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Enhanced Cooper Pairing via Random Matrix Phonons in Superconducting Grains
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There is rich experimental evidence that granular superconductors and superconducting films often
exhibit a higher transition temperature, T¢, than that in bulk samples of the same material. This
paper suggests that this enhancement hinges on random matrix phonons mediating Cooper pairing
more efficiently than bulk phonons. We develop the Eliashberg theory of superconductivity in chaotic
grains, calculate the random phonon spectrum and solve the Eliashberg equations numerically. Self-
averaging of the effective electron-phonon coupling constant is noted, which allows us to fit the
numerical data with analytical results based on a generalization of the Berry conjecture. The key
insight is that the phonon density of states, and hence T., shows an enhancement proportional to
the ratio of the perimeter and area of the grain - the Weyl law. We benchmark our results for
aluminum films, and find an enhancement of T, of about 10% for a randomly-generated shape.
A larger enhancement of 7. is readily possible by optimizing grain geometries. We conclude by
noticing that mesoscopic shape fluctuations in realistic granular structures should give rise to a
further enhancement of global T, due to the formation of a percolating Josephson network.

The Bardeen-Cooper-Schrieffer (BCS) theory of super-
conductivity is a rare example of a controlled theory
with a quantitative relevance to experiment. It has been
tremendously successful not only in explaining the origin
of superconductivity, but also in accurately estimating
the transition temperature in a variety of conventional
phonon-driven superconductors. However, despite this
success, there exists an extensive range of experimental
phenomenology on granular superconductors, disordered
films, and layered structures dating from the 1940s up to
these days that remains largely unexplained [1H6]. Para-
doxically, it has been observed that making supercon-
ducting structures more random and granular often leads
to an increase of the superconducting transition temper-
ature, 7., sometimes exhibiting many-fold increase [I]
of T, compared to bulk three-dimensional samples. Un-
fortunately, the standard computational material science
techniques are not informative in this context, because
the underlying band theory breaks down.

This work develops the theory of superconducting pair-
ing in mesoscopic grains. A generic grain boundary
defines a chaotic billiard, and therefore both the elec-
tron [7, 8] and phonon spectra follow random matrix
theory [9]. These spectra are eigenvalues of the ellip-
tic differential operators originating — the single-particle
Schrédinger equation for electrons and the wave equation
for phonons. In the simplest case of an elementary metal
(e.g., aluminum) only acoustic modes are relevant [10].
The Debye model further reduces the problem to solv-
ing the Laplace equation for transverse and longitudinal
phonons, which are coupled through non-trivial bound-

=0 [9, 1T} 12], where n is
boundary
normal to the boundary and & is the stress tensor defined

below. The properties of the spectra of Laplace opera-
tors as a function of geometry and type of the boundary
is an old question going back to the 1911 work by Weyl
[13]. For Neumann-type boundary conditions, which are

ary conditions, n;0; ’

the case for a phonon billiard, the Weyl law establishes
a positive mesoscopic correction to the density of states
(DoS) proportional to the ratio of the perimeter, P, and
area, A of the billiard [9] [I4]. Specifically, for acoustic
phonons in two dimensions, the correction to the total
DoS is
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where N (w) = > ., 1 is the number of eigenvalues
w; < w, 1 (¢)) is the velocity of transverse (longitundi-
nal) phonons, and 7 is a positive dimensionless constant
of order one, which for free-surface boundary conditions
depends on the ratio cy /¢ only [14] (see appendix and
Fig. [I). The longitudinal phonon DoS also acquires a
positive correction (see, Fig. ), which eventually trans-
lates into an enhancement of the superconducting tran-
sition temperature.
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where kp = wD/cH ~ a~ ' is the Debye cutoff of or-

der inverse lattice constant, whose exact value is deter-
mined by the total number of available phonon modes
held constant for a given area, A. In Eq. , we as-
sumed that the Fermi wavelength is the smallest length-
scale. Apuk and dX\ respectively denote the bulk BCS
coupling strength and its modification in our geometry.
ny ~ 1 is a dimensionless constant plotted in the inset

of Fig. and wg ~ ¢/ VA is a non-universal low-
energy cut-off of order finite-size quantization energy and
x = log _ e o
(cﬁ+ci) m
We consider a specific randomly generated shape
shown in Fig. [Th, which is clearly chaotic. All numer-
ical results are derived for this particular realization of a

