprocessing follow from earlier results in the literature. Therefore,

our main contributions are in better understanding what sequences of unitary control lead to

protocols that saturate the bounds, and then characterizing the resources needed to implement

this control.

We can now summarize our main results. In Chapter 2 and Appendix A, we focus on

the case of qubit sensors that are coupled to the parameters {θi}di=1 (often listed as a vector θ)

via the Hamiltonian Ĥ = 1
2 ∑

d
i=1 θiσ̂

z
i + Ĥc. Note that the factor of 1

2 is merely a convention (it

ensures that the seminorm of the generator on each qubit is normalized to 1). Note also that

Ĥc is an arbitrary control Hamiltonian that can, generically, vary with time, but which has no

θ-dependence; Ĥc is the source of the unitary control that is so crucial to the construction of

our protocols. We use an algebraic approach to the Fisher information to rederive known bounds

(see, e.g., Refs. [14,19]) on the performance of these sensors. This rederivation of known bounds

is not useless, however, as the algebraic framework that we utilize allows us to make powerful

statements on the protocol side. Specifically, we use it derive an infinite family of time-dependent

protocols that saturate these bounds; we therefore refer to these protocols as “optimal.” We then

characterize how much entanglement these optimal protocols use, specifically finding saturable

upper and lower bounds on the amount of instantaneous and average entanglement needed over

the course of these protocols. We prove the surprising result that fully entangled states are not

necessary to achieve optimality (even though, naively, one might expect this to be the case given

that all previous protocols utilized such states). We also characterize how many entangling gates

are needed to run these protocols, though our results there are a bit more heuristic. In this way,
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this Chapter offers significant clarification in the role that entanglement plays in achieving the

metrological gains that are possible via quantum sensors.

In Chapter 3 and Appendix B, we extend the previous results to the case of photonic sen-

sors. There, we consider coupling the parameters to the photonic modes via both the number

operator n̂ and displacement operator p̂ (we choose the momentum operator without loss of gen-

erality). In these cases, the actual optimal bounds were not known in all cases (for generators

of the form n̂, it was conjectured in Ref. [13] for functions with non-negative coefficients, but it

was not proven; for generators of the form p̂ Refs. [25, 26] provide some results, but they do not

allow the function α to have negative coefficients, nor do they consider arbitrary probe states).

Therefore, our derivations of bounds using our algebraic approach to the quantum Fisher infor-

mation do not just serve an ancillary purpose for finding optimal protocols, but are themselves

useful results. As in Chapter 2, we also use the quantum Fisher information to find optimal time-

dependent protocols and characterize their entanglement, again clarifying the role of quantum

resources in achieving metrological gains.

The second part of this dissertation, which consists of Chapters 4 to 6 and their respective

Appendices C to E, switches focus to simulation. Chapters 4 and 5 (Appendices C and D) and

Chapter 6 (Appendix E) are about two different systems, which we introduce separately now.

Chapters 4 and 5 and Appendices C and D discuss quantum advantage in random sampling

experiments, specifically in Gaussian Boson Sampling, which is a generalization of the famous

framework of Boson Sampling developed by Aaronson and Arkhipov in Ref. [27]. Random sam-

pling experiments are a promising avenue for near-term demonstrations of quantum advantage

using non-universal quantum simulators (see Ref. [28] and references therein). Indeed, many

random sampling experiments, such as those in Refs. [29–33], already have been performed. The
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general concept of a random sampling task is as follows: (1) some fiducial initial state, say ∣0⟩m

for a system of m qubits or the state ∣1 . . .10 . . .0⟩ for a system of photonic modes, is prepared;

(2) a unitary operator randomly drawn from some distribution, typically the Haar (that is, the uni-

form) distribution, is applied to this state; (3) the post-unitary state is measured in some simple

basis, such as the computational basis for a system of qubits, or the Fock basis for a system of

photonic modes. This measurement results in a given basis state with probability according to

the Born rule. The task of random circuit sampling, speaking in highly general terms, is to mimic

this sampling procedure and produce a sample from the output distribution described in this way.

In this work, we drill deeply into a specific feature of the typical arguments for quantum

advantage through these random sampling schemes. Specifically, we study the property of anti-

concentration in Gaussian Boson Sampling. Anticoncentration plays a crucial role in the current

arguments that random sampling schemes are not just hard in the exact or worst case, but also

hard in the approximate and average case.7 That is, anticoncentration helps to show that it is

hard to sample from a distribution that is close (in some suitable sense) to the exact measure-

ment distribution induced at the end of the above-described protocol [approximate-case], and

that this is true not only for a single possible random unitary, but for sufficiently many of them

[average-case]. Roughly speaking, anticoncentration ensures that sufficiently many instances of

a random sampling experiment have many output probabilities that nontrivially contribute to the

distribution (which, intuitively, makes it harder to mimic the sampling procedure on a classical

device). In its simplest formulation, anticoncentration can be thought of as a property of the

moments of the output probability distribution. How precisely anticoncentration arises is a result
7Note here that “hard” means that the task admits no polynomial-time algorithm. A task can be hard quantumly

(meaning it is not in BQP) or classically (meaning it is not in P or BPP). By contrast, a task being “easy” means it
does fall into the respective quantum or classical polynomial-time class.
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of a long, complicated argument connecting the hardness of sampling with the hardness of com-

puting/approximating output probabilities through an algorithm of Stockemyer [34] and a host of

other computational complexity related results. While a full review of this reasoning is beyond

the scope of this dissertation, Ref. [28] contains an excellent overview.

In Chapter 4 and Appendix C, we introduce a graph-theoretic framework to analyze the mo-

ments of the output probabilities in Gaussian Boson Sampling, hence probing anticoncentration

in this scheme. Specifically, we convert an algebraic problem about computing combinatorial

functions of random matrices into a problem about the number of connected components of suit-

ably defined graphs. We are able to use this graph-theoretic mindset to derive a closed form for

the first moment of the output probabilities, and we are also able to derive certain properties of

the second moment; we show that it admits a polynomial expansion in k, the number of modes

that are squeezed in the initial state, and we also compute the leading-order term in this expan-

sion. These two results are sufficient to prove that there is a transition in anticoncentration (as

defined by the moments of the output distribution). That is, we prove that there is a transition in

the strength of evidence for quantum advantage in Gaussian Boson Sampling.

In Chapter 5 and Appendix D, we significantly expand upon this graph-theoretic framework

to better understand the second moment, about which the previous Chapter only provides small

amounts of information. In particular, through a much more thorough analysis of the graphs

originally defined in the Chapter 4, we set up a recursion relation to calculate the connected

components of these graphs and efficiently evaluate numerically exactly the second moment.

Using the results of this recursion, we are able to numerically investigate various properties of

the second moment and how it compares to the first moment. This allows us to more precisely

pin down where the transition in anticoncentration, and, hence, the transition in evidence for
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quantum advantage, actually occurs.

Chapter 6 and Appendix E change focus to a different simulation task, namely, trying to

mimic the evolution of product states in a phase of matter called Many-Body Localization (MBL).

In the MBL phase, the Hamiltonian is characterized by the emergence of an extensive number of

so-called quasilocal integrals of motion (LIOMs) that commute with the Hamiltonian. In contrast

to, say, Anderson-Localized (AL) systems [35], these LIOMs have exponentially decaying inter-

actions that can slowly spread information and entanglement through the system. While MBL is

typically described in the context of local disorder (creating the possibility for interference pat-

terns that induce these LIOMs), we take a much more phenomenological approach, and use the

work in Ref. [36] to simply define MBL Hamiltonians to be those that can be diagonalized into

a quasilocal, commuting Hamiltonian by a quasilocal unitary (these terms are all defined more

precisely in Chapter 6).

With this definition in hand, we can prove three main results about such Hamiltonians

(given some technical assumptions requiring the localization length to be sufficiently small): (1)

When the evolution time t under an MBL Hamiltonian is logarithmic in the size of the system

N (and the Hamiltonian is short-range in its original basis before diagonalization by the quasilo-

cal unitary), there is a classically efficient algorithm for strong simulation of the evolved state.

When the evolution time t is polynomial (or even quasipolynomial) in N , we prove that there

is a quasipolynomial-time classical algorithm that can perform strong simulation of the evolved

state. Here, strong simulation refers to the task of estimating (with small error) the marginal and

conditional probabilities of the distribution induced by measuring the output state in the compu-

tational basis; (2) When the evolution time t is exponentially large in N , we use a construction in

the literature from Ref. [37] to show that weak simulation of, or sampling from, the evolved state
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becomes formally hard in the worst case (i.e., for a particular family of MBL Hamiltonians). This

shows that there is a transition in the worst-case complexity of simulating MBL Hamiltonians;

(3) Finally, we switch focus from classical simulation to quantum simulation, and we show that

MBL Hamiltonians have approximate quantum circuit complexity that scales sublinearly in the

evolution time, placing them in contrast to general chaotic Hamiltonians, where there is good

evidence that the approximate circuit complexity grows linearly in t (until saturation)—see, e.g.,

Ref. [38] and more citations within Chapter 6.

These results, then, help us understand where we might find quantum advantage when it

comes to the task of simulating condensed matter systems. In particular, it seems that MBL

Hamiltonians might, at least for short evolution times, be classically simulable. Therefore, while

understanding the properties of these systems is quite interesting, it might not be the best place

to look for quantum advantage. This serves as an interesting counterpart to the previous two

Chapters.

Therefore, this dissertation should be viewed as a targeted, mathematically rigorous inves-

tigation into some of the details behind quantum advantage in different schemes. While there is

still much work to be done, the results in this dissertation move us closer to a full understanding

of the power of quantum devices. A discussion of how to further build upon the work in this

dissertation is included at the end of each Chapter and in Chapter 7.
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Chapter 2: Minimum-Entanglement Protocols for Function Estimation

Abstract: We derive a family of optimal protocols, in the sense of saturating the quantum

Cramér-Rao bound, for measuring a linear combination of d field amplitudes with quantum sen-

sor networks, a key subprotocol of general quantum sensor network applications. We demonstrate

how to select different protocols from this family under various constraints. Focusing primarily

on entanglement-based constraints, we prove the surprising result that highly entangled states are

not necessary to achieve optimality in many cases. Specifically, we prove necessary and sufficient

conditions for the existence of optimal protocols using at most k-partite entanglement. We prove

that the protocols which satisfy these conditions use the minimum amount of entanglement possi-

ble, even when given access to arbitrary controls and ancilla. Our protocols require some amount

of time-dependent control, and we show that a related class of time-independent protocols fail to

achieve optimal scaling for generic functions.
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2.1 Introduction

Entanglement is a hallmark of quantum theory and plays an essential role in many quantum

technologies. Consider single-parameter metrology, where one seeks to determine an unknown

phase θ that is independently and identically coupled to d sensors via a linear Hamiltonian Ĥ .

Given a probe state ρ̂, evolution under Ĥ encodes θ into ρ̂ where it can then be measured. If

the sensors are classically correlated the ultimate attainable uncertainty is the so-called standard

quantum limit ∆θ ∼ 1/
√
d [39], which can be surpassed only if the states are prepared in an

entangled state [23, 24]; if O(d)-partite entanglement is used, the Heisenberg limit ∆θ ∼ 1/d

can be achieved [40–42]. The necessity of entanglement for optimal measurement has also been

explored in numerous other contexts [43, 44]; for instance, in sequential measurement schemes

(where one may apply the encoding unitary multiple times) [45, 46], in the presence of decoher-

ence [47–50], when the coupling Hamiltonian is non-linear [51–53], or in reference to resource

theories for metrology [54–57].

In this Chapter, we consider the amount of entanglement required to saturate the quantum

Cramér-Rao bound, which lower bounds the variance of measuring an unknown quantity [58–61],

in the prototypical multiparameter setting of a quantum sensor network, where d independent,

unknown parameters θ (boldface denotes vectors) are each coupled to a unique quantum sensor.

Specifically, we revisit the problem of optimally measuring a single linear function q(θ) [13–

22], which is a crucial element of optimal protocols for more general quantum sensor network

problems (the case of measuring one or multiple analytic functions [62, 63] and the case where

the parameters θ are not independent [64] reduce asymptotically to the linear problem considered

here). Therefore, we focus on measuring a single linear function of independent parameters for
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ease of presentation while emphasizing that our results generalize.

Given the similarity of measuring a single linear function to the single-parameter case and

the fact that such functions of local parameters are global properties of the system, one might

expect (provided all the local parameters non-trivially appear in q) that d-partite entanglement

is necessary. This intuition is reinforced by the fact that all existing optimal protocols for this

problem do, in fact, make use of d-partite entanglement [13, 14, 19].

We show that such intuition is faulty and only holds in the case where q is approximately

an average of the unknown parameters. In particular, we derive a family of protocols that saturate

necessary and sufficient algebraic conditions to achieve optimal performance in this setting, and

we prove necessary and sufficient conditions on q for the existence of optimal protocols using at

most (k < d)-partite entanglement. The more uniformly distributed q is amongst the unknown

parameters, the more entanglement is required. We also consider other resources of interest,

such as the average entanglement used over the course of the protocol, as well as the number

of entangling gates needed to perform these protocols, and discuss optimizing them within our

scheme.

Finally, we address the impracticality of certain assumptions that have typically been made

in the more theoretically-focused literature on function estimation protocols. Specifically, we

show that so-called probabilistic protocols fail to achieve the Heisenberg limit except for a narrow

class of functions.
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2.2 Problem Setup

We first briefly review the problem of measuring a linear function of unknown parameters

in a quantum sensor network [13, 14, 16–19]. Consider a network of d qubit quantum sensors

coupled to d independent, unknown parameters θ ∈ Rd via a Hamiltonian of the form

Ĥ(s) =
d

∑
i=1

1

2
θiσ̂

z
i + Ĥc(s), (2.1)

where σ̂x,y,zi are the Pauli operators acting on qubit i and Ĥc(s) for s ∈ [0, t] is any choice of time-

dependent, θ-independent control Hamiltonian, potentially including coupling to an arbitrary

number of ancilla. That is, Ĥc(s) accounts for any possible parameter-independent contributions

to the Hamiltonian, including those acting on any extended Hilbert space with a (finite) dimension

larger than that of the network of d qubit sensors directly coupled to the unknown parameters.1

We encode the parameters θ into a quantum state ρ̂ via the unitary evolution generated by a

Hamiltonian of this form for a time t. Given some choices of initial probe state, control Ĥc(s),

final measurement, and classical post-processing, we seek to construct an estimator for a linear

combination q(θ) = α⋅θ of the unknown parameters, where α ∈ Rd is a set of known coefficients.

Throughout this Chapter, we assume without loss of generality that ∥α∥∞ = ∣α1∣. Ref. [14]

established that the fundamental limit for the mean square errorM of an estimator for q is

M ≥
∥α∥

2
∞

t2
, (2.2)

1Thus, the Hilbert space under consideration is a (d + na)-qubit Hilbert space of dimension 2d+na , where na is
the number of ancilla.
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where t is the total evolution time.

Equation (2.2) is derived via the single-parameter quantum Cramér-Rao bound [51,58–61].

This is somewhat surprising: while we seek to measure only a single quantity q(θ), d parameters

control the evolution under Eq. (2.1), so we do not a priori satisfy the conditions for the use

of the single-parameter quantum Cramér-Rao bound. However, we can justify its validity for

our system: consider an infinite set of imaginary scenarios, each corresponding to a choice of

artificially fixing d − 1 degrees of freedom and leaving only q(θ) free to vary. Under any such

choice, our final quantum state depends on a single parameter q, and we can apply the single-

parameter quantum Cramér-Rao bound. While this requires giving ourselves information that we

do not have, additional information can only reduceM, and, therefore, any such choice provides

a lower bound on M when we do not have such information. To obtain the tightest possible

bound there must be some choice(s) of artificially fixing d − 1 degrees of freedom that gives us

no (useful) information about q(θ). We will derive algebraic conditions that characterize such

choices.

Thus, we may apply the single-parameter quantum Cramér-Rao bound

M ≥
1

F(q)
≥

1

t2∥ĝq∥
2
s

, (2.3)

where F is the quantum Fisher information, ĝq = ∂Ĥ/∂q (the partial derivative fixes the other

d − 1 degrees of freedom), and the seminorm ∥ĝq∥s is the difference of the largest and smallest

eigenvalues of ĝq [51]. For our problem, the best choice of fixing extra degrees of freedom—in the

sense of yielding the tightest bound via Eq. (2.3)—gives ∥ĝq∥
2
s = 1/∥α∥

2
∞, yielding Eq. (2.2) [14].

The proof of this fact is provided in Appendix A.6 for completeness.
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2.3 Conditions for Saturable Bounds

While the argument above justifies applying the single-parameter bound in our multipa-

rameter scenario, it offers no roadmap for constructing optimal protocols. The quantum Fisher

information matrix F(θ) provides an information-theoretic solution to this issue. When calcu-

lating F(θ) we restrict to pure probe states, as the convexity of the quantum Fisher information

matrix implies mixed states fail to produce optimal protocols [65, 66]. For pure probe states and

unitary evolution for time t under the Hamiltonian in Eq. (2.1), it has matrix elements [66]

F(θ)ij = 4 [
1

2
⟨{Ĥi(t), Ĥj(t)}⟩ − ⟨Ĥi(t)⟩⟨Ĥj(t)⟩] , (2.4)

where {⋅, ⋅} denotes the anti-commutator and

Ĥi(t) = −∫
t

0
dsÛ †(s)ĝiÛ(s), (2.5)

with ĝi = ∂Ĥ/∂θi = σ̂zj /2 and Û the time-ordered exponential of Ĥ . The expectation values in

Eq. (2.4) are taken with respect to the initial probe state.

Choosing d−1 degrees of freedom to fix in hopes of using the single-parameter bound then

corresponds to a basis transformation θ → q, where we take q1 = q to be our quantity of interest,

and the other arbitrary qj>1 are the extra degrees of freedom. This basis transformation has a

corresponding Jacobian J such that F(q) = J⊺F(θ)J . To obtain the bound in Eq. (2.2) and have

no information about q(θ) from the extra degrees of freedom qj>1, F(q)must have the following
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properties:

F(q)11 =
t2

α2
1

, (2.6)

F(q)1i = F(q)i1 = 0 (∀ i ≠ 1) (2.7)

(recall ∣α1∣ = ∥α∥∞ without loss of generality). Via the inverse basis transformation q → θ, we

find Eqs. (2.6)-(2.7) are satisfied if and only if

F(θ)1j = F(θ)j1 =
αj
α1

t2, (2.8)

where we assume here and for the rest of the Chapter that ∣α1∣ > ∣αj ∣ ∀j > 1 for ease of presen-

tation. Our main result (see Theorem 2.1) is unchanged by this assumption, although its proof

and that of several other results becomes more tedious. The explicit derivation of Eq. (2.8), along

with the generalization of our results beyond this assumption, is provided in Appendix A.6.

Finally, we remark that the problem of function estimation is mathematically equivalent to

the concept of nuisance parameters in the literature on classical (c.f. [67]) and quantum estimation

theory [68–70]. One finds similarly derived bounds in these contexts.2 However, the protocols

we now describe, and especially their entanglement features, are new to this Chapter.

2.4 A Family of Optimal Protocols

We now derive a family of protocols that achieve Eq. (2.8). A particular protocol consists of

preparing a pure initial state ρ̂0 = ∣ψ(0)⟩ ⟨ψ(0)∣, evolving ρ̂0 under the unitary generated by Ĥ(s)

2For instance, the conditions in Eqs. (2.6)-(2.7) are equivalent to the so-called global parameter orthogonality
condition discussed in Section 5.5 of Ref. [70].
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for time t, performing some positive operator-valued measurement, and computing an estimator

for q from the measurement outcomes. Given ρ̂0 and Ĥ(s), F(θ) can be computed via Eq. (2.4).

The protocols we propose will use Ĥc(s) to coherently switch between probe states with

different sensitivities to the unknown parameters θ, thereby accumulating an overall sensitivity

to the unknown function of interest q. In particular, we consider the following set T of N = 3d−1

one-parameter families of cat-like states:

∣ψ(τ ;φ)⟩ =
1
√
2
(∣τ ⟩ + eiφ ∣−τ ⟩) , (2.9)

where each family of states is labeled by a vector τ ∈ {0,±1}d such that

∣τ ⟩ =
d

⊗
j=1

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩ , τj ≠ −1

∣1⟩ , τj = −1

, (2.10)

and φ ∈ R parameterizes individual states in the family. We require that τ1 = 1, as any op-

timal protocol must always be sensitive to this most important parameter; see Lemma A.1 in

Appendix A.1. Each of the probe states described in Eqs. (2.9) and (2.10) is a superposition of

exactly two states in the σ̂z basis (which we call “branches”). Note that these states use no ancilla.

Our protocols proceed in three main stages: a state initialization stage, a parameter en-

coding stage, and, finally, a measurement stage. In the state initialization stage, we prepare the

probe state ∣ψ(τ ; 0)⟩ that is then coupled to the parameters in the parameter encoding stage via

a Hamiltonian of the form of Eq. (2.1). During this parameter encoding stage, we use the con-

trol Hamiltonian to coherently switch between families of probe states at particular (optimized)
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times, such that the relative phase between the branches is preserved during the switches (that

is, Ĥc(s) changes τ , but not φ). This can be done using finitely many controlled-NOT (CNOT)

and σ̂x gates. We stay in the family of states ∣ψ(τ (n);φ)⟩ for time pnt, where pn ∈ [0,1] such

that ∑n pn = 1. Here n indexes some enumeration of the families of states in T . There are three

possibilities for the relative phase that qubit j induces between the two branches due to the time

spent in family n. If τ (n)j = 0, then no relative phase is accrued because qubit j is disentangled.

If τ (n)j = 1, the relative phase imprinted by σ̂zj /2 is pnθjt, while if τ (n)j = −1, the relative phase

is −pnθjt. Thus, the j-th qubit always induces a relative phase of pnτ
(n)
j θjt. Accounting for all

qubits, being in family n for time pnt induces a relative phase

ϕn =∑
j

pntτ
(n)
j θj. (2.11)

Given some time-dependent probe ∣ψ(t)⟩ which is in each family ∣ψ(τ (n);φ)⟩ for time pnt, the

total phase ϕ accumulated between the branches over the course of the entire parameter encoding

stage of the protocol is

ϕ =∑
n

ϕn =∑
n
∑
j

pntτ
(n)
j θj =∑

j

(Tp)jθjt, (2.12)

where we implicitly defined p = (p1, . . . , pN)⊺ and the d × N matrix T with matrix elements

Tmn = τ
(n)
m . If p is chosen such that Tp ∝ α this total phase is ∝ qt. More formally, choosing p

such that

Tp =
α

α1

(2.13)

achieves the saturability condition in Eq. (2.8). Algebraic details of this calculation are provided
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in Appendix A.2.

Any nonnegative solution (in the sense that pn ≥ 0 ∀n) to Eq. (2.13) specifies a valid set

of states and evolution times satisfying Eq. (2.8). Because the system in Eq. (2.13) is highly

underconstrained, such protocols do not necessarily use all 3d−1 families of states in T . As an

illustrative example, consider the solutions to Eq. (2.13) for two qubits. The available families of

states are described by

T = (τ (1) τ (2) τ (3)) =

⎛
⎜
⎜
⎜
⎝

1 1 1

1 −1 0

⎞
⎟
⎟
⎟
⎠

. (2.14)

By Eq. (2.13), the fraction of time spent in each family of states must satisfy

p1 + p2 + p3 = 1, (2.15)

p1 − p2 =
α2

α1

. (2.16)

Solving in terms of p1 leads to the 1-parameter family of solutions p2 = p1 − α2

α1
and p3 =

1 + α2

α1
− 2p1, where pn ∈ [0,1] for all n. Without loss of generality, assume α1 = 1. Then

non-negativity is achieved by

p1 ∈

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[α2,
1+α2

2
] α2 ≥ 0

[0, 1+α2

2
] α2 < 0

. (2.17)

There are many solutions satisfying these constraints. Of particular note, there is a two-family

protocol that does not require using exclusively maximally entangled states: for α2 > 0, let

p1 = α2 so that p2 = 0 and p3 = 1 − α2; for α2 < 0, let p1 = 0 so that p2 = −α2 and p3 = 1 + α2.
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We refer to protocols achieving Eq. (2.13) (or, equivalently, Eq. (2.8)) as optimal. Note,

however, that achieving these conditions is a property of the probe state(s) used and does not

a priori guarantee the existence of measurements to extract q. Therefore, we now move on to

describing the third main stage of our protocols, which is the explicit measurement scheme: apply

a sequence of σ̂xi and CNOT gates to the final state of a protocol to transform it into 1/
√
2(∣0⟩ +

eiqt/α1 ∣1⟩)(∣0 . . .0⟩). Then perform single qubit phase estimation to measure q.3

Such phase estimation is not as simple as it might appear, however. Because we are inter-

ested in how our error scales in the t→∞ limit, a naive approach loses track of which 2π interval

the phase is in [74–76]. We could assume that this information is known a priori [14], but this is

unjustified in practice as the required knowledge is of precision ∼ ∣α1∣/t, i.e. it is already within

the Heisenberg limit. More realistically, starting with any t-independent prior knowledge of the

unknown phase, we use the so-called robust phase estimation protocols from Refs. [71–73] to

saturate Eq. (2.2) up to a modest constant factor. Such protocols work by optimally dividing the

total time t into K stages with stage k using a time 2νktk such that 2∑Kk=1 νktk = t. In each stage,

one encodes the parameters into the state for a time tk and then makes a (σ̂x or σ̂y) measurement.

This is repeated 2νk times in order to obtain an estimate of q, which in each stage becomes a more

and more precise estimate. Provided the time of the final stage scales linearly with the total time,

i.e., tK ∼ t, Heisenberg scaling in time is still achieved and we can estimate q with a mean square

error achieving the bound in Eq. (2.2) up to a constant factor. For completeness, we review this

measurement scheme in more detail in Appendix A.3.

3It is worth pointing out that it is not strictly necessary to reduce the problem to single qubit phase estimation.
The reason we consider disentangling all qubits is to reduce fully to the single qubit phase estimation problem of the
robust phase estimation papers in Refs. [71–73], described below. However, one could apply essentially equivalent
protocols by forgoing the disentangling of the qubits and simply performing parity measurements on the final cat-like
state. Such parity measurements can be carried out by simply measuring all qubits individually.
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To summarize, a full optimal protocol is as follows:

1. Using any relevant experimental desiderata and optimization algorithm, find a nonnegative

solution p to Eq. (2.13).

2. Restrict p to its N nonzero elements, and restrict T to the corresponding columns. If

desired, reorder the elements of p and the columns of T . The N τ corresponding to the

columns of T will be the families of states used in the protocol.

3. Initialize a quantum state on the d qubits to ∣0⟩⊗d.

4. Using CNOT and σ̂x gates, prepare ∣ψ(τ (1); 0)⟩, the first state of the protocol. Couple

the state to the Hamiltonian Ĥ and remain in this family for time p1tk, leading to state

∣ψ(τ (1);ϕ1)⟩, where ϕ1 = ∑j p1tkτ
(1)
j θj . Here, tk is the time required by the current step of

the robust phase estimation protocol.

5. Using CNOT and σ̂x gates, coherently switch to ∣ψ(τ (2);ϕ1)⟩ from ∣ψ(τ (1);ϕ1)⟩. Remain

in this family for time p2tk, leading to state ∣ψ(τ (2);ϕ1 + ϕ2)⟩, with ϕ2 = ∑j p2tkτ
(2)
j θj .

6. Repeat this process for all states in the restricted T , staying in the family parameterized by

τ (n) for time pntk, leading to a final state ∣ψ(τ (N); qtk)⟩.4

7. Using CNOT and σ̂x gates, convert this final state to 1/
√
2(∣0⟩ + eiqtk ∣1⟩) ∣0⟩

⊗d−1.

8. Make a measurement on the first qubit of the final state (see Appendix A.3 for more details)

and repeat starting from step 3. After 2νk repetitions, move to the next stage of the robust

phase estimation protocol, and use an updated evolution time tk. After a number of stages

4Note added: As written, this value of φ (here and written directly as the relative phase in item 7 below) techni-
cally assumes that ∥α∥∞ = ∣α1∣ = 1. This can be fixed by simply replacing q with q/∣α1∣.
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K as prescribed by the robust phase estimation protocol, extract a final estimate of q with

a mean square error achieving the bound in Eq. (2.2) up to a constant factor.

Having described the full details of the protocol, including the subtleties involved in sub-

dividing the total time t into different stages in order to implement robust phase estimation, in

the rest of the Chapter, for simplicity of presentation, we will simply consider the total encoding

time t and act as if the parameters can be encoded into the state in one step, using evolution for

this full time. This should be viewed as a notational shorthand such that t can be replaced with

the relevant tk at any given stage when implementing the full protocol.

2.5 Minimum-Entanglement Solutions

We now focus on solutions from our family of protocols that require the minimum amount

of entanglement. Specifically, we prove necessary and sufficient conditions on α for the existence

of a protocol that uses at most k-partite entanglement. This is the primary technical result of this

Chapter. We emphasize that, while the protocols in the previous Section use a particular choice

of controls that does not include ancilla qubits, Theorem 2.1 applies to any protocol making use

of a Hamiltonian described via Eq. (2.1).

Theorem 2.1 (Main result). Let q(θ) = α ⋅ θ. Without loss of generality, let ∥α∥∞ = ∣α1∣. Let

k ∈ Z+ so that

k − 1 <
∥α∥1
∥α∥∞

≤ k. (2.18)

An optimal protocol to estimate q(θ), where the parameters θ are encoded into the probe state

via unitary evolution under the Hamiltonian in Eq. (2.1) requires at least, but no more than,

k-partite entanglement.
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Theorem 2.1 justifies our claim that d-partite entanglement is not necessary unless ∥α∥1 is

large enough, i.e. in the case of measuring an average (αi = 1
d ∀ i). We now sketch the proof,

providing full details in Appendix A.4. The proof comes in two parts. First, using k-partite

entangled states from the set of cat-like states considered above, we show the existence of an

optimal protocol, subject to the upper bound of Eq. (2.18). Second, we show that, subject to the

conditions in the theorem statement, there exists no optimal protocol using at most (k−1)-partite

entanglement, proving the lower bound of Eq. (2.18).

Part 1. Define T (k) to be the submatrix of T with all columns n such that ∑m ∣Tmn∣ > k are

eliminated, which enforces that any protocol derived from T (k) uses only states that are at most

k-partite entangled. Define System A(k) as

T (k)p(k) = α/α1, (2.19)

p(k) ≥ 0. (2.20)

Let α′ = α/α1 and define System B(k) as

(T (k))⊺y ≥ 0, (2.21)

⟨α′,y⟩ < 0. (2.22)

By the Farkas-Minkowski lemma [77,78], SystemA(k) has a solution if and only if SystemB(k)

does not, so it is sufficient to show that System B(k) does not have a solution if∑j>1 ∣α′j ∣ ≤ k−1,

where we used that α′1 = 1. This can be shown by contradiction.

Part 2. The probe state must always be maximally sensitive to the first sensor qubit (see
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Lemma A.1 in Appendix A.1), so F(θ)1j only accumulates in magnitude when qubit j is entan-

gled with the first qubit (intuitively, Eq. (2.4) is similar to a connected correlator). Using this, we

show that satisfying the condition in Eq. (2.8) requires ∥α∥1/∥α∥∞ > k − 1. ◻

Theorem 2.1 provides conditions for the existence of solutions to Eq. (2.13) with limited

entanglement, but it is not constructive. To obtain an explicit protocol, simply solve the system

of linear equations T (k)p = α.

Of course, instantaneous entanglement is not the only resource that one might want to

minimize. For instance, one might also be interested in minimizing average entanglement over

the entire protocol. This possibility is considered in Section 2.6. Other, more general, resource

restrictions can be handled by setting up a constrained optimization problem that picks out certain

solutions to the system of linear equations T (k)p = α subject to a cost function E(p). For

example, if certain pairs of sensors are easier to entangle than others, due to, for instance, their

relative spatial location in the network, that could be encoded into E(p). More complicated

optimizations could also take into consideration the ordering of the states used in the protocols.

For example, because our protocols require coherently applying CNOT gates to move between

different families of entangled states, and these gates may be costly or error-prone resources, one

might wish to find protocols that minimize the usage of these gates. We discuss this possibility

and the potential tradeoff between minimizing entanglement and CNOT gates in Section 2.7.

2.6 Average Entanglement

As mentioned above, one might also wish to minimize not just the size of the most-

entangled family of states, but also the average entanglement used (given by weighting the size
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of each entangled family by the proportion of time that the family is used in the protocol). In

this Section (with some details deferred to Appendix A.5), we show that there exists a class of

optimal protocols, ones that we name “non-echoed,” that minimize this average entanglement.

The formal definition is as follows:

Definition 2.1 (Non-Echoed Protocols). Consider some α ∈ Rd encoding a linear function of

interest. Let T be the matrix which describes our families of cat-like probe states, and let p

specify a valid protocol such that p > 0 and Tp = α/∥α∥∞. We say that the protocol defined by

p is “non-echoed” if ∀i such that pi is strictly greater than 0, sgn(Tij) ∈ {0, sgn(αj)}.

At any stage of a non-echoed protocol, letting the portion of the relative phase accumulated

between the two branches of the probe state associated to the parameter θi be given by ciθi, two

conditions must hold: (1) ∣ci∣ < ∣αi∣; (2) sgn(ci) = sgn(αi). More intuitively, sensitivity to each

parameter is accumulated “in the correct direction” at all times, meaning one does not use any

sort of spin echo to produce a sensitivity to the function of interest, hence the name “non-echoed.”

We now prove two useful statements about non-echoed protocols.

Lemma 2.1 Non-echoed protocols use minimium average entanglement.

Proof. We start with Tp = α/∥α∥∞. Then

∥α∥1/∥α∥∞ = sgn(α)
⊺(Tp)

= (sgn(α)⊺T )p =w⊺p, (2.23)

where we have defined wj = ∑i ∣Tij ∣ to be the sum of the absolute value of the elements of the

jth column of T . That is, wj represents how entangled the corresponding cat-like family of
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states is. But, then, clearly w⊺p is the average entanglement of the entire protocol. Furthermore,

the second half of the proof of Theorem 2.1, given in Appendix A.4 shows that the minimum

average entanglement of any optimal protocol is given by ∥α∥1/∥α∥∞ (see the discussion after

the completion of the proof).

The intuition behind this lemma is that if one always accumulates phase in the “correct

direction,” then the total amount of entanglement used over the course of the protocol must be

minimized, as any extra entanglement would lead to becoming overly sensitive to some parame-

ter, which would require some sort of echo to correct.

We further have the following theorem, which can be viewed as an extension of Theo-

rem 2.1.

Theorem 2.2. For any α ∈ Rd, there exists an optimal non-echoed protocol with minimum in-

stantaneous entanglement for measuring q = α ⋅ θ.

The proof of this theorem is given in Appendix A.5, and it proceeds in a very similar way to

the proof of Theorem 2.1. The main difference is that one also restricts the allowed state families

to be those with the correct sign so as to be non-echoed. And, analogously to how one can find

a protocol with minimum entanglement, one can also obtain a solution that minimizes average

entanglement by restricting T to only include columns such that sgn(Tij) = sgn(αi) for all i, j

and then solving the corresponding system of linear equations.

2.7 CNOT Costs of Minimum Entanglement Protocols

We now address another resource of potential interest: how many entangling (CNOT) gates

are required to perform our protocols with a focus on the minimum entanglement protocols.
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We will again assume, for simplicity, that ∥α∥∞ = α1 = 1 > ∣α2∣ ≥ ∣α3∣ ≥ ⋅ ⋅ ⋅ ≥ ∣αd∣.

Furthermore, without loss of generality, we will adopt the convention that an optimal protocol

specified by a p ≥ 0 such that Tp = α begins by preparing a state in the family described by the

first column of T and evolving for time p1t, and then proceeds to the appropriate state (i.e., the

one with phase p1t) in the family described by the second column, then evolving for time p2t, and

so on, until eventually moving to the measurement state. If pi = 0, the corresponding state family

is skipped and not prepared. By construction, the number of CNOT gates needed to perform this

protocol is the number of gates required to generate the first state, plus the number needed to

convert from the first state to the second state, and so on. Finally, one should add the number of

gates needed to prepare the measurement state, which disentangles all qubits, from the final probe

state.5 The number of gates required to move from state i to state i+1 corresponds to the number

of elements of τ i that are ±1 but 0 in τ i+1 and vice versa. In what follows, we will often consider

only the gates that are used to convert between probe states (i.e., we will not consider the initial

state preparation or final measurement preparation). This is physically motivated by the fact that

these intermediate gates may be more difficult to perform or may be more susceptible to noise.

Furthermore, assuming one is interested in the value of q at some particular moment (and not,

say, continuously), one might be free to prepare and purify the initial probe state in advance of

the actual sensing task, which also justifies ignoring the initial CNOT cost.

Assume that N states used in the protocol, i.e. p is such that it contains at most N nonzero

elements. It is clear that at most O(N
2
) CNOT gates are needed. However, this is not neces-

sarily optimal. In fact, Ref. [14] provides a protocol that uses d states and only (d − 1) = O(d)

intermediate CNOT gates. This “disentangling protocol” consists of using a maximally entangled

5These gates are not strictly necessary. See footnote 3.
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Greenberger-Horne-Zeilinger state (up to σ̂x rotations) for a time ∣αd∣t, then disentangling the last

qubit and using the (d− 1)-entangled state for time (∣αd−1∣− ∣αd∣)t before disentangling the next-

to-last qubit and so on until reaching the final state corresponding to τ = (1,0, . . . ,0)⊺. This final

state is used for time (∣α1∣ − ∣α2∣)t = (1 − ∣α2∣)t. The disentangling protocol does not minimize

the instantaneous entanglement, but it does minimize average entanglement (as it is a non-echoed

protocol—see Section 2.6).

Even more interestingly, Ref. [14] also provides a protocol, which we refer to as the “echo-

ing” protocol, that uses zero intermediate CNOT gates. It proceeds by using d exclusively max-

imally entangled states (thereby minimizing neither average nor, in most cases, instantaneous

entanglement), but judiciously echoing away the extra sensitivity that this extra entanglement

induces.

To illustrate these protocols in the language of the current Chapter, we provide T and p

(where, for simplicity of notation, we restrict T and p to the states that are used for a non-zero

fraction of time) for the case d = 8 and αi > 0:

T disentangling =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, pdisentangling =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α8

α7 − α8

α6 − α7

α5 − α6

α4 − α5

α3 − α4

α2 − α3

α1 − α2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.24)
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and

T echoing =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 −1

1 1 1 1 1 1 −1 −1

1 1 1 1 1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 −1 −1

1 −1 −1 −1 −1 −1 −1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, pechoing =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1+α8

2

α7−α8

2

α6−α7

2

α5−α6

2

α4−α5

2

α3−α4

2

α2−α3

2

α1−α2

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.25)

In the case of the disentangling protocol, the number of CNOTs needed is heavily dependent on

the ordering of the states. For example, consider, instead, ordering the states in the following

way:

T disentangling =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 0 1 0 1 1 1 1

1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.26)

Here, the number of CNOTs required is now (d − 1) + (d − 2) + ⋅ ⋅ ⋅ + 1 = Θ(d2). Thus, it is not

only the choice of states that affects the CNOT cost of a protocol, but also their ordering. Naively,
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finding an optimal set of states and their optimal ordering is a difficult problem, as if one finds a

protocol using N states, there are N ! orders to check.

While we were unable to find a general solution to this optimization problem, numerics al-

low us to provide a pragmatic analysis of the cost. To begin, we considered the naive approach of

finding a random (non-echoed) minimum entanglement solution using d states for random prob-

lem instances and, then, using this solution set, we brute-force searched over all column orderings

of T restricted to families of states specified by this solution to find an optimal ordering in terms

of CNOT cost. This was done for d ∈ [3,10] sensors with twenty random instances each. Without

loss of generality, the random problem instances were taken to have all positive coefficients. We

observe a CNOT cost scaling ∼ d2, indicating that a random minimum entanglement solution,

even with optimal ordering, does not have the optimal linear in d scaling. See Figure 2.1.

Consequently, more nuanced algorithms for finding a minimum entanglement solution with

better CNOT costs are desirable. To this end, we considered a greedy algorithm that yields a Θ(d)

CNOT cost whenever it does not fail. The algorithm works by building up the full sensitivity to

one parameter before switching coherently to a new state family (in this way, it is non-echoed—

see Section 2.6). Consequently, each time we switch to a new state, one sensor qubit can be

disentangled and never re-entangled. In particular, we seek to build up sensitivity to the param-

eters according to their weight in q, i.e. we build up sensitivity to parameters going from the

smallest corresponding ∣αj ∣ to the largest. The full algorithm is completed in at most d steps.6

However, this greedy algorithm can fail to produce a valid protocol, as it does not enforce

the condition that ∥p∥1 = 1. This condition will be violated for some functions—typically those

with many coefficients with approximately equal magnitude. Still, when it works, this algorithm

6Code is available upon request.
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Figure 2.1: CNOT costs versus number of sensors d for minimum entanglement protocols using
d optimally ordered states chosen either randomly or via the greedy algorithm described above.
Twenty randomly chosen instances (that do not fail) to yield a valid protocol via the greedy
algorithm. When it returns a valid protocol, the greedy algorithm recovers optimal linear scaling
with d for the CNOT cost, whereas randomly chosen states have quadratic scaling, even with
optimal state ordering.

succeeds in producing CNOT-efficient minimum entanglement protocols, as shown in Figure 2.1.

Finding more general algorithms that always succeed for this task remains an interesting open

problem.

Independent of the algorithm used to minimize the CNOT count of an optimal protocol,

the takeaway message is the same: there is an apparent tradeoff between entanglement- and gate-

based resources. The disentangling protocol minimizes average entanglement, but not necessarily

instantaneous entanglement, and requires only O(d) intermediate entangling gates; the echoing

protocol uses maximal entanglement, but requires only single-particle intermediate gates. Proto-
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cols that minimize instantaneous entanglement do so at the cost of more intermediate entangling

gates. Depending on the primary sources of error or the physical constraints on any given quan-

tum sensor network implementation, one of these resources might be more important to minimize

than the other. In general, determining the optimal CNOT scaling for protocols that minimize in-

stantaneous and/or average entanglement is a crucial open question for future work.

2.8 Time-Independent Protocols

Another approach to constructing protocols is to use so-called probabilistic protocols.

These protocols eschew control and instead exploit the convexity of the quantum Fisher infor-

mation by staying in one family throughout any given run of the protocol, but by letting this

family vary over different runs. Intuitively, each family is sensitive to a different function qn such

that q = ∑Nn=1 pnqn, where N is the number of families from T used in the protocol, and pn is the

frequency that family n is used. In this way, one can create an estimator for q using those for

qn. In order to generate a Fisher information matrix satisfying Eq. (2.8) [14, 19], the pn should

come from a solution to Eq. (2.13). These protocols have the advantage of requiring no control,

but, unfortunately, suffer worse scaling with d than ours for generic functions when the available

resources are comparable.

In particular, to fairly account for resources, we must fix a total time t to perform all stages

of our protocol. Therefore, when considering a probabilistic protocol that uses multiple families

from T , but does not switch coherently between them, we must assign a time tn to family n such

that
N

∑
j=1
tn = t. (2.27)
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Note, we have used the fact that no stages of a probabilistic protocol with the families in T can

be performed simultaneously. One could imagine protocols that parallelize the measurement of

some qj that involve disjoint sets of sensors. However, such protocols are necessarily non-optimal

given Lemma A.1 in Appendix A.1, which says that any optimal protocol requires entanglement

with the first qubit at all times.

We can bound the maximum of the Fisher information matrix element F(θ)11 obtainable

via such a probabilistic protocol as

maxF(θ)11 ≤max
pn,tn

N

∑
n=1

pnt
2
n,

subject to:
N

∑
n=1

tn = t,

N

∑
n=1

pn = 1. (2.28)

where we used that τ (n)1 = 1 for all n. The inequality arises due to the fact that the maximization

problem on the right hand side of the inequality does not enforce that Tp = α/α1. We could add

this as an additional constraint, but it will not be necessary.

To perform the necessary optimization, consider the Lagrangian:

L =
N

∑
n=1

pnt
2
n + γ1

⎛

⎝
t −

N

∑
n=1

tn
⎞

⎠
+ γ2
⎛

⎝
1 −

N

∑
n=1

pn
⎞

⎠
, (2.29)
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where γ1, γ2 are Lagrange multipliers. Therefore, we obtain the system of equations

2pntn − γ1 = 0, (∀n),

t2n − γ2 = 0, (∀n),

N

∑
n=1

tn = t,

N

∑
n=1

pn = 1, (2.30)

which can be solved to yield the solution

max
pn,tn

N

∑
n=1

pnt
2
n =

t2

N
2 , (2.31)

for pn = 1/N and tn = t/N for all n. Therefore,

F(θ)1j ≤
t2

N
2 , (∀j), (2.32)

which clearly fails to achieve the saturability condition for j = 1, unless N = 1, which is only

possible for a very small set of functions (generic functions require N that scale nontrivially with

d). Therefore, provided one considers cases where each qn must be learned sequentially (which is

a requirement for any possibly optimal protocol via Lemma A.1), we fail to achieve saturability

even up to a d-independent constant for generic functions via time-independent protocols.

Note that we have, for simplicity, again restricted ourselves to the case where α has a

single maximal magnitude element. The more general proof follows almost identically, with

some notational overhead, when generalizing beyond this condition.
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2.9 Conclusion and Outlook

We have proven that maximally entangled states are not necessary for the optimal mea-

surement of a linear function with a quantum sensor network unless the function is sufficiently

uniformly supported on the unknown parameters. While the uniformly distributed case has been

considered extensively in the literature, as it provides the largest possible separation in perfor-

mance between entangled and separable protocols, there is no a priori reason why one should

be interested in only these sorts of quantities. Our results demonstrate that while the precision

gains to be had are less away from the uniformly distributed regime, the required resources are

also less. This result is of particular relevance to the development of near-term quantum sensor

networks, where creating large-scale entangled states may not be practical. Furthermore, while

algebraic approaches like the one we consider here have been used before to generate bounds

for the function estimation problem [14, 64], leveraging this approach to derive protocols that

achieve these bounds subject to various experimental constraints is a new and widely applica-

ble technique. We emphasize again that these results are also useful in more general settings,

such as the measurement of analytic functions, as these measurements reduce to the case studied

here [62–64].

To the best of the authors’ knowledge, all information-theoretically optimal protocols for

the estimation of a single linear function that are currently in the literature are subsumed by

the framework that we develop in this Chapter. What protocol one chooses to use will depend

heavily on the experimental context; if decoherence is more problematic than the number of

entangling gates that one must perform, then minimum entanglement protocols will be preferred

to the conventional protocols. However, if decoherence is mild, but two-qubit gates introduce
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significant errors, then a protocol such as the echoing protocol presented in Ref. [14] will be

preferred. Consequently, the extent to which minimum entanglement protocols are more or less

valuable than their more highly entangled counterparts depends on the details of the physical

implementation of a quantum sensor network. Either way, the development of a framework to

address these questions is, in and of itself, an important contribution of this Chapter.

We also briefly point out one more resource-related constraint of protocols that rely on

time-dependent control (whether in the form of σ̂x gates, CNOT gates, or others): these proto-

cols require precise timing of the gate applications. Uncertainty in the timing leads directly to a

systematic error in the function being measured. Importantly, however, this timing issue is a lim-

itation of all known optimal protocols for the linear function estimation task (see e.g. Ref. [14]).

We therefore view these limitations as more pertinent to experimental implementation than the

theory of resource tradeoffs that we are considering here.

So far, we have not discussed the situation where we are constrained to k-partite entangle-

ment, but k is not sufficient to achieve optimality (for any protocol) via Theorem 2.1. We propose

the following protocol for such a scenario: Let R be a partition of the sensors into independent

sets where we do not allow entanglement between sets and allow, at most, k-partite entanglement

within each r ∈ R. Let α(r) denote α restricted to r. Pick the optimal R such that the condition

of Theorem 2.1 is satisfied for all r; that is, we ensure that within each independent set we obtain

the optimal variance for the linear function restricted to that set. The result is a variance

M =
1

t2
∑
r∈R
∥α(r)∥

2

∞. (2.33)

The optimal R is a partition of the sensors into contiguous sets (assuming for simplicity that
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∣αi∣ ≥ ∣αj ∣ for i < j) such that for all r ∈ R, ∑i∈r ∣αi∣/maxi∈r ∣αi∣ ≤ k, satisfying Theorem 2.1.

We conjecture that this protocol is optimal, and it is clearly so if partitioning the problem into

independent sets is optimal. However, one could imagine protocols that use different partitions

for some fraction of the time. Intuitively, this should not improve the performance, but we leave

analyzing this as an open question.

Finally, no optimal time-independent protocols for arbitrary linear functions exist in the

literature. Finding such protocols (or proving their non-existence) remains an open problem of

interest.
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Chapter 3: Optimal Function Estimation with Photonic Quantum Sensor Net-

works

Abstract: The problem of optimally measuring an analytic function of unknown local pa-

rameters each linearly coupled to a qubit sensor is well understood, with applications ranging

from field interpolation to noise characterization. Here, we resolve a number of open questions

that arise when extending this framework to Mach-Zehnder interferometers and quadrature dis-

placement sensing. In particular, we derive lower bounds on the achievable mean square error in

estimating a linear function of either local phase shifts or quadrature displacements. In the case

of local phase shifts, these results prove, and somewhat generalize, a conjecture by Proctor et al.

[arXiv:1702.04271 (2017)]. For quadrature displacements, we extend proofs of lower bounds to

the case of arbitrary linear functions. We provide optimal protocols achieving these bounds up

to small (multiplicative) constants and describe an algebraic approach to deriving new optimal

protocols, possibly subject to additional constraints. Using this approach, we prove necessary

conditions for the amount of entanglement needed for any optimal protocol for both local phase

and displacement sensing.
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3.1 Introduction

In quantum metrology, entangled states of quantum sensors are used to try to obtain a

performance advantage in estimating an unknown parameter or parameters (e.g., field amplitudes)

coupled to the sensors. In addition to this practical advantage of quantum sensing, the theory of

the ultimate performance limits for parameter estimation tasks is deeply related to a number

of topics of theoretical interest in quantum information science, such as resource theories [79],

the geometry of quantum state space [59], quantum speed limits [80–82], and quantum control

theory [81].

Initial experimental and theoretical work on quantum sensing focused on optimizing the

estimation of a single unknown parameter (see, e.g., Ref. [83] for a review). More recently, the

problem of distributed quantum sensing has become an area of particular interest [25]. Here,

one considers a network of quantum sensors, each coupled to a local unknown parameter. The

prototypical task in this setting is to measure some function or functions of these parameters. In

this context, the task of optimally measuring a single linear function q(θ) of d independent local

parameters θ = (θ1, . . . , θd)T is particularly well studied both theoretically [1, 13–16, 18–22, 26,

84–86] and experimentally [87–90].1 In addition to its independent utility (i.e., for measuring

an average of local fields in some region), linear function estimation serves as a key subtask of

more general metrological tasks, such as measuring an analytic function of the unknown parame-

ters [62], measuring an analytic function of dependent parameters [64,91], or measuring multiple

functions [63, 92].

For qubit sensors, the asymptotic limits on performance for these function estimation tasks

1Note added: Reference [1] refers to the published version of Chapter 2.
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are rigorously understood, and techniques for generating optimal protocols subject to various con-

straints, such as limited entanglement between sensors, are known [1]. However, despite exten-

sive theoretical and experimental research on distributed quantum sensing for photonic quantum

sensors (see, e.g., [25, 93] for reviews), the asymptotic performance limits for function estima-

tion are not yet rigorously established. Here, we close this gap, proving an ultimate bound on

asymptotic performance, as measured by the mean square error of the estimator, for measuring

a linear function of unknown parameters each coupled to a different photonic mode via either

(1) the number operator n̂ or (2) a field-quadrature operator, chosen without loss of generality to

be the momentum quadrature p̂ ∶= i(â† − â)/2. That is, we are interested in determining a func-

tion of either unknown local phase shifts or unknown quadrature displacements. For case (1),

our primary focus, we derive this bound subject to a strict constraint on photon number, proving

a long-standing conjecture appearing in Ref. [13]. In case (2), we derive our bound subject to

a constraint on the average photon number, which is more natural in this setting as quadrature

displacements are not photon-number conserving. Here, our results are consistent with existing

bounds in the literature [26], but, for completeness, we include derivations in this setting using

an equivalent mathematical framework to the number operator case and the qubit sensor case [1].

This allows for a natural comparison of the various performance limits and resource require-

ments of function estimation in quantum sensor networks and opens the door to designing new,

information-theoretically optimal protocols in the asymptotic limit of sufficient data.

The rest of this Chapter proceeds as follows. In Section 3.2, we formally set up the prob-

lem of interest and provide useful notation. In Section 3.3 we prove lower bounds on the mean-

squared error of an estimator for arbitrary linear functions for both number operator and dis-

placement operator generators. We then study protocols that saturate these bounds in Section 3.4.
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Finally, we discuss other entanglement-restricted optimal protocols in Section 3.5.

3.2 Problem Setup

Consider a sensor network of d optical modes each coupled to an unknown parameter θj

for j ∈ {1, . . . , d} via

Ĥ(s) =
d

∑
j=1
θj ĝj + Ĥc(s) =∶ θ ⋅ ĝ + Ĥc(s), (3.1)

where ĝj is the local coupling Hamiltonian and boldface denotes vectors. Here, we consider the

following two cases:

ĝj ∶= n̂j = â
†
j âj, (3.2a)

ĝj ∶= p̂j =
i

2
(â†

j − âj), (3.2b)

where â†
j , âj are the bosonic creation and annihilation operators acting on mode j, n̂j is the

number operator acting on mode j, and p̂j is the momentum- (p̂-) quadrature on mode j. The

choice of p̂ quadrature is, of course, arbitrary. All results apply equally well for coupling to any

quadrature. The θ-independent, time-dependent Hamiltonian Ĥc(s) is a control Hamiltonian,

possibly including coupling to an arbitrary number of ancilla modes. Here, s ∈ [0, t], where t is

the total sensing time.

In either case, our task is to measure a linear function q(θ) = α ⋅ θ of the local field ampli-

tudes θ where α ∈ Qd is a vector of rational coefficients. (The restriction to rational coefficients

is due to the discreteness of the resources—the number of photons—available in this problem;

in the case we are interested in—large photon numbers—this is only a technical point.) To ac-
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complish this task, we consider probe states with either fixed photon number N or fixed average

photon number N . Given such probe states, we consider encoding the unknown parameters into

the state via the unitary evolution generated by the Hamiltonian in Eq. (3.1).

We will consider both an unrestricted control Hamiltonian and a control Hamiltonian fixed

to have the form

Ĥc(s) = ĥc(s)δ(s − j∆t), (3.3)

where ĥc(s) is a (unitless) Hermitian operator, δ(s) is the Dirac delta function, ∆t ∶= t/M is the

time for a single application of the encoding unitary exp(−iH∆t). The index j ∈ {1, . . . ,M}

indexes these applications, where M is the total number of applications. This construction is

motivated by the fact that typical physical implementations of a number operator coupling, e.g., in

a Mach-Zehnder interferometer, and displacement operator coupling, e.g., via an electro-optical

modulator (EOM), often do not allow for intermediate controls at arbitrary times. Therefore,

when we fix our control Hamiltonians to be described by Eq. (3.3), we have limited any controls

to be applied between each pass through these optical elements; for simplicity, we have assumed

that these control operations can be implemented on a timescale much shorter than the timescale

of phase accumulation. Without loss of generality, we will let ∆t = 1 for the rest of this Chapter,

implying that (in this setting) t =M . Therefore, the parameter encoding procedure for the photon

number coupling2 is done via the unitary

U = U (M)V U (M−1)V . . .U (1)V =
M

∏
m=1
(U (m)V ), (3.4)

2Note added: This is a typo in the original paper, as the expression also holds for the displacement coupling given
that V listed below uses the general generator ĝ.
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where V ∶= exp(−iĝ ⋅ θ) and U (m) for m ∈ {1, . . . ,M} denote the unitaries applied between

passes. Here, by pass, we mean a single application of the unitary V . We use the convention that

the product operation left multiplies.

In both settings, it is worth emphasizing that, while our information-theoretic results lower

bounding the asymptotically achievable mean square error of an estimate q̃ of q will apply to any

protocol within the framework(s) described above, the explicit protocols we will develop will use

finite ancillary modes and finite controls.

3.3 Lower Bounds

Following the approach of Refs. [1, 14], we compute lower bounds on the mean square

errorM of an estimator q̃ of q by rewriting the Hamiltonian in Eq. (3.1) as

H(s) =
d

∑
j=1
(α(j) ⋅ θ)(β(j) ⋅ ĝ) + Ĥc(s), (3.5)

for some (time-independent) choice of basis vectors {α(j)}dj=1, where α(1) ∶= α and {β(j)}dj=1

is a dual basis such that α(i) ⋅ β(j) = δij . The vectors {α(j)}dj=1 are associated with a change of

basis θ → q where qj ∶= α(j) ⋅θ such that q1 = q; that is, α(1) =∶ α with corresponding dual vector

β(1) =∶ β. Then we can define a β-parameterized generator of translations with respect to the

quantity q as

ĝq,β ∶= min
q(2),...,q(d)

∂Ĥ

∂q

RRRRRRRRRRRq(2),...,q(d)

= β ⋅ ĝ. (3.6)

Armed with Eq. (3.6), we can write a bound onM in terms of a single-parameter quantum
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Cramér-Rao bound [23, 51, 93]

M ≥
1

µF(q∣β)
, (3.7)

where F(q∣β) is the quantum Fisher information with respect to q, given some choice of fixing

the extra d − 1 degrees of freedom in our problem, as specified by the vector β ∈ Rd such that

α ⋅ β = 1. Any such single-parameter bound is a valid lower bound as fixing extra degrees of

freedom can only give us more information about the parameter q (see below for mathematical

details). µ is the number of experimental repetitions. This bound holds for an unbiased estimator

q̃. When deriving our bounds, we will restrict ourselves to single-shot Fisher information and set

µ = 1.3 Quantum Fisher information is maximized for pure states, so restricting ourselves to pure

states and unitary encoding of the unknown parameters into the state we can write

F(q∣β) ≤ 4t2max
ρ
[(∆ĝq,β)ρ]

2, (3.8)

where ĝq,β is the β-parameterized generator of translations with respect to the unknown function

q. The variance [∆(ĝq,β)ρ]2 is taken with respect to a pure probe state ρ = ∣ψ⟩ ⟨ψ∣.

Ultimately, we seek a choice of new basis that yields the tightest possible bound on the

3Clearly, with µ = 1, we are not guaranteed the existence of an unbiased estimator, so there is some subtlety
in this restriction. The choice is sufficient for determining bounds and optimal probe states, but, when considering
measurements to extract the quantity of interest, realistic protocols must use more than one shot. For instance, robust
phase estimation allows for µ = O(1), while still allowing us to obtain an unbiased estimator that achieves the
quantum Cramér-Rao bound up to a multiplicative constant [71–73]. In Appendix B.7, for completeness, we briefly
summarize this approach. See also, Refs. [68, 70] and Ref. [1] for further discussion of these issues.
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quantum Fisher information F(q). This choice is determined by the solution to4

min
β

max
ρ
[∆(β ⋅ ĝ)ρ]

2, subject to α ⋅β = 1. (3.9)

Let (β∗, ρ∗) be a solution for this optimization problem. Then we can rewrite the single-shot

version of Eq. (3.7) as

M ≥
1

4t2[∆(β∗ ⋅ ĝ)ρ∗]2
. (3.10)

This bound can be understood as corresponding to the optimal choice of an imaginary single

parameter scenario, where we have fixed d−1 of the d parameters controlling the evolution of the

state, leaving only the parameter of interest q free to vary. While this requires giving ourselves

information that we do not have, additional information can only reduceM, and, therefore, any

such choice provides a lower bound onM (via single-parameter bounds) when we do not have

such information. While not guaranteed by this method of derivation, we shall see that such

bounds are saturable, up to small multiplicative constants.

Constraints can be placed on the probe state ρ depending on the physical generators coupled

to the parameters of interest: as previously discussed, in this work we consider the constraints

of fixed photon number N for the generator n̂j and fixed average photon number N for the

generator p̂j . The rationale behind these constraints is as follows. p̂ does not conserve photon

number, hence it does not make sense to restrict to a fixed photon number sector when coupling

to quadrature operators, and, thus, average photon number is the natural constraint. For n̂, on

the other hand, we must work in the fixed photon sector, as using fixed average photon number

4Note the use of a minimax as opposed to a maximin in Eq. (3.9). This follows from the fact that the minimax of
some objective function is always greater than or equal to the maximin and we seek to maximize the quantum Fisher
information.
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allows for the construction of pathological probe states enabling arbitrarily precise sensing. In

particular, consider the state

∣ψa⟩ =

√
a − 1

a
∣0⟩ +

√
1

a
∣aN⟩ . (3.11)

It is easy to see that ∣ψa⟩ has mean photon number N and variance (a − 1)N
2
. Hence, even for

fixedN , letting a get arbitrarily large allows for an arbitrarily large variance, and hence arbitrarily

precise sensing.

Leaving the details of the calculation to Appendix B.1, solving the above optimization

problem for ĝj = n̂j restricted to probe states with exactly N photons yields

M ≥
max{∥α∥

2
1,P , ∥α∥

2
1,N}

N2t2
, (3.12)

where P ∶= {j ∣αj ≥ 0} and N ∶= {j ∣αj < 0}. In the second line, we use the notation

∥α∥1,S ∶=∑
i∈S
∣αi∣, (3.13)

where S ∈ {P,N}. For the rest of this Chapter, we assume without loss of generality that we

are in the case that ∥α∥1,P ≥ ∥α∥1,N to simplify our expressions. In the special case where α

possesses only positive coefficients (i.e., N = ∅),

M ≥
∥α∥

2
1

N2t2
, (3.14)

proving a long-standing conjecture from Ref. [13] that this is the minimum attainable variance
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for α ∈ Qd with α ≥ 0 and Nα ∈ Nd. This is our primary result.

Similarly, for the case of local quadrature displacements restricted to probe states with

average photon number N , we obtain the following bound:

M ≥
∥α∥

2
2

4Nt2
−O (

d∥α∥
2
2

N
2
t2
) . (3.15)

Equation (3.15) is a minor generalization of the results in Refs. [25, 26], extended to allow for

negative coefficients and for arbitrary non-Gaussian probe states. Therefore, for completeness,

we include a reminder of the arguments from Refs. [25,26] along with our more general derivation

in Appendix B.2.

We can compare the bounds in Eqs. (3.12) and (3.15) to the corresponding bounds on the

mean square error obtainable by separable protocols—that is, those using separable probe states

such that each parameter θi is measured individually using an optimized partition of the available

photons, and then these estimates are used to compute q. In particular, for number operator

coupling and fixed photon number states, using ηj =
∣α′j ∣
∥α′∥1

N photons (α′j ∶= α
2/3
j ) in mode j, it

holds that [13]

Msep ≥
∥α′∥

2
2/3

N2t2
, (3.16)

where ∥⋅∥2/3 denotes the Schatten p-function

∥v∥p = (∑
i

vpi )

1/p

(3.17)

with p = 2/3. When p ∈ [1,∞], this function is a norm, but for p ∈ (0,1) it is not, as it does

not satisfy the property of absolute homogeneity, but it still provides a convenient notational
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shorthand.

Performing a similar optimization for the case of displacement coupling and fixed average

photon number, one obtains

Msep ≥
∥α∥

2
1

4Nt2
+O (

1

N
2
t2
) , (3.18)

where the optimum division of photons is given by using ηj =
∣αj ∣
∥α∥1

N photons in mode j. A

non-closed-form version of this bound can be found in Ref. [84] in the case where N is finite.

One recovers our result in the asymptotic in N limit.

Consequently, in both the phase and displacement sensing settings, the achievable advan-

tage due to entanglement between modes is fully characterized by the difference between the

vector p norm of α with p = 2
3 ,1 or p = 1,2, respectively. By generalized Hölder’s inequal-

ity, ∥α∥22/3 ≤ d∥α∥
2
1 and ∥α∥21 ≤ d∥α∥

2
2. Both inequalities are saturated for any “average-like”

function with ∣α∣ ∝ (1,1, . . .1)T . In both cases, we obtain a O(1/d) improvement in preci-

sion due to entanglement, consistent with the so-called Heisenberg scaling in the number of

sensors d. This is consistent with results for qubits in Ref. [14], where the best improvement

between the separable and entangled bounds occurs when measuring an average-like function.

For the case of phase sensing, the optimal performance, including constants, is obtained when

∥α∥
2
1,P = ∥α∥

2
1,N = ∥α∥1/2 (which occurs when the vector α is half positive ones and half nega-

tive ones).

50



3.4 Protocols

3.4.1 Existing Protocols

The bounds established in the previous section are all saturable, up to small multiplicative

constants, using protocols that exist in the literature, or slight variations thereof. In particular,

Refs. [13,16] present a protocol for estimating a linear function of local phase shifts with positive

coefficients (i.e., α ≥ 0) which achieves the bound in Eq. (3.12) up to a small multiplicative

constant. This protocol makes use of a so-called proportionally weighted N00N state over d + 1

modes,

∣ψ⟩∝ ∣N
α1

∥α∥1
, . . . ,N

αd
∥α∥1

,0⟩ + ∣0, . . . ,0,N⟩, (3.19)

where we have expressed the state in an occupation number basis over d + 1 modes and have

dropped the normalization for concision. The last mode serves as a reference mode. Observe

that, for this state to be well defined, it is essential that α/∥α∥1 ∈ Qd and that N is sufficiently

large that the resulting occupation numbers are integers. Details of how protocols using this

probe state work and how they generalize to the case of negative coefficients are provided in

Appendix B.4. A description of how to achieve the separable bound in Eq. (3.16) is provided in

Appendix B.2.5

Similarly, in the case of measuring a linear function of displacements using states with fixed

average photon number, Ref. [84] provides a protocol that, up to small multiplicative constants,
5Note added: This statement is a typo. We do discuss how to derive the separable bound for the case of quadrature

displacements, as it is relevant to our more general proof. However, we do not similarly review the derivation of
the separable bound for the case of local phase shifts. The interested reader can consult Ref. [13] for details on this
matter.
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saturates the bound in Eq. (3.15), and a separable protocol that, again up to small constants,

achieves the bound in Eq. (3.18). Interestingly, these protocols require only Gaussian probe

states, indicating that these states are optimal. In particular, these protocols make use of an initial

single-mode squeezed state, followed by a properly constructed beam-splitter array to prepare

a multimode entangled probe state with the appropriate sensitivity to quadrature displacements

in each mode. Homodyne measurements on each mode can then be used to extract the function

of interest. Consistent with this fact, our separable lower bound matches the Gaussian state-

restricted bound obtained in Ref. [84] and the bound for arbitrary states derived in Ref. [26] for

the particular case of measuring an average.

3.4.2 Algebraic Conditions for New Protocols

Other protocols are possible and can be derived via a simple set of algebraic conditions.

In particular, for a probe state to exist saturating the bound in Eq. (3.10), or its specific versions

in Eqs. (3.12) and (3.15), we require the existence of an optimal choice of basis transformation

θ → q such that knowing qj for j > 1 yields no information about q = q1. Mathematically, this

means that the quantum Fisher information matrix [66] with respect to the parameters q must

have the following properties:

F(q)11 = 4t
2[∆(β∗ ⋅ ĝ)ρ∗]

2, (3.20a)

F(q)1i = F(q)i1 = 0 (∀ i ≠ 1), (3.20b)
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Recall that (β∗, ρ∗) are the solution to the minimax problem in Eq. (3.9). We can reexpress these

conditions in terms of the quantum Fisher information matrix with respect to θ as

(β∗)TF(θ)β∗ = 4t2[∆(β∗ ⋅ ĝ)ρ∗]
2, (3.21a)

(β∗)TF(θ)β(i) = (β(i))TF(θ)β∗ = 0 (∀ i ≠ 1). (3.21b)

Then, using α(i) ⋅β(j) = δij , we obtain the condition

F(θ)β∗ = 4t2[∆(β∗ ⋅ ĝ)ρ∗]
2α. (3.22)

Matrix elements of F(θ) for pure probe states and unitary evolution are given via

F(θ)ij = 4 [
1

2
⟨{Hi,Hj}⟩ − ⟨Hi⟩⟨Hj⟩] , (3.23)

whereHi = −iU †∂iU with ∂i ∶= ∂/∂θi, U is the unitary generated by Eq. (3.1) and the expectation

values are taken with respect to the initial probe state [66].

We refer to protocols that make use of probe states and controls so that Eq. (3.22) is satisfied

as optimal. However, we caution that the existence of an optimal probe state does not imply the

existence of measurements on this state that allow one to extract an estimate of the parameter q

saturating the lower bounds we have derived. This issue of the optimal measurements to extract

parameters is also discussed extensively in, e.g. Ref., [75], with some convenient, nearly optimal,

protocols presented in Refs. [71–73]. Such methods are the origin of the “small multiplicative

constants” that arise in the explicit protocols above. In fact, lower bounds derived via the quantum
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Cramér-Rao bound can be obtained only up to a constant ≥ π2 [76]. See Appendix B.7 for a brief

explanation of these ideas.

For the particular cases considered in this Chapter, β∗ has been explicitly calculated (see

Appendices B.1 and B.2), so Eq. (3.22) can be expressed in a more meaningful form. For number

operator coupling, we obtain the condition

∑
i∈P
F(θ)ij =

N2t2

∥α∥1,P
αj, (3.24)

for all j. Similarly, for the quadrature coupling, an optimal protocol requires

F(θ)α ∼ 4Nt2α, (3.25)

where ∼ denotes asymptotically in N . Equations (3.24) and (3.25) provide a generic route to

finding new protocols: consider a set of parameterized families of probe states T that one can

coherently switch between using available controls Ĥc(t) (here, a “family” of states refers to a

particular superposition of Fock states with an arbitrary relative phase). One can then calculate

F(θ) via Eq. (3.23) and allocate the time spent in a particular family of states such that the

associated quantum Fisher information condition is achieved. As a limiting case, one could

consider ∣T ∣ = 1, removing the necessity of coherent control; the protocols considered in the

previous section are of this sort (and, in Appendix B.4, we show that these protocols do, indeed,

achieve the saturability conditions).

The possible choices for families of states T that allow for such a solution are actually quite

limited, even given access to arbitrary control Hamiltonians and ancilla modes. In particular, we
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prove the following in the case where ĝj ∶= n̂j:

Lemma 3.1 6 Any optimal protocol usingN photons andM passes through interferometers with

a coupling as in Eq. (3.1) with ĝj = n̂j requires that, for every pass m, the probe state ∣ψm⟩ be of

the form

∣ψm⟩∝ ∣N(m)⟩P ∣0⟩NR + e
iφm ∣0⟩P ∣N

′
(m)⟩NR , (3.26)

where P , N , and R represent the modes with αj ≥ 0, αj < 0, and the (arbitrary number of)

reference modes, respectively, N(m) and N ′
(m) are strings of occupation numbers such that

∣N(m)∣ = ∣N ′
(m)∣ = N for all passes m. φm is an arbitrary phase.

The proof follows straightforwardly from an explicit calculation of the Fisher information

matrix for ĝj = n̂j , but is somewhat algebraically tedious so we relegate it to Appendix B.5.

Lemma 3.1 suggests a particular choice of T from which we can pick an optimal protocol

for function estimation in the ĝj = n̂j case. In particular, define a set of vectors

W ∶={ω ∈ Zd ∣ ∥ω∥1,P = N, ∥ω∥1,N ≤ N, ωjαj ≥ 0∀ j} . (3.27)

Further, consider the restriction ω∣P ∈ Zd with components

(ω∣P)j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ωj, j ∈ P

0, otherwise,

(3.28)

and the restriction ω∣N , defined similarly. Armed with these vectors, we can define a particular

6Note added: Note the similarity to Lemma A.1 in Appendix A, which plays a crucial role in the proof of
Theorem 2.1 in Chapter 2.
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choice T of one-parameter families of probe states in an occupation number basis where each

∣ψ(ω;φ)⟩ ∈ T is labeled by a particular choice of ω such that

∣ψ(ω;φ)⟩∝ ∣ω∣P⟩ ∣0⟩ + e
iφ ∣−ω∣N ⟩ ∣N − ∥ω∣N ∥1⟩ , (3.29)

where φ ∈ R is an arbitrary parameter and the last mode is a reference mode. It should be clear

that these families of states are of the form specified by Lemma 3.1. Furthermore, note that the

proportionally weighted N00N state in Eq. (3.19) is also of this form.

Our protocols proceed as follows: starting in a state ∣ψ(ω; 0)⟩, after any given pass through

the interferometers we use control unitaries to coherently switch between families of probe states

such that the relative phase between the branches is preserved (that is, we change ω, but not

φ). The fact that an optimal protocol must coherently map between such states is proven in

Lemma B.4 in Appendix B.5. We stay in the family of states ∣ψ(ωn;φ)⟩ for a fraction pn of

the passes where pn = rn
M for rn ∈ {0,1, . . . ,M} such that ∑n pn = 1. Here n indexes some

enumeration of the families of states in T .

The value of the component ωj in a given probe state determines the contribution of the

parameter θj coupled to sensor j to the relative phase between the two branches of the probe state

during a single pass. In particular, in a single pass with a probe state in the family ∣ψ(ω;φ)⟩, the

relative phase between the two branches of the probe state becomes ω ⋅θ+φ. Assuming an initial
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probe state with φ = 0 and summing over all passes we obtain a total relative phase

φtot =M∑
n

pn(ωn ⋅ θ) (3.30)

=∶ (Wr) ⋅ θ. (3.31)

In the second line, we implicitly defined W as a matrix whose columns are the vectors ωn ∈

W and r ∶= Mp ∈ Z∣T ∣. Explicitly computing the Fisher information matrix for these states

demonstrates that the optimality condition in Eq. (3.24) is satisfied if

Wr = NM
α

∥α∥1,P
; (3.32)

see Appendix B.4 for details. Consequently, any integer solution r to Eq. (3.32) such that

∥r∥1 =M,

r ≥ 0, (3.33)

yields an optimal protocol. The protocols of Ref. [13], described above and generalized in Ap-

pendix B.4, are a particularly simple case within this class with M = 1 and ω = Nα
∥α∥1,P

, i.e. we

select out only a single column ofW .

Solutions to Eqs. (3.32) and (3.33) are not guaranteed to exist for all N,M . In particular,

we require that

NM
α

∥α∥1,P
∈ Zd. (3.34)

For α ∈ Q and sufficiently large N or M this hold true. Setting up the system of equations in
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Eqs. (3.32) and (3.33) that must be solved to pick out explicit protocols requires identifying the

set of vectors W defined in Eq. (3.27). While computationally straightforward, if expensive, to

construct and enumerate this set, the number of states is extremely large, yielding a correspond-

ingly large set of linear Diophantine equations in Eq. (3.32). Consequently, it is reasonable to

place further, experimentally motivated constraints to limit this set of states and pick out advanta-

geous protocols. For instance, one such constraint is to limit the amount of entanglement between

modes on any given pass. We consider this case in the following section.

It is also important to note that integer linear programming is NP-hard [4], so finding a par-

ticular solution once we add additional constraints is not a computationally easy task. Regardless,

in applications one can apply standard (possibly heuristic) algorithms for integer linear program-

ming to seek solutions. If a solution is found, it is known to be optimal. Consequently, proving

the existence or lack thereof of a solution with certain additional constraints may be intractable

for large problem instances.

Similar arguments to those that go into proving Lemma 3.1 allow us to show that, for

quadrature sensing, the condition in Eq. (3.25) can be reduced to the condition that

F(θ)ij ∼
4Nt2

∥α∥
2
2

αiαj, (3.35)

which is proven in Appendix B.6. However, there is not a clearly interesting family of states that

can be leveraged to achieve this quantum Fisher information, as in the case of number operator

coupling or qubit sensors [1]. However, the existing optimal protocols described above do obey

this condition asymptotically in average photon number N .
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3.5 Entanglement Requirements

The remaining flexibility in the choice of optimal probe states enabled by some control also

allows us to impose further experimentally relevant constraints. One reasonable constraint is the

amount of intermode entanglement required during the sensing process. This was considered in

Ref. [1] for the case of qubit sensors.

The answer to the entanglement question in the current context depends crucially on the

sorts of control operations we allow. In the number operator case, with arbitrary time-dependent

control, only two-mode entanglement is needed at any given time, as one can simply prepare a

N00N state between the reference and one of the sensing modes and coherently switch which

sensing mode is entangled with the reference mode such that the time spent entangled with mode

j is given by tj = ∣αj ∣t/∥α∥1. For similar reasons, no entanglement is needed for displacement

sensing; here, no reference mode is needed and one can simply sequentially apply displacement

operators for a time tj = ∣αj ∣t/∥α∥1 on a single-mode squeezed state, followed by a homodyne

measurement. When control operations to change the probe state are allowed only at M discrete

time intervals, as described by Eq. (3.3), the problem becomes more interesting. For number

operator coupling, subject to a fixed photon number constraint, any optimal protocol requires at

least (⌈∥α∥0/M⌉+1)-mode entanglement. This bound is fairly trivial: it merely states that one

must be entangled with each nontrivial mode for at least one pass. For displacement operator

coupling, subject to a fixed average photon number constraint, an essentially identical argument

allows us to prove that any optimal protocol requires at least ⌈∥α∥0/M⌉-mode entanglement.

The difference of one is because, unlike displacement sensing, phase sensing generally requires

entanglement with a reference mode. In the M → ∞ limit, we recover the continuous control
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Qubit phase sensing Phase sensing Displacement sensing
Parameter cou-
pling

1
2 σ̂

z
i θi n̂iθi

i
2(â

†
i − âi)θi

Resources Qubit number, d Photon number, N Avg. photon number, N
sensing time, t sensing time, t sensing time, t

MSE (separable) ≥
∥α∥22
t2 [14] ≥

∥α∥22/3
N2t2 [13] ≥

∥α∥21
4Nt2

MSE (entangled) ≥
∥α∥2

∞

t2 [14] ≥
∥α∥21,P
N2t2 ≥

∥α∥22
4Nt2

[26]
Entanglement
needed (discrete
controls)

k ≥max{⌈
∥α∥1
∥α∥

∞

⌉ , ⌈
∥α∥0
M ⌉} k > ⌈

∥α∥0
M ⌉ k ≥ ⌈

∥α∥0
M ⌉

Entanglement
needed (arbitrary
controls)

∥α∥1
∥α∥

∞

∈ (k − 1, k] [1] k = 2 No entanglement

k-partite entan-
glement protocol
always exists?

Yes [1] No Yes

Table 3.1: Comparison of the lower bounds on the mean square error and entanglement require-
ments for an (asymptotically) optimal protocol obeying the corresponding conditions on the quan-
tum Fisher information for the task of estimating a linear function q = α ⋅ θ with qubit, phase
sensing, and displacement sensing quantum sensor networks.

case, so these trivial bounds can be tight. This triviality is in contrast to the qubit case, where

results analogous to Lemma 3.1 lead to significantly tighter constraints on the minimum amount

of necessary entanglement for optimal protocols [1].7 This discrepancy arises due to the fact that,

unlike with photonic resources which must be distributed in a zero-sum way between modes, for

qubit sensors one can be maximally sensitive to all coupled parameters simultaneously.

3.6 Conclusion and Outlook

We have determined the fundamental achievable performance limits for phase sensing and

have extended proofs of lower bounds for displacement sensing beyond just an average to ar-

bitrary functions. In the process, we proved a long-standing conjecture regarding function es-
7Note added: See Theorem 2.1 in Chapter 2.
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timation with number operator coupling [13] and showed that some of the protocols that exist

in the literature [13, 16, 84], are, in fact, optimal in the asymptotic limit. By considering dif-

ferent implementations of a quantum sensor network within a single framework, we reveal the

role of entanglement and controls as they relate to the type of coupling and whether the rele-

vant resource is “parallel” (as in qubit sensor networks, where all parameters can simultaneously

be measured to maximal precision) or “sequential” (as in photonic sensor networks, where the

photons must be optimally distributed between modes). Our approach to proving our bounds

also enables an algebraic framework for developing further optimal protocols, subject to various

constraints. Here, we considered the particular case of entanglement-based constraints, enabling

comparison to similar work in the case of qubit sensors [1]. These results, and how they fit into

the landscape of known results for quantum sensor networks, are summarized in Table 3.1. How

other constraints impact the existence of and control requirements for optimal protocols remains

an interesting open question deserving of further study.
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Chapter 4: Transition of Anticoncentration in Gaussian Boson Sampling

Abstract: Gaussian Boson Sampling is a promising method for experimental demonstra-

tions of quantum advantage because it is easier to implement than other comparable schemes.

While most of the properties of Gaussian Boson Sampling are understood to the same degree

as for these other schemes, we understand relatively little about the statistical properties of its

output distribution. The most relevant statistical property, from the perspective of demonstrating

quantum advantage, is the anticoncentration of the output distribution as measured by its sec-

ond moment. The degree of anticoncentration features in arguments for the complexity-theoretic

hardness of Gaussian Boson Sampling, and it is also important to know when using cross-entropy

benchmarking to verify experimental performance. In this Chapter, we develop a graph-theoretic

framework for analyzing the moments of the Gaussian Boson Sampling distribution. Using this

framework, we show that Gaussian Boson Sampling undergoes a transition in anticoncentration

as a function of the number of modes that are initially squeezed compared to the number of pho-

tons measured at the end of the circuit. When the number of initially squeezed modes scales

sufficiently slowly with the number of photons, there is a lack of anticoncentration. However, if

the number of initially squeezed modes scales quickly enough, the output probabilities anticon-

centrate weakly.
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4.1 Introduction

There is a hope that quantum computation will be able to outperform classical compu-

tation on certain tasks. In particular, there has been a recent explosion of interest in so-called

sampling problems given the strong theoretical evidence for an exponential speedup of quantum

algorithms over the best possible classical algorithms; see Ref. [28] for an overview. Aaronson

and Arkhipov introduced one of the most deeply studied sampling frameworks in their seminal

work on Boson Sampling [27]. The Boson Sampling task is to approximately sample from the

outcome distribution of measuring n single photons in m optical modes transformed by a Haar-

random linear-optical unitary, which can be implemented as a random network of beamsplitters

and phase shifters [94]. Reference [27] focused on single-photon input states, but these can be

challenging to produce experimentally [95] because existing single-photon sources are not suffi-

ciently reliable to avoid an exponential amount of post-selection [96]. Therefore, there has been

an interest in generalizing the original Boson Sampling setup to other input states.

The currently most feasible generalization is Gaussian Boson Sampling (GBS) [97–100],

which uses Gaussian input states. These states are significantly easier to prepare reliably than

single-photon states. At the same time, similar statements can be made about the hardness of

sampling from the corresponding output distribution [100–103], and several large-scale GBS

experiments have been performed recently [30–33].

Broadly speaking, the hardness of Boson Sampling is based on the connection between

output probabilities and the permanent, which is, classically, #P-hard to compute exactly [104].

Similarly, the hardness of GBS arises from the fact that output probabilities are controlled by

a generalization of the permanent called the hafnian; while the permanent counts the number
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of perfect matchings in a weighted bipartite graph, the hafnian counts the number of perfect

matchings in an arbitrary weighted graph [105]. Because the hafnian generalizes the permanent,

it is also difficult to compute classically.

However, the complexity of classically computing an individual output probability defined

in terms of the permanent or the hafnian is not itself sufficient to prove hardness of sampling from

the overall probability distributions. The standard hardness argument based on Stockmeyer’s al-

gorithm [28, 34] requires that outcome probabilities of random Boson Sampling instances be

hard to approximate. Jointly with provable hardness of nearly exactly computing output prob-

abilities [101], anticoncentration of the outcome probabilities serves as evidence for this. In-

tuitively, if most outcome probabilities are comparable to the uniform probability, then a good

classical sampling algorithm needs a very precise idea of each probability’s relative magnitude

because all of them are important. Anticoncentration quantifies this idea as, most concisely, the

outcome-collision probability (i.e. the probability of getting the same outcome from two inde-

pendent samples) of the GBS distribution averaged over the choice of linear-optical unitary and

normalized by the size of the sample space [28, Section D]. While a weak form of anticoncen-

tration holds in Boson Sampling [27], under what conditions anticoncentration holds in GBS is

an open question.

In this Chapter, we analyze the moments of GBS in the photon-collision-free limit. In

this limit, the output distribution is dominated by outcomes with at most a single photon in each

mode, and the moments of GBS approximately reduce to moments of squared hafnians of Gaus-

sian random matrices. We show that evaluating those moments reduces to counting the connected

components of certain graphs. Using this perspective, we find a closed-form expression for the

first moment and derive analytical properties of the second moment. We then identify a transi-
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|n1〉
|n2〉
|n3〉
|n4〉
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U ∈ U(m)

|r〉
|r〉
|r〉
|0〉
|0〉

k

m − k

∑
i
ni = 2n

Figure 4.1: In Gaussian Boson Sampling (GBS), k out of m modes are prepared in single-mode
squeezed states with parameter r, while the remaining modes are prepared in the vacuum state
∣0⟩. The modes are then transformed by a Haar random linear-optical unitary U and measured in
the Fock basis with outcome counts ni summing to 2n.

tion in anticoncentration in GBS: when the number of initially squeezed modes is large enough

compared to the measured number of photons n, a weak version of anticoncentration holds where

the normalized average outcome-collision probability scales as
√
n. However, when sufficiently

few modes are initially squeezed, there is a lack of anticoncentration, as the normalized second

moment scales exponentially in n.

The rest of this Chapter proceeds as follows. We first provide background information

and set up the system and problem of interest. We then derive the graph-theoretic formalism for

computing the first moment of the output probabilities. We proceed to discuss how to apply the

formalism to calculate certain properties of the second moment. These results let us finally prove

the transition in anticoncentration.

4.2 Setup

We consider a photonic system with m modes that is transformed by a Haar-random linear

optical unitary U ∈ U(m) acting on the modes of the system, see Fig. 4.1. In the paradigmatic

version of GBS [99,100], the first k of the m modes are prepared in single-mode squeezed states
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with equal squeezing parameter r, while the remaining m − k modes are prepared in the vacuum

state. After applying U , all m modes are measured in the Fock basis.

Reference [99] proves that, given a unitary U , the probability of obtaining an outcome

count vector n = (n1, n2, . . . , nm) ∈ Nm
0 with total photon count 2n = ∑mi=1 ni is given by

PU(n) =
tanh2n r

coshk r
∣Haf(U⊺1k,nU1k,n)∣

2
, (4.1)

where U1k,n denotes the k × 2n submatrix of U given by its first k rows and the columns selected

according to the nonzero entries of n each copied ni times.1 Moreover,

Haf(A) =
1

2nn!
∑
σ∈S2n

n

∏
j=1
Aσ(2j−1),σ(2j) (4.2)

denotes the hafnian of a 2n × 2n symmetric matrix A.2

We will work in the regime in which the output states are, with high probability.(photon-

)collision-free, meaning that ni ∈ {0,1} for all i. A sufficient condition for this to be the case is

that the expected number of photons E[2n] = k sinh2
(r) = o(

√
m). In this regime, Ref. [101]

provides evidence that, for any fixed n = o(
√
m), the distribution over submatrices is well-

captured by a generalization of the circular orthogonal ensemble (COE).3

Conjecture 4.1 (Hiding [101]). For any k such that 1 ≤ k ≤m and 2n = o(
√
m), the distribution

of the symmetric product U⊺1k,nU1k,n of submatrices of a Haar-random U ∈ U(m) closely approx-

1Note that squeezed states are supported only on even Fock states, so the total photon count 2n must always be
even.

2Other equivalent definitions exist, but Eq. (4.2) is the most convenient one for our purposes.
3Note that, strictly speaking, the conjecture is only formulated for the regime n ≤ k in Ref. [101]. However, the

evidence provided there for the case k = n—Ref. [27] proves that n × n submatrices of Haar-random unitaries are
approximately Gaussian—clearly also holds for the case k ≤ n.
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imates in total variation distance the distribution of the symmetric product X⊺X of a complex

Gaussian matrix X ∼ N (0,1/m)k×2nc with mean 0 and variance 1/m.

We work under the assumption that Conjecture 4.1 is true. Fixing the measured number

of photons 2n, the normalized average (outcome-)collision probability, which quantifies anti-

concentration, can be written as ∣Ω2n∣EU∈U(m)[∑n∈Ω2n
PU(n)2], where ∣Ω2n∣ is the size of the

photon-non-collisional sample space of 2n photons in m modes, which is the dominant space of

outputs when n = o(
√
m). Conjecture 4.1 implies that, with respect to random choices of U , all

outcomes are equally distributed over the unitaries, the so-called hiding property. This implies

that the inverse size of the sample space is given by the first moment EU[PU(n)]. See Ap-

pendix C.4 for more details. Under Conjecture 4.1, the anticoncentration property thus reduces

to computing the moments

Mt(k,n) ∶= EX∼Gk×2n[∣Haf(X⊺X)∣2t] (4.3)

of the squared hafnian as a function of the parameters k and n for t = 1,2, where we have

abbreviated N (0,1)k×2nc as Gk×2n. We consider unit variance because rescaling X by 1/
√
m just

leads to an overall prefactor that, like the prefactor in Eq. (4.1), is irrelevant to the normalized

average outcome-collision probability. We will phrase our discussion in terms of the inverse of

the average collision probability

m2(k,n) ∶=M1(k,n)
2/M2(k,n). (4.4)
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4.3 First Moment and Graph-Theoretic Formalism

We begin by analyzing the (rescaled) first moment M1 of the output probabilities. In order

to derive our graph-theoretic formalism, we use Eq. (4.2) to expand the hafnian in Eq. (4.3) as

a sum over permutations of a product of matrix elements. From there, the key is to use that

the matrix elements are independent complex Gaussian, meaning that EX∼Gk[XiX∗j ] = δij and

EX∼Gk[XiXj] = EX∼Gk[X∗i X∗j ] = 0. This yields

M1(k,n) =
(2n)!

(2nn!)2
∑
τ∈S2n

k

∑
{oi}ni=1

n

∏
j=1
δo
⌈
τ(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

. (4.5)

Let us briefly discuss Eq. (4.5), see Appendix C.1 for details. The sum over τ ∈ S2n and the

product over index j come from Eq. (4.2); the sum over the indices oi ∈ [k] ∶= {1,2, . . . , k} is due

to an expansion of X⊺X as a matrix product. Note that, when τ(2j − 1) and τ(2j) form a tuple

(2ℓ − 1,2ℓ), then the Kronecker δ always equals 1 for index oℓ, such that summing over oℓ yields

a factor of k. When τ(2j−1) and τ(2j) do not form such a tuple, we get a nontrivial relationship

between indices that decreases the number of independent degrees of freedom, thus decreasing

the number of factors of k in the final answer. Therefore, to evaluate this expression, one must

determine the number of “free indices” over all the permutations in S2n. We accomplish this with

our graph-theoretic approach.

Specifically, define a graph Gτ as follows, see Fig. 4.2(a). Let Gτ have 2n vertices labeled

O1 through O2n. These upper-case vertices are not directly equivalent to the lower-case indices

in Eq. (4.5)—instead, each index oj splits into two vertices Oℓ and Oℓ′ such that ⌈τ(ℓ)/2⌉ = j =

⌈τ(ℓ′)/2⌉ (in other words, o⌈τ(ℓ)/2⌉ maps to a vertex Oℓ). Let Gτ have a black edge between O2j−1
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Type 1 Type 2 Type 3 Type 4

(a)
o

(b)

O1 O2 O3 O4 O5 O6 O7 O8

O1

P1

Q1

O2

P2

Q2

O3

P3

Q3

O4

P4

Q4

O5

P5

Q5

O6

P6

Q6

O7

P7

Q7

O8

P8

Q8

o

p

q

Figure 4.2: Examples of graphs used to calculate the (a) first and (b) second moments of GBS
outcome probabilities. (a) G ∈ G1

4. There are eight vertices O1 to O8 representing the index o
(labeled in the left column). The black (solid) edges connect only adjacent pairs, whereas the red
(dashed) edges form an arbitrary perfect matching. This graph has two connected components,
meaning it contributes k2 to the first moment. (b) G ∈ G2

4. The black (solid) edges are, from
left to right, type-1, type-2, type-3, and type-4, as denoted by the gray background. z = 1 + 0 ×
43 + 1 × 42 + 2 × 41 + 3 × 40 = 28 (this is calculated by converting 0123 from base-4 into base-10
and then adding 1 such that the final result is in [44]). Note that black (solid) edges stay within
two adjacent columns. Red (dashed) edges form an arbitrary perfect matching in each row. This
graph contributes k5 to the second moment, as there are five connected components.
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and O2j for all j ∈ [n], and a red edge between Oℓ and Oℓ′ if ⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉. These two

kinds of edges mimic two types of ways that dependencies in Eq. (4.5) can be induced through an

index j. Red edges identify the ℓ and ℓ′ that map to the same value via τ and the ceiling function,

hence red edges identify which vertices came from the same o index. Black edges identify that

Eq. (4.5) has a Kronecker δ between o⌈τ(2j−1)/2⌉ and o⌈τ(2j)/2⌉.

We see, then, that the number of connected components of Gτ , C(Gτ), is equivalent to the

number of free indices in the sum in Eq. (4.5). Therefore,

M1(k,n) =
(2n)!

(2nn!)
2 ∑
τ∈S2n

kC(Gτ ). (4.6)

Now, there is a degeneracy where many permutations induce the same final graph. Each

graph has the same fixed set of black edges and then one of (2n − 1)!! possible sets of red edges

(this is the number of ways of pairing 2n elements when order does not matter). For each graph

G corresponding to some assignment of the red edges, there are 2nn! permutations τ such that

Gτ = G. Therefore, instead of studying Gτ as instantiated by permutations τ , we study the

underlying graphs G. Define G1
n to be the set of graphs on 2n vertices with one perfect matching

defined by the fixed set of black edges and one perfect matching defined by the arbitrary red

edges. We can thus rewrite M1 = (2n − 1)!!∑G∈G1
n
kC(G) and state our first result.

Theorem 4.1. The sum over graphs in G1
n satisfies

∑
G∈G1

n

kC(G) = k(k + 2) . . . (k + 2n − 2), (4.7)

and hence M1(k,n) = (2n − 1)!!(k + 2n − 2)!!/(k − 2)!!.
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The proof proceeds by induction over n, where the inductive step reduces a graph in G1
n to

one in G1
n−1 through an analysis of the red edge connected to O1. There are two options for this

red edge: either it connects to O2, the vertex with which O1 shares a black edge, or it attaches to

some Ox>2. The former creates a connected component of size two; the latter reduces to a graph

in G1
n−1 by merging vertices O1, O2, and Ox (which does not change the number of connected

components). Full details can be found in Appendix C.3.

4.4 Second Moment

We now sketch the application of our graph-theoretic formalism to the second moment

M2, deferring the details to Appendix C.2. We expand ∣Haf(X⊺X)∣4 using Eq. (4.2) which

becomes a sum of products of matrix elements that are indexed by four permutations in S2n. The

independence of matrix elements again ensures that we must have an equal number of copies of

Xij andX∗ij for the expectation value not to vanish on a given product. However, because there are

more copies ofX , there are more ways of matching the indices. Accounting for these possibilities

leads to an expression analogous to Eq. (4.5). The key differences are the following: (1) instead

of summing over a single permutation, we now sum over three permutations, labeled τ,α, β (as

in the first moment, one of the original four permutations eventually becomes redundant); (2)

instead of summing over n indices {oi}ni=1, we now sum over 3n indices {oi, qi, pi}ni=1; (3) each

factor is a sum of four possible Kronecker δ terms corresponding to the different types of index

matching.

As before, we will define a useful set of graphs; see Fig. 4.2(b) for an example. We expand

each index in {oi, qi, pi}ni=1 to two graph vertices {Oi,Qi, Pi}2ni=1, and we organize them into 2n
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columns and three rows assigned toO, P , andQ vertices, respectively. We then use the Kronecker

δs to define black and red edges between these vertices. Fixing permutations τ,α, β, there is a

red edge betweenOℓ andOℓ′ if ⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉, and similarly for the P andQ vertices using

permutations α and β, respectively. This means that the red edges are constrained to lie within

rows in the graph. Furthermore, these red edges again identify the vertices originating from the

same index. Because each factor has four Kronecker δ terms, each factor contributes one of

four patterns of black edges, which we refer to as type-1, type-2, type-3, and type-4. Due to the

nature of these Kronecker δ terms, the black edges are constrained to lie within pairs of adjacent

columns. Each graph then has one of 4n possible sets of black edges indexed by an integer z. We

therefore call these graphs Gτ,α,β(z).

As in the first moment, the number of connected components C(Gτ,α,β(z)) of the graph

Gτ,α,β(z) gives the number of free indices of its corresponding term in the expansion of the haf-

nian, meaning that graph contributes kC(Gτ,α,β(z)) to the sum. The second moment then becomes

M2(k,n) =
(2n)!

(2nn!)
4 ∑
τ,α,β∈S2n

∑
z∈[4n]

kC(Gτ,α,β(z)). (4.8)

We also again use the fact that many permutations induce the same final graph. We thus define

G2
n(z) to be the set of graphs for the zth set of black edges and G2

n ∶= ⋃z∈[4n]G2
n(z). Because

there are now three permutations associated to each graph, we obtain a degeneracy factor of

(2nn!)3 and find

M2(k,n) = (2n − 1)!! ∑
G∈G2

n

kC(G). (4.9)

We can now state our second result.
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Theorem 4.2. The second moment M2(k,n) is a degree-2n polynomial in k and can be written

asM2(k,n) = (2n − 1)!!∑
2n
i=1 cik

i, where ci is the number of graphsG ∈ G2
n that have i connected

components.

Theorem 4.2 follows from Eq. (4.9) and verifying that the limits of summation are correct, which

is done in Appendix C.3.

4.5 Transition in Anticoncentration

We now use Theorems 4.1 and 4.2 in order to show that anticoncentration in GBS un-

dergoes a transition as a function of k. Roughly speaking, m2(k,n) upper-bounds the frac-

tional support of the outcome distribution on outcomes with probabilities larger than uniform,

i.e. those most relevant to the sampling task, as we explain in detail in Appendix C.5.1. We

speak of strong anticoncentration if m2(k,n) ≥ const.. We speak of weak anticoncentration if

m2(k,n) ≥ 1/poly(n). If m2(k,n) = O(1/na) for any constant a > 0, however, we say that there

is a lack of anticoncentration; in this regime, only a negligible fraction of the probabilities are

nontrivial. While our definition of anticoncentration in terms of m2 is stronger than the standard

definition, it captures the essence of anticoncentration, see Appendix C.5.1. We show a transition

between a lack of anticoncentration for k = 1 and weak anticoncentration for k → ∞ (which, of

course, requires m→∞ as well).

In order to do so, we analyze the polynomial coefficients ci, observing that for k = 1,

M2(k,n) = (2n − 1)!!∑
2n
i=1 ci, and for k → ∞4, M2(k,n) ≈ (2n − 1)!! c2nk2n.5 The following

lemma states our results for these regimes.
4For any n, there exists some sufficiently large k for which the leading order term dominates. The exact required

scaling of k with n is investigated more thoroughly in the companion piece Ref. [106].
5Note added: The companion piece Ref. [106] in the previous footnote refers to Chapter 5.
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Lemma 4.1 We have that

i. M2(1, n) = ((2n − 1)!!)44n

ii. c2n = (2n)!!

Part (i) of the lemma follows from a simple, direct computation using the expansion of

the second moment in terms of Kronecker δs; part (ii) follows by reducing the graph counting

problem to a special instance of the first moment with k = 2. This reduction happens because the

types of edges that are allowed in order to get 2n connected components are quite restrictive, see

Appendix C.3 for details.

Theorem 4.2 and Lemma 4.1 imply that, when k = n0 = 1, the inverse normalized second

moment is negligible:

m2(1, n) =
((2n − 1)!!2)2

(2n − 1)!!44n
= 4−n. (4.10)

Now take k = na ≤ m, for some large a. In this limit, M2(k,n) is dominated by the behavior of

its leading order in k, which is (2n− 1)!!(2n)!!k2n. Additionally, M1(k,n) = (2n− 1)!!(k + 2n−

2)!!/(k−2)!! ∼ (2n−1)!!kn and, hence, the k-dependence of m2(k,n) vanishes. Using Stirling’s

approximation on the remaining n-dependence yields

m2(k,n) ∼
(2n − 1)!!

(2n)!
=
(2n)!

4n(n!)2
∼

1
√
πn

. (4.11)

This proves the central claim of this Chapter. In Appendix C.5.2, we also show how anticoncen-

tration of the approximate GBS distribution relates to anticoncentration of the true distribution.
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4.6 Discussion and Conclusion

In this Chapter, we have shown a transition in anticoncentration in the output probabilities

of GBS as a function of the number of initially squeezed modes. The presence of anticoncentra-

tion is additional evidence for the hardness of GBS, and our results thus yield clear advice for

experiments in the collision-free regime: given a desired average photon number, distribute the

required squeezing for this number across all modes.

Our results give rise to an interesting state of affairs when considered in conjunction with

the hiding property: in both GBS and standard Boson Sampling, the hiding property is known

to fail outside of the highly dilute collision-free regime which is characterized by m = O(n2)

[107,108], while it is conjectured to hold for any m = ω(n2) [27,101]. Standard Boson Sampling

anticoncentrates weakly with inverse normalized second moment 1/n in the same regime [27,

Lemma 8.8]. The only relevant scale is thus the relative size of the number of modes to the

number of photons. In GBS, we now find an additional relevant scale, the number of squeezed

modes in the input state. This scale does not seem to be relevant to the hiding property in GBS

which holds for m = ω(n2) and any k under Conjecture 4.1. We find, however, that it is very

relevant to the anticoncentration property of GBS.

For a potential explanation of the relevance of this scale, we refer to Scattershot Boson

Sampling, which is “intermediate” between standard Boson Sampling and GBS. In Scattershot

Boson Sampling, n single photons are distributed randomly across the input modes using post-

selection on two-mode squeezed states. In order to satisfy collision-freeness in the input state

with high probability, the total squeezing in the input needs to be distributed across ω(n2) initial

squeezed states [97], see Appendix C.6 for details. It is not clear to what extent this explanation
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generalizes to GBS, however, because the distribution of photons in the input state of GBS is

only supported on (collision-full) integer multiples of photon pairs in every mode. Therefore,

this connection warrants future study.

Our results also connect to the classical simulability of GBS. The hafnian of A can be

computed in time exponential in the rank of A [109]. The absence of anticoncentration for small

k ≪ n overlaps with this regime of efficient classical simulability, as the rank of X⊺X is upper-

bounded by k.

But does it also extend beyond this regime? While we have been able to prove the existence

of this transition, our above work is not sufficient to pin down its precise location. However, we

conjecture that, weak anticoncentration holds for k = ω(n2), but there is a lack of anticoncentra-

tion for k = O(n2). In a companion work [106],6 we give evidence for this conjecture by fully

analyzing the coefficients ci of M2(k,n).
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Chapter 5: The Second Moment of Hafnians in Gaussian Boson Sampling

Abstract: Gaussian Boson Sampling is a popular method for experimental demonstrations

of quantum advantage, but many subtleties remain in fully understanding its theoretical under-

pinnings. An important component in the theoretical arguments for approximate average-case

hardness of sampling is anticoncentration, which is a second-moment property of the output

probabilities. In Gaussian Boson Sampling these are given by hafnians of generalized circular

orthogonal ensemble matrices. In a companion work [arXiv:2312.08433]1, we develop a graph-

theoretic method to study these moments and use it to identify a transition in anticoncentration.

In this work, we find a recursive expression for the second moment using these graph-theoretic

techniques. While we have not been able to solve this recursion by hand, we are able to solve it

numerically exactly, which we do up to Fock sector 2n = 80. We further derive new analytical

results about the second moment. These results allow us to pinpoint the transition in anticoncen-

tration and furthermore yield the expected linear cross-entropy benchmarking score for an ideal

(error-free) device.

1Note added: Any use in this Chapter of 2312.08433, “companion work,” or Ref. [110] refers to Chapter 4 and
the associated Appendix C.
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5.1 Introduction

One of the major goals of quantum computer science is to find examples of certain tasks on

which quantum devices can outperform classical computers. While the ultimate goal is to develop

quantum computers that can run, say, Shor’s algorithm [3], the qubit numbers, gate fidelities, and

error correction needed to accomplish such a task fault-tolerantly are well beyond the current

state of the art. Therefore, there is interest in finding near-term examples of quantum advantage.