2D grain, but due to self-averaging of relevant Eliashberg
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Figure 1. Electron pairing enhancement in chaotic grains. a) Schematic illustration of electron pairing in an irregular-shape

metallic grain. b) The total and the longitudinal contributions to the phonon density of states, 0N (w) =

N(w) — Npuik(w), are

shown in green and blue respectively. Red dashed lines are linear fits to the data including Eq. for the total DoS. c¢) The

Fermi surface averaging of the overlap of the phonon eigenfuctions, al, see Eq. (@D
d) Numerical results for the frequency-dependent BCS parameter A(w

cutoff Qi (w) = wpexp {2 [ dw'w' ™" In(w' /wp) &*F (w
A=A (weo) and Qn = Qn (Weo)-

parameters, we are able to validate our specific computa-
tional data with generic analytical results rooted in ran-
dom matrix theory. The starting point is the following
electron-phonon Hamiltonian

H = mecm Cm,o —l—ngaeag

a,m
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where @ (r) = Ze ot r) (az + ae> and o= (r) =
Y m Cm (X) ¢ o are the phonon and electron operators re-
spectively and g is the electron-phonon coupling. &, and
Cm/(r) are the electron energies and wave-functions — the
spectrum of the Schrédinger operator. Note that in real
materials, the mean free path for electrons is often much
smaller than the system size, | < /A and hence random
matrix theory description for electrons arises irrespective
of boundary conditions. In contrast, w, and d_;l (r) are
the phonon eigenfrequencies and eigenfunctions, which

), as a function of the eigenstate energy.

=2 fo dw'w’ "' F (W) and the logarithmic frequency

} The superconductmg transition temperature is determined by

are sensitive to the boundary and follow from the Navier-
Cauchy equation [9] below

poL=—pwidy = (+v)V (V : ¢l) +vAg,  (4)
where ¢ and v are Lamé parameters, p is the mate-
rial density, and the two sound velocities are ¢ =
V(E+2v) /p, ci = +/v/p. We assume ¢ /c. = 2 [15

[I7] and free-surface boundary condition. For a given
graln geometry, Eq. (4) is solved using the finite-element
methods available in open-source software [I8]. The to-
tal bulk number of states below a certain energy w is
N (w) = (1.)2((:[2 +c7?)/4m.

We now generalize the Eliashberg theory of phonon-
mediated Cooper pairing to chaotic grains. Define
electronic Nambu spinor fields ¥ (r) = {¢» (r),'sz (r)}
and the corresponding imaginary-time Green’s function
Gow (1) = —(TV (r,7)® ¥t (r',0)), where T is the
time-ordering operator. The Nambu matrix-valued self-
energy is given by: Sy (7) = —g* Dy (7) 73Ge (7) 7
where 7; are Pauli matrices in Nambu space and



Dy (1) = — <T {V B (r,7) V- (¢, O)}> Further-
more, we include electronic disorder by means of an ad-
ditional self-energy term f)r = (471'1/5 Tel)_l ﬁg},r (1) 73,
where 1" is the electronic DoS at the Fermi energy and
Tel 18 the elastic scattering time. As we show in the SM
in diffusive limit, the superconducting gap obeys the fol-
lowing local self-consistency equation:

A (iey)
len| Z (i€ns)’
()
where T is the temperature, €, = (2n + 1)7T and Z
is the quasiparticle renormalization factor. The effective
phonon propagator is defined by:

A (iey) = —g*v T Z Dest (i€y, — t€n)

Degt (i) = A~ / e J2 (ke v — v']) Doy (i),

(6)
where Jy is the Bessel’s function of the first kind, kg is
Fermi momentum and §,, = 27nT. Eqgs. (5} [6]) constitute
the standard frequency-space Eliashberg equations [19]
and we can thus estimate the critical temperature using
McMillan-Allen-Dynes formula |20} 21]:

Q. 1.04(A+1)
T.=— — 7
1.2 eXp{ X— p* (1 +0.62)) Q
Here, the effective = BCS  coupling strength
and the logarithmic cut-off frequency are de-
fined as A = 2[dww 'a?F(w), Dy =

wpexp{% [dww 'In(w/wp) @®F (w)}, where wp is
Debye energy, p* denotes Coulomb pseudo-potential
which we set to 0.1 throughout and o?F(w) is the
Eliashberg function [19] [22]:

2p gVo
! = S Z(S w—w) (8)

where £, is the electron density of states and the dimen-
sionless matrix element of phonon eigenstates averaged of
Fermi surface is

of :/erer’Cl (r)C; () JE (kp|r—1'|), (9)

where 1" is the electronic DoS at the Fermi energy and
we defined the divergence as C; (r) = V - ¢; (r).