One area of focus that has strong theoretical evidence for an exponential speedup over

the best possible classical algorithms comprises the so-called sampling problems. Aaronson and

Arkhipov introduced one such promising framework called Boson Sampling [27]. The Boson

Sampling task is to produce a sample (that is, a valid output Fock state) according to the outcome

distribution generated by measuring indistinguishable photons that have been subjected to a ran-

dom linear optical network of beam-splitters and phase shifters. In Boson Sampling, the input

states consist of single photons on many input modes. However, because single-photon sources

have imperfect efficiency, these states are difficult to produce experimentally, requiring an expo-

nential amount of post-selection [28]. Therefore, generalizing this framework to other inputs that

are more reliably produced has been an important topic of study.

Gaussian Boson Sampling represents one such popular generalization. There, the input

states are quadratic, meaning they are generated from the vacuum by some combination of dis-

placement and squeezing (assuming pure input states that have no thermal contribution) [111].

Typically, the displacements are ignored because they do not contribute to entanglement between

the modes. Hence, the input states are simply squeezed vacuum states, which are much eas-

ier to prepare in a lab than many parallel single-photon states [28]. Much theoretical work has
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been done to generalize the original statements from Ref. [27] about the computational com-

plexity of sampling in the Fock basis to this Gaussian setting [97–103]. In due course, many

labs have performed experiments claiming to show quantum advantage using Gaussian Boson

Sampling [30, 31].

Broadly speaking, the hardness of sampling schemes in general, and therefore of both

Fock state and Gaussian Boson Sampling, is based on certain statistical properties of the output

probability distributions. Fock state Boson Sampling and Gaussian Boson Sampling have output

probabilities defined by permanents and hafnians, respectively, which are combinatorial functions

mapping matrices over a field to an element of that field. If one treats the input matrix as a

weighted adjacency matrix, then the permanent and the hafnian count the number of perfect

matchings in the bipartite and generalized weighted graph, respectively, defined by this adjacency

matrix [105]. These functions are, in general, difficult to compute. The permanent is #P-hard

to compute exactly [104], and this hardness extends to the hafnian because one can encode the

permanent of a matrix as the hafnian of a matrix that is twice as big. Even further, Ref. [27]

extended this exact hardness to a proof that it is GapP-hard to approximate the modulus squared

of the permanent up to inverse polynomial multiplicative error (which similarly extends to the

hafnian). However, showing that it is hard to compute or approximate specific output probabilities

is not, in and of itself, enough to demonstrate hardness of actually producing a sample from the

Fock or Gaussian Boson Sampling distributions; many theoretical tools are needed to show that

a difficulty in computing probabilities further implies a difficulty in sampling.

One such crucial tool is called anticoncentration. Anticoncentration is a property of the out-

put distribution that says, roughly, that the outputs are not too clustered on individual probabili-

ties, hence making it more difficult to adequately mimic this distribution in a sampling procedure,
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and it is commonly used as evidence for approximate average-case hardness of sampling [28].

Anticoncentration is usually proven by analyzing the moments of the outcome probability dis-

tribution. In Chapter 4 and Appendix C, we study anticoncentration in the non-collisional limit

(where the outcome states are very likely to have at most a single photon in each mode). We

develop a graph-theoretic technique to find a closed form for the first moment and a few simple

analytical results about the second moment; most saliently, we show that the second moment

admits a polynomial expansion in the number of initially squeezed modes, and we derive the

leading order in this expansion. These simple results are sufficient to show that there is actually

a transition in whether or not anticoncentration holds based on how many of the initial modes are

squeezed; when few are squeezed, there is a lack of anticoncentration, but, in the opposite limit,

a weak version of anticoncentration holds.

However, the second moment itself deserves a more thorough treatment beyond the few

analytic results needed to prove this transition in anticoncentration. For example, linear cross-

entropy benchmarking (LXEB) is a tool that has been used to characterize the performance of

sampling experiments, most notably in the random circuit sampling experiment of Ref. [29]. It

can be shown that the LXEB score that an error-free sampler would achieve when averaged over

all possible random networks is precisely given by the second moment of the output probabilities

normalized by the square of the first moment. Therefore, a better understanding of the second

moment is crucial to achieving a better understanding this popular benchmarking scheme.

To that end, we develop a classically efficient recursion relation that allows us to exactly

calculate the second moment up to any desired Fock sector n, which is the main technical con-

tribution of this Chapter. The recursion relation follows from the graph-theoretic approach we

introduce in Chapter 4, which we generalize and expand upon here. This approach reduces the

81



algebraic evaluation of the hafnian to simply counting the number of connected components of a

certain class of graphs. We then carefully study how higher-order graphs reduce to lower-order

ones under certain operations, and the effect that this has on the number of connected compo-

nents, in order to recursively solve for the second moment. Not only does this allow us to make

statements about the average LXEB score for an error-free sampler, but it also allows us to pin

down more precisely where the aforementioned transition in anticoncentration occurs. If k is

the number of initially squeezed modes, we provide strong evidence that this transition occurs at

k = Θ(n2).

The rest of the Chapter proceeds as follows. In Section 5.2, we provide some background

information, set up the system and problem of interest, and briefly summarize our main results. In

Section 5.3, we review our results from Chapter 4 and Appendix C; specifically, in Section 5.3.1,

we review results about the first moment, and in Section 5.3.2, we discuss how to calculate the

second moment. This latter Section sets up the discussion of the recursion in Section 5.4 (though

most of the technical details are addressed in Appendices D.1 and D.2). Section 5.5.1 discusses

the actual exact numerical evaluation of the recursion. Complementing this, Section 5.5.2 dis-

cusses some preliminary analytical results and scaling properties of the second moment. Finally,

in Section 5.6, we apply these results to give evidence for the exact location of the transition in

anticoncentration we derive in Chapter 4 and Appendix C.

5.2 The Output Distribution of Gaussian Boson Sampling

In this Section, we provide some necessary background information on Gaussian Boson

Sampling and set up our system of interest. We also motivate the study of the moments of the
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output probabilities. Finally, we provide a brief summary of our main results.

5.2.1 Gaussian Boson Sampling

We consider a paradigmatic Gaussian Boson Sampling system onmmodes [99,100]. These

modes pass through a random sequence of beamsplitters and phase shifters that effect a linear

optical (i.e. photon-number-conserving Gaussian) unitary U ∈ U(m) and are then measured in the

Fock basis (this non-Gaussian operation is necessary for classical hardness of sampling [103]).

We consider the typical case where the initial state on the first k modes consists of single-mode

squeezed states of equal squeezing parameter r, and the remaining m−k modes are initialized to

the vacuum state.

Reference [99] calculates the outcome probability of the Fock measurement of such a sys-

tem. Given a unitary U , the probability of obtaining an outcome n = (n1, n2, . . . , nm) ∈ Nm
0 with

total photon count 2n = ∑mi=1 ni is given by

PU(n) =
tanh2n r

coshk r
∣Haf(U⊺1k,nU1k,n)∣

2
. (5.1)

U1k,n is the k × 2n submatrix of U corresponding to its first k rows and its columns determined

by the nonzero elements of n (appropriately repeated ni times). Haf refers to the hafnian, which,

for a 2n × 2n symmetric matrix A, is

Haf(A) =
1

n!2n
∑
σ∈S2n

n

∏
j=1
Aσ(2j−1),σ(2j), (5.2)

with S2n the permutation group on 2n elements. We specify that the dimensions of A are even
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because the hafnian of an odd matrix vanishes; it also vanishes if the input matrix is not sym-

metric. In our setting, this aligns with the physical fact that single-mode squeezed vacuum states

are supported only on even Fock states. The hafnian generalizes the permanent (whose compu-

tational complexity controls the hardness of Fock state Boson Sampling) because one can prove

that [99]

Per(A) = Haf

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

0 A

A⊺ 0

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.3)

Hence, computing the hafnian is at least as hard as computing the permanent.

We work in the regime where the measured output states are, with high probability, photon-

collision-free, which means that the output vector n has ni ∈ {0,1}. That is, U1k,n has no repeated

columns. It suffices for E[2n] = k sinh2 r = o(
√
m) for photon-collision-freeness to hold with

high probability. When n = o(
√
m), Ref. [101] provides strong numerical and theoretical evi-

dence that the distribution of submatricesU1k,n is well-captured by a generalization of the circular

orthogonal ensemble (COE):

Conjecture 5.1 (Hiding [101]). 2 For any k such that 1 ≤ k ≤ m and 2n = o(
√
m), the distri-

bution of the symmetric product U⊺1k,nU1k,n of submatrices of a Haar-random U ∈ U(m) closely

approximates in total variation distance the distribution of the symmetric product X⊺X of a

complex Gaussian matrix X ∼ N (0,1/m)k×2nc with mean 0 and variance 1/m.

We note that, in Ref. [101], this conjecture is only formulated for the case n ≤ k ≤ m.

However, here we allow k to reach 1. The reasoning is that the evidence for Conjecture 5.1 in the

regime k = n is based on a proof from Ref. [27] showing that n × n submatrices of Haar-random

unitaries are approximately Gaussian. Clearly the proof must still hold in the case k < n (if n×n
2Note added: This is the same as Conjecture 4.1.
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submatrices are approximately Gaussian, then so too are smaller submatrices), meaning we can

safely extend the conjecture to all k ≤m.

Roughly speaking, the intuition behind the conjecture and the original proof of the k = n

regime in Ref. [27] is that, if one looks at a small enough submatrix of a unitary, this submatrix

no longer “notices” the unitary constraints. Multiplying this small submatrix by its transpose

washes out the remaining correlations between elements of the unitary. Hence, the product of the

submatrices is approximately the same as a product of i.i.d. Gaussian matrices. Observe also that

working in the non-collisional regime, n ∈ o(
√
m), is crucial for this argument to hold; an output

state with more than one photon in a given mode leads to a repeated column/row in the respective

submatrix, which, of course, destroys the independence of these elements. In what follows, we

work under the assumption that Conjecture 5.1 holds. We are therefore interested in the statistical

properties of X⊺X when the elements of X are i.i.d. Gaussian.

5.2.2 Moments of the Gaussian Boson Sampling Distribution and Their Signif-

icance

In order to understand the statistical properties of the outcome probabilities of Gaussian

Boson Sampling, we must study not just the distribution over individual matrix elements ofX⊺X ,

but how they interact with one another through the hafnian. Under Conjecture 5.1 and Eq. (5.1),

the outcome probabilities of Gaussian Boson Sampling are given by (up to a prefactor that is

mostly irrelevant for our purposes)

Mt(k,n) ∶= EX∼Gk×2n[∣Haf(X⊺X)∣2t], (5.4)
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where we use Gk×2n as shorthand for N (0,1)k×2nc (we consider unit variance for computational

simplicity; rescaling X by 1/
√
m leads to another overall prefactor that can be dealt with inde-

pendently). Specifically, we are most interested in the first and second moments, t = 1 and t = 2,

respectively. We motivate this interest in two ways: the study of anticoncentration and linear

cross entropy benchmarking in Gaussian Boson Sampling.

We first recall the framework for anticoncentration established in Chapter 4 and Appendix C.5.1.

There, the key definition is p2, the inverse average collision probability in the output, which, un-

der the hiding conjecture (Conjecture 5.1), is approximately given by the ratio of the square of

the first moment to the second moment:

p2(U(m)) =
EU∈U(m)[PU(n)]2

EU∈U(m)[PU(n)2]
≈
M1(k,n)2

M2(k,n)
=∶m2(k,n). (5.5)

We refer to m2(k,n) as the inverse normalized second moment. Chapter 4 and Appendix C.5.1

use p2 to define three different classes of anticoncentration:

(A) We say that PU , U ∈ U(m), anticoncentrates if p2 = Ω(1);

(WA) We say that PU anticoncentrates weakly if p2 = Ω(1/na) for some a = O(1);

(NA) We say that PU does not anticoncentrate if p2 = O(1/na) for any constant a > 0.

Appendix C.5.1 contextualizes these definitions in relation to the approximate average-case hard-

ness necessary for formal hardness of Gaussian Boson Sampling.

We note also that, of course, it is important how precise this approximation in Eq. (5.5)

really is. That is, exactly how close in total variation distance the exact and approximate dis-

tributions are is important to formalizing the complexity theoretic implications of our work. In
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particular, if the distribution U⊺1k,nU1k,n is not close enough in total variation distance to the dis-

tributionX⊺X , then it is not possible to transfer statements about, say, anticoncentration between

the two distributions. We address this subtlety in Appendix C.5.2, but, in short, we can formalize

and sharpen Conjecture 5.1 such that statements made about anticoncentration of the approximate

distribution via m2 imply anticoncentration of the exact distribution via p2 as well.

Beyond understanding anticoncentration, calculations of M1(k,n) and M2(k,n) also al-

low one to study linear cross-entropy benchmarking in Gaussian Boson Sampling. Recall that

linear cross-entropy benchmarking is a method by which one can compare the outputs of a poten-

tially noisy Gaussian Boson Sampling experiment with the output of a perfect, error-free experi-

ment. Cross-entropy benchmarking was introduced in the context of random circuit sampling in

Refs. [112,113] and later linearized in Ref. [29]. We review this linearized form now, translating

from the random circuit sampling language to that of bosonic sampling.

Let {n} be the possible output photon strings sampled in some Gaussian Boson Sampling

experiment that are produced with respective experimental probabilities P̃U(n). Let PU(n) be

the ideal probabilities for these outputs; that is, these are the probabilities for an output n given

by Eq. (5.1). The linear cross-entropy score FXEB for such an experiment is

FXEB = ∣Ω2n∣ ∑
n∈Ω2n

PU(n)P̃U(n) − 1, (5.6)

where Ω2n is the non-collisional sample space with 2n output photons in m modes. If the noisy

outputs are correct, i.e. the experiment is error-free, then P̃ (ni) = P (n). The ideal cross-entropy

score, then, is

F ideal
XEB = ∣Ω2n∣ ∑

n∈Ω2n

PU(n)
2 − 1. (5.7)
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The expected value of the ideal cross-entropy over all possible unitaries is, therefore,

EU∈U(m)[F ideal
XEB ] = ∣Ω2n∣ ∑

n∈Ω2n

EU∈U(m)[PU(n)2] − 1. (5.8)

Assuming that one operates in the hiding regime, then two facts are true: first, ∣Ω2n∣ ∼M1(k,n);

second, EU∈U(m)[PU(n)2] is independent of n (see Appendix C.4 for more details). Therefore,

EU∈U(m)[F ideal
XEB ] =

M2(k,n)

M2
1 (k,n)

− 1 =m2(k,n)
−1 − 1. (5.9)

Thus, anticoncentration and the expected ideal linear cross-entropy benchmarking score both de-

pend on this inverse average collision probability. Therefore, a precise calculation of the second

moment beyond asymptotics is valuable to a more fine-grained understanding of both anticon-

centration and cross-entropy benchmarking.

5.2.3 Summary of Results

We now come to a brief summary of our main results.

In Chapter 4 and Appendix C, we develop a graph-theoretic formalism that allows us to

derive various analytic properties of the first and second moments, M1(k,n) and M2(k,n). We

use this formalism to find a closed form expression for M1(k,n) and to show that M2(k,n)

admits a polynomial expansion in k; we also calculate the leading order of this expansion. This

allows us to show the transition in anticoncentration. We review these results in more depth in

Section 5.3.

In this Chapter, we significantly expand upon this graph-theoretic formalism and derive an
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efficiently evaluable recursion relation that allows us to numerically exactly calculate all coef-

ficients of the polynomial expansion of the second moment. We then apply this algorithm and

calculate these expansions up to photon sector 2n = 80. In the photon-non-collisional regime,

where n ∈ o(
√
m), this corresponds to approximately 6400 modes, which is well beyond the

current state-of-the-art experiments. Therefore, the technique that we develop in this Chapter

yields results that can help characterize the output distribution of any near-term Gaussian Boson

Sampling experiment. The recursion is developed in Section 5.4, with details about its efficiency

and construction deferred to Appendices D.1 and D.2, respectively.

We then discuss some simple analytic results about the scaling of the second moment in

Section 5.5.1. We follow this with substantial numerical investigation of the results of the re-

cursion up to 2n = 80 in Section 5.6. In particular, we are able to give strong evidence that the

transition in anticoncentration occurs at k = Θ(n2). We accomplish this with numerical plots of

m2(k,n), the quantity that controls anticoncentration, when k scales polynomially with n. We

also provide a brief analytic argument that this transition occurs somewhere between k = Ω(n)

and k = O(n2).

This result, along with the fact that we operate in the conjectured hiding regime where

2n = o(
√
m) and k ≤ m, implies concrete advice for experimental demonstrations of quantum

advantage via Gaussian Boson Sampling. Namely, one should squeeze all m modes with squeez-

ing parameter sinh2 r = o(m−1/2).
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5.3 Graph-Theoretical Analysis of Gaussian Boson Sampling Moments

In this Section, we lay out the graph-theoretic framework for analyzing the moments of

Gaussian Boson Sampling output probabilities. This is a review of the same framework we

develop in Chapter 4 and Appendix C. We first briefly recall the derivation of the closed form

of the first moment M1(k,n), and we follow this with a discussion of how an extension of this

framework also allows us to analyze the second moment M2(k,n).

5.3.1 First Moment

In this Section, we discuss the first moment of the output probabilities, which is, up to

some multiplicative factors, E
X∼Gk×2n

[∣Haf(X⊺X)∣
2
]. We calculate and analyze this moment in

Chapter 4 and Appendix C.1, but we review the key elements of that discussion because they are

a useful point of reference for the calculation of the second moment.

Using the definition of the hafnian and properties of the expectation value of complex

Gaussians, we reduce the first moment to a sum over Kronecker δs:

M1(k,n) =
(2n)!

(2nn!)2
∑
τ∈S2n

k

∑
{oi}ni=1

n

∏
j=1
δo
⌈
τ(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

. (5.10)

We ascribe a graph-theoretic interpretation to this equation; see Fig. 5.13 for an example. Each

permutation τ instantiates a graph Gτ on 2n vertices labeled O1 to O2n with edges defined by

two perfect matchings: one fixed black set of edges, and one set of red edges determined by

τ . More specifically, each index oj in the sum splits into two vertices Oℓ and Oℓ′ such that

3Note added: This is a recreation of Fig. 4.2(a).
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⌈τ(ℓ)/2⌉ = j = ⌈τ(ℓ′)/2⌉ (that is, o⌈τ(ℓ)/2⌉ maps to a vertex Oℓ). One perfect matching consists

of black edges between O2j−1 and O2j for all j ∈ [n] ∶= {1,2, . . . , n}; these edges enforce that

o⌈τ(2j−1)/2⌉ and o⌈τ(2j)/2⌉ are linked by a Kronecker δ. The other perfect matching has red edges

between Oℓ and Oℓ′ if ⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉; these edges ensure that there is an edge between the

ℓ, ℓ′ mapped to the same value under τ and the ceiling function, meaning the vertices arose from

the same lower-case-o index.

O1 O2 O3 O4 O5 O6 O7 O8

Figure 5.1: Graph G ∈ G1
n. One of 2nn! permutations that induces this graph is τ =

( 1 2 3 4 5 6 7 8
1 3 5 2 4 6 8 7 ). This graph has two connected components, therefore contributing k2 to the first

moment.

This definition of Gτ ensures that the number of connected components of Gτ , C(Gτ), is

equivalent to the number of unconstrained indices in the interior sum in Eq. (5.10), and, hence,

the number of factors of k that τ contributes overall. Therefore,

M1(k,n) =
(2n)!

(2nn!)
2 ∑
τ∈S2n

kC(Gτ ). (5.11)

We simplify this expression using a degeneracy whereby 2nn! different τ all induce the same

final graph; the factor of n! corresponds to choosing which tuple (2j − 1,2j) corresponds to

which index ⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉, and the factor of 2n comes from ordering within each tuple.

Therefore, we study only these final sets of graphs, which we label G1
n (1 refers to the first

moment, and n indexes the order). We study the connected components of graphs in G1
n by

writing down a recursion relation in n and k that, when solved, yields Theorem 4.1.
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Theorem 5.1. 4 The sum over graphs in G1
n satisfies

∑
G∈G1

n

kC(G) = k(k + 2) . . . (k + 2n − 2), (5.12)

and hence M1(k,n) = (2n − 1)!!(k + 2n − 2)!!/(k − 2)!!.

To summarize: Eq. (5.10) gives an expression for the first moment of the outcomes of

Gaussian Boson Sampling probabilities in terms of sums of products of Kronecker δs. We then

reinterpret this as counting the number of connected components of a certain type of graph with

two perfect matchings. We solve this counting problem by developing and evaluating a recursion

relation. We use the same overall technique to calculate the second moment, as we explain in the

next Section.

5.3.2 Second Moment

We now move on to analyzing the second moment of the output probabilities. Using sim-

ilar techniques as described for the first moment, in Chapter 4 and Appendix C.2 we derive an

4Note added: This is a restatement of Theorem 4.1.
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expression for the second moment that is equivalent to Eq. (5.10):5

M2(k,n) ∶= E
X∼Gk×2n

[∣Haf(X⊺X)∣
4
] = (

1

2nn!
)
4

(2n)! ∑
τ,α,β∈S2n

k

∑
{ℓi,oi,pi}ni=1=1

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

⎛

⎝
δo
⌈
τ(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

+δo
⌈
τ(2j−1)

2 ⌉

q
⌈
β(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

+

δq
⌈
β(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

+δq
⌈
β(2j−1)

2 ⌉

q
⌈
β(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

(5.13)

. The main differences between Eq. (5.13) and Eq. (5.10) are threefold:

1. We sum over three permutations (instead of a single one) labeled τ,α, β;

2. There are now 3n indices to sum over, {oi, qi, pi}ni=1, instead of just the n given by {oi}ni=1;

3. Each factor is a sum of four possible terms instead of just one.

However, this expression still possesses a natural graph-theoretic interpretation, as we now re-

view. See Fig. 5.2 6 for an example graph as a guide to the following discussion.

Each index in {oi, qi, pi}ni=1 is again split into two graph vertices {Oi,Qi, Pi}2ni=1 that are

placed into 2n columns and three rows labeled o, p, and q, respectively. As for the first moment,

we define two perfect matchings on these vertices given by black and red edges. The black edges

are between vertices whose labels are linked under the Kronecker δs, and the red edges connect

graph vertices that came from the same original summation index.

More specifically, consider fixing a set of three permutations τ,α, β. There is a red edge

between Oℓ and Oℓ′ if ⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉. An analogous statement holds for P and Q vertices,

5Note added: This is Eq. (C.24).
6Note added: This is a recreation of Fig. 4.2(b).
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O1 O2 O3 O4 O5 O6 O7 O8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

P1 P2 P3 P4 P5 P6 P7 P8

o

p

q

Type 1 Type 2 Type 3 Type 4

Figure 5.2: Example graph on n = 4 used in the calculation of the second moment. Each of the
four possible sets of black edges are shown. An example of three permutations that would induce
this graph is: τ = ( 1 2 3 4 5 6 7 8

1 2 4 5 3 6 8 7 ), α = ( 1 2 3 4 5 6 7 8
8 6 7 3 4 5 1 2 ), and β = ( 1 2 3 4 5 6 7 8

8 5 6 2 1 7 3 4 ). This graph has 5
connected components, so it contributes k5 to the second moment.

though one uses permutations α and β, respectively, instead of τ . Note that this implies that

red edges are always contained within a single row. Now, the black edges are slightly more

complicated. There is only a single Kronecker δ term in each factor in the product Eq. (5.10),

meaning there is only a single set of black edges for the graphs in G1
n. However, because the

second moment as expressed in Eq. (5.13) contains factors with four Kronecker δ terms, each

value of j ∈ [n] can lead to one of four different patterns of black edges on columns 2j−1 and 2j.

We refer to these patterns of black edges on a single pair of adjacent columns as type-1, type-2,

type-3, and type-4; see Fig. 5.2 for an example graph that has one of each type. The Kronecker δ
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terms and their corresponding black edges, listed in order from type-1 to type-4, are given by

δo
⌈
τ(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

→ {(O2j−1,O2j), (P2j−1,Q2j−1), (P2j,Q2j)},

(5.14)

δo
⌈
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2 ⌉

q
⌈
β(2j)

2 ⌉

δp
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α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

→ {(O2j−1,Q2j), (P2j−1,Q2j−1), (O2j, P2j)},

(5.15)

δq
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2 ⌉

o
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τ(2j)

2 ⌉

δp
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2 ⌉
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2 ⌉
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⌈
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2 ⌉

q
⌈
β(2j)

2 ⌉

→ {(O2j,Q2j−1), (P2j−1,O2j−1), (P2j,Q2j)},

(5.16)

δq
⌈
β(2j−1)

2 ⌉

q
⌈
β(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

→ {(O2j−1, P2j−1), (O2j, P2j), (Q2j−1,Q2j)}.

(5.17)

Because there are four patterns of black edges per pair of adjacent columns, and n such

pairs, there are 4n possible arrangements of black edges on the entire graph. We label these

arrangements by an integer z ∈ [4n], and we label a graph as Gτ,α,β(z).

Analogously to the first moment, we can rewrite the sum over products of Kronecker δs

in Eq. (5.13) as a sum over these graphs, where Gτ,α,β(z) contributes a factor of k raised to its

number of connected components. Therefore, Eq. (5.13) becomes

M2(k,n) =
(2n)!

(2nn!)
4 ∑
τ,α,β∈S2n

z∈[4n]

kC(Gτ,α,β(z)). (5.18)

There is again a degeneracy where many permutations all lead to the same set of red edges in a

given row, and, hence, the same graph. Specifically, this degeneracy is again 2nn!, but for each
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copy of S2n. We can therefore again ignore the permutations and look only at the underlying

graphs. For any given z, we define G2
n(z) to be the graphs on 6n vertices with two perfect

matchings: the zth set of black edges and red edges that pair vertices in the same row. We then

define G2
n = ∪z∈[4n]G2

n(z). Thus, accounting for the described degeneracy and these definitions,

we get

M2(k,n) = (2n − 1)!! ∑
G∈G2

n

kC(G). (5.19)

This implies the following theorem.

Theorem 5.2. 7 The second moment M2(k,n) is a degree-2n polynomial in k and can be written

asM2(k,n) = (2n−1)!!∑
2n
i=1 cik

i, where ci is the number of graphsG ∈ G2
n that have i connected

components.

Our goal, then, is to determine these coefficients ci. It is possible to directly compute

c2n and c2n−1, that is, the number of graphs G ∈ G2
n with 2n or 2n − 1 connected components,

respectively (see Appendix D.3). However, these calculations do not easily generalize to the other

ci. Therefore, we take a different approach, which is to derive a recursion relation that is similar

in spirit to the one we use to compute the first moment.

5.4 Recursion for the Second Moment

We now move on to the recursion relation that builds the ci for larger n from those of

smaller n. It is useful to refer to Fig. 5.3 for the following discussion. We are interested in the

connected components of the graphs in G2
n, and the number of connected components does not

change if one takes a graph and then “collapses” vertices that are connected via an edge into a
7Note added: This is a restatement of Theorem 4.2.
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single larger vertex. The graphs that we have defined for the second moment are composed of

2n columns of 3 vertices each. Therefore, if one performs this collapsing operation on all of the

vertices in, say, the first two columns, this converts a graph with 2n columns into one with 2n− 2

columns. Let us refer to these first two columns as C1,2; that is, C1,2 = {O1,O2, P1, P2,Q1,Q2}.

Two facts follow from the approach we have just described: (1) there are only a finite number

of ways that the two columns can connect into the rest of the graph, (2) if one “integrates out”

C1,2 by collapsing all of the vertices, one can write the number of connected components of the

original graph as the sum of the remaining connected components plus the number of connected

components contained entirely within C1,2. This is a generalization of the approach used to prove

Theorem 5.1.

However, this recursion is substantially more complicated than the one we use to calculate

the first moment, as illustrated in Fig. 5.3. In particular, we must generalize the types of graphs

that we consider in order to build a recursion that “closes” on itself, that is, to build a recursion

that consistently produces valid graphs. Consider the graphs that we have described so far in the

context of this “integration” procedure whereby sets of vertices are collapsed onto one another.

As stated, this procedure can induce a graph with red edges that cross between rows, which is

not allowed in our current formulation. In Fig. 5.3, the first figure shows a graph in G2
4 where

C1,2 is integrated out, as denoted by the hashing, and the second figure depicts the consequence

of this integration. Consider the path P3—P1—Q1—Q6 that passes through the first column.

Collapsing the vertices P1 and Q1 into P3 and Q3, respectively, does not change the number of

connected components, but it induces an edge P3—Q6 that is heretofore unallowed because it

crosses between rows 2 and 3. Therefore, the newly induced graph is not an element of G2
3,

hence why we must generalize what kinds of graphs we consider.
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k ×

O1 O2 O3 O4 O5 O6 O7 O8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

P1 P2 P3 P4 P5 P6 P7 P8

O3 O4 O5 O6 O7 O8

Q3 Q4 Q5 Q6 Q7 Q8

P3 P4 P5 P6 P7 P8

Figure 5.3: Example showing why the simple graphs with red edges that do not cross between
rows are not sufficient to develop a recursion. Trying to “integrate out” or collapse the edges that
connect the six vertices in the leftmost two columns (represented here with a crosshatch pattern
over those vertices) induces a multiplicative factor of k due to the connected component O1—O2

as well as red edges P3—Q6 and P6—Q3. Such red edges are not allowed for graphs in G2
n, so

we must expand the set of graphs we consider in the recursion.
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To that end, we define a simple generalization of our graphs, where we allow all possible

perfect matchings of red edges across the 6n vertices. That is, we no longer restrict red edges to

connect only vertices of the same letter (i.e., in the same row); we now allow the red edges to

cross between two different rows. However, we still demand that each vertex still possess exactly

one red edge.

Let a12, a13, a23 be the number of edges that span between the first and second, first and

third, and second and third rows, respectively. We can then define a set of graphs G2
n(a12, a13, a23, z)

on 6n vertices, where the z again indexes the 4n possible sets of black edges. We can again write

G2
n(a12, a13, a23) = ⋃z∈[4n]G2

n(a12, a13, a23, z). Finally, then, we have

g(n, a12, a13, a23) ∶= ∑
λ∈G2

n(a12,a13,a23)
kC(λ) (5.20)

The second moment we desire is then, of course, proportional to g(n,0,0,0).

A few constraints on a12, a13, a23 are apparent immediately:

• a12 + a13, a12 + a23, and a13 + a23 (that is, the number of edges coming out of the first,

second, and third row, respectively) must be even;

• a12 +a13, a12 +a23, a13 +a23 must all be less than or equal to 2n (there cannot be more than

2n edges coming out of a row with only 2n vertices given that there is exactly one red edge

incident on every vertex).

We also observe that, while we do not explicitly keep track of these edges, we can also define

a11, a22, a33 as the number of “proper” edges that map between vertices in the first, second, and

third rows, respectively. These edges have a simple relationship to the ones we do keep track of
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that can be derived by simply counting how many vertices in a given row are left after subtracting

those that are used in edges that cross between rows:

a11 =
2n − a12 − a13

2
, (5.21)

a22 =
2n − a12 − a23

2
, (5.22)

a33 =
2n − a13 − a23

2
. (5.23)

Because we have the constraints that a12 + a13, a12 + a23, a13 + a23 must all be even, a11, a22, a33

are all integral. Also, the fact that a12 + a13, a12 + a23, a13 + a23 must all be less than or equal to

2n ensures that a11, a22, a33 are all non-negative as well.

It is also useful to write down the total number of graphs of each type. There are 6n total

vertices, and 2n in each row. Given a vector a = (a12, a13, a23), we need to choose a12 vertices in

row 1 and row 2 to link to one another, a13 in rows 1 and 3 (with no overlap between the vertices

chosen in the first row corresponding to a12 vs. a13), and a23 in rows 2 and 3 (again, no overlap

with previously chosen vertices is allowed). Once these vertices are chosen, it also remains to

choose how to connect them. Finally, one must pair off the remaining vertices in each row, then

multiply by 4n to account for the black edges. The result is

∣G2
n(a12, a13, a23)∣ = (

2n

a12
)(

2n − a12
a13

)(
2n

a12
)(

2n − a12
a23

)(
2n

a13
)(

2n − a13
a23

)a12!a13!a23!

× (2n − a12 − a13 − 1)!!(2n − a12 − a23 − 1)!!(2n − a13 − a23 − 1)!!4
n. (5.24)

This result is useful because, if one sets k = 1 in Eq. (5.20), then every graph is put on equal

footing; that is, any number of connected components contributes equally to the sum. Therefore,
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(8)

(9)
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(11)

(12)

(13)

(14)

(15)

(16)

(17)

(6s)

(5s)(1)

(2)

(3)

(4)

(2s) (10s)

(9s) (13s)

(15s)

Figure 5.4: List of 17 cases (up to symmetry) for how the first two columns in a graph of order n
can connect into the rest of the graph.

given a polynomial expansion in k for any g(n, a12, a13, a23) (note that Theorem 5.2 still holds

for the generalized graphs, except the highest order term need not be 2n anymore—generically it

can reach 3n), Eq. (5.24) gives the sum of the coefficients on the monomials.

We now describe the recursion using the following equation

g(n, a12, a13, a23) = ∑
b12,b13,b23

c(a12, a13, a23, b12, b13, b23)g(n − 1, b12, b13, b23). (5.25)

The goal is to determine the coefficients c for all valid sets a12, a13, a23 allowed by n. In order

to do this, one must effectively determine the various ways integrating out two columns changes

the possible red edge configurations.

Specifically, there are 17 ways (24 if one disambiguates symmetric cases) in which C1,2

can attach into a graph of order n − 1 (that is, one with 2n − 2 columns). We classify these by
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the number of red edges that “protrude” from C1,2. We illustrate these cases in Fig. 5.4 and now

describe how to interpret these images.

Red edges that attach within a row inside the block are fixed, as there is only one possible

edge that can connect two vertices in the same row. We depict the red edges that connect C1,2 to

the rest of the graph as protruding from the same row on the right side of the block, as shown in

Fig. 5.4. We depict red edges that go between different rows in C1,2 on the left of the box, again

shown in Fig. 5.4. We do not draw the four possible sets of black edges within the block, but

understanding their effect is crucial to the actual mechanics of the recursion.

We must determine how each of these cases leads to a relationship between a and b, as

well as the coefficient c in Eq. (5.25), which is related to the number of possible graphs of order

n that, when integrated out, lead to the same graph at order n − 1. The coefficient out front is

also affected by how many internal loops the given case has, as that of course leads to extra

connected components that yield factors of k. There are overall three different contributions to

c(a,b) ∶= c(a12, a13, a23, b12, b13, b23):

• Loop: This corresponds to the number of connected components in C1,2. This is the easiest

contribution to determine;

• Vectorial: This corresponds to the relationship between a and b in Eq. (5.25), and, while

somewhat simple in spirit, it often requires significant casework. In short, when integrating

out C1,2, one loses contributions from internal edges that are lost by collapsing the vertices,

but one gains edges of the types that are induced between the remaining vertices;

• Combinatorial: This corresponds to the combinatorial factors that are associated with how

many ways a given case leads to the same graph at lower order. This depends both on the
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number of protruding edges and how the red and black edges interact via the vertices in

C1,2.

With these ideas set forth, the evaluation of the recursion proceeds as follows. We first

evaluate the base cases when n = 1. We then determine the loop, vectorial, and combinatorial

contributions to each of the 17 cases depicted in Fig. 5.4, thus determining how that case con-

tributes to the overall recursion. Finally, we evaluate the recursion numerically exactly, which

is classically efficient (see Section 5.5.1 and Appendix D.1 for details). Note that, while it is, in

principle, possible to write down analytically the contribution of each of the 17 cases depicted

in Fig. 5.4, the terms are sufficiently numerous and complicated that we could not actually solve

the recursion analytically; for more details, see Appendix D.2, where the loop, vectorial, and

combinatorial contributions are worked out for the cases.

5.5 Analysis of the Second Moment

In this Section, we analyze the results derived from the numerically exact evaluation of the

recursion described in the previous Section. Specifically, we first discuss the code behind the

recursion and provide some checks to gain confidence that code is accurate. We then derive some

analytic results upper and lower bounding the second moment, which we then compare to the

numerically exact data to understand how well they capture the scaling of the second moment.

5.5.1 Numerical Evaluation of the Recursion

Once the theoretical principles behind the recursion in Eq. (5.25) are developed, we simply

account for the contributions from each case and evaluate the recursion numerically exactly. We
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accomplish this using the Julia programming language [114] and find g(n,0,0,0) from n = 1 to

n = 40 (which, recall, means up to photon sector 80).

We now briefly describe our implementation of the exact numerical recursion; the code

is available on GitHub [115]. As a consequence of Eq. (5.24), the polynomial coefficients in

g(n, a12, a13, a23) grow at most factorially, so the number of bits needed to store the integers

grows polynomially. Therefore, to ensure exact accuracy of all of the integer calculations, we

use Julia’s BigInt type, which allows us to achieve arbitrary-precision arithmetic [114]. Next,

in order to avoid performing slow symbolic arithmetic operations, we represent polynomials in

k as BigInt arrays, where the ith element of the array corresponds to the coefficient in front

of the ki term in the polynomial. Multiplication and addition of polynomials in k is then done

at the array level. We begin with n = 1 and store the base case values of g(1, a12, a13, a23)

given in Appendix D.2.1. To compute the value of g(n, a12, a13, a23), we iterate through the

17 cases described in Appendix D.2 and compute the various combinatorial factors and values of

b12, b13, b23 that show up in the sum in Eq. (5.25). We then recursively compute the values of g(n−

1, b12, b13, b23). The algorithm utilizes memoization every time any value of g(n, a12, a13, a23) is

computed so that the recursion rarely needs to go particularly deep. In the end, in order to

compute up to g(40,0,0,0), we compute g(n, a12, a13, a23) for around 50 000 combinations of

arguments, resulting in almost 200 megabytes of (uncompressed) data.

As mentioned, the evaluation of the recursion is classically efficient. In short, the number

of allowed a (i.e. those that satisfy the necessary bounds and parity constraints) is polynomially

bounded, the size of the coefficients cannot be more than factorially large (meaning they can

be stored with polynomial space), and the array-based multiplication and addition is classically

tractable. More details are presented in Appendix D.1.
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We can check the computed values of g(n, a12, a13, a23) derived via the recursion in a few

ways. First, we note again that for any value of g(n, a12, a13, a23), setting k = 1 (i.e., summing

the coefficients in front of each monomial) yields the total number of graphs of this type, which

is given in Eq. (5.24). Furthermore, Lemma 5.1(ii)8 (to be introduced below) gives the coefficient

in front of the leading order term in g(n,0,0,0). Our numerically exact computation of these

numbers using the recursion matches these predicted values.

Second, for various n and k, we numerically sample 105 random X ∈ Gk×2n, compute

∣Haf[X⊺X]∣
4 using the code provided by Ref. [116], and average the results. This gives a numer-

ical approximation to (2n − 1)!!g(n,0,0,0). We perform this calculation for n, k ∈ {1,2, . . . ,9}.

The result is shown in Fig. 5.5, and we see good agreement between the approximate numeri-

cal calculations (data points and error bars) and the theoretical values predicted by the recursion

(solid lines).

5.5.2 Scaling of the Second Moment

While we have not found a closed form for the solution to the recursion, we are able to de-

rive a few simple analytic results about the values of the coefficients of the polynomial expansion

as well as the overall scaling of the second moment. The former are covered in Appendix C.3,

as they are crucial to demonstrating the transition in anticoncentration that is the central result of

Chapter 4. The latter are new to this Chapter.

We recall Lemma 4.1.

Lemma 5.1 We have that
8Note added: This is the same as Lemma 4.1.
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Figure 5.5: Numerical test of recursion. The x-axis represents k, and the y axis represents
E

X∼Gk×2n
[∣Haf(X⊺X)∣

4
]. Solid lines, from n = 1 through n = 9 are the theoretical predictions

derived from the recursion relation (see [115] for the code). Dots and bars represent the expected
value and standard error, respectively, estimated by sampling 105 random Gaussian matrices and
computing the second moment using the code provided by Ref. [116]. Note that, for many points,
the size of the error bar is smaller than its associated dot. Further, there is an asymmetry in the
error bars due to the log nature of the plot. We see excellent alignment between theory and
numerics for n = 1 through n = 5. For larger n, the agreement is still good, but we seem to under-
sample the true value in many cases. We suspect that this is because the distribution of the second
moment has a long tail, meaning we do not suspect that the given error bars are indicative of the
true difference between the sampled and numerically exact data. We believe that were we able
to either take sufficiently more samples we would see stronger agreement between the sampled
and true means, but this option is too computationally demanding given the size of the matrices
involved and the exponential complexity of classically computing the hafnian [109].

106



i. M2(1, n) = ((2n − 1)!!)44n;

ii. c2n = (2n)!!.

The proof of part (i) consists of a direct calculation using Eq. (5.13); it also follows from the

graph-theoretic framework by simply counting the number of possible graphs of type a = (0,0,0)

(see Eq. (5.24)). The proof of part (ii) follows from a reduction of the problem of counting

connected components to a special case of the first moment using k = 2. We also reprove this

result in a slightly different way in Appendix D.3.

As a corollary of Lemma 5.1, we can derive upper and lower bounds on the second moment:

Lemma 5.2 Lemma 5.1 implies

M2(k,n) ≤ (2n − 1)!!
44nk2n, (5.26)

M2(k,n) ≥ (2n)!k
2n, (5.27)

M2(k,n) ≥ (2n − 1)!!
44n. (5.28)

Proof. We first prove the upper bound. The leading term in g(n,0,0,0) is of the form k2n, and

the total number of graphs with no red edges crossing between rows is (2n − 1)!!34n. Thus, the

upper bound comes from saying that all graphs have 2n connected components.

We next prove the lower bounds. The first lower bound comes from considering only the

leading order term in the polynomial expansion, which is given in Lemma 5.1(ii). Because each

term in the expansion is non-negative, this is a valid lower bound. The second lower bound comes

from observing that g(n,0,0,0) is monotonically increasing with k, as there are no negative
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coefficients in the polynomial expansion. Therefore, we can also take a lower bound which is

simply the value at k = 1, which we know counts the total number of possible graphs and follows

from Lemma 5.1(i).

Stirling’s approximation tells us when each lower bound is most useful:

(2n)!k2n ∼ (nk)2n(
4

e2
)
n

, (5.29)

(2n − 1)!!44n ∼ n4n(
64

e4
)
n

. (5.30)

For k ∈ o(n), Eq. (5.30) is larger, and when k ∈ ω(n), Eq. (5.29) is instead larger. When

k ∈ Θ(n), then both lower bounds have a leading dependence of n4n, so which is better depends

on the constant of proportionality.

Armed with our analytical results and the exact numerical data from the recursion, we

can now investigate how the second moment scales with k and n. In Fig. 5.6(a), we plot the

logarithm of the upper and lower bounds, as well as the numerically exactly computed values

for (2n − 1)!!g(n,0,0,0), for our largest available n, which is n = 40. We set k = na with

a ∈ [0,4]. We see that, except for when k = n0 and the upper bound is exactly correct (as is the

lower bound based on the number of graphs), the lower bound is a much better approximation.

In fact, as expected, the lower bound based on the leading order appears to become a very good

approximation as k gets larger.

We should also point out that the logarithmic scaling of the y-axis of Fig. 5.6(a) means

that small differences between the exact values and the corresponding lower bound actually rep-

resent large multiplicative differences between the true values. For this reason, in Fig. 5.6(b),
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Figure 5.6: Plots showing scaling of the second moment compared to upper and lower bounds.
For both plots, physically, k should be an integer, but we here simply use the polynomial ex-
pansion of the second moment as a function of arbitrary real k. (a) Scaling of logarithm of the
second moment and its upper and lower bounds for n = 40 and k = na with a ∈ [0,4]. The green
horizontal dashed line and the yellow slanted dashed line represent the lower bounds based on the
number of graphs [Eq. (5.28)] and the leading order term [Eq. (5.27)], respectively. The maroon
solid line represents the upper bound Eq. (5.26). The bound region is, therefore, highlighted in
gray. Numerically exact data is given for n = 40 by the black dots [115]. Notice that the black
dots representing the exact data stay within the gray region and, for most values of a, closely
track the lower bound. (b) Difference between the logarithms of the exact data and the combined
lower bound. The peak of the curve shows where the lower switches from the number of graphs
to the leading order term. We see that, around a = 2, the lower bound based on the leading order
becomes a good approximation.
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we also plot the difference between the logarithms of the exact data and the composite lower

bound defined by max{Eq. (5.27), Eq. (5.28)}. This helps show how the exact data trends toward

Eq. (5.27) as k grows.

Relatedly, we can actually show analytically that Eq. (5.27) cannot fully capture the scaling

of the second moment when k = O(n2). In Appendix D.3, we discuss how to compute individual

coefficients in the polynomial expansion of the second moment. There, we give a new proof that

c2n = (2n)!!, and we also prove for the first time that c2n−1 = (2n)!!(3n − 2)n. Together, these

two results mean

c2nk2n

c2n−1k2n−1
=

k

(3n − 2)n
∼
k

n2
. (5.31)

Therefore, in order for the leading term c2nk2n to asymptotically dominate c2n−1k2n−1, we require

k = ω(n2). A fortiori, for the leading term to dominate all other terms, and, therefore, for the

leading-order lower bound to be a good approximation for the second moment, k must be ω(n2).

In summary, then, the lower bounds in Eqs. (5.27) and (5.28) typically track the true value

of the second moment much better than the upper bound in Eq. (5.26). When k = ω(n2), the

first lower bound, Eq. (5.27), which is based on the leading order term, appears to be a very good

approximation to second moment.

5.6 Locating the Transition in Anticoncentration

We now move on to some of the concrete consequences of this Chapter The main result

of Chapter 4 is identifying a transition in anticoncentration in Gaussian Boson Sampling as a

function of k, the number of initially squeezed modes. This result follows entirely from ana-

lytic results. Specifically, in Chapter 4, we show through direct computation that, when k = 1,
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the probabilities do not anticoncentrate, and we use the leading order term to show that these

probabilities weakly anticoncentrate in the limit that k → ∞. Hence, we show the existence of

a transition, but we do not isolate its exact location. We do conjecture that it occurs at a = 2,

where k scales with n as k = Θ(na), based on an allusion to Scattershot Boson Sampling [97],

which is another generalization of Fock state Boson Sampling; there the initial state is composed

of two-mode squeezed states where one half of each state is measured and postselected on mea-

surements with at most one photon. In short, one can roughly draw a connection between the

presence of hiding in Scattershot Boson Sampling and the number of initially squeezed modes

(this is detailed more thoroughly in Appendix C.6).

The main contribution of this Chapter is to show convincingly that the location of the

transition is indeed at k = Θ(n2). We accomplish this through numerical arguments based on

the exact data generated through the recursion for the second moment and a few more analytic

results. We formalize this with the following conjecture:

Conjecture 5.2 (Anticoncentration in Gaussian Boson Sampling). Let 2n = o(
√
m) such that one

operates in the (conjectured) hiding regime. Then Gaussian Boson Sampling does not anticon-

centrate for k = O(n2), but it weakly anticoncentrates with inverse normalized second moment,

m2(k,n) ∶=M2
1 (k,n)/M2(k,n), scaling as 1/

√
πn for k = ω(n2).

Our evidence for Conjecture 5.2 is twofold and based on results regarding the anticoncen-

tration of the approximate distribution (see Appendix C.5.2 for details on how to convert these

statements to those about anticoncentration of the exact distribution):

1. We provide a sequence of numerical plots of log[(m2(k,n)
√
πn)−1] and its symmetric

difference with respect to n for various polynomial scalings of k with n. The numerical
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plots of the function itself show an exponential scaling when k = O(n2), but that the

function becomes approximately constant when k = ω(n2). Similarly, the plots of the

symmetric difference are positive in the k = O(n2) regime, but approximately vanish when

k = ω(n2).

2. We show that, assuming the lower bound for M2(k,n) is a good approximation, weak an-

ticoncentration holds for k = ω(n2). We also show that there is a lack of anticoncentration

when k = o(n).

We begin with the numerical evidence. In Fig. 5.7, we set k = na and plot log[(m2(k,n)
√
πn)−1]

for various values of a. We choose this quantity because, in the asymptotic limit of large k,

(m2(k,n)
√
πn)−1 ∼ 1, but when k = 1, it is exponentially big.9 Therefore, we hope to use

Fig. 5.7 to understand how this quantity interpolates between the exponential and polynomial

behavior of m2(k,n)−1. In Fig. 5.7(a), we plot log[(m2(k,n)
√
πn)−1] for a = 0.5 to a = 4.0 with

spacing 0.5. We see that for a ≤ 2, this quantity seems to linearly increase with n, meaning that

m2(k,n)−1 is exponentially large in n. However, for a > 2, it trends to a small constant. Because

m2(k,n) ∼ 1/
√
πn is derived in the limit of asymptotically large k using the leading order lower

bound for the second moment in Eq. (5.27), this suggests that the use of this lower bound is a

good approximation to the second moment when a > 2; this aligns well with Fig. 5.6. Thus, we

see that, when a > 2, the normalized second moment trends to its asymptotic-in-k value of
√
πn.

In Fig. 5.7(b), we zoom in on the suspected transition point and plot the same quantity when

a ∈ {1.95,1.99,2.00,2.01,2.05,2.10,2.15,2.20}. We see similar behavior in this plot; namely, at

approximately a = 2, the curves transition from growing in n to decreasing toward 0. To clarify

9Note added: See Eq. (4.10).
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this point even further, we also plot the symmetric difference of the above quantity as a function

of n (excluding the minimum and maximum values of n). Here, the symmetric difference of a

function f(n), which we refer to as ∆nf(n), is defined as (f(n + 1) − f(n − 1))/2. Fig. 5.7(c)

and Fig. 5.7(d) use the same values of a as Fig. 5.7(a) and Fig. 5.7(b), respectively. We see that,

up to some finite size effects, when a > 2 this symmetric difference trends to 0, but it remains

positive for a ≤ 2. We next plot in Fig. 5.8 the symmetric difference ∆n log[(m2(k,n)
√
πn)−1]
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Figure 5.7: Plots of log[(m2(k,n)
√
πn)−1] and its symmetric difference, notated as ∆n, as

a function of n for k = na. Recall that m2(k,n) ∶= M1(k,n)2/M2(k,n) and, for asymp-
totically large k, m2(k,n) ∼ 1/

√
πn.10(a) a ∈ [0.5,4.0], equally spaced by 0.5. (b) a ∈

{1.95,1.99,2.00,2.01,2.05,2.10,2.15,2.20} to show the regime around a = 2 more clearly. (c)
The symmetric difference of log[(m2(k,n)

√
πn)−1] with respect to n, again with a ∈ [0.5,4.0].

(d) Zooming in on the symmetric difference when a is around 2, with the same values as plot
(b). Note that each of the curves in plots (a) and (b) are composed of numerically exact data
at 40 points (n ∈ {1, . . . ,40}) that are smoothed for visualization. The same holds for plots (c)
and (d), except there are only 38 points (n = 1 and n = 40 are excluded because we compute
the symmetric difference). Finally, while k physically must be an integer, we do not enforce that
for these plots; we instead just using the polynomial expansion of the moments to extend k to
arbitrary real numbers.

10Note added: See Eq. (4.11).
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with respect to n at n = 39 (the largest n for which we can compute the symmetric difference) as

a function of a. We see the symmetric difference vanish near a = 2, as would be expected if the

transition occurs at k = Θ(n2). The inset of Fig. 5.8 clarifies this by plotting the logarithm of this

symmetric difference such that its vanishing instead becomes a divergence.
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Figure 5.8: Symmetric difference ∆n log[(m2(k,n)
√
πn)−1] evaluated at n = 39. Here, k = na,

and a represents the x-axis. Again, physically, k must be an integer, but for this plot we are simply
using the polynomial expansions of the moments where k can be an arbitrary real number. This
symmetric difference vanishes very close to a = 2, suggesting that, when k = Ω(n2), the quantity
m2(k,n)

√
πn is a constant, meaning the normalized second moment appears to scale as

√
πn.

The inset simply plots the log of the y-axis in the main plot (still with a along the x-axis) in
order to visualize more clearly the transition. The divergence occurs somewhere around a = 2.03,
but we suspect this difference is due solely to finite-size effects. Beyond this divergence, the
symmetric difference is negative, meaning the logarithm is complex and, hence, unplotted.

For our second, more analytic argument, we show that if the lower bound is a good approx-

imation to the second moment, then weak anticoncentration holds for k = ω(n2) and there is a

lack of anticoncentration when k = o(n).
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First, consider the case a < 1. Note that k = na is negligible to n (asymptotically in n).

Therefore, up to subleading order,

(k + 2n − 2)!!

(k − 2)!!
∼ (2n)!!. (5.32)

Using Eq. (5.28), which is a valid lower bound, we get

M2(k,n)

M1(k,n)2
≳

(2n − 1)!!44n

((2n − 1)!!(2n)!!)2
(5.33)

= 4n
(2n − 1)!!2

(2n)!!2
(5.34)

∼
4n

πn
, (5.35)

which is exponentially big, demonstrating a lack of anticoncentration (accounting for the sub-

leading contribution of k does not change the conclusion). Here, we have used Stirling’s approx-

imation and

(2n)!!

(2n − 1)!!
∼

√
2πn(2n/e)n
√
2(2n/e)n

=
√
πn. (5.36)

We now examine the case where k = na with a > 2. We use that, according to Fig. 5.6,

the lower bound M2(k,n) ≥ (2n)!k2n is actually an extremely good approximation to the second

moment. Here, k now dominates n, so

(k + 2n − 2)!!

(k − 2)!!
∼
√
k2n = nan. (5.37)
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Correspondingly, the normalized second moment scales as

M2(k,n)

M1(k,n)2
∼
(2n − 1)!!(2n)!!k2n

(2n − 1)!!2k2n
(5.38)

=
(2n)!!

(2n − 1)!!
(5.39)

∼
√
πn. (5.40)

Therefore, when k = ω(n2), weak anticoncentration holds (again, the inclusion of any subleading

terms does not change the conclusion). Note that this argument is similar to the argument used

to demonstrate the existence of the transition in the first place, but it uses the fact that the second

moment is already well approximated by the leading order lower bound at k = ω(n2) instead of

just in the asymptotic limit of large k. Unfortunately, our current results are insufficient to more

formally handle the regime a ∈ [1,2] regime.

To recap, we have shown the following results. First, we have provided numerics in

Figs. 5.7 and 5.8 that suggest that
√
πn is a good approximation to the normalized second mo-

ment when k = ω(n2). This is the value of the normalized second moment that is calculated when

one uses the lower bound in Eq. (5.27) that is based on the leading order term. Similarly, these

plots numerically indicate that when k = O(n2), the normalized second moment grows exponen-

tially in n, meaning there is a lack of anticoncentration. Next, we have shown that, if the leading

order is a good approximation to the second moment, which, according to Fig. 5.6 occurs when

k = ω(n2), then the normalized second moment scales as
√
πn, meaning weak anticoncentration

holds in that regime. We have also shown that for k = O(n), there is a lack of anticoncentration.

All together, the totality of the evidence presented here strongly suggests the veracity of Conjec-
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ture 5.2 and that the transition between lack of anticoncentration and weak anticoncentration in

the approximate output distribution occurs at k = Θ(n2).

5.7 Conclusion

In this Chapter, we have studied the output distribution of the prototypical setup for Gaus-

sian Boson Sampling in the hiding regime. Our main theoretical contribution is the development

of a recursion relation that allows one to compute numerically exactly in polynomial time the

second moment of these output probabilities for any photon Fock sector. We additionally de-

tail separate ways to calculate individual coefficients of the polynomial expansion of the second

moment. Together, these results provide strong evidence for our conjecture that the transition in

anticoncentration, whose existence is proven in Chapter 4 and Appendix C, occurs at k = Θ(n2).

Ideally we would have been able to derive a closed-form expression for the polynomial

description of the second moment akin to Theorem 5.1, as this might have allowed us to formally

prove this conjecture, but we leave this important question to future work. It would also be nice

to develop a better, more intuitive understanding for why this transition occurs. It appears to

be related to the transition between collisional and collision-free outputs in Scattershot Boson

Sampling, but the connection is not perfect, and further investigation seems worthwhile.

Related to all of these points, the precise nature of the crossover at k = Θ(n2) is an inter-

esting realm of future study. Specifically, we conjecture that weak anticoncentration holds for

k = ω(n2) and there is a lack of anticoncentration when k = O(n2), which of course places the

transition at k = Θ(n2). But precisely how the normalized moment behaves as we tune a through

a = 2 deserves special attention.
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Our results open the door for answering other questions of interest. In particular, our results

may make it possible to evaluate how well certain classical algorithms may sample from the out-

put distribution or evaluate spoofing cross-entropy benchmarking in Gaussian Boson Sampling.

Further exploration here is worthwhile. We also note that we have studied Gaussian Boson Sam-

pling with no noise and number-resolving detectors. It would be interesting to see whether our

techniques can be expanded to imperfect settings, such as when photons are partially distinguish-

able [117], or when the measurement detectors only distinguish between the presence or absence

of photons [118].

Finally, the graph-theoretic approach that we have developed in this Chapter is surprisingly

flexible, and it deserves continued treatment. In Appendix D.4, we present another way to use

the graphs in Gn
2 in order to develop a recursion that can solve for the second moment. In short,

this other approach observes that there are really only five types of black edges in our graphs:

ones that stay in row 1, ones that stay in row 3, and ones that go between rows 1 and 2, rows 1

and 3, and rows 2 and 3. Because we are interested only in the number of connected components,

and because we sum over all perfect matchings defined by red edges in each row, we are free

to drag the black edges around and order them in new, convenient ways. Therefore, looking at

these graphs from the perspective of the total number of each type of black edge allows us to

conceive of a different kind of recursion for the second moment. While we only sketch the idea

behind this alternative recursion, we believe that it may be a promising new way of looking at the

problem. In particular, this new approach allows us to find an, admittedly, somewhat complicated,

expression for c1 (that reproduces our expression for c1 found via the original recursion up to

n = 40). However, this new approach should not be viewed as a strict alternative to what we

have derived in this manuscript, but a complementary approach that might yield new insights.
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We leave exploring it to future work.
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Chapter 6: Simulation Complexity of Many-Body Localized Systems

Abstract: We use complexity theory to rigorously investigate the difficulty of classically

simulating evolution under many-body localized (MBL) Hamiltonians. Using the defining feature

that MBL systems have a complete set of quasilocal integrals of motion (LIOMs), we demon-

strate a transition in the classical complexity of simulating such systems as a function of evolution

time. On one side, we construct a quasipolynomial-time tensor-network-inspired algorithm for

strong simulation of 1D MBL systems (i.e., calculating the expectation value of arbitrary prod-

ucts of local observables) evolved for any time polynomial in the system size. On the other side,

we prove that even weak simulation, i.e. sampling, becomes formally hard after an exponentially

long evolution time, assuming widely believed conjectures in complexity theory. Finally, using

the consequences of our classical simulation results, we also show that the quantum circuit com-

plexity for MBL systems is sublinear in evolution time. This result is a counterpart to a recent

proof that the complexity of random quantum circuits grows linearly in time.1

1Note added: This further answers in the affirmative an open question in the literature on whether MBL Hamil-
tonians may be fast-forwarded.
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6.1 Introduction

As quantum computers become larger-depth, less error-prone, and eventually fully fault-

tolerant, it will become increasingly important to understand which computational problems ad-

mit quantum speedups over the best possible classical algorithms. This question broadly falls

under the domain of computational complexity theory, which studies how easy or hard it is to

solve certain problems under various computational assumptions. More specifically, sampling

complexity, the study of how difficult it is to draw samples from classes of probability distribu-

tions, is a useful framework for studying the classical hardness of simulating quantum systems,

and can help to narrow the parameter space where quantum advantage may be obtained. At their

core, many quantum experiments reduce to repeatedly preparing a certain quantum state, measur-

ing it (thus generating a probability distribution of outcomes), and classically post-processing on

the measurement results. This high-level viewpoint motivates the systematic study of quantum

systems via the lens of sampling complexity. Indeed, the past ten years have seen significant

interest in sampling after the proof (up to widely believed mathematical conjectures) that one

could obtain a quantum advantage in the famous Boson Sampling problem [27], leading to the

recent demonstration of quantum sampling experiments believed to be beyond the accessibility

of classical simulations [29–31].

With the same motivation in mind, Ref. [119] considered a system of indistinguishable

non-interacting bosons distributed on a lattice and evolved under a local Hamiltonian (also see

Refs. [120, 121] for variants of this problem). Intuitively, one expects that classical simulation

is initially easy while the particles are separated, but grows more difficult as the system evolves.

Reference [119] formalized this idea by showing that sampling remains easy until the particles
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have evolved for long enough to travel the distance initially separating them, whereafter their

fundamental indistinguishability leads to quantum interference that is hard to classically simulate.

A key corollary of this result is that classical sampling is easy in single-particle-localized systems,

where the particle wavepackets do not spread out [122–125]. Thus, while single-particle localized

systems are fascinating from a condensed matter perspective, we do not necessarily expect them

to encode hard computational problems, and we will likely have to look to other types of systems

to find useful quantum speedups.

This Chapter is concerned with the more subtle situation of many-body localization (MBL) [36,

126, 127] in spin systems, which we take to mean any spin Hamiltonian having a complete set

of local integrals of motion (precisely defined below) [128–132]. These systems differ from the

single-particle-localized situation described above in a crucial way: the quasilocal commuting

operators that fully describe the dynamics of these systems interact with one another through non-

trivial exponentially decaying interactions. These interactions can spread entanglement through

the system and destroy separability of an initial state over exponentially long time-scales.

Suppose we time-evolve an initial product state under an MBL Hamiltonian acting on N

spins and then measure the result in a product basis, generating a probability distribution. We

will explore the algorithmic time complexity of both strong simulation and weak simulation of

this physical system. Weak simulation is the ability to sample from the distribution of outcomes,

whereas strong simulation is the ability to calculate all marginal and conditional probabilities of

the outcomes. The ability to strongly simulate a system implies the ability to sample from it [133],

but not vice versa—one can, in principle, sample from a distribution without ever knowing the

values of the probabilities.

Observe that in describing the problem of interest, we have introduced two types of time:
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Evolution Time t Complexity Task
O(logN) Easy [134] Strong Simulation
O(polyN) Quasi-easy Strong Simulation

O(quasipolyN) Quasi-easy Strong Simulation
Ω(expN) Hard Weak Simulation

Table 6.1: Summary of our results for classical simulation. We define “quasi-easy” to be those
problems admitting a quasipolynomial-time algorithm but which may yet possess a polynomial-
time algorithm.

evolution and computational. For clarity in the remainder of this Chapter, we will use a lower-

case t to refer to the physical evolution time, or the time for which the MBL Hamiltonian acts on

the initial state. We denote the time complexity of a classical algorithm for a given simulation

task with an upper-case T .

We now present our main results. Using techniques inspired by tensor networks, we present

an algorithm that can strongly simulate (and thus sample from) any one-dimensional MBL system

in quasipolynomial computer time (i.e., times of the form T = exp[O(logcN)] 2 for some c >

1), for any evolution time t polynomial in the system size N . It is interesting that even this

algorithm does not run in strictly polynomial time, and we are not aware of any algorithm which

(provably) can. Conversely, by using ideas inspired by the hardness of the Instantaneous Quantum

Polynomial (IQP) sampling problem in Ref. [37], we also show that the MBL sampling problem

becomes hard in the worst case after evolution time t = Ω(exp[N δ]) for arbitrarily small δ > 0 (by

“worst case,” we mean that we demonstrate that a specific family of MBL Hamiltonians becomes

hard to simulate, but this family does not contain all possible MBL Hamiltonians). These results

are summarized in Table 6.1.

Interestingly, as a consequence of our proof techniques, we can also derive results on the
2We say that f = O(g) if f/g ↛ ∞ as n → ∞, and f = Ω(g) ⇐⇒ g = O(f). Similarly, f = o(g) means

f/g → 0 as n → ∞, and f = ω(g) ⇐⇒ g = o(f). Finally, if f = O(g) and g = O(f), we say f = Θ(g) (and
g = Θ(f)). The precise asymptotic dependence on n can be arbitrary. Additionally, a tilde over the asymptotic
symbol, such as Õ(g), means that we are ignoring logarithmic factors in g.
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quantum circuit complexity of implementing time evolution due to an MBL Hamiltonian. The

quantum circuit complexity of a unitary U is the minimum number of gates (from a predefined

universal gate set) required to approximate U . In many-body physics, it is of great significance

to understand how the quantum circuit complexity of a time-evolution operator e−iHt grows with

respect to the time t for various Hamiltonians H . In the context of high-energy physics, gravi-

tational physics, and the AdS/CFT correspondence, it was conjectured [135, 136] that the circuit

complexity of a conformal field theory is dual to the action of a gravitational theory describing

the bulk. More specifically, it has been conjectured that the circuit complexity of fast-scrambling

dynamics grows linearly in time until a timescale exponential in system size. This conjecture

has gathered support due to recent work [38, 137].3 In stark contrast with these fast scramblers,

we show in this Chapter that the circuit complexity for sufficiently localized MBL Hamiltoni-

ans grows only sublinearly with evolution time.4 Therefore, our work suggests that, in addition

to classical complexity, studying the quantum complexity of simulating time evolution can also

serve as a basis for classifying the ergodicity of quantum dynamics.

Others have investigated the simulation of MBL systems. For a few examples, see Refs. [143–

147], which introduce efficient methods for classically simulating both spin and weakly-interacting

fermionc MBL systems. However, while these works demonstrate empirically good numerical

alternatives to computationally demanding exact diagonalization schemes, they stop short of for-

mal proofs that these algorithms can maintain accuracy for all MBL systems as the system size

grows (though Ref. [145] does contain some formal proofs in the case of exactly local integrals of

motion, as opposed to the more general quasilocal integrals of motion we consider here). Overall,

3Note added: A more complete (but not exhaustive) list of works studying this topic include Refs. [38,137–141].
4Note added: We note that this answers in the affirmative an open question raised by Ref. [142] about whether

MBL Hamiltonians may be “fast-forwarded,” that is, whether it is possible to quantumly simulate the evolution for
time t of an MBL Hamiltonian in such a way that the simulation time is parametrically smaller than t.

124



our work is the first to systematically investigate the simulation of generic MBL systems from a

rigorous complexity-theoretic perspective.

The rest of this Chapter is organized as follows. In Section 6.2, we formally define the

simulation problem. We then prove in Section 6.3 crucial mathematical results that we use in

Section 6.4 to demonstrate the quasipolynomial runtime of our tensor-network algorithm for

strong simulation. Correspondingly, in Section 6.5 we demonstrate that generic MBL Hamiltoni-

ans are hard to sample from after exponentially long evolution time t. In Section 6.6 we also show

that that the quantum circuit complexity of the time-evolution operator of a sufficiently localized

MBL Hamiltonians is sublinear in time. Finally, in Section 6.7 we synthesize these results and

consider directions for future work.

6.2 Setup

Consider a 1D lattice of N spin-1/2 particles (with spin operators σαi , α = x, y, z) that

evolve under some Hamiltonian H . We say that H is MBL if there exists a quasilocal unitary U

(defined below) that brings H to the form

H =∑
i

Jiτ
z
i +∑

i<j
Jijτ

z
i τ

z
j + ∑

i<j<k
Jijkτ

z
i τ

z
j τ

z
k + . . . , (6.1)

with [τ zi , τ
z
j ] = 0 and ∣Ji1...ip ∣ ≤ exp (−(ip − i1)/ξ). We call the σzi the physical bits (p-bits)

because they represent the experimentally accessible basis of observables, and we call the τ zi

the local integrals of motion (LIOMs) or localized bits (l-bits) because they commute with the

Hamiltonian and thus represent a set of N conserved quantities that constrain the dynamics.

We define a quasilocal unitary, which we schematically depict in Fig. 6.1, as follows:
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Definition 6.1 (Quasilocal unitary [36]). A unitary U is quasilocal if it can be decomposed on a

finite 1D lattice with N sites as

U =
N

∏
n=1

n

∏
j=1

⌊(N−n)/n⌋
∏
i=0

U
(n)
in+j, (6.2)

where U (n)k acts on sites k, k + 1, . . . , k + n − 1 such that

∥1 −U
(n)
k ∥

2
< qe−

(n−1)
ξ , (6.3)

where ∥⋅∥ is the operator norm (i.e., the largest singular value of the operand) and q is someO(1)

constant.5 When k + n − 1 > N , U (n)k should be interpreted as a tensor product of two unitaries,

one acting on sites k through N , and the other on 1 to k + n − 1 −N .

This means that we can decompose U into a sequence of n layers of n-site unitaries, where

the more sites a constituent unitary acts on, the closer it is to the identity. We call U “quasilocal”

because, though any two distant sites may be entangled, the amount of entanglement generated

decays rapidly with distance.

Having defined the properties of our Hamiltonian H , consider now an experiment whereby

the system is initially prepared in the physical state ∣0 . . .0⟩ (i.e., ∀i σzi ∣0 . . .0⟩ = ∣0 . . .0⟩), then

time-evolved into e−iHt ∣0 . . .0⟩, and finally measured in the physical basis. The probability of

observing an outcome ∣σ⟩ after a time t is D(σ) ∶= ∣⟨σ∣e−iHt∣0 . . .0⟩∣2. As previously discussed,

we want to assess the difficulty of both drawing a sample from (weak simulation) and calculat-

ing marginals of (strong simulation) the distribution D ∶= {D(σ)}σ. However, even a quantum

5To be precise, our definition is for a family of quasilocal unitaries U with respect to the size N of the system,
otherwise all unitaries U would be quasilocal given a sufficiently large, but still constant, q.
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Figure 6.1: Schematic depiction of a quasilocal unitary U on N = 5 sites converting between the
physical and localized bases, Uσz3U † = τ z3 . As described in Definition 6.1, U decomposes into
constituents, and the opacity of each constituent block represents its proximity to the identity
with respect to the norm ∥⋅∥; the lighter the block, the closer it is to the identity.

computer directly performing such an experiment will be subject to at least small errors, and will

thus be unable to draw a sample from this distribution perfectly. Therefore, we will only assess

the difficulty of approximate sampling from a distribution Dϵ that is ϵ-close toD in total variation

distance (TVD):

∥Dϵ −D∥TVD =
1

2
∑
σ

∣Dϵ(σ) −D(σ)∣ < ϵ. (6.4)

We state our sampling problem formally.

Problem 6.1. Let H be an MBL Hamiltonian (according to the above definition) on an N -site

chain andU its corresponding quasilocal unitary. Consider the distributionD = {∣⟨σ∣e−iHt∣0 . . .0⟩∣2}σ.

Given a description of H in terms of physical operators, an efficient algorithm to compute any

element of any constituent U (n)k of U , and an efficient algorithm to compute any coupling Ji1...ip ,

output a sample from a distribution Dϵ that is ϵ-close to D in total variation distance for any

ϵ > 0.

A few comments on Problem 6.1 are worthwhile. We need these efficient algorithms to
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calculate any desired constituent U (n)k and any desired coupling Ji1...ip because knowledge of

these quantities will be crucial for our algorithm, and it is too computationally expensive to

calculate and naively list out all exponentially many of them. Formally, we assume that we have

an oracle for these properties of the system.

Ideally we would be able to extract Ji1...ip and U efficiently from the description ofH in the

physical basis. However, MBL is typically considered in the context of disordered spin chains

where it may not always be possible to efficiently compute these quantities (though there is some

evidence that this may be possible—see Refs. [145–149]). Therefore, we do not restrict ourselves

to this particular mechanism for producing LIOMs, and our results will apply to any Hamiltonian

that can be diagonalized by quasilocal unitary U into the form Eq. (6.1). Finally, neither the

specific initial state nor the measurement basis are critical to our formulation of Problem 6.1 as

long as they are a product state and a product basis. This is because we allow U to contain a layer

of O(1) 1-site terms so that we do not pick out any particular basis as special. Our main results

concern the classical time complexity T of solving Problem 6.1 as a function of evolution time t

and system size N .

6.3 Truncating the Canonical Hamiltonian

We proceed to characterize the classical complexity of solving Problem 6.1 in two ways

depending on the evolution time t. If t = O(logN) and H is finite-range in the physical basis,

Ref. [134] proves there exists an efficient matrix-product operator representation of the propaga-

tor e−iHt. This representation may be used to approximately sample from the outcome distribution

of evolution under H . See Appendix E for more details.
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For longer times t = ω(logN), we construct a Hamiltonian H̃ for which the time-evolved

probability distribution is D̃ ∶= {∣⟨σ∣e−iH̃t∣0 . . .0⟩∣2}, such that (a) ∥D − D̃∥TVD ≤ ϵ and (b) the

distribution associated with evolution under H̃ can be sampled from in computer time scaling

quasipolynomially with the number of spinsN . The total variation distance between the probabil-

ity distributions associated with two pure states ∣ψ⟩ and ∣ϕ⟩ can be upper bounded by the 2-norm

distance [150], which in turn can be bounded [121] as ∥∣ψ(t)⟩ − ∣ϕ(t)⟩∥2 ≤ ∣∣H − H̃ ∣∣t ∶= ∥∆H∥t,

where ∥⋅∥ is the standard operator norm. Therefore, if we want the two distributions to be ϵ-close

in total variation distance up to a time t, it is sufficient to ensure ∥∆H∥ ≤ ϵ/t.

We construct this approximate Hamiltonian H̃ by truncating the exact Hamiltonian in two

ways: via the coupling constants and the LIOMs. In particular, we set the coupling constants

equal to zero if they connect sites beyond a certain radius rJ , and we set equal to the identity

those constituents of U supported on more than rU sites. Mathematically:

J̃i1...ip =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ji1...ip if ip − i1 < rJ

0 if ip − i1 ≥ rJ

, (6.5)

Ũ =
rU

∏
n=1

n

∏
j=1

⌊(N−n)/n⌋
∏
i=0

U
(n)
in+j, (6.6)

τ̃i
z = Ũσzi Ũ

†. (6.7)

We can now bound the norm of

∆H ∶=H − H̃ =∑
I

JIτ
z
I − J̃I τ̃

z
I (6.8)
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by applying the triangle inequality:

∥∆H∥ ≤∑
I

(∣JI − J̃I ∣ + ∣J̃I ∣∥τ
z
I − τ̃

z
I ∥), (6.9)

where we have introduced I as a general multi-index for brevity. Before continuing, it is useful

to define Sp,n0 ∶= ∑
∞
n=n0
(
n
p
)e−

n
ξ . Intuitively, this sum appears because we will often be interested

in summing over couplings of a range exceeding some n0, and each coupling comes with an

associated exponential decay. Assuming that the localization length ξ < 1/ log 2, we have:

Sp,n0 ≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−
n0
ξ p = 0

pe−ap n0 < n∗, p > 0

np+1
0

√
p

p! e−
n0
ξ n0 ≥ n∗, p > 0

, (6.10)

where a ∶= log(e1/ξ − 1), n∗ ∶= p(1 − e−1/ξ)−1, and C is some O(1) constant. See Lemma E.2 in

Appendix E for a detailed proof.

We now separately bound the two contributions to Eq. (6.9). The details, which are in

Appendix E, make heavy use of Eq. (6.10), and the result is

∥∆H∥ ≤ CJNrJe
−krJ +CUN

2e−
rU
2ξ , (6.11)

where CU , CJ , and k are constants independent of N . Intuitively, the factors of N come from

summing over sites, and the exponential decay factors come from the decay properties of H and
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U . To ensure that ∥∆H∥ ≤ ϵ/t for some polynomially long time t = O(N b), it suffices to choose

rU = Ω(ξb logN), rJ = Ω(bk
−1 logN). (6.12)

Therefore, truncating the coupling coefficients and the diagonalizing quasilocal unitary to a scale

logarithmic in the system size is sufficient to produce a distribution that is close in total variation

distance to the true distribution.

6.4 Quasipolynomial-Time Sampling

Having defined an appropriate approximation H̃ we now describe how to sample from the

distribution generated by H̃ . More precisely, we provide an algorithm for strong simulation,

meaning it can calculate all probabilities and marginal probabilities of the distribution generated

by measuring the simulated system in any local basis. Equivalently, it can estimate the expecta-

tion value of arbitrary products of local observables. Strong simulation implies the ability to solve

the easier problem of weak simulation, i.e. sampling, which itself implies the ability to calculate

the expectation values of local observables [133]. Specifically, our algorithm will calculate

⟨Õ⟩t = ⟨ψ(0)∣ e
iH̃tOe−iH̃t ∣ψ(0)⟩ , (6.13)

where O is a product of single-site observables in the p-bit basis of the form O = σzi ∏j<iPj , with

Pj a projector of qubit j onto the 0 or 1 outcome when measuring in the appropriate local basis,

and the tilde indicates that we evolve with the approximate Hamiltonian H̃ . Intuitively, O is

selected such that Eq. (6.13) calculates the conditional probability P (zi∣zi−1 . . . z1), and drawing
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a sample given these conditional probabilities is equivalent to flipping N biased coins, where

the bias of each coin is conditioned on the previous outcomes. For t = O(logN), we use the

algorithm implied by results in Ref. [134] and elucidated in Appendix E.

In short, when H is short-range in the p-bit basis, the propagator for the true Hamiltonian

e−iHt can be efficiently approximated by a matrix product operatorM . Because a product of local

observables also admits a matrix product operator form, ⟨ψ(0)∣M †OM ∣ψ(0)⟩∣may be calculated

in computational time T = O(polyN).

For the more complicated problem of t = ω(logN), we provide a different algorithm where

each unitary in the circuit is interpreted as a tensor, making the quantum circuit for time evolution

a tensor network. Specifically, we now insert copies of the identity to rewrite Eq. (6.13) as

⟨Õ⟩t = ⟨ψ(0)∣ Ũ
†eiH̃σtŨOŨ †e−iH̃σtŨ ∣ψ(0)⟩ , (6.14)

where H̃σ ∶= ŨH̃Ũ † (in words, H̃σ takes the form of Eq. (6.1) but with σj in place of τ̃j and J̃I in

place of JI). We calculate these expectation values using a quantum circuit of the form in Fig. 6.2.

We order the qubits going from bottom to top and evolution time from left to right. Following

the structure of Eq. (6.14), the first section of the circuit applies Ũ to convert to the truncated

LIOM basis. The second section evolves under the truncated Hamiltonian. After converting

back to the original basis by using Ũ †, the operator O is applied. Then the previous steps are

repeated in reverse. Because the terms of H̃σ pairwise commute, we are allowed to choose the

order in which each term appears. Our choice is the following. Place all evolution under terms

supported on site 1 first, refer to these terms as H̃1, and define Ṽ1 ∶= e−iH̃1t. Then, place all

evolution under terms supported on site 2, but not site 1, and refer to this as H̃2. Similarly,
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Figure 6.2: Example of the quantum circuit that calculates a relevant product of local observables
O on a lattice of N = 8 sites. Here O = σz4P3P2P1.

define Ṽ2 ∶= e−iH̃2t. Continue in this way until all Hamiltonian evolution is accounted for. See

Fig. 6.2 for a depiction of the circuit for O = σz4P3P2P1 and N = 8. Note that generating Ṽi is

an efficient process; there are at most (rJk ) k-site terms that involve site i (but no site before i)

and have physical range at most rJ . Thus, there are at most 2rJ ∼ polyN Hamiltonian evolution

unitaries that must be multiplied together to generate each of the N unitaries Ṽi. We treat each

unitary in the evolution as a tensor, and we contract these tensors “qubit-wise” as opposed to

“time-wise.” That is, instead of contracting tensors in the order that they appear in Eq. (6.14),

we first contract together every tensor that intersects qubit 1. We then contract this much larger

tensor with every other tensor that intersects qubit 2, and so forth. Contracting the tensors “time-

wise” would quickly lead us to an extensively sized tensor spanning some Θ(N) portion of the

system, and evaluating a contraction involving this extensive tensor would take an exponentially

long amount of time; contracting the tensors “qubit-wise” avoids this issue. Ensuring that our

algorithm only ever produces tensors with O(logN) legs would be sufficient to demonstrate a

polynomial time algorithm. This is because Ũ and Ũ † each contain O(N logN) constituents,

e−iH̃t contains only O(N) terms (as we have decomposed it into {Ṽi}), and there are at most N
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tensors coming fromO. Thus, the total number of tensors, and, correspondingly, the total number

of legs that could be contracted, is only Õ(polyN) (where the tilde indicates that we are ignoring

logarithmic factors of N ).6 Therefore, the maximum amount of time this algorithm could take

would be Õ(polyN) ⋅ 2O(logN) = Õ(polyN).7

Unfortunately we can only guarantee that our algorithm produces tensors withO(polylogN)-

many legs. Intuitively, we cannot guarantee against an adversarial placement of constituents in

Ũ , Ũ † whereby there is a jagged “skyline” of tensors leading to polylogN leftover legs after

a qubit is contracted. Repeating the above analysis means the algorithm can take as long as

O(polyN) ⋅ 2O(polylogN). This is not a polynomial-time algorithm; it is quasipolynomial, which

means it is faster than any exponential-time algorithm, but slower than any polynomial-time al-

gorithm. Lemma 6.1 formalizes this rough argument.

Lemma 6.1 Given the truncation of an MBL Hamiltonian and the quasilocal unitary that diag-

onalizes it, as in Eqs. (6.5) and (6.6), following the qubit-wise contraction scheme never creates

a tensor with more than O([logN]3) leftover legs.

Proof. We will crudely upper-bound the total number of legs at any stage of the algorithm. It is

simple to see that the largest possible tensor occurs at the end of contracting all tensors intersect-

ing a qubit k. At this point consider a bound on the worst-case scenario where each of the n-site

constituents in Ũ extends n− 1 sites above qubit k, and Ṽk extends rJ − 1 sites above qubit k. By

naively ignoring that the internal legs should be contracted, it is straightforward to verify that this

tensor possesses fewer than 4[2(2−1)+3(3−1)+⋯+rU(rU −1))+2(rJ −1)+2] = O([logN]3)

6Note added: The inclusion of the tilde here does not meaningfully change the conclusions, so we can just as
easily bound this as O(polyN).

7Note added: Again, the tildes do not meaningfully change the conclusion, so we could simply say the algorithm
time would be O(polyN) ⋅ 2O(logN) = O(polyN)
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legs. Because this is the worst-case scenario, the bound is thus proven.

Lemma 6.1 bounds the size of any one tensor contracted in the algorithm, thus placing

a quasipolynomial-time bound on any individual contraction. The total number of contraction

operations is itself bounded by a polynomial inN . Finally, we proved earlier that the distributions

generated by H and H̃ are ϵ-close for polynomial evolution time. Thus, the following theorem

holds:

Theorem 6.1. For evolution time t = O(polyN), the contraction algorithm takes time quasipoly-

nomial in N , which means Problem 6.1 can be solved in quasipolynomial time.

Additionally, observe that Theorem 6.1 can be extended to quasipolynomial evolution time

with little effort. Tracking the rest of the proof, we see that truncating the quasilocal unitary

and the MBL couplings to length scales polylogarithmic in N will make ∥∆H∥ small enough to

counteract the larger evolution time t. A polylogarithmic truncation distance, however, does not

change the quasipolynomial conclusion of Lemma 6.1. Finally, we note Theorem 6.1 holds in

the worst case, meaning for any possible choice of coupling strengths and quasilocal unitary that

obey our definition of MBL.

6.5 Hardness After Exponential Time

In contrast to the quasi-easiness result for strong simulation in Section 6.4, it is also possible

to show, via a comparison to Instantaneous Quantum Polynomial (IQP) circuits [151], that weak

simulation of, or sampling from, MBL systems becomes formally hard on a classical computer

after a time exponential in the system size.
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Theorem 6.2. Problem 6.1 is classically hard when the evolution time t ≥ Ω(eNδ/ξ) for any δ > 0.

Proof. For simplicity, we start with δ = 1/2 and give a family of hard instances of the problem,

described by the couplings Ji1...ip in the τ basis and the quasilocal unitaries U that satisfy our

definition of MBL. We rely on the hardness construction of Ref. [37], which shows that evolution

under a nearest-neighbor, commuting 2D Hamiltonian for constant time can be hard to classically

simulate. We implement the nearest-neighbor 2D dynamics using selective long-range interac-

tions in 1D to generate an effective square grid of size
√
N ×
√
N , as depicted in Fig. 6.3. The

1D Hamiltonian H1 is an MBL Hamiltonian of the form in Eq. (6.1) with coupling coefficients

given by

Ji1 = hi1 = O(1), (6.15)

Ji1i2 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−e−
√

N
ξ i2 − i1 = 1, i1 ≠ 0 mod

√
N

−e−
√

N
ξ i2 − i1 =

√
N

, (6.16)

Ji1...ip = 0 if p ≥ 3, (6.17)

(where we have assumed, for simplicity,
√
N is an integer) and l-bits given by

τ zi = σ
x
i , (6.18)

τxi = σ
z
i . (6.19)

The Hamiltonian H1 clearly satisfies our definition of a canonical MBL Hamiltonian; the cou-

pling coefficients decay sufficiently quickly, and it is easy to verify that the Hadamard gate
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U
(1)
i = 1√

2

⎛
⎜
⎜
⎜
⎝

1 1

1 −1

⎞
⎟
⎟
⎟
⎠

= H is unitary, satisfies Eq. (6.3) with q = 4, and effects Eqs. (6.18) and (6.19).

It can be seen that (up to a local basis change σzi ↔ σxi ) time-evolving ∣0⟩N under H1 for time

t = πe
√

N
ξ /4 is equivalent to time-evolving ∣+⟩N (with ∣+⟩ the +1 eigenstate of σx) under the 2D

HamiltonianH = −∑⟨i,j⟩
π
4σ

z
i σ

z
j +∑i

π
4 e

√

N
ξ hiσzi for time 1, where ⟨i, j⟩ denotes neighboring sites.

If the local fields hi are chosen randomly such that e
√

N
ξ hi ∈ {1,3/2}mod 4 with equal proba-

bility, evolution under H1 on the initial state ∣0⟩N implements Architecture I of Ref. [37]. This

Architecture is a Measurement-Based Quantum Computing (MBQC) scheme that is based on the

hardness of IQP sampling.8 Essentially, a disordered product state is prepared on a 2D grid after

which controlled σz gates are applied across each edge and a measurement in the σx is performed.

Sampling from the output distribution of this scheme is hard assuming two plausible complexity-

theoretic conjectures (namely: the Polynomial Hierarchy is infinite and approximating partition

functions of Ising models is average-case hard—the original paper contained a third conjecture

related to anticoncentration of certain classes of random circuits, but this conjecture was proven

in a later work [152]). Therefore, for times t = Ω(e
√
N/ξ), Problem 6.1 is hard, assuming certain

plausible conjectures in computational complexity [27, 37, 153, 154].

Recent work in Ref. [121] allows us to extend δ = 1/2 to any 0 < δ < 1. Because Architec-

ture I of Ref. [37] may be implemented on any rectangular grid with non-constant dimensions, we

may sculpt an effective 2D grid of size N δ×N1−δ, where the long-range coefficients in Eq. (6.15)

now couple sites at a distance of only N δ. The rest of our arguments go forward unchanged,

except the time it takes to implement the architecture is now exponential in N δ/ξ.

8We could choose hi such that this relationship holds exactly, i.e. without working modulo 4, but that would
require on-site terms that are exponentially small in the system size.

137



Theorem 6.2 thus proves that there is a family of MBL Hamiltonians that are hard to clas-

sically simulate after an exponentially long evolution time. Note that while it is hard to simu-

late this particular family of Hamiltonians in the average case, per the results in Ref. [37], we

observe that this family of Hamiltonians is itself somewhat fine-tuned. We therefore say that

classically simulating MBL Hamiltonians for exponentially long evolution time is hard in the

worst case. However, Theorem 6.1 provided a quasipolynomial time algorithm to simulate MBL

Hamiltonians for polynomially long evolution time, even in the worst case (as the results were

indepdendent of the couplings and quasilocal unitary definining the Hamiltonian). Together,

Theorems 6.1 and 6.2 point toward a possible transition in the classical worst-case hardness of

Problem 6.1 between polynomial and exponential evolution times (and prove such a transition

between logarithmic and exponential times for Hamiltonians that are short-range in the p-bit ba-

sis). Furthermore, Theorem 6.2 stands in stark contrast to the easiness result from Ref. [119]

that single-particle localized systems of bosons admit an efficient sampling algorithm for all evo-

lution times. However, it matches the intuition behind the hardness result in Ref. [119], where

sampling free boson systems becomes difficult when the system is no longer approximately sep-

arable. Similarly, Problem 6.1 becomes provably hard when the system has evolved sufficiently

for entanglement to spread across a distance scaling polynomially with N , where this long-range

entanglement means the state of the system is no longer approximately separable [155].

6.6 Quantum Complexity of Simulating MBL Systems

In this section, we focus on the quantum circuit complexity of approximately implementing

the time-evolution operation e−iHt for an MBL Hamiltonian H .
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Figure 6.3: Example illustrating the 1D-to-2D mapping of a Hamiltonian H with coefficients
given in Eq. (6.15) acting on N = 25 qubits. The solid blue (dotted pink) lines depict the interac-
tions with ∣i1 − i2∣ = 1 (∣i1 − i2∣ =

√
N ) in the true 1D lattice. While the interactions differ in their

locality, they have the same magnitude for simplicity in implementing the proposed architecture.
The single-site terms are not depicted.

Definition 6.2 (Approximate circuit complexity). The ϵ-approximate circuit complexity Cϵ of a

unitary U is the minimum circuit size k of a circuit G = Gk . . .G2G1 composed of the standard

gate set containing CNOT, Hadamard, and π/8-phase gates ({CNOT,H,T}) that approximates

U up to error ϵ. More formally, let

Sϵ(U) = {G = Gk . . .G2G1 such that (6.20)

∥G −U∥ ≤ ϵ and Gi ∈ {CNOT,H,T}}

be the set of all gate decompositions of U over the standard gate set achieving error ≤ ϵ. For a

gate decomposition G, let ∣G∣ ∶= k denote its size. Then

Cϵ(U) ∶= min
G∈Sϵ(U)

∣G∣. (6.21)
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We show that for evolution under MBL Hamiltonians, the complexity growth with respect

to evolution time is slower than linear, which we denote through the symbol o(t)9 in the theorem

below (while the gate complexity ultimately depends on the chosen gateset, the Solovay-Kitaev

theorem ensures that this dependence is weak enough to not change this sublinear scaling).

Theorem 6.3 (Sublinear growth of MBL circuit complexity). For a HamiltonianH satisfying the

criterion of MBL as defined in Eq. (6.1) and Definition 6.1 with ξ < 1/(4 log 2), the approximate

circuit complexity Cϵ for constant ϵ obeys the bound10

Cϵ(e
−iHt) ≤ poly(N)polylog(N2t) × o(t). (6.22)

Proof. We leverage results from Section 6.3. Our strategy to approximate the time-evolution

unitary e−iHt is to apply instead the truncated evolution e−iH̃t. We have already argued that

∥e−iHt − e−iH̃t∥ ≤ ∥∆H∥t, so, therefore, it suffices to choose H̃ so that ∥∆H∥ ≤ ϵ/t. In order to

ensure that the unitary e−iHt can be applied with small circuit complexity, we make use of the

fact that the (truncated) quasilocal unitary (approximately) diagonalizes the Hamiltonian:

e−iH̃t = Ũ †e−iH̃σtŨ . (6.23)

The cost of implementing the evolution under the MBL Hamiltonian comes from two parts: the

first part stems from the cost of diagonalizing the Hamiltonian by implementing the quasilocal

unitary Ũ , and the second part comes from the complexity of applying time evolution under the

truncated Hamiltonian in the physical basis, namely implementing e−iH̃σt. This is the cost of
9Note added: See earlier footnote for a reminder of the definition of o(t).

10Note added: We note that we can simply the middle term to polylog(N) because we can move the time depen-
dence into o(t) and the square on N to a constant out front.
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implementing the last three sections (after the column of single-site observables) of the circuit

depicted in Fig. 6.2.

The cost of applying Ũ can be upper bounded from the fact that it consists of gates that

act on no more than rU = Θ(ξb logN) many qubits at a time. In the decomposition of Ũ as

a quasilocal unitary, there are N single-qubit unitaries, 2⌈N/2⌉ = O(N) two-qubit unitaries,

and so on until the last layer of O(N) unitaries acting on rU qubits at a time. Every unitary

acting on k qubits can be decomposed exactly into an O(k222k)-long sequence of single-qubit

and CNOT unitaries [156]. Using approximate synthesis algorithms over the Clifford+T gate

set [157], each of the single-qubit unitaries can be further decomposed into single-qubit gates

from the standard gate set at only polylogarithmic overhead in the achieved error. More precisely,

the circuit complexity is upper bounded by

N log(δ−1) + 4N log(δ−1) ⋅ 22⋅2 + 9N log(δ−1) ⋅ 22⋅3 + . . .

+Nr2U log(δ
−1) ⋅ 22⋅rU , (6.24)

where δ is the error made in approximating each local unitary. The terms in Eq. (6.24) correspond

sequentially to the complexity of simulating the single-site, two-site, . . . , rU -site terms. The first

term does not contain the factor 22k because it corresponds to single-qubit unitaries. The total
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error made in approximating Ũ then sums to

δ × (N + 4N ⋅ 22⋅2 + 9N ⋅ 22⋅3 + . . . r2UN ⋅ 2
2⋅rU ) (6.25)

≤ δN × (12 ⋅ 41 + 22 ⋅ 42 + 32 ⋅ 43 + . . . rU
2 ⋅ 4rU ) (6.26)

= Nδ ×
4

27
((9r2U − 6rU + 5)4

rU − 5) (6.27)

≤ 2Nδr2U4
rU , (6.28)

which we set to be ϵ/6 by choosing δ = ϵ/(12Nr2U4rU ). Hence

Cϵ/6(Ũ) ≤ N log(δ−1) × (4 + 4 ⋅ 42 + 9 ⋅ 43 + . . . r2U ⋅ 4
rU ) (6.29)

= O(N log(δ−1)r2U4
rU ) (6.30)

= O (N4rU r2U (rU log(4) + log(
12Nr2U
ϵ
))) . (6.31)

The cost of implementing e−iH̃σt can also similarly be upper bounded. Here, for simplicity,

we use the decomposition of e−iH̃σt from Section 6.4, where we combined unitaries acting on site

i (but not before i) into Ṽi. This decomposition has N unitaries of size at most rJ , meaning the

gate complexity for e−iH̃σt is upper bounded by O(N log(δ−1)r2J4
rJ ), and the total error made in

approximating these gates is thus O(Nδr2J4rJ ). We again set this error equal to ϵ/6 with a choice

now of δ = ϵ/(12Nr2J4rJ ), similarly yielding a gate complexity of

Cϵ/6(e
−iH̃σt) = O (N4rJr2J (rJ log(4) + log(

12Nr2J
ϵ
))) . (6.32)

Combining everything, the total error for implementing the decomposition in Eq. (6.23) is
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ϵ/6×3 = ϵ/2. The total error in implementing e−iHt is thus upper bounded by the sum of the error

in approximating e−iHt by e−iH̃t plus the error in decomposing e−iH̃t into a sequence of single and

two-qubit gates:

ϵ/2 + ∥∆H∥t ≤ ϵ/2 + tCJNrJe
−krJ + tCUN

2e−
rU
2ξ , (6.33)

where we used Eq. (6.11) to bound the second term. We make the choices rJ = (1.01) log(Nt)/k

and rU = 2.02ξ log(N2t) so that the total error is at most

ϵ/2 +CJ(Nt)
−0.01 log(Nt)/k +CU(N

2t)−0.01

< ϵ. (6.34)

With these choices, the total gate cost of simulating the entire circuit becomes 2Cϵ/6(Ũ) +

Cϵ/6(e−iH̃σt):

Cϵ(e
−iHt) ≤ O (N(N2t)2.02ξ log 4polylog(N2t)

+N(Nt)1.01 log 4/k polylog(Nt)) . (6.35)

As long as ξ < 1/(2.02 log 4) = 1/(4.04 log 2), the exponent of t in the first term is smaller than 1.

The same choice also ensures that the exponent of t in the second term is smaller than 1 because

1.01 log 4/k = 1.01 log 4/(1/ξ − log 2) < 2.02/3.04 < 1.

Thus, for sufficiently localized MBL Hamiltonians, the quantum circuit complexity is sub-

linear in time. Such sublinear scaling contrasts MBL systems with chaotic Hamiltonians, which
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are conjectured to have quantum circuit complexity growing linearly with time, as supported by

recent work in [38, 137].11 This provides a complexity-theoretic understanding of why MBL

systems are unlikely to generate such chaotic dynamics. This conclusion is intuitively consistent

with the slow logarithmic spread of entanglement that is characteristic of MBL systems.12

6.7 Conclusion and Outlook

In this Chapter, we have developed the best known formal results on the complexity of

simulating MBL systems. We have applied results in the literature to show that MBL systems

evolved for time logarithmic in the system size admit an efficient classical strong simulaion,

and, hence, sampling, algorithm. Further, we have demonstrated a quasipolynomial-time al-

gorithm that can strongly simulate sufficiently localized MBL systems that have evolved for

any (quasi)polynomially long time. While we have not quite provided a polynomial-time algo-

rithm, the quasipolynomial-time algorithm is suggestive that possible improvements may lead to

a formal proof of easiness. In particular, either the algorithm may be improved, potentially by

leveraging the work on spectral tensor networks in Refs. [145–147] to make formal complex-

ity statements in the case of quasilocal integrals of motion, or it may be possible to develop an

algorithm that samples directly instead of going through the harder task of strong simulation.

We leave these possible improvements (or the proof that they are impossible) as important open

questions for future work. Furthermore, our proof holds only for Hamiltonians with LIOMs that

11Note added: Again, a more complete (but not exhaustive) list of works studying this topic include Refs. [38,
137–141].

12Note added: Furthermore, this result also has implications in the complexity literature on “fast-forwarding.”
Specifically, fast-forwarding means quantumly simulating the evolution of a system for time t in such a way that
the simulation time is parametrically smaller than t. Ref. [142] found that both commuting local Hamiltonians
and Anderson-Localized Hamiltonians may both be fast-forwarded, but left for future work whether this also holds
true for MBL Hamiltonians. Our results immediately provides an answer in the affirmative, thus settling this open
question.
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are highly localized to a distance of about ξ < 1/ log 2, in units of the lattice spacing. We do not

consider this restriction to be too problematic, as previous work, e.g., Ref. [158], has demon-

strated that LIOMs may need to be highly localized for MBL systems to remain stable. It would

be interesting, however, to understand more fully if this restriction is an artifact of our techniques,

or if it is explained by some physical transition in MBL systems. Additionally, all of our results

are based on bounding the worst-case scenario without explicitly accounting for disorder in our

couplings, and studying the effect of disorder is an interesting open question. Finally, it is also

crucial to explore the easiness of simulating MBL systems when one only has access to H in the

p-bit basis.

Apart from our easiness results, we have shown by a comparison to the problem of sampling

from IQP circuits that a family of random MBL systems becomes hard to simulate after a time

exponentially long in the system size. This family, while entirely consistent with our definition

of MBL, is rather fine-tuned and likely has little overlap with the family of MBL Hamiltonians

induced by disorder in the physical basis. Therefore, it would be quite valuable to determine in

future work whether average-case hardness at exponential evolution times also holds for a more

natural family of disorder-induced MBL Hamiltonians.

Additionally, we have also detailed the gate complexity of quantum simulation of MBL

systems, and we have shown that for systems with localization length ξ < 1/(4 log 2), this gate

complexity is sublinear. As for our results on classical simulation, it would be interesting to

determine whether this localization length restriction is an artifact of our proof techniques or is

physical. It would also be enlightening to investigate the connection between these results and

the literature on fast-forwarding Hamiltonian evolution [142].13

13Note added: As per some of the other added notes, it is now more clear that this result resolves this open
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Finally, so far we have specified entirely to MBL systems defined in 1D. Indeed, there is

significant debate over whether disorder-induced MBL can even exist in higher dimensions [36]

(for example, the proof of MBL and LIOM structure in Ref. [132] relies crucially on the 1D

nature of the system). However, the natural generalization of our definition of MBL to higher di-

mensions would allow for MBL Hamiltonians that implement Architecture I of Ref. [37] directly

(i.e., without sculpting an effective 2D grid using exponentially decaying interactions) in constant

time. Thus, sampling from higher-dimensional MBL systems becomes hard very quickly, after

evolution time t = O(1). However, other less natural extensions might exclude fast implemen-

tations of Architecture I, so the hardness of simulating higher-dimensional MBL systems still

deserves further examination.
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Chapter 7: Discussion

In this dissertation, we have studied the power and limits of quantum technology with a

specific emphasis on determining the capabilities of quantum sensors and quantum simulators

as compared to unentangled sensors and classical simulators, respectively. For quantum sensors

measuring a linear function of unknown parameters, we have considered bounds on their ultimate

performance (derived either ourselves or already in the literature) and determined optimal proto-

cols that saturate them. In doing so, we have also determined more precisely what resources are

needed to run these protocols, clarifying the role of quantum entanglement in achieving metro-

logical performance gains. When it comes to Gaussian Boson Sampling, a form of simulation of

some photonic quantum systems, we have made strong progress on showing when anticoncen-

tration, an important part of state-of-the-art hardness arguments, may or may not hold in certain

regimes. We have also worked to outline when Many-Body Localized Hamiltonians may or may

not be classical simulable. Taken together, these results help better define when and how we can

expect quantum devices to outperform classical ones.

Substantial questions, of course, remain to be answered. Indeed, each Chapter ends with

a discussion of the results therein and also poses exciting open questions that remain, which we

now partially review and expand upon.

To begin with a more general comment, the Chapters in this dissertation have focused
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almost entirely on highly idealized scenarios in the asymptotic regimes of sensing and simulation

where there is no noise. While it is important to understand these ideal scenarios (which, in many

cases, are already sufficiently mathematically complicated), they can not perfectly reflect how

real, physical quantum devices operate, which means that these works, taken alone, cannot fully

describe achievable quantum advantage.

We shall now be a bit more precise, starting with our discussion of quantum sensing. In

Chapters 2 and 3, we work in the idealized limit of no noise and where our sensors are coupled

to the parameters of interest by simple commuting operators. Extending beyond this regime to

deal with noise or more complicated (perhaps even non-commuting) generators is an important

aspect of future work. We have taken some steps toward understanding this in other works in

the Gorshkov group—for example, in Ref. [159], we show how erasure errors, which are errors

that are easily detectable and take a quantum state outside of a computational subspace, allow

for more precise sensing than other errors, such as depolarization or dephasing, that keep one in-

side the computational subspace (assuming that the noise levels are equivalent). However, there

still remain questions about how noise affects the protocols and bounds we have developed in

this dissertation. Specifically, it is not clear that our protocols, or even the overarching struc-

ture of our protocols, are still optimal once noise is introduced.1 However, much work has been

done connecting the error-correction schemes that are so crucial to fault-tolerant quantum com-

putation with various quantum sensing schemes in order to combat the effects of noise—see,

e.g., [160–165]. To the best of our knowledge, these works have focused on either the single-

parameter scenario or the fully multi-parameter scenario. Because the task of single function

1In the case of depolarizing noise, which, intuitively, affects all states in an equal way, there is good evidence to
suggest that our protocols still are optimal (up to a loss of precision due to the noise); see Ref. [159] for a discussion
of this. However, other noise models require more attention. We thank members of the Committee for pointing this
out.
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estimation actually sits somewhere in between these two scenarios, understanding how to con-

nect these results for noisy sensing with the algebraic framework, optimal protocols, and resource

estimations that we have derived in the quantum sensing portion of this dissertation is an impor-

tant open question. It also is becoming increasingly timely as these error-correction schemes

become more and more prevalent—consider the recent demonstration in Ref. [166].2

Furthermore, our discussion of the power of quantum sensors in Chapters 2 and 3 is based

on the quantum Cramér-Rao bound, but this bound is only saturable in the limit of an asymptotic

number of samples. While the robust phase estimation protocols of Refs. [71–73] are able to

partially address this issue, using a finite number of samples comes at the expense of a multi-

plicative constant. Recent work in the literature has looked at moving away from this framework

based on the quantum Cramér-Rao bound by using more sophisticated statistics and schemes. In

particular, the estimation process in Refs. [71–73] that we use for the measurement and classical

post-processing stages of our protocols is non-adaptive, meaning it does not change based on the

samples that are received. There is evidence that a more Bayesian approach, where future mea-

surements are conditioned in some way on the results of previous ones, might help improve these

schemes at the cost of a more complex protocol, especially in the regime of a non-asymptotic

number of samples. For example, a Bayesian approach can be used in both the single param-

eter [167] and fully multiparameter [92] scenarios in regimes where other bounds, such as the

quantum Cramér-Rao and Holevo Cramér-Rao bounds fail to be valid. Investigating how our

work fits into these Bayesian schemes is a useful direction for future work.