We now provide a numerical estimation of the criti-
cal temperature in the chaotic grain shown in Fig. (1 l
Throughout this work we consider the limit £ > L ~ \/_
kpL > 1, L > [, where [ is the mean-free path and £
is the superconducting coherence length in diffusive limit
(see SM). Assuming the following parameters for Alu-
minum films ch‘ﬂk = 1.2K [1] and wp/kp ~ 428K we get
the bulk parameters Qf’n‘llk Jwp = 0.37 and Apuk ~ 0.44.
We note that within our model, we do not need the ex-
plicit knowledge of microscopic parameters such as g. For
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Figure 2. Divergencies of eigenvectors of Navier-Cauchy equa-
tions in chaotic grain. Insets show their Fourier transforms
|C(k)|? for Ky, ky € [—1. 6kl, 1.6k;], where k; = wl/c“ Fourier
transform is defined as C (k) = [ d*rC (r) e ".

the chaotic grain in Fig.[1|(a), the proper cutoff frequency
Weo/wp & 0.97 for ¢; = 3000m/s. We now evaluate the
matrix elements in Eq. (9) numerically (see Fig. (c))
and find the modified BCS parameters A/ Apu, =~ 1.023
and ,/QPUE ~ 0.99. Combining these factors, we get
the critical temperature enhancement 7T, /T°"¥ ~ 1.1.
To get further insight, we apply random matrix theory
to phonon eigenvectors. Typical divergences of eigenvec-
tors Cj (r) and their Fourier transforms at high energies
are shown in Fig. . In momentum space, we observe a
random-speckle structure at momenta corresponding to
the energy of the state. Relying on the arguments pio-
neered by Berry [9], 23] 24], we conjecture that at suffi-
ciently short distances and sufficiently far away from the
boundary, the correlation function of the phonon modes
at high energies takes the following form (see also SM):

Pt (wr) w? w
A (L= 1) (o)

Viot (W1) € 4l

Ci(r)C(r)~ A7!

where Vﬁ)h(w) = Nl’|(w) corresponds to the DoS
ph _

(r)d (w—wy). The

of longitudinal which s

AL (w/c||)_2 fd21‘ Zl C (I‘) C
resulting longitudinal DoS is shown in Fig. (2) (c),
where we subtract the bulk contribution. We find
that at high energies the DoS v follows Weyl’s law
Sy = nP/(4rAc)) with n =~ 0.79. With this scaling
we can also benchmark our assumption in Eq. . In

phonons,



Fig. (c) we plot the matrix elements o for different
eigenstates and compare with the analytical formu-

tas (10} [ 0® () = {vf" () /o () b/ fAcERE — o2,

where the total DoS vP%(w) = N’(w). Together with
Eqgs. E[) this yields the expression for the Eliashberg
function at high energies:

o?F (w) Vﬁ)h (w) (1)
29%v§ \ /4cﬁk% —w?

Eq. (11) implies log-singular corrections to the
electron-phonon interaction parameter A, since the den-
sity of states is non-vanishing at low energies according
to Weyl’s law Eq. . However, our treatment is valid
only at sufficiently large energies and therefore we will
have to impose a low-energy finite-size cut-off wy which
is sensitive to grain geometry and can be found by fitting
to numerical data. By doing so, we find wg ~ ﬂ'c“/\/z
for longitudinal phonons.

We note that the enhancement of T, is a direct con-
sequence of the Weyl’s law which implies softening of
phonons associated with the slower scaling of the density
of states. Combining Eq. , and taking into account
the high- and low-energy cut-offs we get the analytical es-
timate for the 7, enhancement provided in Eq. which,
in our parameter regime, comes predominantly from the
BCS coupling strength renormalization. We note that
the low-energy cut-off is non-universal and can poten-
tially be different for other grain geometries.

In conclusion we note the existence of an optimal size
of a grain for a given shape. Fixing the dimensionless
parameter, { = P/ VA, and varying T over the char-
acteristic size, v/A, we find the optimal condition as fol-

lows
wWo 2A wo CJ_CH n
l=—exp|———+—5—"5—+17
wp <P77| o A +cy

The corresponding change in the BCS strength is given

by: 5)\/)\bulk ~ m—gexp

_2m _ ciel n
o =T 1. We

me A+l

thus find that the critical temperature have a strong de-
pendence on the grain geometry. For example for a circu-
lar grain ¢, = 2/+/m, while for our grain ¢ ~ 6.4, which is
significantly larger. Clearly, the geometry can be further
optimized to create grains with a higher 7, for a given
material.