2Note that combining error correction and sensing is a non-trivial endeavor. In particular, not all error-correcting
codes that work for computation can immediately be lifted to the sensing scenario, as one must ensure that one
corrects only the noise, but not the fragile signal. See, e.g., Ref. [161] for a discussion of this. Therefore, we are not
claiming that the particular code utilized in Ref. [166] is directly useful for quantum sensing; we merely point out
that quantum error correction schemes in general are getting closer to reality.
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Tying these threads together, we are working on understanding how the protocols and

framework that we develop in Chapters 2 and 3 can be converted into truly useful, end-to-end

applications. Specifically, we are considering how we might use the protocols that we have devel-

oped to measure quickly and accurately the gravitational distribution of an active volcano [168].

Doing this requires addressing all of the concerns we have mentioned above.

In Chapters 4 and 5, we work in the idealized setting of Gaussian Boson Sampling with no

noise and fully number-resolving detectors. The outcome distribution changes if one assumes ei-

ther some sort of experimental imperfection (such as photon loss or photons no longer being fully

indistinguishable particles) or if the measurement devices only detect the presence or absence of

photons, but not how many are in any particular mode. In particular, the combinatorial function

that defines the output probabilities (which is the hafnian in idealized Gaussian Boson Sampling

and the permanent in idealized Fock Boson Sampling) can change in these instances. Thus, our

work would need to be generalized in order to more accurately describe real experiments that op-

erate in this noisy or otherwise less ideal regime.3 Additionally, while the complexity-theoretic

distinction between hardness and easiness that plays a crucial role in Chapters 4 and 5 is only

truly defined in the asymptotic limit of resources (as these definitions are based on how computa-

tion time scales with these resources), any individual experiment that might seek to demonstrate

quantum advantage using the Gaussian Boson Sampling scheme discussed therein operates at

some finite level of resources. Therefore, understanding how our results about the scaling of

3We do work in the regime where collisions in the output are very rare by construction. Therefore, it is not entirely
clear that a lack of number-resolving detectors alone would significantly change the results of these Chapters. For-
mally proving this and understanding precisely how the calculations using non-number-resolving detectors reduce
to our calculations would be interesting. Furthermore, our choice to work in the non-collisional limit was partially
due a significant (conjectured) simplification of the form of the output probabilities—see Conjecture 4.1. It is not
inconceivable that, for non-number-resolving detectors, one can calculate the moments of the output probabilities
without this simplification. Our results, then, would serve as a useful limiting case in this scenario.
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anticoncentration fit into these finite-size regimes is a crucial open question.

One of the more concrete options for future investigation is in understanding more pre-

cisely how the results in Chapter 5 about the second moment and the calculation of the expected

linear cross-entropy benchmarking score for an ideal sampler relate to both experimental imple-

mentations and classical spoofing of these scores. Specifically, it would be interesting to look

at actual experiments that have operated in the non-collisional regime and calculated the linear

cross-entropy benchmarking score and see how their results compare to the expected score for

an ideal, error-free device. We could potentially use this comparison as a way of understanding

the kinds of errors present in the experiment. On the other hand (and in keeping with our goal of

delineating quantum vs. classical power), it is also useful to understand whether our exact cal-

culation of the expected error-free score on linear cross-entropy benchmarking offers any insight

into the classical algorithms that try to spoof this measure, such as in Ref. [169]. Can our results

either help classical spoofers or show that there is some regime in which they fail? This is an

extremely important and interesting direction of research.

We are also curious as to how the results in Chapters 4 and 5 relate to other research

in the Gorshkov group that the author of this dissertation has been involved in, but that is not

included in this dissertation. Specifically, in Refs. [170, 171], we study the so-called Page curve

for entanglement in systems of Gaussian Bosonic states. The Page curve is, essentially, a measure

of the average entanglement between two partitions of a quantum system as a function of the size

of the partitions, where the average is taken over a suitable ensemble on the relevant Hilbert space

(typically the full state is assumed to be Haar-random). It was originally defined and its functional

form conjectured by Page in Ref. [172], and this conjecture was then proven in Refs. [173–175].

One can define and study Page curves in a wide variety of systems—see Ref. [176] and references
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therein. In the case of Refs. [170, 171], we build upon and generalize Refs. [177–179] to study

Page curves and the typicality of entanglement (roughly, how likely it is that any individual

random unitary creates close to the average amount of entanglement calculated in the Page curve)

in a setup that is nearly identical to that of Chapters 4 and 5. Specifically, we apply a Haar-random

linear optical unitary to an initial state of equally squeezed single-mode squeezed vacuum states

on all modes of a photonic system and consider the average entanglement between two partitions

of modes as a function of the size of this partition. Entanglement is measured using either the

Rényi-2 entropy [170] or arbitrary Rényi-α entropy with α ∈ Z≥1 [171]. However, there is a

crucial difference between the setup discussed in this dissertation and that in Refs. [170, 171]; in

the latter, all initial modes are equally squeezed, whereas the setup in this dissertation allows the

number of squeezed modes to vary. This raises the question of whether the results of Refs. [170,

171] can be generalized to the case where only k < m of m total modes are squeezed with some

equal strength s, but the rest remain in vacuum. This generalization would allow us to see whether

there is any interesting transition in entanglement akin to the transition in anticoncentration, thus

hopefully shedding light on any connections between entanglement and complexity. Surprisingly,

even this modest change to our setup seems to make the calculation of the Page curve essentially

untenable. It would be interesting to see whether a change of theoretical approach might solve this

problem. Alternatively, one could simply study the entanglement numerically. We are currently

pursuing both of these avenues.

Finally, in the study of Many-Body Localized Hamiltonians in Chapter 6, we have made

use of a purely phenomenological definition in terms of a quasilocal diagonalizing unitary that

takes the Hamiltonian from its original basis to one composed of quasilocal integrals of motion.

However, we have not specified physically how these integrals of motion arise. Typically, Many-
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Body Localization is considered to be disorder-induced. While this disorder is not the same

concept of “noise” that we have mentioned for the other topics in this dissertation, spiritually, the

work in Chapter 6 is similarly disconnected from real-world examples of Many-Body Localiza-

tion because of this disparity. Therefore, an important topic of future work is to try to recreate

our results for a more realistic disorder-based model. Indeed, this might actually improve our

results, as many of our proofs are based on a worst-case analysis that would be highly unlikely

for disorder-induced systems. We believe that this is the central topic of future work, though a

few others are also mentioned at the end of Chapter 6.

Therefore, while this dissertation has improved the understanding of quantum advantage

in sensing and simulation schemes, there is still much work to be done in characterizing all of

the possible benefits that quantum devices might offer. We look forward to seeing some or all of

these questions addressed.
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Appendix A: Appendices Associated with Chapter 2

A.1 A Useful Lemma Regarding Optimal Probe States

In this Appendix, we prove a useful lemma restricting the structure of the probe state for

an optimal protocol.

Lemma A.1 Any optimal protocol, independent of the choice of control, requires that ⟨Ĥ1(t)⟩ =

0, where H1(t) is the time-evolved generator of the first parameter and the expectation value is

taken with respect to the initial probe state. Furthermore, the probe state must be of the form

∣ψ⟩ =
∣0⟩ ∣χ0⟩ + eiϕ ∣1⟩ ∣χ1⟩

√
2

, (A.1)

for all times s ∈ [0, t], where ∣χ0⟩ , ∣χ1⟩ are arbitrary states on the d − 1 remaining sensor qubits

plus, potentially, the arbitrary number of ancillas, and ϕ is an arbitrary phase in R—they can be

s-dependent.

Proof. Consider the expression for the matrix elements of the quantum Fisher information matrix

at time t [Eq. 2.4]:

F(θ)ij = 4[
1

2
⟨{Ĥi(t), Ĥj(t)}⟩ − ⟨Ĥi(t)⟩⟨Ĥj(t)⟩], (A.2)
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where the expectation values are taken with respect to the initial probe state ∣ψ(0)⟩. Using the

integral form of Ĥj(t) (Eq. 2.5), we can write

F(θ)11 = 4Var [Ĥ1(t)] (A.3)

= 4 [∫
t

0
ds∫

t

0
ds′ ⟨ψ(0)∣ Û †(s)ĝ1Û(s)Û

†(s′)ĝ1Û(s
′) ∣ψ(0)⟩] (A.4)

− 4 [∫
t

0
ds ⟨ψ(0)∣ Û †(s)ĝ1Û(s) ∣ψ(0)⟩]

2

= 4∫
t

0
ds∫

t

0
ds′Cov∣ψ(0)⟩[ĝ1(s), ĝ1(s

′)], (A.5)

where we recall

ĝ1(s) ∶= Û
†(s)ĝ1Û(s), (A.6)

and ĝ1 = ∂Ĥ/∂θ1 is the initial generator with respect to the first parameter. Once again, the

covariance is with respect to the initial probe state ∣ψ(0)⟩. We can then upper bound this as

F(θ)11(t) ≤ 4∫
t

0
ds∫

t

0
ds′
√

Var∣ψ(0)⟩[ĝ1(s)]Var∣ψ(0)⟩[ĝ1(s′)] (A.7)

= 4 [∫
t

0
ds
√

Var∣ψ(0)⟩[ĝ1(s)]]
2

(A.8)

≤ [∫

t

0
ds∥ĝ1∥s]

2

(A.9)

= t2∥ĝ1∥
2
s (A.10)

= t2, (A.11)

where the first inequality bounds the covariance as the square root of the product of the variances,

the second inequality bounds the standard deviation of an operator by half the seminorm [51],
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and the final equality uses the fact that ĝ1 = σ̂z1/2 has seminorm 1.1 2

Via Eq. (2.8) (rigorously derived in Appendix A.6) we know that an optimal protocol must

have F11(θ)(t) = t2. Therefore, an optimal protocol must saturate the inequalities in Eq. (A.7)

and Eq. (A.9). Equation (A.9) is saturated when Var[ĝ1(s)] = ∥ĝ1(s)∥s = ∥ĝ1∥s for all s. This

holds if and only if ∣ψ(0)⟩ = 1√
2
(∣λmin⟩ + eiϕ ∣λmax⟩), where ∣λmin⟩ and ∣λmax⟩ are the eigenstates

corresponding to the minimum and maximum eigenvalues of ĝ1(s) for all s ∈ [0, t] and ϕ is

an arbitrary phase. Given this condition, ĝ1(s) and ĝ1(s′) act identically on the state ∣ψ(0)⟩

and consequently are fully correlated when one considers the covariance of these operators with

respect to the state. The Cauchy-Schwarz inequality in Eq. (A.7) is immediately saturated as

well.

Importantly, under this condition on the probe state, any operator in the one-parameter fam-

ily ĝ1(s) = Û †(s)ĝ1Û(s) acts identically on ∣ψ(0)⟩ (the unitary does not change the eigenvalues,

and the eigenstates are shared by all ĝ1(s), as argued above). Thus, one can freely substitute any

operator in the one-parameter family ĝ1(s) = Û †(s)ĝ1Û(s) for another. Therefore, for such an

optimal probe state,

⟨H1(t)⟩ = −∫
t

0
ds ⟨ψ(0)∣ ĝ1(s) ∣ψ(0)⟩ = t⟨ĝ1⟩ = 0 (A.12)

because ĝ1 ∝ σ̂z1 and, consequently, by the argument that we can replace ĝ1 by ĝ1(s) when acting

on the probe state,

⟨ψ(s)∣ ĝ1 ∣ψ(s)⟩ = 0 (∀s). (A.13)

1Note that the above block of equations relies on the fact that we are using the fixed Hilbert space of qubit
sensors. Were one to extend this derivation to photonic sensors with indefinite particle number, the results would not
immediately follow.

2Note added: We address the generalization to photonic sensors in Chapter 3 and Appendix B.
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The statement of the lemma immediately follows.

Note that Lemma A.1 holds for any optimal protocol, not just those using our catlike states.

However, it also justifies our choice of probe states and why we specifically set τ1 = 1 for all τ

(i.e., to maintain an equal superposition between ∣0⟩ and ∣1⟩ on the first qubit).

A.2 Proof of the Optimality of Cat-State Protocols

In this Appendix, we will rigorously prove the optimality of the time-dependent protocols

considered in Chapter 2. In particular, we show that the Fisher information matrix condition for

saturability in Eq. (2.8) is satisfied by solutions to Eq. (2.13) when we consider protocols that

use σ̂x and CNOT controls to switch between families of catlike states in T . That is, we show the

following mapping between saturability conditions:

Tp =
α

α1

Ô⇒ F(θ)1j =
α

α1

t2, (A.14)

where we recall that we have assumed that ∣α1∣ = ∥α∥∞ > ∣αj ∣ for all j > 1 (in Appendix A.6, we

will generalize beyond the assumption of a single maximum magnitude αj at the cost of some

notational inconvenience).

Using Lemma A.1, we can show that for any optimal protocol (i.e., not just those using our
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cat-like states)

F(θ)1j = 2⟨{Ĥ1, Ĥj}⟩ (A.15)

= 2∫
t

0
ds∫

t

0
ds′ ⟨ψ(0)∣ {ĝ1(s), Û

†(s′)ĝjÛ(s
′)} ∣ψ(0)⟩ (A.16)

= 2∫
t

0
ds∫

t

0
ds′ ⟨ψ(0)∣ {ĝ1, Û

†(s′)ĝjÛ(s
′)} ∣ψ(0)⟩ (A.17)

= 2t∫
t

0
ds′ ⟨ψ(0)∣ {ĝ1, Û

†(s′)ĝjÛ(s
′)} ∣ψ(0)⟩ (A.18)

= 2t∫
t

0
ds′ ⟨ψ(0)∣ {ĝ1(s

′), Û †(s′)ĝjÛ(s
′)} ∣ψ(0)⟩ (A.19)

= 4t∫
t

0
ds′ ⟨ψ(s′)∣ ĝ1ĝj ∣ψ(s

′)⟩ (A.20)

= t∫
t

0
ds′ ⟨ψ(s′)∣ σ̂z1σ̂

z
j ∣ψ(s

′)⟩ . (A.21)

The third and fifth equalities come from the argument in the proof of Lemma A.1 that we may

replace ĝ1(s) with ĝ1 (and vice versa) when acting on optimal probe states. The penultimate

equality is just a consequence of the commutativity of the initial generators.

We now apply these general results to our specific protocols. Saturating the initial Fisher

information conditions in Eq. (A.14) implies that we must show

∫

t

0
ds′ ⟨ψ(s′)∣ σ̂z1σ̂

z
j ∣ψ(s

′)⟩ =
αj
α1

t. (A.22)

Let the gates in our protocols be labeled as Ĝi where Ĝi is either a CNOT or σ̂x gate. The gate Ĝi

is applied at a time s = t∗i . Then, for s ∈ (t∗k, t
∗
k+1), we can write the time-dependent state as

∣ψ(s)⟩ = ∣ψ(τ (k);φ)⟩ ≡
k

∏
i=0
Ĝi ∣ψ(τ

(0);φ)⟩ , (A.23)
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where ∣ψ(τ (0); 0)⟩ is the initial state of the protocol, φ is the relative phase between the two

branches of the state that has accumulated up to time s, and, therefore, ∣ψ(τ (k);φ)⟩ is the state

produced after applying the first k gates. Because our protocols explicitly use only σ̂x and

CNOT gates to move between families in T , we have that ∣ψ(τ (k);φ)⟩ = (∣0⟩ ∣χ(k)0 ⟩+e
iφ ∣1⟩ ∣χ

(k)
1 ⟩)/

√
2,

and

∫

t

0
ds′ ⟨ψ(s′)∣ σ̂z1σ̂

z
j ∣ψ(s

′)⟩ =
n

∑
i=0
(t∗i+1 − t

∗
i )τ

(i)
j , (A.24)

where we implicitly define t∗0 = 0 and t∗n+1 = t as the initial and final times of the protocol and

∣χ
(k)
0 ⟩ and ∣χ(k)1 ⟩ are some states defined on the Hilbert space which excludes the first qubit sensor.

The time t∗i+1 − t
∗
i corresponds to the time we are in the probe family ∣ψ(τ (i);φ)⟩, which in our

protocols is pit. Thus, to satisfy the Fisher information conditions, we need

∑
i

piτ
(i)
j =

αj
α1

Ô⇒ (Tp)j =
αj
α1

. (A.25)

This formally proves optimality of our time-dependent protocols that satisfy Tp = α/α1.

A.3 Review of Robust Phase Estimation

In this Appendix, we review, for completeness, the phase estimation protocols of Refs. [71–

73] described in Chapter 2 as a method to extract the quantity of interest, q, from the state

1/
√
2(∣0⟩ + eiqt/α1 ∣1⟩)(∣0 . . .0⟩), (A.26)

which is the final state obtained from our family of optimal protocols.

Again, when we refer to our protocols as optimal, we mean this in the sense that our pro-

160



tocols achieve the conditions on the quantum Fisher information matrix that allow the maximum

possible quantum Fisher information with respect to the parameter q to be obtained. However,

to completely specify the procedure by which one obtains the quantity q, an explicit phase es-

timation protocol is needed. As explained in Chapter 2, such a task is complicated by the fact

that for large times and/or small α1 = ∥α∥∞, it is unclear what 2π interval the relative phase be-

tween the branches of Eq. (A.26) is in [74, 75]. The phase estimation protocols of Refs. [71–73]

demonstrate how to optimize resources to deal with this issue, while still saturating the single-

shot bound in Eq. (2.2) up to a small d- and t-independent constant. In particular, such protocols

allow us to reach a mean square error of

M =
c2∥α∥

2
∞

t2
, (A.27)

for some small (explicitly known) constant c. Reference [76] proves that this constant factor c2

in Eq. (2) can be reduced to, at best, π2.

While reviewing such phase estimation protocols, we follow the presentation of Ref. [73],

which corrects a few minor errors in Ref. [71], as noted in the corresponding erratum [72]. We

refer the reader to Ref. [73] for further details. Conveniently, by putting the final state into the

form of Eq. (A.26), we have reduced this problem completely to the single qubit, multipass

version of the problem described in that reference. Consequently, everything follows practically

identically to their presentation.

Consider dividing the total time t, which is the relevant resource in our problem, into K

stages where we evolve for a time Mjδt in the jth stage (δt is some small basic unit of time and

Mj ∈ N). We assume that we have (d, t)-independent, prior knowledge of q such that we can set
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δt to satisfy

δtq

∥α∥∞
∈ [0,2π). (A.28)

In the jth stage, using one of our protocols for a time Mjδt, we prepare 2νj independent copies

of the state

∣ψj⟩ =
1
√
2
(∣0⟩ + eiqMjδt/∥α∥∞ ∣1⟩) ∣0 . . .0⟩ . (A.29)

From now on we will drop the d − 1 qubit sensors in the state ∣0 . . .0⟩, as they are irrelevant;

however, it is worth noting that it is not necessary to put the state in this form before performing

measurements. We do so to make the comparison to Ref. [73] particularly transparent. We

then perform a single-qubit measurement on the first qubit sensor of each of these state copies,

yielding 2νj measurement outcomes, which we can use to estimate q. The total time of this K

stage protocol is consequently given by

t = 2
K

∑
j=1
νjMjδt. (A.30)

Given this setup, we choose single-qubit measurements and optimize the choice of νj,Mj

per stage so that we can learn q bit by bit, stage by stage, in such a way that optimal scaling in d,

t is still obtained [Eq. (A.27)]. In particular, consider making two measurements, each νj times

per stage (thus explaining the factor of 2 we introduced earlier): (i) a σ̂x measurement and (ii) a

σ̂y measurement. These measurements each give us outcomes that are Bernoulli variables (i.e.,
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with values ∈ {0,1}) with outcome probabilities

p(x)(0) =
1 + cos (Mjqδt/∥α∥∞)

2
,

p(x)(1) = 1 − p(x)(0),

p(y)(0) =
1 + sin (Mjqδt/∥α∥∞)

2
,

p(y)(1) = 1 − p(y)(0), (A.31)

where the first two probabilities are for the σ̂x measurement and the latter two are for the σ̂y

measurement. Using both of these measurements allows us to resolve the twofold degeneracy

in the phase qMjδt/∥α∥∞ within a given [0,2π) interval that would arise from, e.g., a σ̂x mea-

surement alone. The observed probabilities of obtaining 0 for the σ̂x and σ̂y are independent

random variables that converge in probability to their associated expectation values for νj →∞.

Let these observed probabilities be labeled f (x)0 and f (y)0 , respectively. These measurements are

nonadapative, which makes this particular phase estimation protocol especially appealing.

At each stage, we extract an estimator ϕ̃ of ϕ ∶=Mjqδt/∥α∥∞ as

ϕ̃ ∶= atan2(2f
(y)
0 − 1,2f

(x)
0 − 1) ∈ [0,2π), (A.32)

where atan2 is the two-argument arctangent with range [0,2π). In the limit νj → ∞, this esti-

mator indeed converges to ϕ, but the “magic” of this phase estimation scheme lies in the correct

reprocessing of data stage-by-stage so that νj can be kept (d, t) independent. Reference [73]

demonstrates rigorously that picking Mj = 2j−1 for j ∈ {1, . . . ,K} and optimizing over νj one

can, at each stage, estimate q/∥α∥∞ with a confidence interval of size 2π/(3 × 2j−1) so that in
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each stage we learn another bit of this quantity. The results of this optimization are νj that de-

crease linearly with the step j so that as the time spent in a stage grows, the statistics we employ

shrink. Importantly, it so happens that we can scale K → ∞ (i.e., take an asymptotic-in-t limit)

while maintaining νK constant. The net result is a mean-square error given by Eq. (A.27) with

c = 24.26π, which is a factor of 24.26 greater than the theoretical optimal value [76], but with

the convenient feature that the protocol uses nonadaptive measurements. We refer the interested

reader to Ref. [73] for detailed derivation of the results sketched here.

It is also worth noting that other protocols are possible. For instance, in Ref. [70], a similar

two-step method is described for the estimation of global parameters (i.e., where the parameter

is not restricted to a local neighborhood of parameter space). This protocol provides an explicit

method to use some (ultimately negligible) fraction of the sensing time available to narrow down

the location of the parameter q in parameter space, followed by an optimal local estimation. We

emphasize that the explicit estimation scheme we propose (i.e., the one in Refs. [71–73]) does

not require adaptive measurements, which is one of its key advantages.

A.4 Full Proof of the Main Theorem

In this Appendix, we expand on the proof sketch of Theorem 2.1 to fully prove the result.

For reference, this theorem is restated here.

Theorem A.1. Let q(θ) = α ⋅ θ. Without loss of generality, let ∥α∥∞ = ∣α1∣. Let k ∈ Z+ so that

k − 1 <
∥α∥1
∥α∥∞

≤ k. (A.33)
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An optimal protocol to estimate q(θ), where the parameters θ are encoded into the probe state

via unitary evolution under the Hamiltonian in Eq. (2.1), requires at least, but no more than,

k-partite entanglement.

Proof. We divide our proof into two parts. First, using k-partite-entangled states from the set of

catlike states considered in Chapter 2, we show the existence of an optimal protocol, subject to

the upper bound of Eq. (A.33). Second, we show that there exists no optimal protocol using at

most (k − 1)-partite entanglement, proving the lower bound of Eq. (A.33).

Part 1. Define T (k) to be the submatrix of T with all columns n such that ∑m ∣Tmn∣ > k are

eliminated, which enforces that any protocol derived from T (k) uses only states that are at most

k-partite entangled. Define system A(k) as

T (k)p(k) = α/α1, (A.34)

p(k) ≥ 0. (A.35)

Let α′ = α/α1 and define system B(k) as

(T (k))⊺y ≥ 0, (A.36)

⟨α′,y⟩ < 0. (A.37)

By the Farkas-Minkowski lemma [77,78], system A(k) has a solution if and only if systemB(k)

does not. In particular, this lemma, which, geometrically, is an application of the hyperplane

separation theorem [180], is as follows:
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Lemma A.2 (Farkas-Minkowski) Consider the system

Ax = b, (A.38)

x ≥ 0, (A.39)

with A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. The above system has a solution if and only if there is no

solution y to

A⊺y ≥ 0, (A.40)

⟨b,y⟩ < 0. (A.41)

Therefore, to prove the result it is sufficient to show that system B(k) does not have a

solution if∑j>1 ∣α′j ∣ ≤ k−1, where we used that α′1 = 1. We assume that a solution y exists and will

arrive at a contradiction. Without loss of generality, we assume that ∣yj ∣ ≥ ∣yj+1∣ for all 1 < j < d.

Equation (A.37) implies ∑j>1α′jyj < −y1. (T (k))⊺ has a row n∗ given by τ (n
∗) = (1,0, . . . ,0), so

by Eq. (A.36) any solution y to system B has y1 ≥ 0. Therefore, ∣∑j>1α′jyj ∣ > y1, which, by the

triangle inequality, implies

∑
j>1
∣α′j ∣∣yj ∣ > y1. (A.42)

Because ∣α′j ∣ ≤ 1 for all j, because ∑j>1 ∣α′j ∣ ≤ k − 1, and because ∣yj ∣ for j > 1 are ordered in

descending order, the largest the left-hand side of Eq. (A.42) can be is ∑kj=2 ∣yj ∣, leading to

k

∑
j=2
∣yj ∣ > y1. (A.43)
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This directly contradicts Eq. (A.36) for the column of T (k) given by τ = (1,−sgn(y2), . . . ,−sgn(yk),0,0, . . . ).

Part 2. Using Eq. (A.21), we have that, for any optimal protocol,

F(θ)1j = t∫
t

0
ds′ ⟨ψ(s′)∣ σ̂z1σ̂

z
j ∣ψ(s

′)⟩ , (A.44)

where we recall that ∣ψ(s)⟩ = U(s) ∣ψ(0)⟩. Because ⟨ψ(s′)∣ σ̂z1 ∣ψ(s′)⟩ = 0 for all s′ [see Eq. (A.13)],

the integrand is nonzero if and only if ∣ψ(s′)⟩ is such that the first qubit is entangled with the jth.

Define the indicator variable

Ej(s
′) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 ∣ψ(s)⟩ entangles qubit j and 1

0 else,

(A.45)

for all j, including any possible ancilla qubits. Here, we define E1 = 1 even though the first qubit

is not “entangled” with itself. Further define

E(s′) =∑
j

Ej(s
′) ≤ (k − 1), (A.46)

where E(s′) is the total number of sensor qubits entangled with the first qubit at time s′ and the

upper bound comes from our assumption on the partiteness of our probe states. We then have that

F(θ)1j ≤ t∫
t

0
ds′Ej(s

′). (A.47)

Furthermore, for any optimal protocol using at most (k − 1)-partite entanglement, we re-
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quire that

∑
j

∣
αj
α1

t2∣ =∑
j

∣F(θ)j1∣ ≤ t∑
j
∫

t

0
ds′Ej(s

′) = t∫
t

0
ds′∑

j

Ej(s) ≤ t∫
t

0
ds′(k − 1) = (k − 1)t2.

(A.48)

We now have a contradiction, however, as the theorem statement assumed that

∑
j

∣
αj
α1

t2∣ =
∥α∥1
∥α∥∞

t2 > (k − 1)t2. (A.49)

This concludes the proof that (k − 1)-partite entanglement in any form (i.e., not just from catlike

probe states) is insufficient to generate an optimal protocol.

We also observe that the lower bound on the size of the least-entangled state used in an

optimal protocol is really, at its core, a lower bound on the average entanglement required to

saturate the conditions on the quantum Fisher information matrix. Here, average entanglement

refers to weighting the size of the entangled state by the proportion of time it is used in the

protocol. This lower bound is simply ∥α∥1/α∞. The lower bound on the size of the most-

entangled state, or the bound on instantaneous entanglement, comes from ensuring that this lower

bound on average entanglement is achievable (that is, if the instantaneous entanglement is too

small at each stage, then the average entanglement required cannot be reached).

A.5 Minimum-Entanglement Non-Echoed Protocols

In this Appendix, we prove that there exist protocols that minimize both instantaneous and

average entanglement. We recall from Section 2.6 the definition of the non-echoed protocols that

minimize average entanglement.
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Definition A.1 (Non-echoed protocols). Consider some α ∈ Rd encoding a linear function of

interest. Let T be the matrix which describes our families of catlike probe states, and let p

specify a valid protocol such that p ≥ 0 and Tp = α/∥α∥∞. We say that the protocol defined by

p is “non-echoed” if, ∀i such that pi is strictly greater than 0, sgn(Tij) ∈ {0, sgn(αj)}.

We now prove Theorem 2.2, which we again repeat for simplicity.

Theorem A.2. For any function encoding α, there exists a non-echoed optimal protocol with

minimum instantaneous entanglement.

Proof. We proceed with a relatively simple tweak of the proof of the main theorem. As in that

theorem, we assume without loss of generality that α1 = ∥α∥∞ = 1. Also assume, for compu-

tational simplicity, that αi>1 < 1 (i.e., there is only a single maximal-magnitude element of α)

and that αi > 0∀i. These latter assumptions can easily be lifted, as we describe at the end of the

proof.

We will again use the Farkas-Minkowski lemma [77, 78] to show that no vector y exists

such that

(T
(k)
+ )

⊺y ≥ 0, (A.50)

⟨α,y⟩ < 0, (A.51)

proving the existence of a non-echoed protocol. Here, T (k)+ is T restricted to non-echoed vectors

[i.e., (T (k)+ )ij ∈ {0,1}] with weight at most k, where k = ⌈∥α∥1⌉. Assume a solution y exists.

Noting that (T (k)+ )⊺ has a row given by (1,0, . . . ,0), it must be that y1 ≥ 0. Furthermore, for y to
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be a valid solution, we must have

⟨α,y⟩ = α1y1 + ∑
i∣i≠1,yi≥0

αiyi + ∑
i∣yi<0

αiyi = y1 + ∑
i∣i≠1,yi≥0

αiyi + ∑
i∣yi<0

αiyi ≤ 0. (A.52)

We proceed with two cases. Suppose that at most k − 1 elements of y are negative. Consider the

row of (T (k)+ )⊺ that has a 1 in the first index and exactly on the indices where yi < 0 (which exists

because we have sufficiently restricted the number of negative elements of y). Then (T (k)+ )⊺y ≥ 0

implies that

y1 + ∑
i∣yi≤0

yi ≥ 0. (A.53)

But because αi < 1, this immediately implies that

y1 + ∑
i∣yi≤0

αiyi ≥ 0, (A.54)

which means that Eq. (A.52) cannot be true, yielding a contradiction.

Now suppose that there are at least k elements of y that are negative. Let S be the set of

indices corresponding to the k − 1 largest, in magnitude, yi. Then the row of (T (k)+ )⊺ with a 1 in

the first index and precisely on the indices in S leads to the condition that

y1 +∑
i∈S
yi ≥ 0. (A.55)

However, given the constraint that αi>1 < 1, we find that

y1 + ∑
i∣i≠1,yi≥0

αiyi + ∑
i∣yi<0

αiyi ≥ y1 +∑
i∈S
yi ≥ 0, (A.56)
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which is again a contradiction.

We briefly comment on how to lift the two assumptions we mentioned earlier. First, in the

case where there exist multiple maximal elements, the same argument that generalizes the main

theorem will also generalize this argument—see Appendix A.6. Second, if we allow αi < 0, it is

simple to see that a protocol still exists; simply replace (T (k)+ )ij = 1 with sgn(αi) (and leave 0s

untouched).

Thus, Lemma 2.1 and Theorem 2.2 prove there exist protocols that can minimize both

instantaneous entanglement (i.e., the maximum size of a catlike state used in the protocol) and

the average entanglement over the course of the entire protocol.

A.6 Relaxing the Assumption on a Single Maximum Element

In this Appendix, we will generalize beyond the assumption in Chapter 2 that ∣α1∣ > ∣αj ∣ for

all j > 1. Conceptually, nothing is changed by relaxing the assumption, but the algebra becomes

somewhat more tedious. In the process, we rigorously derive Eq. (2.2) and Eq. (2.8).

A.6.1 Generalizing Eq. (2.8)

We start with specifically generalizing Eq. (2.8). To begin, define

L ∶= {i ∣ ∣αi∣ = ∣α1∣}. (A.57)

The assumption ∣α1∣ > ∣αj ∣ for all j > 1, stated in Chapter 2, is equivalent to assuming ∣L∣ = 1. For

arbitrary size L, we have the following set of conditions for the single-parameter bound on q(θ)
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to be saturable [Eqs. (2.6) and (2.7)]:

F(q)11 =
t2

α2
1

, (A.58)

F(q)1i = F(q)i1 = 0 (∀ i ≠ 1). (A.59)

Recall that F(q) = J⊺F(θ)J , where J is the Jacobian for the basis transformation from θ to

q, q1 = q is the linear function we wish to measure, and the other qj are some other degrees of

freedom we fix. We will show that Eqs. (A.58) and (A.59) are satisfied if and only if

∑
i∈L

sgn(α1)

sgn(αi)
F(θ)jiλi =

αj
α1

t2, (A.60)

where λi ≥ 0 such that ∑i λi = 1. If ∣L∣ = 1, this reduces to Eq. (2.8).

It will be important to briefly recount how we obtain the single-parameter bound we are

trying to saturate [14, 64]. In particular, referring to Eq. (2.3), we seek a choice of basis that

minimizes ∥ĝq∥
2
s, which will yield the tightest possible bound onM, the mean-square error of q.

Let us formally define our basis for Rd as {α(1),α(2), . . . ,α(d)}, where α(1) = α. We then have

that J−1 has rows given by these vectors. Let {β(1),β(2), . . . ,β(d)} be the basis dual to this one.

That is, these vectors form the columns of J and satisfy α(i) ⋅β(j) = δij . We can then write

θ⊺ = (JJ−1θ)⊺ = (J−1θ)⊺J⊺, (A.61)
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which allows us to rewrite our Hamiltonian in the convenient form

Ĥ =
1

2
θ⊺σ̂ + Ĥc(s) =

1

2

d

∑
i=1
(α(i) ⋅ θ)β(i) ⋅ σ̂ + Ĥc(s), (A.62)

where σ̂ = (σ̂z1, . . . , σ̂
z
d)
⊺. Then

ĝq(0) =
∂Ĥ

∂q
=

∂Ĥ

∂(α(1) ⋅ θ)
=
β ⋅ σ̂

2
, (A.63)

where β = β(1). Because the seminorm is time independent (see Ref. [51]), we immediately have

that

∥ĝq∥s = ∥β∥1, (A.64)

and our tightest bound is given by

min
β
∥β∥1,

such that α ⋅β = 1. (A.65)

Note that

1 =∑
i

αiβi ≤∑
i

∣αi∣∣βi∣ ≤ ∣α1∣∑
i

∣βi∣ = ∣α1∣∥β∥1. (A.66)

The first inequality is tight if either sgn(βi) = sgn(αi) or βi = 0 for all i. The second is slightly

more complicated to saturate. Recall L = {i ∣ ∣αi∣ = ∣α1∣}. Then the second inequality is tight if
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and only if

βi = 0 for i ∉ L, (A.67)

∑
i∈L
∣βi∣ =

1

∣α1∣
. (A.68)

Any solution β specifies the first column of the Jacobian J and allows us to rewrite the conditions

in Eqs. (A.58) and (A.59) as

F(q)11 = β
⊺
F(θ)β =

t2

α2
1

, (A.69)

F(q)1i = F(q)i1 = (β
(i)
)⊺F(θ)β = 0 (∀ i ≠ 1). (A.70)

As α(i) ⋅ β(j) = δij , Eq. (A.70) immediately implies that the vector F(θ)β must be proportional

to α and Eq. (A.69) specifies the constant of proportionality. In particular, we require

F(θ)β =
t2

α2
1

α. (A.71)

Invoking Eqs. (A.67) and (A.68) and the condition that sgn(βi) = sgn(αi) for βi ≠ 0, we write

βi = λisgn(αi)/∣α1∣, where λi ≥ 0 for i ∈ L and λi = 0 for i ∉ L such that∑i λi = 1. The individual

components of Eq. (A.71) imply

∑
i∈L
F(θ)ijsgn(αi)λi =∑

i∈L
F(θ)jisgn(αi)λi =

t2

∣α1∣
αj, ∑

i

λi = 1, λi ≥ 0, (A.72)
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which, using ∣α1∣ = sgn(α1)α1 and that sgn(α1)sgn(αi) = sgn(α1)/sgn(αi) for i ∈ L, yields

∑
i∈L

sgn(α1)

sgn(αi)
F(θ)ijλi =∑

i∈L

sgn(α1)

sgn(αi)
F(θ)jiλi =

αj
α1

t2, ∑
i

λi = 1, λi ≥ 0, (A.73)

which reduces to Eq. (2.8) of the main text, when ∣L∣ = 1, as desired.

A.6.2 Generalizing the Derivation of Eq. (2.13)

At this point, we can generalize the derivation of Eq. (2.13) to this setting of more than one

maximum element of α. In particular, Lemma A.1 can be immediately extended to the following:

Lemma A.3 Any optimal protocol, independent of the choice of control, requires that ⟨Ĥj(t)⟩ =

0 for all j ∈ L and that the probe state be of the form

∣ψ⟩ =
(⊗j∈L ∣bj⟩) ∣χ0⟩ + eiϕ (⊗j∈L ∣bj + 1⟩) ∣χ1⟩

√
2

, (A.74)

for all times s ∈ [0, t], where

bj =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if sgn(αj) = 1

1 if sgn(αj) = −1,

(A.75)

and ϕ, ∣χ0⟩ , ∣χ1⟩ can be arbitrary and s dependent. The addition inside the second ket of Eq. (A.74)

is mod 2.

Proof. We have the following two facts: (1) ∑i∈L λi(sgn(αj)/sgn(αi))F(θ)ij = t2 for all j ∈ L

[by Eq. (A.73)] and (2) ∣F(θ)ij ∣ ≤ F(θ)jj for all i (by the fact that the Fisher information matrix

is positive semidefinite). These facts imply that an optimal protocol must have F(θ)jj = t2 for

all j ∈ L. The fact that ⟨Ĥj(t)⟩ = 0 for all j ∈ L and the fact that all sensors in L must be in a
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catlike state over computational basis states follows immediately via an identical calculation to

the proof of Lemma A.1 for each j ∈ L. From Eq. (A.21) it follows directly that these catlike

states over the qubit sensors in L must take the form in the theorem statement in order to achieve

the correct sign on the components of F(θ).

Using Lemma A.3, it is clear that we should restrict the set T of states such that τ (n)j =

sgn(αj)/sgn(α1) for all j ∈ L and all τ (n). This is the generalization of the fact that, when

∣L∣ = 1, we require τ (n)1 = 1 for all τ (n).

In addition, given the required form of the optimal states, it is easy to generalize Eq. (A.22)

to the condition that

∑
i∈L
[λi∫

t

0
ds′ ⟨ψ(s′)∣ σ̂zi σ̂

z
j ∣ψ(s

′)⟩] =
αj
α1

t, (A.76)

which implies that, for protocols switching between states in the modified T ,

∑
i∈L
[λi

n

∑
l=0
(t∗l+1 − t

∗
l )τ

(l)
j ] =

αj
α1

t, (A.77)

where we assume that we switch to the state labeled by τ (l) at time t∗l . As before, in our protocols

t∗l+1 − t
∗
l = plt. In addition, ∑i λi = 1. So an optimal protocol requires

t
n

∑
l=0
plτ
(l)
j =

αj
α1

t Ô⇒ Tp = α, (A.78)

recovering Eq. (2.13) for general L, with the addition that we fix Tjn = τ
(n)
j = sgn(αj)/sgn(α1)

for all j ∈ L and all n.

176



A.6.3 Generalizing the Proof of Theorem 2.1

Recall, we divided the proof into two parts. First, we showed the existence of an optimal

protocol using k-partite-entangled catlike states, subject to the upper bound of the theorem state-

ment. Second, we showed that, subject to the lower bound of the theorem statement, there exists

no optimal protocol using only (k − 1)-partite entanglement.

Let us begin by addressing how the first part changes upon relaxing the assumption that

∣α1∣ > ∣αj ∣ for all j > 1. Note that, given our choice that τ (n)j = sgn(αj)/sgn(α1) for all j ∈ L

and all τ (n), the first ∣L∣ rows of T (k) yield redundant equations in Eq. (2.19). Therefore, we

can define T̃ (k) as T (k) with all rows j ∈ L ∖ {1} eliminated. Similarly, α̃ is α with elements

j ∈ L ∖ {1} eliminated. Furthermore, define the new system of equations, which we call system

Ã:

T̃ (k)p̃(k) = α̃/α1, (A.79)

p̃(k) ≥ 0. (A.80)

System A has a solution if and only if system Ã does. We can proceed as in the proof in Ap-

pendix A.4 to show via the Farkas-Minkowski lemma that system Ã has a solution if ∥α∥1/∥α∥∞ ≤

k Ô⇒ ∥α̃∥1/∥α̃∥∞ ≤ k − ∣L∣ + 1. The details of the proof of this part are completely identical

with this substitution.

The second part of the proof can similarly be adjusted straightforwardly. In particular, to

satisfy the condition of Eq. (A.73), which is the generalization of Eq. (2.8) in the main text, for
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j ∈ L we require

αj
α1

t2 =
sgn(αj)

sgn(α1)
t2 =∑

i∈L

sgn(α1)

sgn(αi)
F(θ)ijλi, (A.81)

which implies

t2 =∑
i∈L

sgn(αi)

sgn(αj)
F(θ)ijλi. (A.82)

This in turn implies that for i, j ∈ L

F(θ)ij =
sgn(αi)

sgn(αj)
t2. (A.83)

Therefore, for all i ∈ L we require F(θ)ii = t2. From here, arguments identical to those in

Appendix A.4 apply to all i ∈ L, not just i = 1. That is, all the probe states must always be fully

entangled on the qubits in L and matrix elements F(θ)ij for i ∈ L, j ∉ L can only accumulate

magnitude if sensor j is also entangled with the qubits in L. Assuming the existence of an optimal

protocol using (k − 1)-partite entanglement, a contradiction arises in an identical way.
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Appendix B: Appendices Associated with Chapter 3

B.1 Bound for Local Phase Shifts

In this appendix, we derive lower bounds for the mean square error of measuring a linear

function q(θ) = α ⋅ θ of local phase shifts, generated via coupling to the number operator n̂j , as

specified by the Hamiltonian in Eq. (3.1) and Eq. (3.2a).

In particular, we seek to solve the optimization problem in Eq. (3.9), restated here for

convenience:

min
β

max
ρ
[∆(β ⋅ ĝ)ρ]

2, subject to α ⋅β = 1. (B.1)

Here, ĝ = n̂ = (n̂1, n̂2,⋯, n̂d)T . For fixed particle number N , the Hilbert space on which possible

probe states ρ are defined is finite dimensional, and it holds that [51]

[∆(β ⋅ n̂)ρ]
2 ≤
∥β ⋅ n̂∥

2
s,N

4
, (B.2)

where ∥β ⋅ n̂∥s,N is the Fock-space-restricted seminorm of β⋅n̂ (defined as the difference between

the maximum and minimum eigenvalues of β ⋅ n̂ restricted to the N -photon subspace). As we

want to maximize the quantum Fisher information with respect to the choice of probe state ρ, and
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because Eq. (B.2) is saturable when ρ is an equal superposition of the eigenstates of β ⋅ n̂ with

maximum and minimum eigenvalues, we can consider the following optimization problem:

minimize (w.r.t. β) ∥β ⋅ n̂∥s,N ,

subject to α ⋅β = 1. (B.3)

To begin, note that the largest eigenvalue of β ⋅ n̂ in the N -particle subspace is given by

λmax(β ⋅ n̂) = N max{max
j
βj,0} =∶ Nβmax, (B.4)

where we have implicitly defined βmax. This largest eigenvalue corresponds to the eigenstate that

consists of placing all photons in the mode corresponding to the largest positive βj . If all βj ≤ 0,

the largest eigenvalue is zero, obtained by any state with no particles in the sensor modes. Note

that this requires the use of an extra mode (an ancilla or so-called “reference mode”) to “store”

these photons, as we fix the total photon number of our state to be N .

Similarly, the smallest eigenvalue of β ⋅ n̂ in the N -particle subspace is given by

λmin(β ⋅ n̂) = N min{min
j
βj,0} =∶ Nβmin, (B.5)

where we have implicitly defined βmin.

Using the facts above about the maximum and minimum eigenvalues of β ⋅ n̂ in the N -

180



particle subspace we can rewrite the optimization problem in Eq. (3.9) as

minimize N (βmax − βmin) ,

subject to α ⋅β = 1. (B.6)

As in Chapter 3, define P ∶= {j ∣αj ≥ 0} and N ∶= {j ∣αj < 0}. We then have the following

lemma.

Lemma B.1 The solution β∗ to Eq. (B.6) is such that β∗j ≥ 0 for all j ∈ P , and β∗j ≤ 0 for all

j ∈ N . That is, αjβ∗j ≥ 0 for all j.

Proof. We proceed by contradiction. Let J− = {j ∣αjβ∗j < 0} and J+ = {j ∣αjβ∗j ≥ 0}. Suppose

the solution vector β∗ to Eq. (B.6) has J− ≠ ∅. We can construct an alternative candidate solution

vector β′ as follows: First, let β′ = β∗. Then set β′j = 0 for all j ∈ J−. In order to still satisfy the

constraint α ⋅β′ = 1, we must reduce the values of some other components in β′. In particular, it

is simple to calculate that a valid solution is, for j ∈ J+,

β′j =
β∗j

∑j∈J+ αjβ
∗
j

=
β∗j

1 −∑j∈J− αjβ
∗
j

. (B.7)

Again, when j ∈ J−, β′j = 0.

Let β′max ∶= max{maxj β′j,0} and β′min ∶= max{minj β′j,0}. By construction, β′max ≤

β∗max and 0 = β′min ≥ β
∗
min. Consequently, β′ yields a smaller solution candidate than β∗. This

contradicts the fact that β∗ is the optimal solution. The lemma statement follows as an immediate

consequence.
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Lemma B.1 allows us to rewrite the minimization problem in Eq. (B.6) once again as

minimize N [max
j∈P

βj −min
j∈N

βj] ,

where βj ≥ 0 ∀ j ∈ P,

βj ≤ 0 ∀ j ∈ N ,

subject to α ⋅β = 1. (B.8)

In the above, we define maxj∈P βj (minj∈N βj) to be zero if P = ∅ (N = ∅). A further simplifica-

tion is enabled by another lemma.

Lemma B.2 The solution vector β∗ to Eq. (B.8) is such that β∗j = β∗max for all j ∈ P and β∗j = β
∗
min

for all j ∈ N .

Proof. We proceed by contradiction. Suppose the solution vector β∗ is such that β∗i ≠ β
∗
j for

some i, j ∈ P . Then we could consider an alternative candidate solution vector β′ where β′k =

∑l∈P αlβ
∗

l

∑l∈P αl
for all k ∈ P . Similarly, if β∗i ≠ β

∗
j for some i, j ∈ N we could consider β′k =

∑l∈N αlβ
∗

l

∑l∈N αl

for all k ∈ N . Clearly, β′ still satisfies the constraint

α ⋅β′ = ∑
m∈P

αm (
∑l∈P αlβ

∗
l

∑l∈P αl
) + ∑

m∈N
αm (

∑l∈N αlβ
∗
l

∑l∈N αl
) = α ⋅β∗ = 1. (B.9)

Additionally, β′ also clearly still has β′j ≥ 0 when j ∈ P and β′j ≤ 0 when j ∈ N . But, by

construction (because the weighted average of a set is less than its maximum element),

N [max
j∈P

β′j −min
j∈N

β′j] < N [max
j∈P

β∗j −min
j∈N

β∗j ] . (B.10)
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So β∗ is not the solution vector and we have arrived at a contradiction.

As a direct consequence of Lemma B.2 we can rewrite the optimization problem in Eq. (B.8)

one last time as

minimize (w.r.t. βmin, βmax) N [βmax − βmin] , (B.11)

subject to βmax ≥ 0, βmin ≤ 0, (B.12)

βmax∑
j∈P

αj + βmin ∑
j∈N

αj = 1. (B.13)

Because this is a linear objective function, the optimal solution will be one of the two

boundary solutions: βmax =
1

∑i∈P αi
, βmin = 0 or βmin =

1
∑i∈N αi

, βmax = 0. Minimizing over these

two candidate solutions, we obtain the final result

∥ĝq∥
2
s,N =

N2

max(∑i∈P αi,∑i∈N αi)
2
. (B.14)

Consequently, via the quantum Cramér-Rao bound, Eq. (3.10),

M ≥
max{∑i∈P αi,∑i∈N αi}

2

N2t2

=∶
max{∥α∥

2
1,P , ∥α∥

2
1,N}

N2t2
, (B.15)

which is Eq. (3.12), and where ∣∣α∣∣1,P and ∣∣α∣∣1,N are the one-norm restricted to positive and

negative values, respectively, of α. In the special case of all positive coefficients (i.e., N = ∅),

this reduces to

M ≥
∥α∥

2
1

N2t2
, (B.16)
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which, as described in Chapter 3, proves a conjecture from Ref. [13] that this is the minimum

attainable variance for α ∈ Qd with α ≥ 0.

B.2 Bound for Local Displacements

In this Appendix, we derive Eq. (3.15) for the mean square error attainable for measuring

a linear function of local displacements, restricting to probe states with fixed average photon

number N .

B.2.1 Separable Bound

To begin, it is helpful to present the bound for the more restricted case where we use

separable input states. Begin by considering the lower bound on the variance of measuring a

displacement φ coupled to a single mode via H = φp̂, following the proof sketched in Ref. [25].

The quantum Fisher information is given by

F(φ) = 4[∆(p̂)ρ]
2, (B.17)

where ρ is the probe state, which is restricted to have an average photon number N . An initial

displacement does not enhance precision [25], so we can consider zero-mean displacement input

states. For such probe states,

(∆p̂)2 = −
1

4
⟨(â† − â)2⟩ = −

1

4
(⟨â†â†⟩ − ⟨â†â⟩ − ⟨ââ†⟩ + ⟨ââ⟩), (B.18)

(∆x̂)2 =
1

4
⟨(â† + â)2⟩ =

1

4
(⟨â†â†⟩ + ⟨â†â⟩ + ⟨ââ†⟩ + ⟨ââ⟩), (B.19)
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so that

N = ⟨â†â⟩ = (∆p̂)2 + (∆x̂)2 −
1

2
, (B.20)

where we used that ââ† = â†â + 1. We can then use the uncertainty principle

(∆p̂)2(∆x̂)2 ≥
1

16
, (B.21)

which follows from our definition of the quadrature operators as x̂ = (â†+â)/2 and p̂ = i(â†−â)/2.

Therefore,

ξ (N − ξ +
1

2
) ≥

1

16
, (B.22)

where we let ξ ∶= (∆p̂)2. Then

−16ξ2 + (16N + 8)ξ − 1 ≥ 0. (B.23)

To maximize ξ, this inequality must be saturated, so we can solve the corresponding quadratic to

obtain the solution

ξ =
−8(2N + 1) +

√

64(2N + 1)2 − 64

−32
Ô⇒ 4ξ = (

√

N +
√

N + 1)2 ∼ 4N. (B.24)

It is worth noting that the O(N) asymptotic behavior of the maximum variance of p̂ could have

been obtained with no calculation just from examining the constraint in Eq. (B.20) under the
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assumption that (∆x̂)2 can be made negligibly small.

Putting everything back together, we have found that, optimizing over states with fixed

average photon number N , the following holds:

[∆(φ̃)]2 ≥
1

F
≥

1

t2(
√

N +
√

N + 1)2
=

1

4t2N
+O(

1

t2N
2). (B.25)

Working in the asymptotic in N limit, we can use Eq. (B.25) to obtain a bound on perfor-

mance for estimating a linear function q(θ) = α ⋅ θ with an unentangled protocol as

(∆q̃)2 ≥
1

t2
min
{Nj}

d

∑
j=1

∣αj ∣2

4N j

+O
⎛

⎝

1

N
2

j

⎞

⎠
, (B.26)

where N j = ⟨â
†
j âj⟩ is the average number of photons used in mode j and ∑jN j = N . Assume

without loss of generality that ∣αj ∣ > 0 for all j (that is, no αj = 0) and independent of N . Then

we can optimize (at leading order in 1
N

) the distribution of photons amongst the modes using the

Lagrangian

L =
d

∑
j=1

∣αj ∣2

4N j

+ γ (
d

∑
j=1
N j −N) , (B.27)

where γ is a Lagrange multiplier. A bit of algebra yields that

∂L

∂N j

= 0 Ô⇒ N j =
∣αj ∣

2
√
γ
. (B.28)

This further implies that

N =
d

∑
j=1
N j =

∥α∥1
2
√
γ
, (B.29)
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allowing us to obtain the optimal division of photons as

N j =
∣αj ∣

∥α∥1
N. (B.30)

We note that this solution is clearly the desired minimum of the Lagrangian, as maximizing the

objective would lead to setting any N j to 0. Plugging this back into Eq. (B.26) we obtain the

(asymptotic in N ) separable bound

[∆q̃]2 ≥
∥α∥

2
1

4Nt2
+O (

1

N
2) . (B.31)

This bound can be achieved by using the single-mode protocols in Ref. [25] for each mode

and then computing the function of interest classically as a linear combination of the individual

estimators.