Real granular superconductors are composed of a vari-
ety of grains of different shapes and sizes. Each grain has
its own T, and there is a probability distribution of tran-
sition temperatures in the material. The overall positive
shift — Eq. — corresponds to the average transition
temperature (T,). However, even for T > (T¢), there will
exist a subset of grains with higher individual transition

superconducting non-superconducting

tunneling

>

Figure 3.
Josephson network of superconducting grains with random
geometries. Dark and light blue regions represent supercon-
ducting and non-superconducting grains respectively. Arrows
represent Josephson tunneling between the grains.

A schematic illustration of a superconducting

temperature. The global superconducting critical point
in such a system is determined by a percolation tran-
sition where a Josephson network of coupled supercon-
ducting grains spanning the entire sample first appears.
This temperature can be considerably higher than (T,),
and such mesoscopic grain fluctuations provide another
mechanism for enhancing superconductivity in granular
materials similar to [25] 26].
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Appendix A: Navier-Cauchy equations

Here we review the elastic equations inside a grain. We
define the local lattice displacement vector ¢ obeying [9]:

&> - -
P16 =V 5(d),

where p is the material density and o is the stress tensor,

-

G(¢) = £1Tré + 2uvé

where A and p are Lamé constants and the strain tensor
is assumed to be

1
€j =5 (050i + 0i05)

With this, we get:

d? -
Pﬁ@ = Zajaj,i(@ =(+v)o; Zaj% +VZ i,
J J J
or in the vector form:

—

6=+ V(V-8)+vas,

d2
Pa?

The coefficients A and i can be straightforwardly related
to bulk sound velocities. Indeed, in Fourier space we get:

§+v

w2(gk = T <k : (Ek) + %kzé'k

Projecting onto the longitudinal and transverse compo-

nents we get: w = ‘H%k and w = \/v/pk. The longi-

£+2v
=

In our calculations, we assume the free-surface bound-
ary conditions, which are equivalent to the absence of

restoring force at the boundary n - §(¢) = 0, where n is
the normal vector to the boundary.

tudinal speed of sound is thus ¢ =

Appendix B: Derivation of the eigenvector ansatz

Here we provide a heuristic derivation of the eigen-
vector ansatz Eq. following conventional argument
related to the short-distance correlations in chaotic
systems. More precisely, we define: f4(w,r,r') =
>, Ci(r)Cy(x') 0 (w—wp), where Cj (r) is the eigenvec-
tor divergence. The correlation function of divergences
can now be inferred from f assuming an unbounded sys-
tem as follows [14] 23] 27]:

G Cr () = A~} () foo (w]r — '],
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where foo =lima o0 fa.

d’k .
foo (wyr, ") = / ) 2™ (w — ck)

(U2 w
= I/” (CU) 7ﬁJO (E |I' s r/‘)

where Jp is Bessel’s function of the first kind and v (w)
is the longitudinal density of states.

Appendix C: Weyl’s law for phonon billiards with
free-surface boundary conditions

Here we provide an explicit expression for the Weyl pa-
rameter, 7, used in Eq. (1. This parameter was derived
in Ref. [I4] as follows

4 3_~_1
n=-—=- -
el K
4 ! 2 1)
_,_7/ arctan ( ) dt (C1)
™

)
1/k 42V/1 = 12, /12 — %5

where £ = ¢|/cy and 7 is a solution to the following
equation belonging to the interval |0, 1[:

2 1
73—872+8<3—K2>7—16<1—K2) =0 (C2)

We note that the value of n is agreement with our nu-
merical simulations.