B.2.2 General Function Estimation Bound

In this subsection, we turn to our primary task: deriving Eq. (3.15) for the mean square

error attainable for measuring a linear function of local displacements, restricting to probe states

with fixed average photon number N .

To derive this bound, we must solve the optimization problem in Eq. (3.9) for ĝj = p̂j:

min
β

max
ρ
[∆(β ⋅ p̂)ρ]

2, subject to α ⋅β = 1. (B.32)

187



We can write

[∆(β ⋅ p̂)]2 =
d

∑
i,j=1

βiβjCov(p̂i, p̂j)

≤
d

∑
i,j=1

βiβj
√
(∆p̂i)2(∆p̂j)

2

= [
d

∑
j=1
βj∆p̂j]

2

≤ ∥β∥
2
2

d

∑
j=1
(∆p̂j)

2, (B.33)

where we applied the Cauchy-Schwarz inequality twice. Using the same assumption of zero-

displacement states we made in the previous section, we can further bound ∑j(∆p̂j)2 using the

constraint on average photon number

d

∑
j=1
[(∆p̂j)

2 + (∆x̂j)
2] −

d

2
=

d

∑
j=1
⟨a†
jaj⟩ = N, (B.34)

implying that
d

∑
j=1
(∆p̂j)

2 ≤ N +
d

2
. (B.35)

Equation (B.35) is tight when (∆x̂j)2 = 0 for all j. This is, of course, impossible to achieve, but

can be approached asymptotically with increasing N (N ≫ d). Furthermore, using the fact that

α is dual to β and the Cauchy-Schwarz inequality, it holds that

1 = α ⋅β ≤ ∥β∥2∥α∥2. (B.36)

As we want to minimize with respect to β, we consider the case where this inequality is saturated
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(i.e. β∗ = α

∥α∥22
). Therefore, ∥β∗∥2 =

1
∥α∥2

, and we obtain

[∆(β ⋅ p̂)]2 ≤
N

∥α∥
2
2

+O (
d

∥α∥
2
2

) . (B.37)

This yields the final bound

M ≥
∥α∥

2
2

4Nt2
−O (

d∥α∥
2
2

N
2
t2
) . (B.38)

From the derivation alone, it is not obvious that this bound can be saturated, but the existence of

protocols that achieve it [84] indicate that this bound is, indeed, tight asymptotically in N .

B.3 Quantum Fisher Information Matrix Elements

In this Appendix, we derive the matrix elements of the quantum Fisher information matrix

for generators n̂j and p̂j under the unitary evolution Eq. (3.4). For number operator coupling

ĝj = n̂j ,

Hj = −iU
†∂jU = −

M

∑
m=1
(
m−1
∏
l=1

U (l)V )

†

n̂j (
m−1
∏
l=1

U (l)V )

=∶ −
M

∑
m=1

n̂j(m), (B.39)

where in the second line we implicitly defined n̂j(m). Consequently, we can compute the quan-

tum Fisher information matrix elements via Eq. (3.23) to be

F(θ)ij = 4

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
l=1

M

∑
m=1

1

2
⟨{n̂i(l), n̂j(m)}⟩ − (

M

∑
m=1
⟨n̂i(m)⟩)(

M

∑
m=1
⟨n̂j(m)⟩)

⎤
⎥
⎥
⎥
⎥
⎦

. (B.40)
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When Û (j) = I for all j, this reduces to

F(θ)ij = 4M
2 [⟨n̂in̂j⟩ − ⟨n̂i⟩⟨n̂j⟩] . (B.41)

For quadrature operator coupling ĝj = p̂j , essentially identical manipulations yield

F(θ)ij = 4

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
l=1

M

∑
m=1

1

2
⟨{p̂i(l), p̂j(m)}⟩ − (

M

∑
m=1
⟨p̂i(m)⟩)(

M

∑
m=1
⟨p̂j(m)⟩)

⎤
⎥
⎥
⎥
⎥
⎦

, (B.42)

where p̂j(l) is defined as in Eq. (B.39) with n̂j → p̂j .

B.4 Protocols for Local Phase Shifts

In this Appendix, we elaborate on the families of optimal protocols for measuring a linear

function of phase shifts that we described in Section 3.4.

B.4.1 An Optimal Protocol for Functions with Positive Coefficients

We begin by reviewing a protocol from Ref. [13] for the special case of a linear function

with positive coefficients (i.e., α ≥ 0). Our results in Appendix B.1 show that, as those authors

conjectured, this protocol is optimal. In particular, consider using as the probe state a so-called

proportionally weighted N00N state over d + 1 modes:

∣ψ⟩∝ ∣N
α1

∥α∥1
,⋯,N

αd
∥α∥1

,0⟩ + ∣0,⋯,0,N⟩, (B.43)
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where we have expressed the state in an occupation number basis over d + 1 modes and have

dropped the normalization for concision. The last mode serves as a reference mode. Observe

that, for this state to be well defined, it is essential that α
∥α∥1
∈ Qd and that N is such that the

resulting occupation numbers are integers, which may require that N be large.

Following imprinting of the parameters θ onto the probe state via M passes through the

interferometers, one obtains

∣ψM⟩ = e
−iMn̂⋅θ ∣ψ⟩∝ ∣N

α1

∥α∥1
,⋯,N

αd
∥α∥1

,0⟩ + e
iα⋅θ NM

∥α∥1 ∣0,⋯,0,N⟩. (B.44)

This process allows us to saturate the bound in Eq. (3.14). In particular, using Eq. (B.40) [which

reduces to Eq. (B.41) because there is no control required], it is straightforward to calculate that

the quantum Fisher information matrix for the probe state is

F(θ) =
(MN)2

∥α∥
2
1

ααT , (B.45)

which clearly satisfies the condition in Eq. (3.24) (recalling that ∣∣α∣∣1 = ∣∣α∣∣1,P here because we

have assumed all coefficients are non-negative, and also recalling that ∆t = 1 such that M = t).

While the conditions on the quantum Fisher information matrix for an optimal protocol are

met, a full protocol requires a description of the measurements used to extract the quantity of

interest from the relative phase between the branches of ∣ψM⟩. As described in Chapter 3, this

can be done via the robust phase estimation protocols of Refs. [71–73] with a small multiplicative

constant overhead relative to the quantum Cramér-Rao bound (we also briefly discuss the idea

behind robust phase estimation in Appendix B.7). The details of implementing the necessary
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parity measurements for N00N-like states are discussed in detail in Appendix A of Ref. [73] and

Ref. [181].

B.4.2 Extending the Optimal Protocol to Negative Coefficients

While not explicitly considered in Ref. [13], it is straightforward to extend the above pro-

tocol to the situation where N ≠ ∅, which we do here. Without loss of generality, assume

the coefficients are ordered so that α1 ≥ α2 ≥ ⋯ ≥ αd. Using our standard assumption that

∥α∥1,P ≥ ∥α∥1,N , we claim that the following probe state is optimal:

∣ψ⟩∝⊗
j∈P
∣N

αj
∥α∥1,P

⟩ ∣0⟩
⊗∣N ∣
∣0⟩ + ∣0⟩

⊗∣P ∣
⊗
j∈N
∣N
∣αj ∣

∥α∥1,P
⟩ ∣N −N

∥α∥1,N
∥α∥1,P

⟩ , (B.46)

where, again, the last mode is a reference mode, and we have dropped the normalization of

the state. Interestingly, observe that, if ∥α∥1,P = ∥α∥1,N , the reference mode factors out and

is unnecessary. Similar to the α ≥ 0 case, for this state to be well defined, we require that

N ∣αj ∣/∥α∥1,P ∈ N for all j, which is always true for some sufficiently large N provided α ∈ Qd.

Consider applying the encoding unitary for M passes through the interferometers. For

∥α∥1,P ≥ ∥α∥1,N , this yields

∣ψM⟩∝⊗
j∈P
∣N

αj
∥α∥1,P

⟩ ∣0⟩
⊗∣N ∣
∣0⟩ + e

iα⋅θ NM
∥α∥1,P ∣0⟩

⊗∣P ∣
⊗
j∈N
∣N
∣αj ∣

∥α∥1,P
⟩ ∣N −N

∥α∥1,N
∥α∥1,P

⟩ . (B.47)

This probe state is optimal in the sense of satisfying the Fisher information condition in Eq. (3.24).

In Chapter 3, we described an even more general family of protocols. Within this more general

framework, we will prove this optimality.
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B.4.3 A Family of Optimal Protocols

Finally, we describe a family of optimal protocols that satisfy the conditions on the quantum

Fisher information matrix given in Eq. (3.24). In Chapter 3, we defined a family of optimal

protocols in terms of vectors from the set

W ∶= {ω ∈ Zd ∣ ∥ω∥1,P = N, ∥ω∥1,N ≤ N, ωjαj ≥ 0∀ j} . (B.48)

In particular, from these vectors, we defined a set T of one-parameter families of probe states in

an occupation number basis where each ∣ψ(ω;φ)⟩ ∈ T is labeled by a particular choice of ω such

that

∣ψ(ω;φ)⟩∝ ∣ω∣P⟩ ∣0⟩ + e
iφ ∣−ω∣N ⟩ ∣N − ∥ω∣N ∥1⟩ , (B.49)

where φ ∈ R is an arbitrary parameter and the last mode is a reference mode. Recall also that

ωP and ωN are defined in Eq. (3.28) as the restriction of ω to j ∈ P and N , respectively (for

j not in the correct set, the value is set to 0). Note that such states are of the form of those in

Lemma 3.1. We claimed that, by explicitly computing the Fisher information matrix for these

states, one could demonstrate that the optimality condition in Eq. (3.24) is satisfied for a protocol

such that

Wr = NM
α

∥α∥1,P
, (B.50)
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where r ∈ Z∣T ∣ is as defined in Chapter 3 and must obey the conditions

∥r∥1 =M,

r ≥ 0. (B.51)

Recall that W is a matrix whose columns are the vectors ωn ∈W .

Here we explicitly demonstrate this. We can easily evaluate

⟨n̂j(m)⟩ = ⟨ψ(ω
(m);φ)∣ n̂j ∣ψ(ω

(m);φ)⟩ =
∣ω
(m)
j ∣

2
(B.52)

and

⟨n̂i(l)n̂j(m)⟩ = ⟨ψ(ω
(l);φ)∣ n̂iU(m↔ l)n̂j ∣ψ(ω

(m);φ)⟩

=
∣ω
(l)
i ω

(m)
j ∣

2
⟨ψl(ω

(l);φ)∣U(m↔ l) ∣ψm(ω
(m);φ)⟩ , (B.53)

where n̂j(m) are defined as in Eq. (B.39), and

U(m↔ l) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∏
l−1
k=mU

(k)V, if l ≥m

∏
m−1
k=l (U

(k)V )†, otherwise,

(B.54)

i.e., it is the unitary that converts between the m-th and l-th probe states. Additionally, ω(m)

refers to the vector associated to the m-th probe state; correspondingly ∣ψl(ω(l);φ)⟩ is the branch

of ∣ψ(ω(l);φ)⟩ with non-zero occupation number on mode l and ∣ψm(ω(m);φ)⟩ is the branch of

∣ψ(ω(m);φ)⟩ with non-zero occupation number on mode m. For an optimal protocol, U(m↔ l)
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coherently maps the first (second) branch of ∣ψ(ω(l);φ)⟩ to the first (second) branch of ∣ψ(ω(m);φ)⟩;

therefore, we have that the matrix element ⟨ψl(ω(l);φ)∣U(m ↔ l) ∣ψm(ω(m);φ)⟩ is nonzero if

and only if the branches with non-zero occupation on modes l and m are the same. So we have

that

⟨n̂i(l)n̂j(m)⟩ =
∣ω
(l)
i ω

(m)
j ∣

2
ξij, (B.55)

where

ξij ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if i, j ∈ P or i, j ∈ N

0, otherwise.

(B.56)

Putting everything together we obtain that

F(θ)ij = (−1)
ξij+1 (

M

∑
m=1
∣ω
(m)
i ∣) (

M

∑
m=1
∣ω
(m)
j ∣) . (B.57)

To prove the protocols work, we need to show that this Fisher information matrix obeys the

condition in Eq. (3.24). Without loss of generality, consider the case that ∥α∥1,P ≥ ∥α∥1,N . We

have that

∑
j∈P
F(θ)ij = sgn(αi)(

M

∑
m=1
∣ω
(m)
i ∣)MN, (B.58)

where we used that ∥ω∥1,P = N . So, to obey the condition in Eq. (3.24), we require that

M

∑
m=1
∣ω
(m)
i ∣ =MN

∣αi∣

∥α∥1,P
. (B.59)
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Or, in vector form:
M

∑
m=1
∣ω(m)∣ =MN

∣α∣

∥α∥1,P
. (B.60)

Protocols in our family satisfy this condition by construction as, for any valid protocol,

M

∑
m=1
∣ω(m)∣ = ∣W ∣r, (B.61)

where ∣W ∣ denotes taking the element-wise absolute value of the elements of W . Consequently,

noting that sgn(ω(m)j ) = sgn(αj) for all m, we require

Wr =MN
α

∥α∥1,P
, (B.62)

which is Eq. (B.50).

B.5 Proof of Lemma 3.1

Here we provide a proof of Lemma 3.1 in Chapter 3, restated here for convenience.

Lemma B.3 Any optimal protocol using N photons and M passes through interferometers with

a coupling as in Eq. (3.1) with ĝj = n̂j requires that, for every pass m, the probe state ∣ψm⟩ be of

the form

∣ψm⟩∝ ∣N(m)⟩P ∣0⟩NR + e
iφm ∣0⟩P ∣N

′
(m)⟩NR , (B.63)

where P , N , and R represent the modes with αj ≥ 0, αj < 0, and the (arbitrary number of)

reference modes, respectively, N(m) and N ′
(m) are strings of occupation numbers such that

∣N(m)∣ = ∣N ′
(m)∣ = N for all passes m. φm is an arbitrary phase.
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Proof. The quantum Fisher information matrix elements for any protocol with ĝj = n̂j are given

by

F(θ)ij = 4

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
l=1

M

∑
m=1

1

2
⟨{n̂i(l), n̂j(m)}⟩ − (

M

∑
m=1
⟨n̂i(m)⟩)(

M

∑
m=1
⟨n̂j(m)⟩)

⎤
⎥
⎥
⎥
⎥
⎦

= 4
M

∑
l=1

M

∑
m=1

Cov (n̂i(l), n̂j(m)) , (B.64)

where the expectation values are taken with respect to the initial probe state, and n̂j(m) are the

number operators on the jth mode in the Heisenberg picture prior to the mth pass, as specified in

Eq. (B.39). Without loss of generality, we make the assumption that ∥α∥1,P ≥ ∥α∥1,N . Summing

over i, j ∈ P , we have that, for an optimal protocol,

∑
i∈P
∑
j∈P
F(θ)ij =∑

j∈P

(MN)2

∥α∥1,P
αj = (MN)2, (B.65)

where we used the condition in Eq. (3.24) for an optimal protocol, and we recall that, for j ∈ P ,

all αj > 0. For convenience, define

P̂ (m) ∶=∑
j∈P

n̂j(m). (B.66)

Armed with this definition, we can upper bound the sum over i, j ∈ P in the explicit expression

from Eq. (B.64) as
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∑
i∈P
∑
j∈P
F(θ)ij = 4

M

∑
l=1

M

∑
m=1

Cov (P̂ (l), P̂ (m))

≤ 4
M

∑
l=1

M

∑
m=1

√

Var(P̂ (l))Var(P̂ (m)) = 4(
M

∑
l=1

√

Var(P̂ (l)))

2

≤ 4
⎛

⎝

M

∑
l=1

∥P̂ (l)∥
s,N

2

⎞

⎠

2

≤ (NM)2, (B.67)

where in the first line we use the Cauchy-Schwarz inequality, in the second line we use that once

restricted to the N -particle subspace Var(A) ≤ ∥A∥
2
s,N/4 (where, again, ∥A∥s,N is the seminorm

restricted to the N -particle subspace) for any Hermitian operator A, and in the final line we

use that ∥P̂ (l)∥
s,N
≤ N . Comparing Eq. (B.67) with Eq. (B.65), we find that, for any optimal

protocol, all inequalities in Eq. (B.67) must be saturated. Specifically,

Cov (P̂ (l), P̂ (m))
2
= Var(P̂ (l))Var(P̂ (m)), (B.68)

Var(P̂ (l)) =
N2

4
. (B.69)

The second condition, Eq. (B.69), means that, at all times, the state of our system must be of the

form

∣N(l)⟩P ∣0⟩NR + e
iφl ∣0⟩P ∣N

′
(l)⟩NR√

2
, (B.70)

where we are using the simplifying notation from the statement of the lemma. In particular,

the subscripts P,N ,R refer to the collection of all modes associated with αj ≥ 0, αj < 0, and

the reference modes, respectively. Therefore, the state ∣N ⟩P ∣0⟩NR means that all photons are
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distributed (in some potentially arbitrary way) amongst the modes with non-negative αj , and

there are no photons in the modes with negative αj or in the reference modes. Contrastingly,

∣0⟩P ∣N
′
(l)⟩NR refers to a state where there are N photons in the negative and reference modes,

and there are no photons in the non-negative modes. We have also shifted to the Schrödinger

picture where we move the time dependence onto the state as opposed to the operators. It is

simple to verify that this state satisfies Eq. (B.69), and it is also simple to verify these are the

most general states that achieve this. Intuitively, ∣ψm⟩ is a generalized N00N state between the

positive and negative/reference modes.

In addition, we have the following useful characterization of optimal protocols:

Lemma B.4 Let ∣ψi⟩ be a state of the form in Lemma 3.1. Refer to the first and second parts

of its superposition as, respectively, the first and second or positive and non-positive branches.

Let Um be the unitary that maps the initial state ∣ψ1⟩ to the state just before the m-th pass, ∣ψm⟩,

given by

Um =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∏
m−1
i=1 U (i)V, M + 1 ≥m ≥ 2

I, m = 1.

(B.71)

in agreement with Eq. (3.4). Then, if Um is part of an optimal protocol, it coherently maps the

first (second) branch of ∣ψ1⟩ to the first (second) branch of ∣ψm⟩ .

Proof. We use the covariance equality in Eq. (B.68). To proceed, we evaluate the expectation
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value of P̂ in the initial state. Here, we will again use the Schrödinger picture.

⟨ψ1∣ P̂ (l) ∣ψ1⟩ = ⟨ψl∣ P̂ ∣ψl⟩ (B.72)

=
1

2
(⟨N(l)∣P ⟨0∣NR + e

−iφl ⟨0∣P ⟨N
′
(l)∣NR) P̂ (∣N(l)⟩P ∣0⟩NR + e

iφl ∣0⟩P ∣N
′
(l)⟩NR)

(B.73)

=
1

2
(⟨N(l)∣P ⟨0∣NR + e

−iφl ⟨0∣P ⟨N
′
(l)∣NR)N (∣N(l)⟩P ∣0⟩NR) (B.74)

=
N

2
. (B.75)

We next evaluate the covariance:

Cov (P̂ (l), P̂ (m)) = ⟨ψ1∣ P̂ (l)P̂ (m) ∣ψ1⟩ − ⟨ψ1∣ P̂ (l) ∣ψ1⟩ ⟨ψ1∣ P̂ (m) ∣ψ1⟩ (B.76)

= ⟨ψl∣ P̂UlU
†
mP̂ ∣ψm⟩ − ⟨ψl∣ P̂ ∣ψl⟩ ⟨ψm∣ P̂ ∣ψm⟩ (B.77)

=
N2

2
⟨N(l)∣P ⟨0∣NRUlU

†
m ∣N(m)⟩P ∣0⟩NR −

N2

4
, (B.78)

where in the last line we have used the fact that P̂ gives a factor of N when acting on the first

branch of states ∣ψl⟩ and ∣ψm⟩, but it annihilates the second branch that has zero photons in the

positive modes.

In order for Eq. (B.68) to be satisfied, and using Eq. (B.69), we therefore require that, for

all pairs of passes l,m,

⟨N(l)∣P ⟨0∣NRUlU
†
m ∣N(m)⟩P ∣0⟩NR = 1. (B.79)
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Choosing l = 1, this implies that we require that

U †
m ∣N(m)⟩P ∣0⟩NR = ∣N(0)⟩P ∣0⟩NR =∶ ∣ψ1⟩P , (B.80)

where we are defining ∣ψ1⟩P , ∣ψ1⟩NR such that ∣ψ0⟩∝ ∣ψ1⟩P+∣ψ1⟩NR in the obvious way. Moving

the unitary onto the right hand side of the equation yields

∣ψm⟩P = Um ∣ψ1⟩P , (B.81)

which of course implies the corresponding equation for the second branch by linearity.

B.6 Fisher Information Matrix Conditions for Quadrature Displacements

In this Appendix, we provide conditions on the quantum Fisher information matrix for

an optimal protocol in the case of quadrature generators. This result yields a simpler form of

the saturability condition of Eq. (3.25), although the set of states that it picks out is less clear

than in the number operator case. This issue is compounded by the fact that the bound is not

actually saturable (it can only be approached asymptotically as N → ∞). Regardless, it allows

us to bring quadrature displacements into our general formalism and suggests a route towards

designing additional optimal protocols beyond those already in the literature.

In particular, starting with the definition of p̂i(l) from Eq. (B.42), we can bound the sum
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over the quantum Fisher information matrix elements as

d

∑
i=1,j=1

F(θ)ij =
d

∑
i=1,j=1

4
M

∑
l=1

M

∑
m=1

Cov(p̂i(l), p̂j(m)) (B.82)

≤ 4
M

∑
l=1

M

∑
m=1

¿
Á
ÁÀVar(

d

∑
i=1
p̂i(l))Var(

d

∑
i=1
p̂j(m)) (B.83)

= 4
⎛
⎜
⎝

M

∑
l=1

¿
Á
ÁÀVar(

d

∑
i=1
p̂i(l))

⎞
⎟
⎠

2

(B.84)

≤ 4
⎛

⎝

M

∑
l=1

√

N −
d

2

⎞

⎠

2

= 4M2 (N −
d

2
) ∼ 4M2N. (B.85)

Above, in Eq. (B.83), we used the Cauchy-Schwarz inequality; in Eq. (B.85), we used the uncer-

tainty relation in Eq. (B.35). Consistent with the rest of Chapter 3 and Appendix B, the ∼ symbol

denotes asymptotically in N (for N ≫ d).

The saturability condition in Eq. (3.25) states that, for an optimal protocol (asymptotically

inN ), it must hold that α is an eigenvector of F(θ)with eigenvalue 4M2N . Thus, for an optimal

protocol,

Tr(F) =
d

∑
j=1
λj ≳ 4M

2N, (B.86)

where λj are the eigenvalues ofF . This implies that the chain of inequalities leading to Eq. (B.85)

must be saturated (asymptotically in N ) for an optimal protocol and that the largest eigenvalue of

F must be λ1 ∼ 4m2N with all other eigenvalues zero. It immediately follows that the saturability

condition for quadrature displacements can be written as

F(θ)ij ∼
4M2N

∥α∥
2
2

αiαj. (B.87)
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B.7 Approaching the Single-Shot Limit and Robust Phase Estimation1

As pointed out in the footnote preceding Eq. (3.8) and in the discussion of what defines

an information-theoretically optimal protocol in Section 3.4.2, it is not, in practice, possible to

construct an unbiased estimator achieving the single shot (µ = 1) quantum Cramér-Rao bound that

we analyze in Chapter 3 and Appendix B, as the quantum Cramér-Rao bound is only guaranteed

to be achievable in the limit of asymptotically large amounts of data (µ → ∞). Resolving this

tension while still achieving asymptotic Heisenberg scaling in the total amount of resources (here,

µN photons) requires carefully designed protocols. In particular, extracting a relative phase from

the probe states considered in the protocols in Chapter 3 and Appendix B requires a proper

division of resources so that, asymptotically, the single-shot bound is achieved up to a small

constant.

At best, this constant can be reduced to π2 [76], but the non-adaptive robust phase es-

timation scheme of Refs. [71–73] provides a relatively simple-to-implement approach with a

multiplicative overhead of (24.26π)2. In brief, these protocols work by dividing the protocol into

K stages where in stage j one uses Nj photons (or N j average photons for displacement sens-

ing). In each stage, one imprints the unknown function into the phase between two branches of

a cat-like state of Nj photons and then performs a measurement, as described in Chapter 3. The

experiment is performed νj times, allowing one to obtain an estimate of the unknown phase. This

estimate is refined over the course of the K stages, with more photons used in each additional

1Note added: See also Appendix A.3 for a similar discussion.
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stage such that the total photon resources are

N =
K

∑
j=1
νjNj. (B.88)

An optimal choice of νj and Nj ensures that, asymptotically, NK = Θ(N) and νK = O(1),

and, thus, the asymptotic scaling of the single-shot bound is obtained up to a multiplicative con-

stant that depends on the details of the optimization. The proof of this and the associated opti-

mization are detailed in Refs. [71–73].
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Appendix C: Appendices Associated with Chapter 4

In this Appendix, we provide details behind many of the expressions in Chapter 4. In par-

ticular, we derive expressions for the first and second moments of the output probabilities in the

form of Kronecker δs and derive Eqs. (4.5), (4.8) and (4.9). In addition, we prove Theorem 4.1,

Theorem 4.2, and Lemma 4.1 that are presented as building blocks toward the proof of a transi-

tion in anticoncentration. We also explain more thoroughly the connection between the hiding

property and the first moment of hafnians of generalized COE matrices. We further contextualize

our definition of anticoncentration with respect to the literature and show how anticoncentration

of the approximate distribution of output probabilities connects to anticoncentration of the true

distribution. Finally, we use Scattershot Boson Sampling as intuition for why the transition in

anticoncentration in Gaussian Boson Sampling exists.

C.1 Algebraic Details of the First Moment—Derivation of Eq. (4.5)

In this Appendix, we derive Eq. (4.5), which gives an expression for the first moment of

the output probabilities in terms of Kronecker δs. We use Eq. (4.2) to expand the hafnian. We
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then use properties of independent Gaussians to simplify the expression. Specifically,

E
X∼Gk×2n

[∣Haf(X⊺X)∣
2
] = (

1

2nn!
)
2

∑
σ,τ∈S2n

E
X∼Gk×2n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

⎛

⎝

k

∑
ℓj=1

Xℓjσ(2j−1)Xℓjσ(2j)
⎞

⎠

⎛

⎝

k

∑
oj=1

X∗ojτ(2j−1)X
∗
ojτ(2j)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(C.1)

= (
1

2nn!
)
2

∑
σ,τ∈S2n

E
X∼Gk×2n

⎡
⎢
⎢
⎢
⎢
⎣

k

∑
{ℓi,oi}ni=1=1

(
n

∏
j=1
Xℓjσ(2j−1)Xℓjσ(2j)X

∗
ojτ(2j−1)X

∗
ojτ(2j))

⎤
⎥
⎥
⎥
⎥
⎦

(C.2)

= (
1

2nn!
)
2

∑
σ,τ∈S2n

k

∑
{ℓi,oi}ni=1=1

E
X∼Gk×2n

[(
n

∏
j=1
Xℓjσ(2j−1)Xℓjσ(2j)X

∗
ojτ(2j−1)X

∗
ojτ(2j))]

(C.3)

= (
1

2nn!
)
2

∑
σ,τ∈S2n

k

∑
{ℓi,oi}ni=1=1

(
n

∏
j=1
δℓjoj′δℓjoj′′), (C.4)

where we have defined j′ to be the index such that σ(2j − 1) = τ(2j′ − 1) or τ(2j′). Similarly,

j′′ is the index such that σ(2j) = τ(2j′′ − 1) or τ(2j′′). Observe that j′ = j′′ if {σ(2j − 1),

σ(2j)} = {τ(2j−1), τ(2j)} (note that this is an equality of sets, meaning order does not matter).

The first equation uses the definition of the hafnian, while the second follows from exchanging

product and sum. The penultimate equation comes from the linearity of expectation. To get to the

final equation, first recall that the Xij are i.i.d. complex Gaussian random variables with mean

0 and variance 1. This means that the expectation value of a product of entries vanishes unless

there are an equal number of unconjugated and conjugated copies of all indices. By the definition

of j′, we ensure that the entry Xℓjσ(2j−1) is matched to one of the X∗ entries as long as ℓj and oj′

match, hence the first Kronecker δ. The second Kronecker δ follows similarly.
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We can exactly calculate j′:

σ(2j−1) ∈ {τ(2j′−1), τ(2j′)} ⇐⇒ τ−1(σ(2j−1)) ∈ {2j′−1,2j′} ⇐⇒
τ−1(σ(2j − 1))

2
∈ {j′−

1

2
, j′}.

(C.5)

Thus:

j′ = ⌈
τ−1(σ(2j − 1))

2
⌉. (C.6)

Similarly:

j′′ = ⌈
τ−1(σ(2j))

2
⌉. (C.7)

Therefore,

E
X∼Gk×2n

[∣Haf(X⊺X)∣
2
] = (

1

2nn!
)
2

∑
σ,τ∈S2n

k

∑
{ℓi,oi}ni=1=1

⎛

⎝

n

∏
j=1
δℓjo

⌈
τ−1(σ(2j−1))

2 ⌉

δℓjo
⌈
τ−1(σ(2j))

2 ⌉

⎞

⎠
(C.8)

=
(2n)!

(2nn!)2
∑
τ∈S2n

⎡
⎢
⎢
⎢
⎢
⎣

k

∑
{ℓi,oi}ni=1=1

⎛

⎝

n

∏
j=1
δℓjo

⌈
τ−1(2j−1)

2 ⌉

δℓjo
⌈
τ−1(2j)

2 ⌉

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(C.9)

=
(2n)!

(2nn!)2
∑
τ∈S2n

⎡
⎢
⎢
⎢
⎢
⎣

k

∑
{oi}ni=1=1

(
n

∏
j=1
δo
⌈
τ(2j−1)

2 ⌉

,o
⌈
τ(2j)

2 ⌉

)

⎤
⎥
⎥
⎥
⎥
⎦

. (C.10)

In the first equality, we have used Eqs. (C.6) and (C.7). In the second, we notice that τ and σ occur

only together as τ−1 ○ σ, meaning we can perform a change of variables to convert our double

summation over permutations in S2n to a single summation over a redefined τ−1 while gaining a

factor (2n)!. The third equality comes from summing over the ℓj indices and redefining τ−1 → τ .

This is Eq. (4.5).
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C.2 Algebraic Details of the Second Moment—Derivation of Eqs. (4.8) and

(4.9)

In this Appendix, we generalize the calculation of Appendix C.1 to the second moment of

the output probabilities. The structure of the derivation is very similar, but the details are more

nuanced due to the increased number of copies of X .

We again begin with some algebraic manipulations:

E
X∼Gk×2n

[∣Haf(X⊺X)∣
4
] = (

1

2nn!
)
4

∑
σ,τ,α,β∈S2n

E
X∼Gk×2n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

⎛

⎝

k

∑
ℓj=1

Xℓjσ(2j−1)Xℓjσ(2j)
⎞

⎠

⎛

⎝

k

∑
oj=1

X∗ojτ(2j−1)X
∗
ojτ(2j)

⎞

⎠

×
⎛

⎝

k

∑
pj=1

Xpjα(2j−1)Xpjα(2j)
⎞

⎠

⎛

⎝

k

∑
qj=1

X∗qjβ(2j−1)X
∗
qjβ(2j)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(C.11)

=
1

(2nn!)4
∑

σ,τ,α,β∈S2n

k

∑
{ℓi,oi,pi,qi}ni=1=1

E
X∼Gk×2n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1
Xℓjσ(2j−1)Xℓjσ(2j)X

∗
ojτ(2j−1)X

∗
ojτ(2j)Xpjα(2j−1)Xpjα(2j)X

∗
qjβ(2j−1)X

∗
qjβ(2j)

⎤
⎥
⎥
⎥
⎥
⎦

.

(C.12)

This first equation simply comes from the definition of the hafnian, and the second from ex-

changing product and sum and using the linearity of expectation. As in the proof of the first

moment, we must properly match the indices of the Gaussian elements. Recall that, in order for

the expectation value not to vanish, the indices i, j must show up an equal number of times in

a conjugated and non-conjugated copy of X (otherwise, the expectation value of that term will

vanish because our Gaussian is complex with zero mean). To proceed, first recall that permuta-

tions are bijective. Therefore, for all j and any given permutation η, there is a unique value yj
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such that σ(2j − 1) = η(2yj − 1) or σ(2j − 1) = η(2yj). Similarly, there is a unique value y′j

such that σ(2j) = η(2y′j − 1) or σ(2j) = η(2y′j). Using this bijectivity and the independence of

matrix elements allows us to separate the single expectation value on the 8n matrix elements in

Eq. (C.12) into a product of 2n expectation values of 4 elements:

n

∏
j=1

E
X∼Gk×2n

[Xℓjσ(2j−1)Xpkjσ(2j−1)X
∗
oijσ(2j−1)

X∗qmjσ(2j−1)
] E
X∼Gk×2n

[Xℓjσ(2j)Xpk′
j
σ(2j)X

∗
oi′

j
σ(2j)X

∗
qm′

j
σ(2j)].

(C.13)

To explain more thoroughly: we have defined ij, kj,mj to be the indices that map to σ(2j − 1)

under τ,α, β, respectively, in the sense that either η(2yj − 1) = σ(2j − 1) or η(2yj) = σ(2j − 1)

for η ∈ {τ,α, β} and y ∈ {i, k,m}, respectively. Because two matrix elements are necessarily

independent if they do not match on the second index, we can separate all elements with σ(2j−1)

as the second element into a single expectation value, hence the first term. To get the second

term, we repeat this argument where i′j, k
′
j,m

′
j are the indices that map to σ(2j) under τ,α, β,

respectively, in the sense that either η(2yj − 1) = σ(2j) or η(2yj) = σ(2j) for η ∈ {τ,α, β} and

y ∈ {i, k,m}, respectively.

Now consider the first expectation value. For a nonvanishing expectation value, we must

appropriately match the first indices of the matrix elements. We have three options: either all

four indices can match, or the indices can be paired off in one of two ways. In the former case,

the expectation value yields 2 given that the elements are complex Gaussian with mean 0 and
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variance 1. By the same logic, the latter two cases yield an expectation value of 1. In summary,

ℓj = pkj = oij = qmj
Ô⇒ E→ 2, (C.14)

(ℓj ≠ pkj) ∧ (ℓj = oij) ∧ (pkj = qmj
) Ô⇒ E→ 1, (C.15)

(ℓj ≠ pkj) ∧ (ℓj = qmj
) ∧ (pkj = oij) Ô⇒ E→ 1. (C.16)

One might naively think that there should be another contribution from matching indices as

(ℓj = pkj) ∧ (ℓj ≠ qmj
) ∧ (qmj

= oij). (C.17)

However, the expectation value in this case actually vanishes, as we are working with complex

Gaussian random variables, meaning the indices need to be matched such that there are an equal

number of conjugated and non-conjugated indices.

We can write this in one simple expression using Kronecker δs as

2δℓjpkj oij qmj
+ δℓjoij δpkj qmj

(1 − δℓjpkj ) + δℓjqmj
δpkj oij (1 − δℓjpkj ) = δℓjoij δpkj qmj

+ δℓjqmj
δpkj oij .

(C.18)

That is,

E
X∼Gk×2n

[Xℓjσ(2j−1)Xpkjσ(2j−1)X
∗
oijσ(2j−1)

X∗qmjσ(2j−1)
] = δℓjoij δpkj qmj

+ δℓjqmj
δpkj oij , (C.19)

which is essentially an application of Isserlis’/Wick’s theorem. Equivalent calculations as those

used to derive Eqs. (C.6) and (C.7) can be made to rewrite each of oij , pkj , qmj
in terms of j,
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giving

δℓjoij δpkj qmj
+ δℓjqmj

δpkj oij =

δℓjo
⌈
τ−1(σ(2j−1))

2 ⌉

δp
⌈
α−1(σ(2j−1))

2 ⌉

q
⌈
β−1(σ(2j−1))

2 ⌉

+ δℓjq
⌈
β−1(σ(2j−1))

2 ⌉

δp
⌈
α−1(σ(2j−1))

2 ⌉

o
⌈
τ−1(σ(2j−1))

2 ⌉

. (C.20)

Thus

E
X∼Gk×2n

[Xℓjσ(2j−1)Xpkjσ(2j−1)X
∗
oijσ(2j−1)

X∗qmjσ(2j−1)
] E
X∼Gk×2n

[Xℓjσ(2j)Xpk′
j
σ(2j)X

∗
oi′

j
σ(2j)X

∗
qm′

j
σ(2j)] =

⎛

⎝
δℓjo

⌈
τ−1(σ(2j−1))

2 ⌉

δp
⌈
α−1(σ(2j−1))

2 ⌉

q
⌈
β−1(σ(2j−1))

2 ⌉

+ δℓjq
⌈
β−1(σ(2j−1))

2 ⌉

δp
⌈
α−1(σ(2j−1))

2 ⌉

o
⌈
τ−1(σ(2j−1))

2 ⌉

⎞

⎠

×
⎛

⎝
δℓjo

⌈
τ−1(σ(2j))

2 ⌉

δp
⌈
α−1(σ(2j))

2 ⌉

q
⌈
β−1(σ(2j))

2 ⌉

+ δℓjq
⌈
β−1(σ(2j))

2 ⌉

δp
⌈
α−1(σ(2j))

2 ⌉

o
⌈
τ−1(σ(2j))

2 ⌉

⎞

⎠
. (C.21)

Therefore,

E
X∼Gk×2n

[∣Haf(X⊺X)∣
4
] = (

1

2nn!
)
4

∑
σ,τ,α,β∈S2n

k

∑
{ℓi,oi,pi,qi}ni=1=1

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

⎛

⎝
δℓjo

⌈
τ−1(σ(2j−1))

2 ⌉

δp
⌈
α−1(σ(2j−1))

2 ⌉

q
⌈
β−1(σ(2j−1))

2 ⌉

+ δℓjq
⌈
β−1(σ(2j−1))

2 ⌉

δp
⌈
α−1(σ(2j−1))

2 ⌉

o
⌈
τ−1(σ(2j−1))

2 ⌉

⎞

⎠

×
⎛

⎝
δℓjo

⌈
τ−1(σ(2j))

2 ⌉

δp
⌈
α−1(σ(2j))

2 ⌉

q
⌈
β−1(σ(2j))

2 ⌉

+ δℓjq
⌈
β−1(σ(2j))

2 ⌉

δp
⌈
α−1(σ(2j))

2 ⌉

o
⌈
τ−1(σ(2j))

2 ⌉

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (C.22)

We can again reparameterize our sums over the permutations by performing a change of variables
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(η−1 ○ σ)→ η for η ∈ {τ,α, β}. This yields

E
X∼Gk×2n

[∣Haf(X⊺X)∣
4
] = (

1

2nn!
)
4

(2n)! ∑
τ,α,β∈S2n

k

∑
{ℓi,oi,pi,qi}ni=1=1

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

(δℓjo
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

+ δℓjq
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

)

× (δℓjo
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

+ δℓjq
⌈
β(2j)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

)

⎤
⎥
⎥
⎥
⎥
⎦

. (C.23)

Expanding the product and summing over ℓj yields

E
X∼Gk×2n

[∣Haf(X⊺X)∣
4
] = (

1

2nn!
)
4

(2n)! ∑
τ,α,β∈S2n

k

∑
{oi,pi,qi}ni=1=1

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

⎛

⎝
δo
⌈
τ(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

+δo
⌈
τ(2j−1)

2 ⌉

q
⌈
β(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

+

δq
⌈
β(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

+δq
⌈
β(2j−1)

2 ⌉

q
⌈
β(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

(C.24)

This equation is the starting point of a new graph-theoretic approach.

As discussed in Chapter 4, we use Eq. (C.24) to define graphs, examples of which are pro-

vided in Fig. 4.2(b) and Fig. C.2(a). Specifically, we let Gτ,α,β(z) be a graph on 6n vertices, with

labels {Oi, Pi,Qi}
2n
i=1, and z an integer from 1 to 4n. As was the case for the proof of the first mo-

ment, we use the Kronecker δs to define black and red edges. z enumerates the different patterns

of black edges, and τ,α, β determine the red edges. Specifically, there is a red edge between Oj

and Oj′ if ⌈τ(j)/2⌉ = ⌈τ(j′)/2⌉, and similarly for the O and Q vertices using permutations α

and β, respectively. However, given a choice of permutations, there are 4n possible sets of black

edges that correspond to the 4n possible combinations of terms in Eq. (C.24). The sets of edges
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corresponding to each term are listed below:

δo
⌈
τ(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

→ {(O2j−1,O2j), (P2j−1,Q2j−1), (P2j,Q2j)},

(C.25)

δo
⌈
τ(2j−1)

2 ⌉

q
⌈
β(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

q
⌈
β(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

→ {(O2j−1,Q2j), (P2j−1,Q2j−1), (O2j, P2j)},

(C.26)

δq
⌈
β(2j−1)

2 ⌉

o
⌈
τ(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

q
⌈
β(2j)

2 ⌉

→ {(O2j,Q2j−1), (P2j−1,O2j−1), (P2j,Q2j)},

(C.27)

δq
⌈
β(2j−1)

2 ⌉

q
⌈
β(2j)

2 ⌉

δp
⌈
α(2j−1)

2 ⌉

o
⌈
τ(2j−1)

2 ⌉

δp
⌈
α(2j)

2 ⌉

o
⌈
τ(2j)

2 ⌉

→ {(O2j−1, P2j−1), (O2j, P2j), (Q2j−1,Q2j)}.

(C.28)

We refer to these sets of black edges as type-1, type-2, type-3, and type-4, respectively. We

take the convention that our graphs have the vertices organized into three rows and 2n columns.

The first, second, and third rows correspond to type-O, −P , and −Q vertices, respectively. The

columns are ordered by index i. Using this convention, black edges are constrained to lie within

groups of two columns 2i − 1 and 2i using one of the four patterns described above. Again, see

Fig. 4.2(b) and Fig. C.2(a) for examples (please note that Fig. C.2(a) is not fully general, as it

only has type-1 and type-4 black edges, but it does show that patterns of black edges can repeat,

and it shows how z identifies the patterns of black edges present in the graph).

We repeat the conclusion of Chapter 4, which is that we can map the number of “free

indices” in the Kronecker δs to the number of connected components C(Gτ,α,β(z)) of the graph

Gτ,α,β(z). Each graph contributes kC(Gτ,α,β(z)) to the sum, which means that the second moment
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can be written as

M2(k,n) =
(2n)!

(2nn!)
4 ∑
τ,α,β∈S2n

∑
z∈[4n]

kC(Gτ,α,β(z)), (C.29)

which is Eq. (4.8). Removing the degeneracies induced by different permutations, and defining

G2
n(z) to be the set of graphs for the zth set of black edges and G2

n ∶= ⋃
4n

z=1G2
n(z), we get a final

result of

M2(k,n) = (2n − 1)!! ∑
G∈G2

n

kC(G). (C.30)

This is Eq. (4.9).

C.3 Proofs of Theorem 4.1, Theorem 4.2, and Lemma 4.1

In this Appendix, we give the proofs of Theorem 4.1, Theorem 4.2, and Lemma 4.1 that

were presented in Chapter 4. We start with a restatement and proof of Theorem 4.1, which gives

the first moment of the output probabilities.

Theorem C.1. The sum over graphs in G1
n satisfies

∑
G∈G1

n

kC(G) = k(k + 2) . . . (k + 2n − 2). (C.31)

and hence M1(k,n) = (2n − 1)!!(k + 2n − 2)!!/(k − 2)!!.

Proof. We proceed by induction on n. Let f(k,n) be the LHS of Eq. (C.31). For the base case

n = 1, there is only a single possible graph G that has a single connected component. Thus

f(k,1) = k. For the inductive step, which is visualized in Fig. C.1, consider two subsets of

G1
n. The first set has graphs that possess a red edge between O1 and O2, which means that these
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two vertices form their own connected component (recall that O1 and O2 are always connected

with a black edge). Summing kC(G) over all graphs of this type then yields a contribution of

kf(k,n− 1). The other subset of G1
n has graphs that possess a red edge between O1 and a vertex

besides O2, say Ox. In these graphs, the number of connected components in the graph does not

change if one collapses the three vertices O1, O2, and Ox into a single vertex (because they are

all connected by either a black or red edge). Therefore, because there are 2n − 2 choices for the

vertex Ox linked to O1 by a red edge, we get an overall contribution of (2n− 2)f(k,n− 1) when

summing kC(G) over these graphs.

Overall then, we find that

f(k,n) = kf(k,n − 1) + (2n − 2)f(k,n − 1) (C.32)

= (k + 2n − 2)f(k,n − 1) (C.33)

= (k + 2n − 2)(k + 2n − 4) . . . (k + 2)k, (C.34)

which proves the formula (and where the inductive hypothesis is used in the final equality).

We note briefly that the structure of this proof is similar to that used in Ref. [182] to cal-

culate E
X∼Gn×n

[∣HafX ∣
4
]. The proofs are similar because there are four copies of X in each, but

the proofs are not identical given that different definitions of the hafnian are used. Addition-

ally, similar graphs, and a similar calculation involving enumerating the number of graphs of a

given number of connected components, show up in the bioinformatic study of breakpoint graphs

(which are a type of graph defined by two perfect matchings that show up in the theory of com-

parative genomics) [183].
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Figure C.1: Visualization of the inductive step in the proof of the first moment of the output
probabilities (Theorem 4.1, restated here in this Appendix as Theorem C.1). The inductive step
proceeds in two cases that are determined by the red edge that connects to the first vertex in the
graph in G1

n. In (a), we consider the case where the first two vertices, which are linked by a black
(solid) edge, are also linked by a red (dashed) edge, meaning they comprise a single connected
component. This contributes a factor of k times the contribution from a graph in G1

n−1, which
comes from the remaining 2n − 2 vertices and their edges. (b) considers the case where the first
vertex is linked via a red edge to a different vertexOx ≠ O2 for which there are 2n−2 choices (here
a = 3). The number of connected components does not change after identifying and combining
the three vertices that are connected in this way (visualized by the blue background), meaning
we again reduce down to a graph in G1

n−1, but this time without the multiplicative factor of k.

We next move on to a proof of Theorem 4.2, which gives the form of the second moment

as a polynomial in k. We again restate the theorem for convenience.

Theorem C.2. The second moment M2(k,n) is a degree-2n polynomial in k and can be written

asM2(k,n) = (2n−1)!!∑
2n
i=1 cik

i, where ci is the number of graphsG ∈ G2
n that have i connected

components.
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Proof. As mentioned in Chapter 4, once Eq. (4.9) is derived, the theorem follows after deriving

the correct limits of summation. Trivially, the fewest possible number of connected components

is 1. To see that the largest possible number of connected components is 2n, we consider the four

patterns of black edges that are illustrated in Fig. 4.2(b) and how many connected components

can possibly occur in graphs with those different patterns. See also Fig. C.2 for a reminder of the

patterns of black edges and a visual explanation of the following argument.

First note that, because all vertices are paired via black edges, every connected component

has an even number of vertices. Therefore, the two smallest sizes of connected components are 2

and 4 vertices. In order to get a connected component of size 2, one must connect a pair of vertices

with both a black and a red edge. Red edges are constrained to lie in a single row, meaning only

type-1 and type-4 patterns of black edges, which contain a pair of vertices connected by a black

edge in the same row, can yield a connect component of size 2. Pairing off the remaining vertical

black edges yields connected components of size 4, the next smallest size.

Therefore, the maximum number of connected components arises from taking only type-1

and type-4 edges. This requires connecting each horizontal black edge by red edge (creating a

connected component with 2 vertices) and then pairing off the vertical edges coming from the

same type. This allows for the maximal 2 connected components per set of six vertices, meaning

2n total connected components.

We also prove Lemma 4.1, which we again restate for convenience:

Lemma C.1 We have that

i. M2(1, n) = ((2n − 1)!!)44n

ii. c2n = (2n)!!
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(a)

(b)
Type 4

Type 2Type 3

Type 1

Figure C.2: (a) Example graph in G2
6 showing how to achieve an average of two connected com-

ponents per set of six vertices using only type-1 and type-4 sets of edges. All vertices connected
by horizontal black (solid) edges are also connected by red (dashed) edges. All type-1 verti-
cal edges are paired off, as are type-4 vertical edges. Note that this graph would correspond to
z = 1 + 3 × 45 + 0 × 44 + 0 × 43 + 0 × 42 + 3 × 41 + 3 × 40 = 3088. (b) Example showing how using
type-2 and type-3 black edges lead to, at most, three connected components per two sets of six
vertices.

Proof. Part (i): examine Eq. (C.24). Because k = 1, oi = pi = qi = 1 for all i. Thus, regardless

of the permutation, all Kronecker δs are always satisfied. This means that, independent of the

permutation, each factor is always 4 such that the product becomes 4n. The sum over the three

copies of S2n then simply yields a factor of (2n)!3. The result then follows.

Part (ii): we argued in the proof of Theorem C.2 that the leading-order term in the poly-

nomial expansion of the second moment is k2n, and it comes from graphs that consist of only

type-1 and type-4 black edges. Each type-1 and type-4 set of edges contains a horizontal black

edge, and the two vertices linked by that black edge also must be linked by a red edge to create

a 2-vertex connected component. Additionally, the vertical edges of the type-1 sets need to be
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paired off via red edges; similarly, the vertical edges of the type-4 sets need to be paired off. This

ensures that each other connected component has exactly 4 vertices, maximizing the number of

possible connected components.

Fig. C.3 visualizes how to now reduce the remaining calculation to the value of the first

moment when k = 2. If we imagine collapsing each pair of adjacent vertical edges (i.e., those

coming from the same group of 6 vertices) onto a pair of vertices connected by a black edge,

we reproduce the atomic graph from the proof of the first moment. Here, by atomic graph, we

mean the vertices and the fixed black edges which are shared by all graphs; the red edges are not

yet included. Explicitly, there are 2n vertices, and vertices O2i−1,O2i are connected with a black

edge. The black edges here act to identify that the original uncollapsed vertical edges were of

the same type. Drawing red edges in the simplified graph on 2n vertices corresponds to pairing

off vertical edges in the original graph on 6n vertices with red edges. Note that this also implies

that red edges connect vertical edges of the same type. Therefore, a connected component in

the simplified graph could correspond to two preimages in the original graph: either all type-1

vertical edges, or all type-4 vertical edges. Then, by summing over all graphs and weighting each

connected component by 2, we are effectively evaluating f(2, n) in Eq. (C.31), i.e.:

f(2, n) =
(k + 2n − 2)!!

(k − 2)!!
∣
k=2
= (2n)!!. (C.35)
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(a)

(b)

(c)

Figure C.3: Visualization of how the calculation of the coefficient of the leading-order term in
the second moment can be reduced to the k = 2 case of the first moment. Recall that black edges
are solid and red edges are dashed. (a) As proven in Theorem 4.2, graphs that maximize the
number of connected components contain only type-1 and type-4 black edges. (b) To maximize
the number of connected components, the horizontal black edges must form their own connected
component with two vertices, meaning their vertices must be connected by a red edge. Further-
more, each vertical black edge must be paired off with exactly one other vertical black edge of the
same type, forming a connected component with 4 vertices. We draw dotted boxes around the two
black vertical edges to show that they come from the same type. (c) If we collapse each vertical
edge onto a single vertex and then connect that vertex to the vertex stemming from its adjacent
edge in the original graph (i.e. the other vertical edge from the same group of six vertices), then
we reduce to the atomic graph (i.e., the graph with the fixed black edges, but without red edges)
from the proof of the first moment. Red edges on this collapsed graph would then correspond
to pairing off vertical edges in the original graph with red edges. Because paired edges in the
original graph can only exist between edges of the same type, each connected component in the
simplified graph could have come from either type-1 or type-4 vertical edges. This is equivalent
to setting k, the contribution from each connected component, to 2, and then evaluating f(2, n).
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C.4 Approximate Hiding and Asymptotics of the First Moment

In this Appendix, we discuss more thoroughly the connection between hiding, the relevant

sample space, and the first moment of squared hafnians of generalized COE matrices.