Appendix D: Diffusive limit

Here we derive the effective interaction within the
quasi-classical approximation [28H30] assuming the in-
teraction is changing sufficiently slowly in space which
is the case in our parameter regime kp < krp. We start
by rewriting the self-energy equation in momentum space
for the relative coordinate:

XAJR’k (’Len) =

1 ) y A A . ~
~ BA Z Z DR x—x (i€, —i€n) T3GR K (T€n7) T3,
k/

n’

where we performed the Fourier transform with respect
to the relative coordinate. The center-of-mass (COM)
coordinate is defined as R = (r+r’)/2). In the following,
we perform a quasi-local approximation for the phonon
propagator by restricting both momenta to the Fermi
surface [20, 2I]. In this case, the self-energy depends
only on the COM coordinate. Disorder scattering can be

added in a similar way as we discuss in the main text. We
now consider a quasiclassical approximation for electrons
by defining gr = & [ d&73GR k. Which obeys the Usadel
equation in the diffusive limit:

DV (jrVir) = — {QR, €nTs +iXRT3| , (D1)
where D = v%7,/2 is the diffusion coefficient, 7, de-
notes the disorder scattering rate and we restricted the
self-energy to its value on the Fermi surface Lg (ie,) =
XAJRyk:kF (ie,,) according to the local approximation. The
vacuum boundary condition for the quasiclassical Green’s
function is given by n- Vgr = 0, where n is the vector
normal to the boundary. We also perform the standard
quasi-local approximation for the self-energy:

& 1 p. . . ~ .
YR (ien) = EV{ZW Z (DRoke—ky, (i€n —i€n)) G (i€n) 73,

where the phonon propagator is averaged over direction
of the difference of two Fermi wavevectors kg — ki and
v{" is the fermion density of states. We now look for
a critical temperature and linearize the Usadel’s equa-
tion with respect to the anomalous component. To this
end we use the ansatz gr = ¢9 + fr = signe, 73 + fr,
where fr is purely off-diagonal. We write the local self-
energy in the conventional form iiRng ~ Zr (i€,) 10 +
AR (i€,) 71, where Z is the quasiparticle renormalization
factor and Ag is the gap. From Eq. we get:

n

DV?fgr = =21 AR + 2|en| Zr (icy) fr, (D2)

The characteristic length of this diffusion equation is
thus given by the coherence length of the superconductor
¢~ /D/(2rTZg) as expected. In the limit when the

coherence length is large, the fr changes little between
the boundaries and we can write

fR - T1AR (i€,)
len| Zr (i€n)

where the averaging is taken over the grain area. The
self-consistency equation becomes:

, 1 . .
Ag (i€,) = —Bl/oﬂ' Z (DR ke—ky, (i€n —i€nr))

We note that Ag is simply the self-energy and it is not
equivalent to the superconducting gap which is uniform.
Moreover, we are interested in averaging over the grain
area (since it defines T, and the actual gap):

1
AR (ie,) = —Bumr Z <DR)kF,k% (i€n, — ien1)>

AR (i€n)

len| Zr (i€nr)

TR (ien/)
len| Zr (i€nr)
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Figure 4. Fit of the numerical data for A (w) and Q, (w).
Grey dashed lines are fits using Eq. with wg ~ 1.1c‘|/\/z
for the BCS pairing strength and wo ~ 1.50”/\/Z for the
logarithmic cut-off frequency.

Let us now explicitly derive the interaction (note that
integral can be taken over the infinite space):

- d’R )
<DR,kF—k’F (i) = / TDR,kF—k'F (1) =

d2R —q . r .
=[5 [ (et g i)
=At /erer'JO2 (kp|r —t'|) Dy (182)

Which is the same interaction as in the main text.

We now provide details of an analytical estimation of
the transition temperature in Eq. . We first compute
the BCS pairing strength and the logarithmic cut-off fre-
quency exactly numerically and with the approximate
Eliashberg function Eq. as shown in Fig. () (a).
The non-universal low-energy behavior is modeled as a
sharp cut-off. We find a nearly perfect fits with our an-
alytical estimate of spectral density Eq. .

Let us now assume that we fix the grain shape but per-
form a scaling transformation. We assume the low-energy
cut-off frequencies are scaled accordingly. At the same
time, the high-energy behavior is correctly captured by
our analytical expression Eq. (11]). Within these assump-
tions we find in the analytically tractable limit kr — oo
and expanding in the system size P/A ~ L™ wo ~ L™1:

A= dpue - mMP {10 < wp )}wo

Abulk - 2Akp & woeX wp
In Fig. (b) we compare this approximation with the
exact integral over Eliashberg function Eq. . We find
a reasonably good agreement. We also numerically esti-
mate the change in €y, which is found to be small and

we assume it can be absorbed into the frequency cut-off
of the BCS constant.

1. Critical temperature

We now discuss how the change in the BCS strength A
and the cut-off frequency 2y, affect the critical tempera-
ture. From Eq. we get

e g7g2 = Avulic Abu“‘,
T, Abulk

where we used our estimation of the bulk pairing strength
>‘bulk ~ 0.44.
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