In Chapter 4, we introduce the normalized average outcome-collision probability as a

measure of anticoncentration. Fixing the output state to have 2n photons, we write this as

∣Ω2n∣EU∈U(m)[∑n∈Ω2n
PU(n)2], where Ω2n is the space of collision-free outcomes with 2n pho-

tons in m modes, and its size, which we write as ∣Ω2n∣, is simply (m2n). We here work specifi-

cally with the non-collisional sample space because, in order for hiding to hold, collisions have

to be negligible (a non-negligible likelihood of repeated columns in U⊺1k,nU1k,n would prevent

this distribution from being well approximated by X⊺X with X Gaussian). And, indeed, when

n = o(
√
m), it is easy to see that the size of the full sample space of 2n photons in m modes,

(
m+2n−1

2n
), approaches ∣Ω2n∣ = (

m
2n
) when n≫ 1. In particular,

m2n

(2n)!
≤
(m + 2n − 1)!

(m − 1)!(2n)!
≤
(m + 2n − 1)2n

(2n)!
(C.36)

and
(m+2n−1)2n
(2n)!
m2n

(2n)!
= (1 +

2n − 1

m
)
2n

n≫1
Ð→ 1 (C.37)

because (2n− 1)/m = o(1/n). That is, Ω2n is the dominant contribution to the full sample space.

We proceed to then replace ∣Ω2n∣ with the expected value of the outcome probabilties,

EU[PU(n)], that is, the first moment over input unitaries of a specific outcome. This holds

assuming that the hiding property in Conjecture 4.1 holds. Roughly, hiding ensures that we

do not preference any individual outcome, meaning we can replace the expected value over all
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probabilities with that over unitaries for a single probability. By linearity of expectation (and the

fact that probabilities sum to unity), this expectation over unitaries should simply be the inverse

of the size of the sample space of non-collisional outcomes. Finally, Conjecture 4.1 also gives us

an approximate equality between EU[PU(n)] and M1, the first moment of the squared hafnian

of generalized COE matrices (properly rescaled to contain the correct prefactors).

We therefore now show that our calculation of the first moment in the hiding regime is con-

sistent with the above discussion in the sense that EU[PU(n∣∑i ni = 2n)] = EU[PU(n)]/P (2n)

is asymptotically equal to ∣Ω2n∣
−1 = (m2n)

−1
assuming Conjecture 4.1. Here, P (2n) is the proba-

bility that our output is in the 2n-photon sector (i.e., the probability that Ω2n is the proper sample

space to consider in the first place).

Recall our input state has the first k of m modes prepared in the single-mode squeezed

vacuum state with identical squeezing parameter r, and the remaining m − k modes are prepared

in the vacuum state. The probability of an outcome n is given by Eq. (4.1):

PU(n) =
tanh2n r

coshk r
∣Haf(U⊺1k,nU1k,n)∣

2
, (C.38)

where U1k,n is the submatrix of U given by the first k rows and the columns dictated by where n

is nonzero. Define Ũ1k,n ∶=mU1k,n. Using multiplicativity of the Hafnian, one finds

PU(n) =
tanh2n r

coshk r

1

m2n
∣Haf(Ũ1k,nŨ

⊺
1k,n
)∣

2
. (C.39)

Assuming Conjecture 4.1, then U⊺1k,nU1k,n ∼ X
⊺X where X ∼ N (0,1/m)k×2nc , which means

Ũ⊺1k,nŨ1k,n ∼ X
⊺X , but now X ∼ N (0,1)k×2nc . Then, by Conjecture 4.1 and Theorem 4.2, we
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find

E
U∈U(m)

[∣Haf(Ũ⊺1k,nŨ1k,n)∣
2
] ≈ E

X∈Gk×2n
[∣Haf(X⊺X)∣

2
] =
(2n)!

2nn!

(k + 2n − 2)!!

(k − 2)!!
, (C.40)

where the first part of the equation is not an equality precisely because the hiding in Conjec-

ture 4.1 is not exact. This implies that

EU[PU(n)] ≈
tanh2n r

coshk r

1

m2n

(2n)!

2nn!

(k + 2n − 2)!!

(k − 2)!!
. (C.41)

Now, a single-mode squeezed vacuum state with squeezing parameter r and phase ϕ has

Fock-state expansion given by

∣SMSV⟩ =
1

√
cosh r

∞
∑
ℓ=0
(−eiϕ tanh r)ℓ

√
(2ℓ)!

2ℓℓ!
∣2ℓ⟩ . (C.42)

Therefore, the probability of measuring 2ℓ photons is

∣⟨2ℓ∣SMSV⟩∣2 =
tanh2ℓr

cosh r

(2ℓ)!

(2ℓℓ!)2
. (C.43)

Given k independent single-mode squeezed vacuum states, the probability of finding 2n total

photons is the k-fold convolution of the Fock-basis probability distribution of one single-mode

squeezed vaccuum state:

P (2n) = ∑
2ℓ1+⋅⋅⋅+2ℓk=2n

k

∏
i=1

tanh2ℓir

cosh r

(2ℓi)!

(2ℓiℓi!)2
=
tanh2n r

coshk r

1

22n
∑

2ℓ1+⋅⋅⋅+2ℓk=2n

k

∏
i=1
(
2ℓ1
ℓ1
). (C.44)
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This probability distribution is unchanged if the k independent single-mode squeezed vacuum

states are acted upon by a linear-optical unitary before measurement (such a unitary does not

change the photon number, only the location of the photons). The combinatorial identity at the

core of this k-fold convolution has been calculated before in Refs. [184, 185]. Specifically,

∑
2ℓ1+⋅⋅⋅+2ℓk=2n

k

∏
i=1
(
2ℓ1
ℓ1
) = 4n(

n − 1 + k/2

n
), (C.45)

where we note that Eq. (C.45) holds even in the case where k is odd using a generalization of the

binomial coefficients in terms of the Γ function.

The overall probability of finding 2n photons from k independent single-mode squeezed

vacuum states, even after the application of a linear optical unitary, is therefore

P (2n) =
tanh2n r

coshk r

1

22n
4n(

n − 1 + k/2

n
) =

tanh2n r

coshk r
(
n − 1 + k/2

n
). (C.46)

We note that this expression, but not the full derivation, is also provided in Ref. [100]. A bit of

algebraic manipulation reveals

P (2n) =
tanh2n r

coshk r
(
n − 1 + k/2

n
) =

tanh2n r

coshk r

(2n − 1)!!(k + 2n − 2)!!

(2n)!(k − 2)!!
(C.47)

=
1

(2n)!

tanh2n r

coshk r
E

X∼Gk×2n
[∣Haf(X⊺X)∣

2
].

According to Eq. (C.41), then

P (2n) ≈
m2n

(2n)!
EU[PU(n)], (C.48)
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which finally implies

EU[PU(n)]
P (2n)

≈
(2n)!

m2n
≈ (

m

2n
)
−1
= ∣Ω2n∣

−1, (C.49)

where the first approximation is due to the fact that hiding is not exact, and the second approxi-

mation holds in the photon non-collisional regime.

C.5 Details on Definitions of Anticoncentration

In this Appendix, we discuss some of the details behind our definition of anticoncentration

and how it relates to the standard notion of anticoncentration often used in the literature. We

also discuss how these different definitions interact when it comes to showing anticoncentration

holds for the exact distribution of the output probabilities of GBS given anticoncentration of the

approximate distribution.

C.5.1 Definitions

We first discuss in somewhat more detail the relevance of anticoncentration to the argu-

ment for hardness of sampling from the output distribution of GBS. This argument makes use

of an approximate counting algorithm due to Stockmeyer [34]. Roughly, we assume that there

is an efficient sampling algorithm for GBS that, given a linear-optical unitary U , samples from

a distribution QU which is close up to a constant ϵ > 0 to the ideal GBS distribution PU (recall

Eq. (4.1)) in total-variation distance

tvd(PU ,QU) ∶=
1

2
∑
n

∣PU(n) −QU(n)∣ ≤ ϵ. (C.50)
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Supposing such a sampling algorithm exists, and given the so-called hiding property (see Section

D of Ref. [28] for details), we can use it as input to Stockmeyer’s algorithm. Stockmeyer’s

algorithm then approximates the probability PU(n) up to an error given by

ε =
1

poly(n)
PU(n) +

2ϵ

∣Ω∣δ
(1 +

1

poly(n)
) , (C.51)

with probability 1 − δ over n, where Ω is the sample space on which PU is defined. If it is

sufficiently hard (#P-hard, to be precise) to approximate the outcome probabilities PU(n) up

to the error (C.51), on the instances on which our approximation scheme achieves this error,

this rules out the approximate sampling algorithm up to very reasonable complexity-theoretic

conjectures (one of which is the non-collapse of the polynomial hierarchy, a generalization of the

famous P ≠NP conjecture). The required property is thus what we call “approximate average-

case hardness,” that is, the statement that any algorithm which is able to compute PU(n) with

probability 1 − δ over the instances up to the error (C.51) is able to solve any #P-hard problem

(of the same difficulty as approximating the outcome probabilities PU(n) up to the error (C.51)).

While we know average case hardness of approximating the outcome probabilities up to

error 2−Ω(n logn) [101, 186], it is only conjectured for the relevant approximation error given by

either c1PU(n) or c2/∣Ω∣ for constants c1, c2 > 0. Anticoncentration serves as evidence for the

truth of the conjecture, the idea being the following: suppose that most of the outcome probabil-

ities are very close to zero, i.e. ≪ ϵ/2−n, meaning only a vanishing fraction of them are relevant.

Then a high approximation error on the relevant probabilities is tolerable, because we only need

to distinguish between relevant and irrelevant outcomes, and a sufficiently good approximation

to the irrelevant ones is zero. This is a significantly easier task than if the distribution is highly
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spread out and a large fraction of the probabilities is “relevant” in the sense that all of the relevant

probabilities are of the same order of magnitude as the uniform distribution.

In the standard argument, this intuition is formalized as the statement

Pr
U∈U(m)

[PU(n) ≥
α

∣Ω∣
] ≥ γ(α), (C.52)

for some constants α, γ(α) > 0. In this formulation, we have made crucial use of the hiding

property, which asserts that the distribution over circuits is invariant under a procedure by which

we “hide” a particular outcome n in the probability of obtaining a different outcome n′ of a

random circuit. This allows us to restrict our attention to the distribution over circuits of a fixed

outcome n.

The anticoncentration property (C.52) implies that the error (C.51) is dominated by the first

term on a γ(α)(1−δ) fraction of the instances because with probability γ(α)we can upper bound

the second term by PU(n). But, if a large fraction of the probabilities is larger than uniform, then

none of them can be much larger than uniform and, hence, the approximation error needs to be

exponentially small. Thus, we expect that, in the presence of anticoncentration, approximating

the outcome probabilities up to the error (C.51) is much harder than without anticoncentration,

lending credibility to the approximate average-case hardness conjecture.

In our definition of anticoncentration, we consider the (normalized) average collision prob-
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ability

P2(U(m)) ∶= ∣Ω∣∑
n∈Ω

EU∈U(m) [PU(n)2] (C.53)

hiding
= ∣Ω∣2EU∈U(m) [PU(n)2] . (C.54)

The collision probability is the probability that, were one to sample the distribution twice, one

would receive the same outcome both times. For very flat distributions it is very small. With

the normalization, the collision probability of the uniform distribution is given by 1, which is

its minimal value. On the other hand, the normalized collision probability of a fully peaked

distribution with a single unit probability is given by ∣Ω∣.

The average collision probability is thus another measure of the anticoncentration of the

outcome probabilities in the ensemble of linear-optical unitaries. It is a more coarse-grained

measure, though, because it is only an average quantity. Indeed, a (constantly) small average

collision probability implies anticoncentration in the sense of (C.52) via the Paley-Zygmund

inequality as

Pr
U∈U(m)

[PU(n) ≥
α

∣Ω∣
] ≥ (1 − α)2

1

P2(U(m))
. (C.55)

The relevant quantity of interest to anticoncentration is thus the inverse average collision proba-

bility p2(U(m)) = 1/P2(U(m). Because by hiding the first moment EU[PU(n)] must evaluate

to the inverse size of the sample space, we can rewrite p2 for GBS as

p2(U(m)) =
EU∈U(m)[PU(n)]2

EU∈U(m)[PU(n)2]
≈
M1(k,n)2

M2(k,n)
=m2(k,n). (C.56)
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In Chapter 4, we define various degrees of anticoncentration in terms of the inverse average

collision probability p2, which we recall here.

(A) We say that PU , U ∈ U(m) anticoncentrates if p2 = Ω(1).

(WA) We say that PU anticoncentrates weakly if p2 = Ω(1/na) for some a = O(1).

(NA) And we say that it does not anticoncentrate if p2 = O(1/na) for any constant a > 0.

Here, we motivate those definitions in more detail. Clearly (A) implies anticoncentration in the

sense of Eq. (C.52), hence the definition.

Lack of anticoncentration (NA) Ignoring the average over unitaries, p2 upper-bounds the sup-

port of the distribution by p2∣Ω∣, as the maximum-entropy state is the uniform distribution. Let us

assume for simplicity that p2 is actually exponentially small. An exponentially small value of p2

implies that the average support of the outcome distributions PU is exponentially small, implying

that at least a constant fraction (over U ) of the distributions PU has exponentially small sup-

port, and conversely exponentially larger than uniform probabilities on that support. At least for

those distributions, this implies an exponentially larger error tolerance compared to 1/∣Ω∣. Such

an exponentially larger error tolerance makes the approximate average-case hardness conjecture

significantly stronger, presumably even untenable.

While it is possible that for a constant fraction of the U we are in this scenario (see Sec-

tion V.C of Ref. [187] for an example), while for another constant fraction, the probabilities

are highly spread out, making the anticoncentration property (C.52) true, this seems like an ex-

tremely unlikely state of affairs. Indeed, the hiding property implies that it should not matter

whether we talk about the distribution over unitaries or over outcomes, which means that the
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situation described above is a generic feature, rendering (C.52) false in case p2 is exponentially

small.

Weak anticoncentration (WA) Our results show that weak anticoncentration holds in the regime

of k →∞. But why do we think of a polynomially decaying p2 as weak anticoncentration rather

than no anticoncentration?

We argue that this is a meaningful regime in the sense that there is a stronger—but not

inconceivable—approximate average-case hardness conjecture associated with the weak anti-

concentration regime. To see this, observe that weak anticoncentration implies anticoncentration

in the sense of Eq. (C.52) with γ(α) = Ω(1/poly(n)), which means that an inverse polynomial

fraction of the outcome probabilities are larger than uniform. Technically, using Stockmeyer’s

algorithm we can thus achieve a multiplicative error for an inverse polynomial fraction of the

outcome probabilities. To rule out an efficient classical sampler, we thus need to conjecture

approximate average-case hardness with constant relative errors for any inverse polynomial frac-

tion of the instances. Equivalently, we can formulate a similar conjecture for a polynomially

large relative or subexponentially large additive error on a constant fraction. While clearly much

stronger than the requirement of anticoncentration, this is qualitatively different from the lack of

anticoncentration scenario (NA), where the difference is superpolynomial.

C.5.2 Anticoncentration of the Exact Distribution

We also need to show that our definition of anticoncentration allows us to translate between

anticoncentration of the approximate distribution based on the hafnians of random Gaussian ma-

trices, which we will refer to as PX(n), and anticoncentration of the true distribution, PU(n). For
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a given output n, let DU be the distribution of the symmetric product U⊺1k,nU1k,n with U ∈ U(m).

Let DX be the distribution of the symmetric product X⊺X with X ∼ N (0,1/m)k×2nc . In Conjec-

ture 4.1, we conjecture thatDU andDX become close in total variation distance when n = o(
√
m).

However, precisely how close these two distributions are is crucial to whether or not anticoncen-

tration translates between the two output probabily distributions. In what follows, we will refer

to anticoncentration in the sense of Eq. (C.52) as “standard” anticoncentration, and our definition

of anticoncentration as “moment-based.”

Ideally, we would be able to prove that statements about moment-based anticoncentration

of PX(n) imply equivalent statements about moment-based anticoncentration of PU(n). How-

ever, under worst-case assumptions, we can only show that moment-based anticoncentration of

PX(n) implies standard anticoncentration of PU(n). To understand this, let us fix some notation.

Let also 1[⋅] be an indicator function which is 1 if the argument is true and 0 if it is false. Let dµ

be the Lebesgue measure on C2kn (as we consider k × 2n complex matrices) and pU(A), pX(A)

be the respective probabilities of generating A from DU and DX .

Now, let the total-variation distance between DU and DX be less than δ. Then

Pr
U∈U(m)

[PU(n) ≥ ϵ] = ∫ dµpU(A)1[PA(n) ≥ ϵ] (C.57)

= ∫ dµ (pU(A) − pX(A) + pX(A))1[PA(n) ≥ ϵ] (C.58)

= ∫ dµ (pU(A) − pX(A))1[PA(n) ≥ ϵ] + ∫ dµpX(A)1[PA(n) ≥ ϵ]

(C.59)

≥ −2δ + Pr
X∈G
[PX(n) ≥ ϵ]. (C.60)
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In this calculation, we have used the Radon-Nikodym theorem [188] to express the probability

measures that define DU and DX as pU(A)dµ and pX(A)dµ, respectively. Therefore

Pr
U∈U(m)

[PU(n) ≥
α

∣Ω2n∣
] ≥ Pr

X∈G
[PX(n) ≥

α

∣Ω2n∣
] − 2δ ≥ (1 − α)2

1

m2(k,n)
− 2δ. (C.61)

The final step follows from the Paley-Zygmund inequality for the approximate distribution.

This proves that we can translate statements on anticoncentration as long as 2δ is smaller than

m2(k,n)−1, which, as we show in Chapter 4, means δ = o(n−1/2).

With this in mind, we can make the following more precise version of Conjecture 4.1 such

that, if it holds, moment-based weak anticoncentration of the approximate distribution implies

standard weak anticoncentration of the exact distribution:

Conjecture C.1 (Formal). Let DU be the distribution of the symmetric product U⊺1k,nU1k,n with

U unitary and n some non-collisional outcome of a Gaussian Boson Sampling experiment. Let

DX be the distribution of the symmetric product X⊺X with X ∼ N (0,1/m)k×2nc . Then, for any k

such that 1 ≤ k ≤m, and for any δ > 0 such that m ≥ n2/δ,

tvd(DU ,DX) = O(δ). (C.62)

Specifically, if δ = o(n−1/2), then m ≥ n5/2.

The motivation behind the choice of m ≥ n2/δ is based on the equivalent conjecture for

Fock Boson Sampling in Ref. [27]. There, the authors are able to prove the equivalent result

for m ≥ n5+ϵ/δ (for arbitrarily small, constant ϵ), but they suspect that the result can be pushed

further to m ≥ n2/δ. We note that this choice makes our formal conjecture slightly stronger than
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the equivalent formal conjecture in Ref. [101].

As we have shown, in order to translate our results on moment-based weak anticoncen-

tration from the approximate to the true distribution in the worst case, we require δ = o(n−1/2).

Therefore, in order to translate statements about anticoncentration, the formal version of our

conjecture requires m ≥ n5/2.

However, it is worth noting that we do not believe that this worst-case scenario truly reflects

the way in which PX(n) approaches PU(n), i.e., where all of the error is concentrated on a single

probability. In general, the intuition is that if hiding holds, then it is more likely that the errors are

more evenly distributed amongst all of the exponentially many output probabilities. Using this

intuition, each individual probability only receives an error of approximately δ/∣Ω2n∣. If this is

true, then we can show that moment-based weak anticoncentration of PX(n) does actually imply

the same for PU(n). Specifically, say that PU(n) ≈ PX(n)± δ/∣Ω2n∣ ≈ PX(n)± δE[PX(n)] (as

per Appendix C.4). Then

E[PU(n)2]
(E[PU(n)])2

≈
E[(PX(n) ± δE[PX(n)])2]
(E[PX(n) ± δE[PX(n)]])2

(C.63)

=
E[PX(n)2] ± 2δE[PX(n)]2 + δ2E[PX(n)]2

(1 ± δ)2E[PX(n)]2
(C.64)

≈
1

(1 ± δ)2
E[PX(n)2]
(E[PX(n)])2

+
±2δ + δ2

(1 ± δ)2
(C.65)

=
1

(1 ± δ)2
E[PX(n)2]
(E[PX(n)])2

+ 1 −
1

(1 ± δ)2
(C.66)

≤
1

(1 − δ)2
E[PX(n)2]
(E[PX(n)])2

+ 1. (C.67)

In our case, where the normalized second moment of PX(n) scales at least polynomially in n,

and δ scales inverse polynomially in n, weak anticoncentration or lack of anticoncentration of
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PX(n) in terms of the normalized second moment adequately translates to PU(n) as well. Note

that, in this case, we are assuming that δ, which is the total variation distance between the distri-

butions of matrices, extends to a bound on the total variation distance between the probabilities

themselves. This intuitively arises from the fact that any map from the distribution of the matrices

to probabilities must be bounded, meaning we can translate the total variation distance from one

to the other (however, formalizing this would require dealing with some subtleties induced by the

fact that the hafnian of a product of Gaussians is not technically bounded, but any large hafnians

only arise with extremely small probabilities).

C.6 Scattershot Boson Sampling Explanation of the Transition in Anticoncen-

tration

In Scattershot Boson Sampling (SBS), the setup is as follows. m = ω(n2) two-mode

squeezed states with squeezing parameter r are prepared. The photon number distribution of

the two-mode squeezed states is supported on Fock states of the form ∣n⟩ ∣n⟩ for n ∈ N0. One

half of each two-mode squeezed state is then measured in the Fock basis, yielding, with high

probability, an outcome ni ∈ {0,1} (assuming r is small enough). Collecting outcomes in the

vector n = (n1, . . . , nm), the other half of the input modes is now in the postselected state

∣n⟩ =⊗m
i=1 ∣ni⟩. The outcome probabilities after passing this input state through the linear optical

unitary U and measuring in the Fock basis yielding outcome o = (o1, . . . , om), oi ∈ {0,1} is then

given by

PU(n,o) = ∣Per(Un,o)∣
2 (C.68)
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of the submatrix Un,o in which we select the rows and columns according to the indices with

nonzero entries in n and o. But conditioned on input and output states being collision-free

and the hiding property, the distribution of matrices Un,o equals that of the Boson Sampling

submatrices U1n,o, where the photons in the input state are by convention in the first n modes.

The properties of Scattershot Boson Sampling postselected on collision-free outcomes in a fixed

photon number sector are therefore equal to the properties of standard Boson Sampling.

We now argue that this equivalency hinges essentially on the fact that at least ω(n2) of the

input modes are squeezed. To this end, consider a modification of Scattershot Boson Sampling

in which only k out of the m modes are prepared in one half of a two-mode squeezed state, while

the remaining m − k modes are prepared in the vacuum state. This closely resembles the GBS

setting, of course. Let us also consider a squeezing parameter r of every two-mode squeezed

state chosen such that the mean photon number after postselection is given by n. To achieve this,

we pick the mean photon number per mode, which is given by sinh2
(r) to be equal n/k to obtain

a total of k sinh2 r = n photons on average. This ensures that in the postselection we end up with

n photons with high probability.

Recall that a two-mode squeezed vacuum state with squeezing parameter r and phase ϕ has

a Fock expansion given by

∣TMSV⟩ =
1

cosh(r)

∞
∑
ℓ=0
(−eiϕ tanh r)n ∣nn⟩ , (C.69)

thus leading to a probability of measuring ℓ photons in one mode of tanh2ℓ r/ cosh2 r. There-

fore, if the input consists of k two-mode squeezed vacuum states, then the probability that, after
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measuring one half of each state, one observes a collision is

Pr[collision] = 1−(
1

cosh2 r
+
tanh2 r

cosh2 r
)

k

= 1−(
1

1 + n/k
+

n/k

(1 + n/k)2
)

k

= 1−
⎛

⎝
1 − (

n/k

1 + n/k
)

2
⎞

⎠

k

.

(C.70)

We can rewrite this via Taylor series as

Pr[collision] = 1 − exp(−
n2

k
+ kO(n/k)3)) (C.71)

assuming k = ω(n). This collision probability remains lower bounded by a constant for k =

O(n2), but vanishes for any k = ω(n2). Thus, the probability of a collision in the input state

of SBS remains high until k = Θ(n2) and decays then. But because in SBS the roles of the

(postselected) input state and the output state are symmetric, a collision implies a failure of hiding

and, therefore, a failure of anticoncentration in the regime k = O(n2). Conversely, for k = ω(n2)

we believe that hiding holds [27, 108], and hence Lemma 8.8 of Aaronson and Arkhipov [27]

shows weak anticoncentration for SBS with the inverse average collision probability p2 = 1/n in

this regime.

This shows that generalized SBS with a variable number of input squeezed states undergoes

a transition in anticoncentration as we find it here for the case of GBS. It is not at all clear that the

transition in SBS implies a transition in GBS, however, as GBS does not involve postselection.

Indeed, in SBS, the anticoncentration coincides with—or rather is—a transition in the hiding

property. In GBS, in contrast, hiding is conjectured to hold for all k, while we do see the transition

in anticoncentration. The situation in GBS is not immediately comparable to that in this modified

SBS scenario because the input single-mode squeezed states are supported on even numbers of
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photons, and therefore any nonzero photon number input states are collision-full. Therefore, as

mentioned in the discussion in Chapter 4, the possible connections outlined here deserve future

consideration.
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Appendix D: Appendices Associated with Chapter 5

In the Appendices, we provide details and derivations that supplement the discussion in

Chapter 5.

• Appendix D.1: We discuss the classical complexity of evaluating the recursion and show

that it is efficient (i.e., the time and space required scale polynomially) in the Fock sector

n;

• Appendix D.2: We provide the graph-theoretic details for how to derive the recursion;

• Appendix D.3: We discuss how to compute individual coefficients of the polynomial ex-

pansion of the second moment. Specifically, we give one method to calculate the leading

and first subleading terms in the polynomial expansion of the second moment;

• Appendix D.4: We discuss an alternative method for developing a recursion to the solve

for the second moment. We also apply this alternative picture to find an expression for the

constant term in the polynomial expansion of the second moment.

D.1 Classical Complexity of Evaluating the Recursion

In this Appendix, we argue that the numerical evaluation of the recursion and, hence, the

second moment, is classically efficient (that is, the runtime and space used are at most polyno-
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mial) in n, which corresponds to the Fock sector of interest in the output samples.

We recall the setup of the recursion as we describe it in Chapter 5. Specifically, we define

g(n, a12, a13, a23) ∶= ∑
λ∈G2

n(a12,a13,a23)
kC(λ). (D.1)

G2
n(a12, a13, a23) is the set of second-moment graphs of order n with aij red edges that cross

between rows i and j. C(λ) is the number of connected components of λ. The second moment is

given by (2n − 1)!!g(n,0,0,0). We then write down the recursion using these g(n, a12, a13, a23)

as

g(n, a12, a13, a23) = ∑
b12,b13,b23

c(a12, a13, a23, b12, b13, b23)g(n − 1, b12, b13, b23). (D.2)

We list the following constraints on a, which is shorthand for (a12, a13, a23). First, a12+a13,

a12 + a23, and a13 + a23 (the edges that exit the first, second, and third rows respectively) must be

even. Second, a12 + a13, a12 + a23, a13 + a23 must all be less than or equal to 2n, as there cannot

be more than 2n edges coming out of a row with only 2n vertices given that there is exactly

one red edge incident on every vertex. Finally, we also add here that, clearly, a12, a13, a23 are

non-negative. These constraints imply a finite number of valid vectors a = (a12, a13, a23) for a

given order n, and any vector satisfying these constraints corresponds to a valid set of graphs and,

therefore, a term g(n,a) in the recursion. We provide an example of all possible a when n = 4

in Table D.1.

Clearly, as n grows, the number of possible a for which one must evaluate g(n,a) also

grows. However, we can bound this growth as being polynomial in n using some arguments

about partitions. Recall that a partition of a positive integer m of size s is a set (i.e., order does
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m a

0 (0,0,0)

1 ∅

2 (2,0,0)

3 (1,1,1)

4 (2,2,0), (4,0,0)

5 (3,1,1)

6 (6,0,0), (4,2,0), (2,2,2)

7 (5,1,1), (3,3,1)

8 (8,0,0), (6,2,0), (4,4,0), (4,2,2)

9 (7,1,1), (5,3,1), (3,3,3)

10 (6,2,2), (4,2,2)

11 (5,3,3)

12 (4,4,4)

Table D.1: All possible a, up to permutations of the vector elements, for 2n = 8. Each entry
satisfies the constraints that a12 + a13, a12 + a23, and a13 + a23 are even and less than or equal to
2n, a12, a13, and a23 are non-negative, and a12 + a13 + a23 =m.

not matter) of s positive integers whose sum is m. A weak partition of m of size s relaxes the

positivity constraint of the set such that it contains s non-negative elements (m is still positive).

Let m ∶= a12 + a13 + a23. Then m ≤ 3n, which follows from the fact that

2a12 + 2a13 + 2a23 = (a12 + a13) + (a12 + a23) + (a13 + a23) ≤ 6n. (D.3)

The conditions listed above on a imply that each a is a weak partition of size 3 of m ≤ 3n that

satisfies two further constraints: all 3 elements of the set must have the same parity as m, and no

element can be larger than 2n.

Now, the number of partitions of m of size at most 3 is ⌊(m+ 3)2/12⌉ [189] (note that ⌊M⌉

refers to the closest integer to M ). Therefore, the number of partitions of m of size exactly 3, or

p3(m), is bounded by this value, which implies that ∑3n
m=0 p3(m) = O(n

3). In turn, the number
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of a, up to permutations of the elements of a, is bounded by O(n3) (because they form an even

more restricted class of weak permutations). We can overcount for these permutations with a

simple constant multiplicative factor of 3! (this overcounts because, when numbers are repeated

in the partition, there are fewer distinct permutations). Thus, we have a polynomial bound on the

number of terms in our recursion at any Fock sector n (note that we could tighten this bound a

bit by accounting more precisely for the parity constraint on the elements a, but, because we are

interested only in classical efficiency, this polynomial bound that arises from considering only

size-3 partitions is sufficient).

To be sure that the recursion is efficiently computable, however, the actual values of the

terms in the recursion must not grow too quickly. In particular, recall that each term g(n,a)

has a polynomial expansion in k of order at most 3n (this is the largest number of connected

components possible when each one must have at least 2 vertices). The sum of the coefficients of

g(n,a) is the same as the number of graphs in G2
n(a12, a13, a23), which we derived to be

∣G2
n(a12, a13, a23)∣ = (

2n

a12
)(

2n − a12
a13

)(
2n

a12
)(

2n − a12
a23

)(
2n

a13
)(

2n − a13
a23

)a12!a13!a23!

× (2n − a12 − a13 − 1)!!(2n − a12 − a23 − 1)!!(2n − a13 − a23 − 1)!!4
n. (D.4)

This is, at most, factorially big in n, which means that the number of bits needed to store these

numbers, and, hence, g(n,a) is polynomial in n.

Therefore, we have a polynomial bound on the number of terms in the recursion, as well as

on the space needed to represent each of these terms. Finally, because the actual recursion con-

sists only of polynomial numbers of multiplication and addition, which can each be accomplished

in time polynomial in the size of the inputs, the actual computation is efficient.
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(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(6s)

(5s)(1)

(2)

(3)

(4)

(2s) (10s)

(9s) (13s)

(15s)

Figure D.1: Copy of Fig. 5.4. List of 17 cases (up to symmetry) for how the first two columns in
a graph of order n can connect into the rest of the graph.

D.2 Building the Recursion

We now describe precisely how to derive and evaluate the recursion relation Eq. (5.25),

which we copy again here for convenience:

g(n, a12, a13, a23) = ∑
b12,b13,b23

c(a12, a13, a23, b12, b13, b23)g(n − 1, b12, b13, b23). (D.5)

We note that we implement the full recursion [115] in both the Julia programming language [114]

and Mathematica [190]. Recall that g(n, a12, a13, a23) is a polynomial in k where the coefficient

in front of ki is the number of graphs of type a = (a12, a13, a23) that have i connected components.

Again, a graph of type a has aij edges that go between rows i, j.

We first describe the base case, i.e. g(1, a12, a13, a23) for all valid vectors a = (a12, a13, a23).
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We then describe how to handle each of the possible 17 cases that contribute to the recursion that

are depicted in Fig. 5.4, which is copied again here for convenience.

The way that we handle each case is as follows. We consider all graphs of order n such

that the leftmost two columns, which, recall, we refer to as C1,2, have red edges that correspond

to that case. We then “integrate out” these edges to determine how to write the contribution of

that case at order n in terms of the terms at order n − 1. When we say integrate out, we mean

that we collapse any path that goes through C1,2 into a new edge that remains entirely in the

graph of order n − 1 by collapsing together vertices connected by these paths. In doing this,

we must account for three main contributions: (1) how many loops are contained solely within

C1,2—each of these loops, of course, leads to a factor of k multiplied by the contribution at order

n − 1; (2) what edges are erased when integrating out the case, as well as what edges are created

after collapsing the paths into new edges—this tells us what b at lower order contribute to a

at a higher order; (3) a combinatorial factor accounting for the fact that integrating out C1,2 in

multiple graphs at order n could lead to the same graph at order n − 1, meaning we may need to

multiply the contributions at order n− 1 by something to get the correct final answer. The former

loop calculation is usually quite simple, but the latter vectorial and combinatorial calculations

require more significant casework.

In the abstract, this is quite complicated, but we explain it more thoroughly through detailed

examples as we proceed. We group our analysis of these cases into four categories corresponding

to the number of edges, i.e. 0, 2, 4, or 6, that protrude from the cases: (1)–(4), (5)–(12), (13)–

(16), and (17), respectively. However, as mentioned, we begin with the base cases, to which we

turn now.
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D.2.1 Base Cases for Recursion

Here we calculate the base cases for the recursion; that is, we determine all valid a when

n = 1, construct all graphs with each a, and count their connected components. Recall that

the vector a must satisfy non-negativity, pairwise sums being even, and pairwise sums being at

most 2n; should any one of these conditions not be met, then g(n,a) = g(n, a12, a13, a23) = 0.

For n = 1, there are 5 possible options for a: (0,0,0), (2,0,0), (0,2,0), (0,0,2), (1,1,1). It

remains then to construct the graphs and count their connected components. This is tedious, but

the diagrams are shown in Figs. D.2 and D.3, and the final results are

g(1,0,0,0) = 2k2 + 2k, (D.6)

g(1,2,0,0) = k3 + 3k2 + 4k, (D.7)

g(1,0,0,2) = k3 + 3k2 + 4k, (D.8)

g(1,0,2,0) = 2k2 + 6k, (D.9)

g(1,1,1,1) = 2k3 + 14k2 + 16k. (D.10)

This completes the base cases, and we now move on to the recursion.

D.2.2 Cases (1)–(4)

We now handle cases (1)–(4). There are no protruding edges, meaning many of the con-

tributions are easy to derive because these cases are “independent” of from the lower order graph

consisting of the final n − 1 pairs columns. Therefore, when we integrate out C1,2, none of the

paths affect the graph at lower order, meaning it is much simpler to calculate their contribution.
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(2s)

(3)

(1)

(2)

Figure D.2: Base cases corresponding to (1), (2), (2s), and (3). Counting the connected com-
ponents of the graphs in each case yields contributions of 2k2 + 2k, k3 + 3k2 + 4k, k3 + 3k2 + 4k,
and 2k2 + 6k, respectively.

(4)

Figure D.3: Base case corresponding to (4). Counting the connected components of the graphs
in each case yields 2k3 + 14k2 + 16k.
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In fact, it is simple to see that the evaluation of the loops mimics exactly the calculation of

the base cases:

Loop (1)→ 2k2 + 2k, (D.11)

Loop (2)→ k3 + 3k2 + 4k, (D.12)

Loop (2s)→ k3 + 3k2 + 4k, (D.13)

Loop (3)→ 2k2 + 6k, (D.14)

Loop (4)→ 2k3 + 14k2 + 16k. (D.15)

(D.16)

Next, examining the diagrams for each case, one can derive simple relationships between

a and b that yield a nontrivial contribution in Eq. (D.5):

Vector (1)→ (b12, b13, b23) = (a12, a13, a23), (D.17)

Vector (2)→ (b12, b13, b23) = (a12 − 2, a13, a23), (D.18)

Vector (2s)→ (b12, b13, b23) = (a12, a13, a23 − 2), (D.19)

Vector (3)→ (b12, b13, b23) = (a12, a13 − 2, a23), (D.20)

Vector (4)→ (b12, b13, b23) = (a12 − 1, a13 − 1, a23 − 1). (D.21)

(D.22)

These can be understood by looking at the diagram for each case and observing what kind of

edges are eliminated when collapsing all of the paths that pass through the vertices in C1,2.
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Finally, there are no combinatorial contributions because there are no protruding edges that

have to be connected to the existing graph. That is, any graph that comes from integrating out

one of these cases arises uniquely.

Therefore, we can easily combine everything to get the contributions to the recursion from

each of these cases:

g(n, a12, a13, a23)case(1) = (2k
2 + 2k)g(n − 1, a12, a13, a23), (D.23)

g(n, a12, a13, a23)case(2) = (k
3 + 3k2 + 4k)g(n − 1, a12 − 2, a13, a23), (D.24)

g(n, a12, a13, a23)case(2s) = (k
3 + 3k2 + 4k)g(n − 1, a12, a13, a23 − 2), (D.25)

g(n, a12, a13, a23)case(3) = (2k
2 + 6k)g(n − 1, a12, a13 − 2, a23), (D.26)

g(n, a12, a13, a23)case(4) = (2k
3 + 14k2 + 16k)g(n − 1, a12 − 1, a13 − 1, a23 − 1). (D.27)

Note that we have introduced a notation g(n, a12, a13, a23)case(i), which simply refers to the con-

tribution to g(n, a12, a13, a23) from graphs where the vertices in C1,2 and their corresponding red

edges fall into case (i). That is, g(n,a) = ∑i∈cases g(n,a)case(i).

D.2.3 Cases (5)–(12)

We now tackle cases (5)–(12), which have two edges that protrude and attach to the rest

of the graph. Because of these two protruding edges, we have to carefully derive all three of the

loop, vectorial, and combinatorial contributions.

We start with the vectorial contributions, as understanding them allows us to more eas-

ily explain and derive the loop and combinatorial contributions. We start by carefully walking
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through case (5), which contains two edges protruding from the first row. We take an existing

graph of order n where C1,2 and the respective red edges match case (5). We then count how

the numbers of edges of each type change after collapsing all of the paths that pass through the

vertices in C1,2 into edges that lie within the other 2(n − 1) columns.

Now, it is crucial to observe the following extremely important fact for all cases (5)–(12):

the two protruding edges are always part of the same path that goes through C1,2, regardless of

which of the four types of black edges are present between the vertices in C1,2. Therefore, when

C1,2 is integrated out in graphs that match these cases, the edge that is created in the lower order

graph is simply given by the two rows upon which those protruding edges are incident. That is,

if the protruding edges connected to rows i and j, then, after integrating, an edge of type ij is

created.

Now, there are, of course, 6 types of edges that can be created by collapsing a path: 11,

22, 33, 12, 13, and 23. However, it is somewhat convenient to actually describe 9 possible edges,

11, 22, 33, 12, 13, 23, 21, 31, and 32. The last three are equivalent to 12, 13, and 23 edges,

respectively, but we order the edges in this way to account for the two possible ways that the

protruding edges can connect into the graph (that is, which edge connects to row i or j, for

example). Note that this separation is extraneous for certain cases, i.e. those with two edges

protruding from the same row, but it is useful when considering cases with edges protruding

from different rows.

To determine the vector contribution for a graph of order n with a12, a13, and a23 edges, we

consider what edges b12, b13, and b23 on the graph of order n−1 remain after integrating out C1,2.

Case (5) has two protruding edges coming from the first row, and then additional red edges of

type 22 and 33. These 22 and 33 edges do not change the 12, 13, or 23 edge counts. Therefore,
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the only changes come from the collapse of the path associated with the two protruding edges

from row 1.

Let us say that these two protruding edges are originally incident on rows 2 and 3. In this

example, this means that when integrating out C1,2, we lose one edge of type 12 and one of type

13, but we create one of type 23. Therefore, we must have that b12 = a12 − 1, b13 = a13 − 1, and

b23 = a23 + 1. Or, if we define ∆ij ∶= bij − aij , then (∆12,∆13,∆23) = (−1,−1,+1). We then

consider all possible vertices that these two protruding edges could have been connected to in the

remainder of the graph, and that defines all possible g(n − 1, b12, b13, b23) that can contribute to

g(n, a12, a13, a23)case(5).

Now, we must also consider some combinatorial factors C. The combinatorial factors are

really just a shorthand for determining how many times a contribution g(n−1, b12, b13, b23) shows

up when integrating out a given case, here case (5), from all the relevant graphs of order n. This

is because different graphs at order n, when appropriately collapsed, lead to the same graph at

order n − 1. The combinatorial factor, then, is just a way of encoding this information.

Say that we are again considering an example where the original protruding edges attach to

vertices in rows 2 and 3. Then an edge of type 23 is created. But if we look from the perspective

of the lower order graph, any of the 23 edges could have been the one that was generated—that

is, for some graph of order n with case (5) integrated out, a different 23 edge that is present is

the one generated. Therefore, when we sum up all the contribution from integrating out case (5)

over all relevant graphs of order n, we get a factor of b23. Note also that, as we derived above,

b23 = a23 + 1. Also note that, were we looking at protruding edges attached to the same row,

we would get an additional factor of 2 due to the ambiguity of which edge attaches to which

endpoint.
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Finally, we consider the loop contribution. The calculation for case (5) is a relatively

straightforward diagrammatic proof, which is detailed in Appendix D.2.3. In short, we draw all

possible diagrams consistent with case (5) and count up the loops that are induced. There are

only four cases, as the red edges are essentially fixed and there are four possible sets of black

edges. The result is a factor 2k + 2. That is, there are two sets of black edges that lead to an

internal loop, leading to an extra factor of k, and there are two sets of black edges where the

protruding edges snake through all vertices in C1,2 such that collapsing them just leads to a graph

of order n − 1 without any extra loop factors.

(5) 2k + 2

Figure D.4: Loop contribution for case (5).
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So, putting all of the information together, we have that a full contribution from case (5) is

g(n, a12, a13, a23)case(5) = (2k + 2)[(2b11 + 2b12 + 2b13)g(n − 1, a12, a13, a23)

+ 2b22g(n − 1, a12 − 2, a13, a23)

+ 2b23g(n − 1, a12 − 1, a13 − 1, a23 + 1)

+ 2b33g(n − 1, a12, a13 − 2, a23)]

= (2k + 2)[(2(n − 1) + a12 + a13)g(n − 1, a12, a13, a23)

+ (2(n − 1) − (a12 − 2) − a23)g(n − 1, a12 − 2, a13, a23)

+ 2(a23 + 1)g(n − 1, a12 − 1, a13 − 1, a23 + 1)

+ (2(n − 1) − (a13 − 2) − a23)g(n − 1, a12, a13 − 2, a23)].

(D.28)

This includes the loop, combinatorial, and vectorial factors. We also note that, should any of the

combinatorial factors actually be negative, they should be set to 0, as that indicates that the graph

that is constructed at lower order when integrating out the given case does not really exist (this is

also handled by the vector input to g being negative—that is, one of the edge counts b12, b13, b23

is negative). One can get the contribution from case (5s) by simply mapping 1↔ 3.

We list the combinatorial and vectorial contributions for cases (5)–(8) in Table D.2 and

cases (9)–(12) in Table D.3 (the main difference in the latter cases is that there is no longer a

symmetry between red edges attaching to vertices ij and ji because, by convention, we attach the

top protruding edge to the vertex in row i and the bottom protruding edge to the vertex in row j,

which gives us different types of new edges, generically). The first column of these tables gives

what kind of edge is created at order n − 1. The second column tells us the combinatorial factor.

The next four multicolumns give the vector information for each of the cases. Note that we do
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not give the symmetric cases, as they can be obtained by simply mapping 1↔ 3.

(5) (6) (7) (8)

Protruding Endpoints C ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23

11 2b11 0 0 0 0 0 -2 -2 0 0 -2 -2 0
12 b12 0 0 0 0 0 -2 0 0 0 0 -2 0
13 b13 0 0 0 0 0 -2 -1 +1 -1 -1 -1 -1
21 b12 0 0 0 0 0 -2 0 0 0 0 -2 0
22 2b22 -2 0 0 -2 0 -2 0 0 0 0 -2 0
23 b23 -1 -1 +1 -1 -1 -1 0 0 0 0 -2 0
31 b13 0 0 0 0 0 -2 -1 +1 -1 -1 -1 -1
32 b23 -1 -1 +1 -1 -1 -1 0 0 0 0 -2 0
33 2b33 0 -2 0 0 -2 -2 0 0 -2 0 -2 -2

Table D.2: Information for vectorial and combinatorial contributions to cases (5)–(8). Observe
that there is a symmetry when the endpoints of the protruding edges are ij and ji. Also observe
that, when the endpoints are the same, i.e. ii, there is an extra factor of 2 in the combinatorial
term because of the ambiguity between how the protruding edges originally attach.

(9) (10) (11) (12)

Protruding Endpoints C ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23

11 2b11 -2 0 0 -1 -1 -1 0 -2 0 -1 -1 -1
12 b12 0 0 0 +1 -1 -1 +1 -1 -1 0 0 -2
13 b13 -1 +1 -1 0 0 -2 0 0 0 -1 +1 -1
21 b12 -2 0 0 -1 -1 -1 0 -2 0 -1 -1 -1
22 2b22 -2 0 0 -1 -1 -1 -1 -1 -1 -2 0 -2
23 b23 -2 -0 0 -1 -1 -1 -1 -1 +1 -2 0 0
31 b13 -2 0 0 -1 -1 -1 0 -2 0 -1 -1 -1
32 b23 -1 -1 +1 0 -2 0 0 -2 0 -1 -1 -1
33 2b33 -1 -1 -1 0 -2 -2 0 -2 0 -1 -1 -1

Table D.3: Information for vectorial and combinatorial contributions to cases (9)–(12). Observe
that there is no longer a symmetry between ij and ji, but the ii cases still have an extra factor of
2 in the combinatorial term because the ambiguity between how the protruding edges originally
attach still exists.
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We also provide the loop contributions for cases (5)–(12) in Table D.4. These are derived

in an analogous way to the diagrammatic approach in Appendix D.2.3, but there are many more

graphs to consider. Therefore, using all of this information, we can derive an equivalent version

Case Loop contribution
(5) 2k + 2

(5s) 2k + 2

(6) k2 + 3k + 4

(6s) k2 + 3k + 4

(7) 2k + 2

(8) 2k + 6

(9) 2k2 + 6k + 8

(9s) 2k2 + 6k + 8

(10) 2k2 + 14k + 16

(10s) 2k2 + 14k + 16

(11) 4k + 12

(12) 2k2 + 14k + 16

Table D.4: Loop contributions for each of the cases (5)–(12). Notice that symmetric versions of
cases have the same loop contribution; only their vectorial and combinatorial contributions are
different.

of Eq. (D.28) for each case up to (12) (including the symmetric ones), accounting for all of their

contributions.

D.2.4 Cases (13)–(16)

We now move on to more complicated cases that have four protruding edges. The vectorial

contribution is more difficult to calculate, as we must account for 34 = 81 possibilities for how the

protruding edges attach to the lower order graph. Furthermore, there is more interaction between

the vectorial, combinatorial, and loop terms. This did not occur in the previous sets of cases

because the protruding edges were always part of the same path through the black edges attached

to the vertices in C1,2. However, one must now keep track of which protruding edges connect to
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one another through the vertices in C1,2.

For example, we look at the possibilities for case (13), shown in Fig. D.5. By convention,

(13)

=

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

Figure D.5: Evaluation of case (13). By convention, we take the top left vertex to row a, the top
right vertex to row b, the middle left vertex to row c, and the middle right vertex to row d, where
a, b, c, d ∈ {1,2,3}. The types of edges that are created after integrating out the two leftmost
columns are determined by the type of the black edges.

we take the top left vertex to row a, the top right vertex to row b, the middle left vertex to row

c, and the middle right vertex to row d, where a, b, c, d ∈ {1,2,3}. We see that, when the black

edges attached to the vertices in C1,2 are type-1, then the red edges that protrude from the top row

are connected to one another, which means that one generates an edge of type ab when collapsing

this path. However, if the black edges associated with C1,2 are type-2, then it is instead ac and bd

that are connected. In total, one of the possible types of black edges connect edges ab and cd, and

three connect ac and bd. In the case where ab and cd are connected, this means that we generate

edges of type ab and cd but we lose edges of type 1a,1b,2c,2d. When ac and bd are connected,

we of course gain edges of type ac and bd, but we still lose edges of type 1a,1b,2c,2d. We use

these observations to build up the vectorial contribution of the graph by summing over all 81

possibilities of a, b, c, d ∈ {1,2,3}. This is tedious to do by hand, but simple numerically.
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We need also account for the loop and combinatorial factors that associate to each of these

vectorial contributions. Luckily, we do not need to consider 81 cases parameterized by a, b, c, d,

but we must consider each of the subcases defined by the four possible sets of black edges in

connecting the vertices in C1,2. Loop-wise, we simply need to count how many loops are induced.

Working from the left to right in Fig. D.5, we get 0,0,0,1 loops, respectively, leading to factors

of 1,1,1, k, respectively. The combinatorial factor is given by

2δab2δcd[(δacδbd + δadδbc − δabcd)2(
bab
2
) + (1 − (δacδbd + δadδbc − δabcd))babbcd] (D.29)

in the case where edges ab and cd are connected. If instead ac and bd are connected, we replace

each instance of ab and cd with ac and bd, respectively. We then again account for all 81 cases

and attach each combinatorial factor and loop factor to its associated vectorial term.

To understand Eq. (D.29), consider the following, where we assume we are dealing with

type-1 black edges so that we are creating edges ab and cd. We get a factor of 2 when a and b are

the same because they correspond to protruding edges coming from the same row, meaning there

is a choice of which edge to connect where. The same holds for c and d. If all four edges connect

to the same row, i.e. a = b = c = d, then one might naively think we need to add an extra factor of

6 (to get to a total of 4! possible connections), but this is incorrect, as ab and cd are always paired

given their connection through case (13) with black edges of type-1. Now, if a = c and b = d or

a = d and b = c, then the two edges ab and cd are the same type, meaning we are creating two

edges of the same type in the graph of order n − 1. There are therefore (bab2 ) choices of which

edges these are in the lower order graph, but we also need an extra factor of 2 to decide which

one the groups of protruding edges each maps to. If ab and cd correspond to different types of
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edges, then we just get a factor of babbcd, as we simply need to account for which of these edges

are generated through the integration process.

Therefore, we see that cases (13)–(16) raise substantially more complications in their eval-

uation. In particular, the type of black edges leads to far more interaction between the loop, vec-

torial, and combinatorial contributions that must be carefully combined in code to achieve the

correct recursion. While we have only described case (13) in detail, cases (14)–(16) follow in

the exact same manner, though there are more graphs to consider in the cases where two rows

have only one protruding edge.

D.2.5 Case (17)

Case (17) raises the same issues, though there are only four graphs to consider. However,

we have 243 = 36 possible options for how the protruding edges may connect to the graph at lower

order (this is true in general, but not all of these are possible when n is small). See Fig. D.6. We

(17)

=

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

e
f

e
f

e
f

e
f

Figure D.6: Evaluation of case (17). We repeat the convention for cases (13)–(16) by taking
the top left vertex to row a, the top right vertex to row b, the middle left vertex to row c, and the
middle right vertex to row d, but we now also take the bottom left to e and the bottom right to
f , where a, b, c, d, e, f ∈ {1,2,3}. The types of edges that are created are still determined by the
type of the black edges.
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repeat the convention for cases (13)–(16) by taking the top left vertex to row a, the top right

vertex to row b, the middle left vertex to row c, and the middle right vertex to row d, but we now

also take the bottom left to e and the bottom right to f , where a, b, c, d, e, f ∈ {1,2,3}. Now, for

type-1 black edges, we create ab, ce, and df ; for type-2, it is af , bd, and ce; for type-3 it is ac,

be, and df ; and for type-4 it is ac, bd, and ef . We always lose edges of type 1a,1b,2c,2d,3e,3f

regardless of the type of the black edges. Furthermore, the loop contribution is always a factor of

1, as there are no internal loops to case (17).

The combinatorial factor, however, is quite complicated. Assume for now that we are

working with type-1 black edges such that ab, ce, and df are linked. The combinatorial factor is

(2δab)33!(
bab
3
) ×1[{a, b} = {c, e} = {d, f}] (D.30)

+2δab2δce × 2(
bab
2
) × 2δdf bdf ×1[{a, b} = {c, e} ≠ {d, f}] (D.31)

+2δab2δdf × 2(
bab
2
) × 2δcebce ×1[{a, b} = {d, f} ≠ {c, e}] (D.32)

+2δce2δdf × 2(
bce
2
) × 2δabbab ×1[{a, b} ≠ {c, e} = {d, f}] (D.33)

+2δab2δce2δdf babbcebdf ×1[{a, b} ≠ {c, e} ≠ {d, f}]. (D.34)

Here, 1[A] is an indicator function that is 1 if statement A is true and 0 if it is false. For example,

1[{a, b} = {c, e},{d, f}] is 1 if {a, b}, {c, e}, and {d, f} are all equal as sets (that is, order does

not matter). The middle three lines [Eqs. (D.31) to (D.33)] are just repetitions of the combina-

torial factors for cases (13) − (16), but accounting for which sets of four edges may be sent to

the same row. The last line [Eq. (D.34)] is simple and accounts for the case where all of the edge

types ab, ce, df are different. The first line [Eq. (D.30)] requires a bit of explanation. In the case
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where a ≠ b, we simply have to choose three edges of type ab where the order matters (they each

could have been created by integrating out different graphs at a higher order). In the case where

a = b, this is still the case, but now we need a factor of 2 for each edge, as we can flip which

vertices are connected where.

Again, it is hard to account for all of these elements by hand, but it is simple numerically.

With this final case sorted out, we simply combine contributions of all of the cases g(n,a)case(i)

to find g(n,a).

D.3 Computing Individual Coefficients

In this Appendix, we discuss the various methods by which one can compute individual

coefficients in the polynomial expansion of the second moment. Recall that, per Theorem 5.2,

the second moment may be expanded as

M2(k,n) = (2n − 1)!!
2n

∑
i=1
cik

i. (D.35)

Ideally, one would simply be able to find a closed functional form for the right-hand side of this

equation (as was possible for the equivalent definition of the first moment). But, unfortunately,

such a result currently eludes us. Therefore, the best we can do is find individual coefficients. We

now discuss methods of calculating c2n and c2n−1.
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D.3.1 Leading Order Coefficient c2n

We begin with the leading order coefficient c2n. Recall that Lemma 5.1(ii)1 gives that

c2n = (2n)!!. The proof of this lemma is contained in Appendix C.3, and we briefly describe that

proof. However, we also provide a second technique for understanding the result that is useful to

understanding the proof of the first sub-leading order term c2n−1.

Recall that, in order for a graph in G2
n = G2

n(0,0,0) to have 2n connected components, it

must possess only type-1 and type-4 black edges. The two vertices connected by each horizontal

black edge must also be connected by a red edge to form a 2-vertex connected component. The

remaining vertical edges from the type-1 sets of black edges are then paired off (i.e., connected

via horizontal red edges) into 4-vertex connected components, and the same holds for black

vertical edges from type-4 sets. This leads to 2n total connected components. The original proof

that the total number of graphs satisfying these constraints is (2n)!! proceeds by reducing these

graphs to ones in G1
n and then counting them (with a weight given by the number of connected

components). This is evaluated by using the equation for the first moment in Theorem 5.1.

Another way to compute this coefficient is by making a combinatorial argument. As dis-

cussed, c2n contains contributions only from graphs that possess solely type-1 and type-4 sets of

black edges. Again, in order to create the maximal number of connected components, the hori-

zontal black edges must also be connected by red edges to create a size-2 connected component.

The remaining type-1 vertical black edges are paired off, and the type-4 vertical black edges are

similarly paired off. So, for a graph of order n, say that there are p sets of type-1 black edges

and, therefore, n − p sets of type-4 black edges. There are (np) sets of black edges with this type

1Note added: Recall that this is a restatement of Lemma 4.1, hence why the proof is listed in Appendix C.
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distribution. There are then (2p − 1)!! ways to pair off the 2p vertical type-1 black edges, and

(2n− 2p− 1)!! ways to pair off the 2n− 2p vertical type-4 black edges. Therefore, summing over

p ∈ {0,1, . . . , n}, we get that

c2n =
n

∑
p=0
(
n

p
)(2p − 1)!!(2n − 2p − 1)!!. (D.36)

We can massage the right-hand side a bit using the fact that (2x−1)!! = (2x)!/(2x)!! = (2x)!/(2xx!).

Expanding out the binomial coefficient and converting all terms to single factorials yields

c2n =
n!

2n

n

∑
p=0
(
2p

p
)(

2n − 2p

n − p
). (D.37)

The summation evaluates to 4n using the convolution of the Taylor series for (1 − 4x)−1/2 [191].

Therefore,

c2n = 2
nn! = (2n)!!, (D.38)

which, of course, matches the known result.

D.3.2 First Subleading Coefficient c2n−1

We now generalize the above combinatorial version of the c2n calculation to c2n−1. It is

slightly more complicated, as there is a bit of casework to consider, but the general idea is the

same. In particular, the key idea is that because 2n is the maximal number of connected compo-

nents, finding a graph with 2n − 1 connected components comes down to counting the ways that

one can create a “deficit” of exactly one connected component from the maximal number. There

are nine ways to accomplish this.
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First, consider starting with graphs with a maximal number of connected components,

meaning, as per Appendix D.3.1, they have only type-1 and type-4 black edges. The connected

components have either 2 vertices (red and black edge between 2 vertices in the same row) or 4

(two vertical black edges of the same type that are paired off via red edges). We refer to these

as type-x 2-vertex and 4-vertex connected components, respectively (where x is either 1 or 4).

One can convert these graphs with maximal connected components into graphs with a deficit of a

single connected component in the following ways, all of which involve merging two connected

components into a single one:

(1): merge two type-1 2-vertex connected components;

(2): merge two type-4 2-vertex connected components;

(3): merge one type-1 2-vertex connected component with one type-4 4-vertex connected com-

ponent;

(4): merge one type-4 2-vertex connected component with one type-1 4-vertex connected com-

ponent;

(5): merge two type-1 4-vertex connected components;

(6): merge two type-4 4-vertex connected components;

(7): merge one type-1 4-vertex connected component with one type-4 4-vertex connected com-

ponent.

These options are visualized (up to the symmetry of exchanging the roles of type-1 and type-4

edges) in Fig. D.7.
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case (1)

case (3)

case (7)

case (5)

Figure D.7: Possible ways of merging type-1 and type-4 vertices to create a deficit of a single
connected component. Here, we only show cases (1), (3), (5), and (7), as (2), (4), and (6) are
symmetric with (1), (3), and (5) with type-1 and type-4 edges switched.

Next, we must also consider cases with type-2 and type-3 black edges. There are two

options here: either the graph can have exactly one set of type-2 or type-3 edges, or it can have

exactly two sets (it does not matter whether it is two type-2 sets of edges, two type-3 sets of

edges, or one of each). The rest of the sets of black edges must all be of type 1 or type 4. Then,

creating a deficit can be done in the following ways:

(8): connect one type-2 or type-3 edge (the edge connecting the top row to the bottom row) to

one type-1 vertical edge and one type-4 vertical edge to make a 6-vertex loop;

(9): connect two type-2 or type-3 edges (again, the top-to-bottom edges) to form a 4-vertex

connected component.

These are visualized in Fig. D.8. The rest of horizontal black edges must be connected with

red edges to form 2-vertex connected components, and the remaining vertical edges must be

appropriately paired off in order to ensure 2n − 2 other connected components are formed.
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case (8)

case (9)

Figure D.8: Possible ways of creating a deficit of a single connected component while using
type-2 and/or type-3 edges.

The end result of accounting for all of these cases is a (double) sum that computes c2n−1:

c2n−1 =
n

∑
p=0
(
n

p
) × [2(

p

2
)(2p − 1)!!(2(n − p) − 1)!!

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1)

+2(
n − p

2
)(2p − 1)!!(2(n − p) − 1)!!
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+ 2(
p

1
)(

2(n − p)

2
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1
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2
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+
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4(
n

2
)(
n − 2

p
)(2p + 1)!!(2(n − p − 2) + 1)!!
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(D.39)

The last sum should be taken to be 0 when n = 1 and the sum is empty (this is because this case

of course requires at least n = 2 to have two sets of type-2/3 edges). Each of these terms can
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be derived through a simple combinatorial argument regarding which types of edges are present

and how they must be connected. For each case, say that there are p type-1 sets of black edges.

This means there are n − p, n − p − 1, and n − p − 2 sets of type-4 black edges for cases (1)-(7),

case (8), and case (9), respectively (in the latter two cases, the remaining set(s) of edges are

type-2 and/or type-3). Each case then comes down to deciding how to order the sets of edges,

how to choose which edges are connected together, and then pairing off the remaining edges of

the same type to build the remaining 2- and 4-vertex connected components. We do not detail

how to count every single case, but we discuss two examples, case (1) and case (8). The rest

should be straightforward to derive by extending these arguments.

In case (1), we merge two 2-vertex connected components of type 1. First, we have a factor

of (np) to account for all ways of having p type-1 sets of edges. We then must select 2 of the p

horizontal black edges to merge into a single connected component, hence the factor of (p2); see

Fig. D.7. The additional factor of 2 comes from the two possible ways of merging these into a

single connected component. Finally, the remaining double factorial factors are the number of

ways of pairing off the vertical black edges with those of the same type. We then must sum from

p = 0 to n to account for all possible black edge type distributions.

Case (8) proceeds similarly. First, we have a factor of (n1), or n, to choose where the type-2

or type-3 set of edges is. The factor of 2 out front now actually accounts for whether it is type 2

or type 3. Next, we have (n−1p ) to account for the placement of the p type-1 sets of edges. Next,

there are now 2p+1 black edges that span the second and third rows (i.e., they are black edges that

arise from type-1 sets of black edges). It is 2p+ 1 because the type-2 or type-3 set of black edges

contributes 1, and the p type-1 sets contribute 2p. Analogously, there are also (2(n − p − 1) + 1)

black edges spanning the first and second rows. We have to select one of each to connect to

264



the black edge that spans the first and third rows to make a single 6-vertex connected component.

The remaining factors are again the number of ways to pair off the remaining vertical black edges

with those of the same type (horizontal black edges must form 2-vertex connected components

to reach the required number of connected components).

It is possible, but quite tedious, to simplify this double sum by looking at each individual

term and then applying a similar technique as in the evaluation of the sum for c2n. That is, for

each term in the sum, we use the convolution of various Taylor series and compare the coefficients

of xn. We start with the first term

(1)→
n

∑
p=0
(
n

p
)2(

p

2
)(2p − 1)!!(2(n − p) − 1)!! =

n!

2n

n

∑
p=0
p(p − 1)(

2p

p
)(

2n − 2p

n − p
). (D.40)

One then has through Taylor expansion that

x2
d2

dx2
1

√
1 − 4x

=
∞
∑
n=0
(
2n

n
)n(n − 1)xn, (D.41)

which implies that

12x2
1

(1 − 4x)3
= (x2

d2

dx2
1

√
1 − 4x

)
1

√
1 − 4x

=
∞
∑
n=0

n

∑
p=0
p(p − 1)(

2p

p
)(

2n − 2p

n − p
)xn. (D.42)

Using the Online Encycopledia of Integer Sequences (OEIS), we find the three-fold convolution

of powers of 4 A038845 [192] has formula (n + 2)(n + 1)22n−1, meaning

∞
∑
n=0

12(n + 2)(n + 1)22n−1xn+2 = 12x2
1

(1 − 4x)3
=
∞
∑
n=0

n

∑
p=0
p(p − 1)(

2p

p
)(

2n − 2p

n − p
)xn. (D.43)
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Therefore, comparing powers of x, we get that

n

∑
p=0
p(p − 1)(

2p

p
)(

2n − 2p

n − p
) = 12n(n − 1)22n−5, (D.44)

meaning the first term in the sum is (after some algebra)

n

∑
p=0
(
n

p
)2(

p

2
)(2p − 1)!!(2(n − p) − 1)!! = (2n)!!

3n(n − 1)

8
. (D.45)

Note also by the symmetry between p and n − p, the contribution of the second term is the same.

We can perform similar manipulations for the other terms. In particular,

(3)→
n

∑
p=0
(
n

p
)2p(

2n − 2p

2
)(2p − 1)!!(2(n − p − 1) − 1)!! =

n!

2n−1

n

∑
p=0
(n − p)p(

2p

p
)(

2n − 2p

n − p
).

(D.46)

Instead of taking the Taylor expansion for the second derivative of (1− 4x)−1/2 and convolving it

with that for (1 − 4x)−1/2, we convolve the Taylor series for the first derivative with itself. That

is,

4x2

(1 − 4x)3
= (x

d

dx

1
√
1 − 4x

)

2

=
∞
∑
n=0

n

∑
p=0
p(n − p)(

2p

p
)(

2n − 2p

n − p
)xn, (D.47)
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which, using the same result as for (1) (just with a difference of a factor of 3), yields

n

∑
p=0
p(n − p)(

2p

p
)(

2n − 2p

n − p
) = 4n(n − 1)22n−5. (D.48)

This means that the third term yields a contribution of

(3)→
n!

2n−1
4n(n − 1)22n−5 = (2n)!!

2n(n − 1)

8
. (D.49)

Again, by the symmetry between n and n − p, the contribution from the fourth term is the same.

Next:

(5)→
n

∑
p=0
(
n

p
)6(

2p

4
)(2(p − 2) − 1)!!(2(n − p) − 1)!!
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)(
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8
(D.50)

because this is the exact same as (1). Again, by symmetry, (6) has the same contribution.

We also have that

(7)→
n

∑
p=0
(
n

p
)2(

2p

2
)(

2(n − p)

2
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2p

p
)(
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8
, (D.51)

which follows because this term happens to be the same as (3).
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We now move on to the final two cases. Again, similar manipulations yield that

(8)→
n−1
∑
p=0
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n
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)(
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p
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(D.52)

We have expanded the upper limit to p = n because the factor of n − p sets this additional con-

tribution to 0. The first term in the last equation is simply twice the contribution of (3), which is

(2n)!!4n(n − 1)/8. The second term requires yet another manipulation of Taylor series. By very

similar arguments to the above, we have that

x
d

dx

1
√
1 − 4x

=
∞
∑
n=0
(
2n

n
)nxn, (D.53)

which implies that
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)xn, (D.54)

which is the same as the sum we are interested in (up to the symmetry of replacing n− p with p).

Using OEIS sequence A002697 [192], that is, the convolution of powers of 4, we find that

2x

(1 − 4x)2
=
∞
∑
n=0

2(n + 1)4nxn+1, (D.55)
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which means that, comparing powers of xn,

n!
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n
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(n − p)(

2p

p
)(
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) =

n!
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Finally, then

(8)→ (2n)!!
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8
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8
. (D.57)

Last, we get that
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)(
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n − x
)(x)(n − x),

(D.58)

where we have set x = p + 1 and then expanded the limits of summation to include x = 0 and

x = n (because these terms contribute 0). Therefore, this contribution is the same as (3), (4), and

(7), which is (2n)!!2n(n − 1)/8.

Therefore, in total, we have that

c2n−1
(2n)!!

= 4
3n(n − 1)

8
+ 4

2n(n − 1)

8
+
4n(n − 1)

8
+ n = (3n − 2)n. (D.59)

Therefore,

c2n−1 = (2n)!!(3n − 2)n. (D.60)

Numerically evaluating the sums yields the same value up to n = 40, and this also matches
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the value of c2n−1 computed via the recursion. We note that (3n−2)n are the so-called octagonal

numbers, which are OEIS entry A000567 [192]. However, we are not sure whether there is a

deeper connection between these numbers and the graph theoretic problem at the core of this

calculation. Additionally, while it is nice that we have been able to find an exact formula for

a second coefficient, this calculation does not seem scalable, meaning other methods are likely

needed to try to find the full expansion of the second moment.

D.4 Alternative method for computing coefficients ci

In this Appendix, we present an alternative method for computing coefficients ci in

M2(k,n) = (2n − 1)!!
2n

∑
i=1
cik

i. (D.61)

Using this method, we obtain a useful expression for c1. We also outline how this method

can be used to set up an alternative recursive code for computing the coefficients ci for all i. While

we have not implemented this code, there is a possibility it is more efficient than the recursive

code discussed in the main text. It is also possible that this new method may yield other useful

analytical results about ci, including their asymptotic behavior.

We start by recalling Eq. (5.19):

M2(k,n) = (2n − 1)!! ∑
G∈G2

n

kC(G), (D.62)

where the sum goes over all graphs possessing the allowed assignments of black and red edges.

The new method relies on the following key simplifying observation: for a given fixed assignment
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of black edges, the contribution to M2(k,n) (summed over all allowed red edge assignments)

depends only on e = (e11, e12, e13, e23, e33), where eij is the number of black edges that connect

row i to row j. In particular, the answer does not depend on what columns the black edges

are connecting. The proof of this key observation is simple: for a fixed set of black edges, the

contribution to M2(k,n) is summed over all possible red perfect matchings in each of the three

rows. This means that we can swap any two vertices in a given row (while pulling the ends of the

black edges to the new destinations) without changing the answer. This completes the proof.

Let p1 be the number of type-1 sets of black edges, p4 be the number of type-4 sets of black

edges, and p be the combined number of type-2 and type-3 sets of black edges (type-2 and type-3

sets are equivalent as far as their contributions to eij). Then e11 = p1, e33 = p4, e12 = p + 2p4,

e23 = p + 2p1, and e13 = p. We then write

M2(k,n) =
n

∑
p1=0

n−p1
∑
p4=0
(
n

p1
)(
n − p1
p4
)2pg(e), (D.63)

where p = n−p1−p4. The combinatorial factors come from choosing p1 sets of type-1 black edges

out of n possible locations, then p4 sets of type-4 black edges from n− p1 possible locations, and

finally multiplying by a factor of 2 for each choice of whether a given contribution to p is type-2

or type-3. Additionally,

g(e) =
2n

∑
i=1
di(e)k

i, (D.64)

where di(e) is the number of ways (using the allowed red-edge assignments) to make i loops

given the black edges specified by e.
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The coefficients di(e) can then be computed with the help of the visualization shown in

Fig. D.9(a). The three black dots labeled 1, 2, and 3 represent the three rows. The numbers

ejk on the five edges (including the two loops) show how many black edges connect row j to

row k. Roughly speaking, the coefficient di(e) is the number of ways to connect all the black

edges specified by e into exactly i loops. The red edges are used to connect the black edges to

each other and are taken into account automatically, which is one of the key advantages of this

approach (slightly more specifically, for any two black edges that share a row, it is possible to

connect them with a red edge between the vertices in that shared row). Each way of joining the

edges e into loops also comes with a combinatorial factor that takes into account the fact that all

edges are distinguishable and the fact that edges that stay in the same row can each be traversed

in one of two directions.
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Figure D.9: Graphs useful for understanding the new method for calculating coefficients ci. (a)
Once the types of black edges are assigned, the contribution to M2(k,n) depends only on the
number of black eij edges connecting row i to row j. (b) In order to compute c1, the number
of single-loop graphs contributing to M2, we first set e11 = e33 = 0 (later adding in the effect
of nonzero values), fix the winding number w of the loop, and break up 1-3 edges into x1 =
(e13 + w)/2 clockwise edges and x2 = (e13 − w)/2 counterclockwise edges. We similarly break
up the 1-2 and 2-3 edges. We then use the BEST theorem [193] to count the number of Eulerian
circuits on this directed graph. (c) For u = 3, the three types of arborescences contributing to
tu(G) = x2z1 + y2x2 + y1z1 for the graph G shown in (b).

The coefficients g(e) can be computed using a recursive procedure. Instead of doing a
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recursion on n (which is what we do in the main text, with details presented in Appendix D.2),

we perform the recursion on the number of black edges e11 + e12 + e13 + e23 + e33. As in the main

text, we need to define a more general function g(e, σ, c, s) to make the recursion work. σ is a

binary variable, so that σ = 1 means we are in the process of building a loop, while σ = 0 means

that we need to start a new loop. If σ = 1, we need to also specify s ∈ {1,2,3} (standing for start)

indicating the row where the current loop started and c ∈ {1,2,3} (standing for current) indicating

the row where we currently are.

As in the main text, the recursive procedure is efficient, i.e. takes polynomial time in the

number of edges. We first directly compute g(e, σ, c, s) for small values of e11+e12+e13+e23+e33.

Then the recursive step goes as follows. If σ = 0, we can either (1) close the loop right away by

reducing e11 or e33 by 1, keep σ = 0, and multiply by k, or (2) set σ = 1, start a new loop at row

i, set s = i, reduce eij by 1 (for some j), and set c = j. If σ = 1, we can either (1) close the

loop by reducing ecs by 1, set σ = 0, and multiply by k, or (2) continue building the loop, keep

σ = 1, keep s unchanged, reduce ecj by 1 (for some j), and change the value of c to j. As we

do these calculations, we need to also include appropriate combinatorial factors deciding which

black edge to take (e.g., if we pick one of eij edges, we need to multiply by eij , and if i = j, we

need to multiply by another factor of 2).

While we have not coded up this procedure, we believe that it offers another complementary

way of understanding and analyzing the second moment.
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D.4.1 Computing c1

Again, while we have not coded up the above recursive procedure, we will show how to

use the new approach to compute c1 in Eq. (D.61), i.e., the number of ways to build a single-loop

graph, which we were not able to directly compute using the original method.

To proceed, we will at first ignore the contributions of the edges e11 and e33 (effectively

pretending that they are equal to zero), but we will address how to deal with them later on. We

will also assign a direction to this single loop, and we will later divide the final answer by two

because each loop will be counted twice (because there are two possible directions around a loop).

While it may seem to make things more difficult to add directionality to a previously undirected

graph, it will actually allow us to make use of known results.

To proceed, we sort the contributions to c1 according to the winding number w of the loop

around the triangle formed by rows 1, 2, and 3, which can now be well defined because we have

added directionality to the edges. Once w is fixed, the total numbers of edges in the triangle of

each directionality also become fixed. Specifically, as shown in Fig. D.9(b), x1 = (e13 +w)/2 is

the number of 1-3 edges traversed (i.e., directed) from 3 to 1, x2 = (x − w)/2 is the number of

1-3 edges traversed from 1 to 3, y1 = (e12 +w)/2 is the number 1-2 edges traversed from 1 to 2,

y2 = (e12 −w)/2 is the number of 1-2 edges traversed from 2 to 1, z1 = (e23 +w)/2 is the number

2-3 edges traversed from 2 to 3, and z2 = (e23 − w)/2 is the number 2-3 edges traversed from

3 to 2. Note that, here, we are treating a positive winding number as going clockwise around

the graph. There will also be combinatorial factors associated with which edges go in which

direction, but we will handle that factor later. We are now interested in the number of Eulerian

circuits on the resulting directed graph G, i.e., the number of directed closed paths that visit each
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edge exactly once. The BEST theorem [193] says that the number of such Eulerian circuits is

ec(G) = tu(G)∏
v∈V
(deg(v) − 1)!, (D.65)

where V = {1,2,3} is the set of 3 vertices of our graph, deg(v) is the indegree of vertex v, and

tu(G) is the number of arborescences ofGwith root u, i.e., the number of directed tree subgraphs

of G such that, for any vertex v, there is exactly one directed path from v to u. If the graph G

has an Eulerian circuit, it is known that tu(G) is independent of the choice of u. Choosing u = 3,

the three types of trees (arborescences) contributing to tu(G) for the graph G in Fig. D.9(b) are

shown in Fig. D.9(c). The result is tu(G) = x2z1 + y2x2 + y1z1. The term x2z1 [corresponding to

the first graph in Fig. D.9(c)] counts trees (arborescences) made up of a 1 → 3 edge and a 2 → 3

edge; the term y2x2 [corresponding to the second graph in Fig. D.9(c)] counts trees made up of a

2 → 1 edge and a 1 → 3 edge; and the term y1z1 [corresponding to the third graph in Fig. D.9(c)]

counts trees made up of a 1 → 2 edge and a 2 → 3 edge. Plugging in the definitions of xi, yi, and

zi, we find tu(G) = (w2 + e12e13 + e13e23 + e23e12)/4. Therefore,

ec(G) =
1

4
(w2 + e12e13 + e13e23 + e23e12) (

e12 + e13
2

− 1)!(
e12 + e23

2
− 1)!(

e13 + e23
2

− 1)!

=
1

4
(w2 + 3n2 − (p1 − p4)

2 − 2n(p1 + p4)) (n − p1 − 1)!(n − 1)!(n − p4 − 1)!. (D.66)

We now include the aformentioned combinatorial factors that account for which edges receive

which directionality. When choosing which x1 of the e13 edges to make into 3 → 1 edges,

we pick up a combinatorial factor of (e13x1 ) = (
n−p1−p4

(n−p1−p4+w)/2). Similarly for e12 and e23: (
e12
y1
) =

(
n−p1+p4

(n−p1+p4+w)/2) and (e23z1 ) = (
n+p1−p4

(n+p1−p4+w)/2).
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We can now also account for the fact that e11 and e33 may actually be nonzero. We keep G

defined as before (i.e. using only 1-2, 1-3, and 2-3 edges), but we now dress the loops defined on

G (and counted above) with additional 1-1 and 3-3 edges. The number of times our loop visits

vertex 1 is given by deg(1) = n − p1, so we need to sort e11 = p1 edges into n − p1 buckets, which

gives a factor of (e11+n−p1−1e11
) = (

n−1
p1
) (by the standard “stars and bars” argument). Similarly,

e33 = p4 loops give (e33+n−p4−1e33
) = (

n−1
p4
). Because all e11 = p1 edges are distinguishable and can be

traversed in two different ways, we also get a factor of p1!2p1 (that is, after the bucket counts are

decided, we still have to order the edges and assign each a direction). We similarly get a factor

of p4!2p4 . Putting all these elements together, we have

c1 =
n

∑
p1=0

n−p1
∑
p4=0
(
n

p1
)(
n − p1
p4
)2pd1(e)

=
n−1
∑
p1=0

n−max(p1,1)
∑
p4=0

(
n

p1
)(
n − p1
p4
)2p∑

w

1

8
(w2 + 3n2 − (p1 − p4)

2 − 2n(p1 + p4)) (n − p1 − 1)!

×(n − 1)!(n − p4 − 1)!(
n − p1 − p4

(n − p1 − p4 +w)/2
)(

n − p1 + p4
(n − p1 + p4 +w)/2

)(
n + p1 − p4

(n + p1 − p4 +w)/2
)

×(
n − 1

p1
)(
n − 1

p4
)p1!2

p1p4!2
p4

= n!((n − 1)!)32n−3
n

∑
p1=0

n−p1
∑
p4=0

n−p1−p4
∑

w=−n+p1+p4

(
n−p1+p4

(n−p1+p4+w)/2)(
n+p1−p4

(n+p1−p4+w)/2)(w
2 + 3n2 − (p1 − p4)2 − 2n(p1 + p4))

p1!p4!((n − p1 − p4 −w)/2)!((n − p1 − p4 +w)/2)!
. (D.67)

In the second equality, we have introduced an extra factor of 1/2 because we counted every loop

twice because of the two directions in which each loop can be traversed. In the second equality,

we also excluded the cases where all black edge sets are of type-1 (p1 = n) and where all black

edge sets are of type-4 (p4 = n), as there is no single-loop contribution in this case (allowing

for p1 = n would make (n−1p1 ) undefined; similarly for p4 = n). In the last equality, to simplify
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the expression, we allow p1 = n and p4 = n because the corresponding contribution is now well-

defined and vanishes anyway. In the last equality, the sum over w runs in increments of 2 due

to a parity constraint (flipping the directionality of a single edge actually changes the winding

number by 2). While one can evaluate the sum over w in the final expression in Eq. (D.67) in

terms of hypergeometric functions, we were not able to then evaluate the remaining sums over p4

and p1 to obtain a closed-form expression for c1.

Numerical evaluation of the final expression in Eq. (D.67) agrees with the evaluation of c1

using the recursive method in the main text up to n = 40 (which is the largest n we apply the

latter method to). The final expression in Eq. (D.67) is, however, so simple that it can easily be

evaluated for much larger values of n. For example, Mathematica [190] on a personal computer

evaluates it for n = 200 in about 15 seconds. One can also use Eq. (D.67) to study in detail the

asymptotic dependence of c1 on n. We also hope that the method introduced in this Appendix

can yield other useful analytical results about ci.
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Appendix E: Appendices Associated with Chapter 6

In this Appendix, we provide more details for the algorithm simulating MBL Hamiltonians

evolved only for times at most logarithmic in the system size (Appendix E.1), and we give math-

ematical proofs of Eqs. (6.10) to (6.12) deferred from the main text for clarity (Appendix E.2).

E.1 Logarithmic Time Simulation

In this Appendix, we give more details for a strong simulation algorithm for MBL Hamil-

tonians evolved for at most logarithmic times. As discussed in the main text, if the Hamiltonian

H is finite-range in the physical basis, Ref. [134] provides an efficient representation of the prop-

agator e−iHt for evolution time logarithmic in the system size N :

Theorem E.1. [Ref. [134]] Assuming H is finite-range in the physical basis, then one can con-

struct an approximation Ũ to the propagator U = e−iHt such that ∥U − Ũ∥ ≤ ϵ and Ũ may be

computed with classical resources that are polynomial in N and 1/ϵ and exponential in ∣t∣.

We have that for some initial state ∣ϕ⟩, ∥U ∣ϕ⟩ − Ũ ∣ϕ⟩∥
2
= ∥U − Ũ∥ ≤ ϵ. Thus, approximate

simulation of U ∣ϕ⟩ can be solved by exactly simulating Ũ ∣ϕ⟩. As constructed in Ref. [134], Ũ is

described in the matrix product operator formalism, which means that we have an algorithm that

solves the problem of strong simulation for evolution of a product state under Ũ . This is because

products of local observables admit a trivial matrix product operator formulation (as there is no
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correlation between the operators, a product of local observables is a matrix product operator

with zero bond dimension). Because multiplication between reasonably sized matrix product

operators is efficient, it is possibly to efficiently evaluate ⟨eitH̃(∏iOi)e−itH̃⟩. As described in the

main text, this also implies a sampling algorithm from the approximate distribution generated by

measuring the initial state evolved under H̃ for time t:

Corollary E.1.1. Provided H is finite range in the physical basis, Problem 6.1 is easy for t =

O(logN).

The assumption that H is finite-range in the physical basis is a technical one, but one that

is reasonable, as many physical systems that are candidates for MBL, such as the disordered,

short-range Ising model, fulfill such restrictions. Note, however, that finite-range Hamiltonians

can also describe thermalizing systems. Thus, this result importantly establishes that there is a

regime in which (many classes of) MBL systems admit sampling algorithms, but it does not use

any of the salient features of MBL in order to distinguish it from the thermalizing phase.

E.2 Mathematical Details

Here we will present mathematical details deferred from the main text for clarity. Lemma E.1

bounds the difference between the full and approximate LIOMs discussed in the main text.

Lemma E.2 places a bound on the sum Sp,n0 . Lemma E.3 [194] provides an intermediate result re-

garding the incomplete Gamma function that is useful in proving the bound on Sp,n0 . Lemma E.4

applies Lemma E.1 and Lemma E.2 in order to bound the operator norm of the difference between

the full and truncated Hamiltonians.
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Lemma E.1 Let H be an MBL Hamiltonian with localization length ξ < 1/ log 2. Let U be a

quasilocal unitary with localization length ξ as in Definition 6.1 such that U diagonalizesH , and

let Ũ be U ’s truncation to constituents of range less than or equal to rU = 2aξ logN for some

constant a > 1. Finally, let ταi = Uσ
α
i U

† and τ̃αi = Ũσ
α
i Ũ

†. For large enough system sizes N , it

follows that

∥τ zi − τ̃
z
i ∥ ≤ 8

√
qNe−

rU
2ξ , (E.1)

where ∥⋅∥ is the operator norm.

Proof. Let U = U ′Ũ , where

Ũ =
rU

∏
n=1

n

∏
j=1

⌊(N−n)/n⌋
∏
i=0

U
(n)
in+j, (E.2)

U ′ =
N

∏
n=rU+1

n

∏
j=1

⌊(N−n)/n⌋
∏
i=0

U
(n)
in+j. (E.3)

Write U (n)in+j = 1 +∆
(n)
in+j , where we use 1 to denote the identity operator on the appropriate

Hilbert space. Definition 6.1 tells us that ∥∆(n)in+j∥ <
√
qe−

n−1
2ξ . Also write Ũ = 1+∆̃ and, similarly,

U ′ = 1 +∆′ such that:

∥∆′∥ =
XXXXXXXXXXX

N

∏
n=rU+1

n

∏
j=1

⌊(N−n)/n⌋
∏
i=0

(1 +∆
(n)
in+j) − 1

XXXXXXXXXXX

(E.4)

∥∆̃∥ =
XXXXXXXXXXX

rU

∏
n=1

n

∏
j=1

⌊(N−n)/n⌋
∏
i=0

(1 +∆
(n)
in+j) − 1

XXXXXXXXXXX

. (E.5)
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We now have that

∥τ zi − τ̃
z
i ∥ = ∥U

′τ̃ zi (U
′)† − τ̃ zi ∥ (E.6)

= ∥∆′τ̃ zi + τ̃
z
i (∆

′)† +∆′τ̃ zi (∆
′)†∥ (E.7)

≤ ∥∆′∥ + ∥(∆′)†∥ + ∥∆′∥∥(∆′)†∥. (E.8)

Define a multi-index parameter α = (i, j, n) = (k,n) where k = in + j specifies the left-most site

of an n-site unitary. We may then rewrite Eq. (E.4):

∆′ = [∏
α

(1 +∆α)] − 1 = [∑
S

∏
α∈S
(∆α)] − 1 = ∑

S≠∅
∏
α∈S

∆α, (E.9)

where S is a subset of the possible α indices. The triangle inequality and submultiplicativity

yield

∥∆′∥ < [∑
S

∏
α∈S
(
√
qe−

nα−1
2ξ )] − 1 = [∑

S

∏
α

(e−[
(nα−1)

2ξ
− log q

2
]I(α∈S)

)] − 1, (E.10)

where the indicator I(x) is 1 (0) if x is true (false), and nα is the size of the unitary indexed by

α. To evaluate this, we switch the sum and product. In particular, instead of using the indicator

and summing over subsets S, we can instead view the sum as a sum over all α where n can take
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either the value 0 or nα. Define A to be the number of possible α. Then

[∑
S

∏
α

(e−[
(nα−1)

2ξ
− log q

2
]I(α∈S)

)] − 1 =

⎡
⎢
⎢
⎢
⎢
⎣

∑
α1={0,n1−1}

⋯ ∑
αA={0,nA−1}

(e
−α1

2ξ
+ α1 log q

2(n1−1)⋯e
−αA

2ξ
+ αA log q

2(nA−1))

⎤
⎥
⎥
⎥
⎥
⎦

− 1

(E.11)

=

⎡
⎢
⎢
⎢
⎢
⎣

∏
α

∑
n={0,nα−1}

(e−
n
2ξ
+ n log q

2(nα−1))

⎤
⎥
⎥
⎥
⎥
⎦

− 1 (E.12)

= [∏
α

(1 +
√
qe−

nα−1
2ξ )] − 1. (E.13)

We rewrite the infinite product as the exponential of an infinite sum:

∏
α

(1 +
√
qe−

nα−1
2ξ ) − 1 = e

∑α log(1+√qe−
nα−1
2ξ )
− 1. (E.14)

We now examine the sum:

∑
α

log (1 +
√
qe−

nα−1
2ξ ) = ∑

n>rU
∑
k

log (1 +
√
qe−

n−1
2ξ ) . (E.15)

For any given n (which labels the number of sites on which the block acts nontrivially), there are

N − n + 1 possible unitaries (the left-most site can be any besides the last n − 1). We trivially

upper bound this by N such that

∑
n>rU
∑
k

log (1 +
√
qe−

n−1
2ξ ) < ∑

n>rU
N
√
qe−

n−1
2ξ =

N
√
q

1 − e−
1
2ξ

e−
rU
2ξ . (E.16)
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Let rU = 2aξ logN for some a > 1. Plugging back into Eq. (E.14) yields

∥∆′∥ < exp(

√
q

1 − e−
1
2ξ

N1−a) − 1 <
√
q
(1 + o(1))

1 − 1√
2

N1−a (E.17)

for large enough N . In the above, we have used ξ < 1/ log 2. Plugging this result back into

Eq. (E.8) yields the result:

∥τ zi − τ̃
z
i ∥ ≤ 8

√
qN1−a = 8

√
qNe−

rU
2ξ (E.18)

for large enough N .

Lemma E.2 Assuming ξ < 1
log 2 , we may prove two bounds. First

Sp,n0 =
∞
∑
n=n0

(
n

p
)e−

n
ξ ≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−
n0
ξ p = 0

pe−ap n0 < n∗, p > 0

np+1
0

√
p

p! e−
n0
ξ n0 ≥ n∗, p > 0

, (E.19)

where a ∶= log(e1/ξ − 1), n∗ ∶= p e1/ξ

e1/ξ−1 = p(1 − e
−1/ξ)−1, and C = 10.8.

And, for 0 ≤ x1 ≤ x2 ≤ n0:

x2

∑
p=x1

Sp,n0 =
x2

∑
p=x1

∞
∑
n=n0

(
n

p
)e−

n
ξ ≤

1

1 − e−κ
e−κn0 , (E.20)

where κ = 1
ξ − log 2.

Proof. The proof of the second bound is straightforward. We simply upper bound the sum over

283



p of (np) as 2n. We then have that

x2

∑
p=x1

Sp,n0 ≤
∞
∑
n=n0

en(−1/ξ+log 2), (E.21)

from which the result follows from exactly summing the geometric series, which converges as

long as ξ < 1
log 2 . We now move on to the more complicated case that retains the p-dependence.

Case 1 (p = 0): The p = 0 case is a straightforward geometric series and the constant out

front can be chosen to be anything greater than 1
1−e−1/ξ < 2 (as ξ < 1

log 2 ).

Case 2 (n0 < n∗): We begin with Stirling’s Approximation, which says that:

√
2π

e4

√
n

p(n − p)

nn

pp(n − p)n−p
≤ (

n

p
) ≤

e

2π

√
n

p(n − p)

nn

pp(n − p)n−p
. (E.22)

Applying the upper bound we see that

∞
∑
n=n0

(
n

p
)e−

n
ξ ≤

∞
∑
n=n0

e

2π

√
n

p(n − p)

nn

pp(n − p)n−p
e−

n
ξ . (E.23)

We now note that for n ≥ p + 1 > 1,
√

n
p(n−p) ≤

√
2 such that e

2π

√
n

p(n−p) ≤ 1. Then, for n0 ≥ p + 1,

Sp,n0 ≤
∞
∑
n=n0

nn

pp(n − p)n−p
e−

n
ξ =

∞
∑
n=n0

e−
n
ξ
+n logn−(n−p) log(n−p)−p log p

∶=
∞
∑
n=n0

eg(n). (E.24)

We can eliminate the n ≥ p + 1 assumption by realizing that the final bound in Eq. (E.24) still

holds trivially when n = p, as the logarithmic terms in g(n) vanish. Thus, Eq. (E.24) is valid for

all pairs n0 ≥ p, which we assume in order to make the combinatorial factor (np) well-defined.
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Maximizing the summand means maximizing g(n), so we calculate:

∂g

∂n
= −

1

ξ
+ logn − log(n − p), (E.25)

∂2g

∂n2
=
1

n
−

1

n − p
. (E.26)

It is straightforward to calculate

g′(n)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0 n = n∗ = p
e1/ξ

e1/ξ−1

> 0 n < n∗

< 0 n > n∗

. (E.27)

Furthermore, it is also straightforward to verify g′′(n) < 0 for all n > p. Thus, we see that g(n),

and hence eg(n), has a single maximum on [n0,∞); it is at n∗ for n0 < n∗ and n0 for n0 ≥ n∗.

Additionally, it will be useful to calculate that g(n∗) = −ap, where a ∶= log(e1/ξ − 1).

We now bound the final sum in Eq. (E.24) with an integral using a Riemann approximation.

In particular, let n−∗ = ⌊n∗⌋ and n+∗ = n−∗ + 1. Then

∞
∑
n=n0

eg(n) = eg(n
−

∗
) + eg(n

+

∗
) +

n−
∗
−1
∑
n=n0

eg(n) +
∞
∑

n=n+
∗
+1
eg(n) (E.28)

≤ 2eg(n∗) + ∫
n−
∗

n0

eg(n)dn + ∫
∞

n+
∗

eg(n)dn (E.29)

≤ 2e−ap + ∫
n∗

n0

eg(n)dn + ∫
∞

n∗
eg(n)dn (E.30)

= 2e−ap + ∫
n∗

n0

eg(n)dn + ∫
2n∗

n∗
eg(n)dn + ∫

∞

2n∗
eg(n)dn (E.31)

∶= 2e−ap + I< + I<> + I>, (E.32)
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Consider first I<. There we can start by using that g(n∗) is maximal to make the trivial

bound:

I< ≤ (n∗ − n0)e
g(n∗) ≤ pe−a(p+1), (E.33)

where we have used that n∗ − n0 ≤ n∗ − p = pe−a. Similarly, for I<>, we may say that

I<> ≤ n∗e
g(n∗) ≤ 2pe−ap, (E.34)

where we have used that p < n∗ < 2p because 1/ξ > log 2.

To bound I>, we first invert the Stirling approximation from earlier and write:

eg(n) = e−
n
ξ

nn

pp(n − p)(n−p)
≤

e2
√
2π

√
p(n − p)

n
(
n

p
)e−

n
ξ ≤ 3
√
p(
n

p
)e−

n
ξ ≤ 3
√
p
np

p!
e−

n
ξ . (E.35)

We can thus bound

I> ≤ 3

√
p

p! ∫
∞

2n∗
e−

n
ξ npdn. (E.36)

Substituting u = n
ξ and defining u∗ = n∗

ξ yield

I> ≤ 3
ξp+1
√
p

p! ∫

∞

2u∗
e−uupdu = 3

ξp+1
√
p

Γ(p + 1)
Γ(p + 1,2u∗), (E.37)

where Γ(a) and Γ(a, z) are the standard Gamma and Incomplete Gamma functions, respectively.

We can bound the Incomplete Gamma Function using Lemma E.3 provided 2u∗ > p, i.e. 2 e1/ξ

e1/ξ−1 >

ξ. We can actually do better and show that u∗ > p. Defining x = 1/ξ, we want to show xex−ex+1 >

0 for x ∈ (0,∞). At x = 0, the LHS is 0. Taking a derivative of the LHS with respect to x yields

xex > 0 for x ∈ (0,∞). Thus, the LHS is 0 at x = 0 and increasing, which means the inequality
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holds. With that in mind, we apply Lemma E.3:

I> ≤ 3
ξp+1
√
p

p! ∫

∞

2u∗
e−uupdu ≤ 3

ξp+1
√
p

p!

(2u∗)p+1e−2u∗

2u∗ − p
= 3(2p+1)

np+1∗ e−
2n∗
ξ

√
pp!

1

21
ξ (

e1/ξ

e1/ξ−1) − 1
.

(E.38)

Note that

2p+1
np+1∗ e−

2n∗
ξ

√
pp!

=
(2p)p+1
√
pp!
(

e1/ξ

e1/ξ − 1
)

p+1

e
−2 p

ξ
e1/ξ

e1/ξ−1 ≤
2
√
2π
ep(1+log 2)e−a(p+1)e

p+1
ξ e
−2 p

ξ
e1/ξ

e1/ξ−1

≤

√
2

π
e−ap e

−a+p(1+log 2)+ p+1
ξ
− 2p

ξ
e1/ξ

e1/ξ−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤elog 2

≤

√
8

π
e−ap. (E.39)

The last bound is rather involved, so we will explain the steps carefully. We want to show that

−a + p(1 + log 2) +
p + 1

ξ
−
2p

ξ

e1/ξ

e1/ξ − 1
= p(1 + log 2) +

p

ξ
−
2p

ξ

e1/ξ

e1/ξ − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(A)

+
1

ξ
− a

²
(B)

< log 2. (E.40)

We can show (A) < 0 using a strategy similar to when we proved that our bound on the incomplete

gamma function was valid. In particular, first note that we can effectively cancel pξ with one factor

of p
ξ
e1/ξ

e1/ξ−1
given that ξ < log 2. We then want to show that p(1+ log 2)− px ex

ex−1 < 0, where, again,

x = 1
ξ . Equivalently, we want to show that xex−(1+ log 2)ex+(1+ log 2) > 0. Again, the LHS is 0

at x = 0. And, again, taking a derivative of the LHS gives us xex+ex−(1+log 2)ex = xex−log 2ex,

which is greater than 0 as long as x > log 2, or ξ < 1
log 2 . We then want to bound (B), and this is

done by noting that in the limit that ξ is very small, then a = log(e1/ξ − 1) ∼ 1/ξ such that (B) ∼ 0.

In fact, the maximum of (B) is simply log 2, which occurs for ξ = 1
log 2 . With all of that handled,

we can then say that the final bound in Eq. (E.39) is exponentially decreasing with p only if a > 0,

which corresponds to ξ < 1
log 2 or 1/ξ > log 2.
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We need to combine the bounds on all of the components of Eq. (E.32):

2e−ap + I< + I<> + I> ≤
⎛

⎝
2 + pe−a + 2p + 3

√
8

π

1

21
ξ (

e1/ξ

e1/ξ−1) − 1

⎞

⎠
e−ap (E.41)

≤
⎛

⎝

2

p
+ e−a + 2 +

3

p

√
8

π

1

4 log 2 − 1

⎞

⎠
pe−ap (E.42)

≤ C1pe
−ap, (E.43)

where we have used the fact that 1/ξ > log 2 and defined

C1 = 5 + 3

√
8

π

1

4 log 2 − 1
< 7.8. (E.44)

Case 3 (n0 ≥ n∗): For sufficiently small ξ, we have n∗ ∼ p. Assuming n0 ≥ p + 1, this means

that n0 > n∗. However, given that situation, we can use that g(n) is decreasing after n0 to go

immediately from Eq. (E.24) to

∞
∑
n=n0

eg(n) ≤ eg(n0) + ∫
∞

n0

eg(n)dn. (E.45)

In comparison with the case where n∗ < n0, the integral I< effectively does not exist here,

and the bound in I> comes from simply replacing 2n∗ with n0 (which is now the maximal con-

tribution) and adding on the extra term in Eq. (E.45). First, using steps nearly identical to those

above (noting in particular that Lemma E.3 is valid because n0 > n∗ > pξ by the earlier proof),

we can bound

I> ≤
3

2 log 2 − 1

np+10 e−
n0
ξ

√
pp!

. (E.46)
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Then, the contribution from eg(n0) may be bounded by inverting Stirling’s approximation as in

Eq. (E.35):

eg(n0) ≤ 3
np0
√
p

p!
e−

n0
ξ . (E.47)

Combining the two yields

eg(n0) + I> ≤ (
3

2 log 2 − 1
+ 3)

np+10

√
p

p!
e−

n0
ξ (E.48)

= C2

np+10

√
p

p!
e−

n0
ξ , (E.49)

where

C2 = (
3

2 log 2 − 1
+ 3) < 10.8. (E.50)

Lemma E.3 (Ref. [194]) Let Γ(a, z) be the Incomplete Gamma Function defined in the standard

way:

Γ(a, z) = ∫
∞

z
e−xxa−1dx. (E.51)

Let z ∈ R > (a − 1). Then

Γ(a, z) ≤
zae−z

z − (a − 1)
. (E.52)

Proof. Make the substitution s = x
z − 1. Then

Γ(a, z) = ∫
∞

0
e−(s+1)zza(1 + s)a−1ds = zae−z ∫

∞

0
e−sz(1 + s)a−1ds. (E.53)
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From here, (1 + s) ≤ es implies that

Γ(a, z) ≤ zae−z ∫
∞

0
e−sze(a−1)sds =

zae−z

−z + a − 1
e−(z−(a−1))s∣

∞

s=0
=

zae−z

z − (a − 1)
, (E.54)

as long as z > a − 1 so that the upper limit actually vanishes.

Lemma E.4 The difference between the truncated and true Hamiltonian obeys

∥H − H̃∥ ≤ CUN
2e−

rU
2ξ +CJNrJe

−krJ . (E.55)

Proof. A straightforward application of the triangle inequality yields

∥H − H̃∥ ≤∑
I

∣(JI − J̃I)∣ + ∣J̃I ∣∥(τ
z
I − τ̃

z
I )∥. (E.56)

Recall that the truncated coefficients J̃I are 0 beyond range rJ ). In the sum below, the

symbol p represents how many sites are coupled by J . That is, the relevant term is Ji1,...ip , a

p-body term. The symbol ℓ denotes the maximum distance between any two sites coupled by a
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term of this form, given by ℓ = ∣i1 − ip∣. The first term of Eq. (E.56) may be bounded as follows:

∑
I

∣JI − J̃I ∣ ≤
rJ

∑
p=2
N

∞
∑
ℓ=rJ
(
ℓ − 1

p − 2
)e−

ℓ
ξ +

∞
∑

p=rJ+1
N

∞
∑
ℓ=p−1
(
ℓ − 1

p − 2
)e−

ℓ
ξ (E.57)

≤ N
rJ−2
∑
p=0

Sp,rJ−1e
−1/ξ +N

∞
∑

p=rJ−1
Sp,pe

−1/ξ (E.58)

≤
Ne−1/ξ

1 − e−κ
e−κ(rJ−1) +CNe−1/ξ

∞
∑

p=rJ−1
pe−ap (E.59)

≤
Ne−1/ξ

1 − e−κ
e−κ(rJ−1) +CNe−1/ξ [

(rJ − 1)e−a(rJ−1)

1 − e−a
+
e−a−a(rJ−1)

(1 − e−a)2
] (E.60)

=
Ne−1/ξ

1 − e−κ
e−κ(rJ−1) +CNe−1/ξ

e−arJ

(1 − e−a)2
× (ea(rJ − 1) − rJ + 2) (E.61)

≤ c1Ne
−κrJ + c2NrJe

−arJ (E.62)

≤ CJNrJe
−krJ , (E.63)

where

c1 =
eκe−1/ξ

1 − e−κ
=

1

2(1 − e−κ)
, (E.64)

c2 = Ce
−1/ξ ea + 1

(1 − e−a)2
= C

1

(1 − e−a)2
, (E.65)

C = 10.8. (E.66)

CJ is a constant that is independent of N but will depend on ξ (directly and through a and κ), and

κ ∶=
1

ξ
− log 2, (E.67)

a ∶= log(e1/ξ − 1), (E.68)

k ∶=min{κ, a} . (E.69)
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The requirements on both a and κ are the same, ξ < 1
log 2 .

To bound the second term, we first use a telescoping sum, the triangle inequality, and

unitary invariance of the operator norm to show that

∥(τ zI − τ̃
z
I )∥ ≤

p

∑
j=1
∥(τ zij − τ̃

z
ij
)∥ ≤ 8

√
qNpe−

rU
2ξ , (E.70)

where I is the multi-index i1 . . . ip. Plugging this back in yields

∑
I

∣J̃I ∣∥τ
z
I − τ̃

z
I ∥ ≤

rJ−1
∑
ℓ=1

N
ℓ+1
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p=2
(
ℓ − 1
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ξ (E.71)

= 8
√
qe−

1
ξN2e−

rU
2ξ

rJ−2
∑
ℓ=0

ℓ

∑
p=0
(
ℓ

p
)(p + 2)e−
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ξ (E.72)

≤ 8
√
qe−

1
ξN2e−

rU
2ξ

rJ−2
∑
p=0
(p + 2)

rJ−2
∑
ℓ=p
(
ℓ

p
)e−
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ξ (E.73)

≤ 8
√
qe−

1
ξN2e−

rU
2ξ

rJ−2
∑
p=0
(p + 2)Sp,p (E.74)

≤ 8
√
qe−

1
ξN2e−

rU
2ξ

rJ−2
∑
p=0

C(p + 2)pe−ap (E.75)

≤ CUN
2e−

rU
2ξ (E.76)

for some constant CU . In the second-to-last line, we have bounded Sp,p using Lemma E.2.

Thus, altogether, we have that:

∥∆H∥ ≤ CUN
2e−

rU
2ξ +CJNrJe

−krJ . (E.77)
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