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There is rich experimental evidence that granular superconductors and superconducting films often
exhibit a higher transition temperature, Tc, than that in bulk samples of the same material. This
paper suggests that this enhancement hinges on random matrix phonons mediating Cooper pairing
more efficiently than bulk phonons. We develop the Eliashberg theory of superconductivity in chaotic
grains, calculate the random phonon spectrum and solve the Eliashberg equations numerically. Self-
averaging of the effective electron-phonon coupling constant is noted, which allows us to fit the
numerical data with analytical results based on a generalization of the Berry conjecture. The key
insight is that the phonon density of states, and hence Tc, shows an enhancement proportional to
the ratio of the perimeter and area of the grain - the Weyl law. We benchmark our results for
aluminum films, and find an enhancement of Tc of about 10% for a randomly-generated shape.
A larger enhancement of Tc is readily possible by optimizing grain geometries. We conclude by
noticing that mesoscopic shape fluctuations in realistic granular structures should give rise to a
further enhancement of global Tc due to the formation of a percolating Josephson network.

The Bardeen-Cooper-Schrieffer (BCS) theory of super-
conductivity is a rare example of a controlled theory
with a quantitative relevance to experiment. It has been
tremendously successful not only in explaining the origin
of superconductivity, but also in accurately estimating
the transition temperature in a variety of conventional
phonon-driven superconductors. However, despite this
success, there exists an extensive range of experimental
phenomenology on granular superconductors, disordered
films, and layered structures dating from the 1940s up to
these days that remains largely unexplained [1–6]. Para-
doxically, it has been observed that making supercon-
ducting structures more random and granular often leads
to an increase of the superconducting transition temper-
ature, Tc, sometimes exhibiting many-fold increase [1]
of Tc compared to bulk three-dimensional samples. Un-
fortunately, the standard computational material science
techniques are not informative in this context, because
the underlying band theory breaks down.

This work develops the theory of superconducting pair-
ing in mesoscopic grains. A generic grain boundary
defines a chaotic billiard, and therefore both the elec-
tron [7, 8] and phonon spectra follow random matrix
theory [9]. These spectra are eigenvalues of the ellip-
tic differential operators originating – the single-particle
Schrödinger equation for electrons and the wave equation
for phonons. In the simplest case of an elementary metal
(e.g., aluminum) only acoustic modes are relevant [10].
The Debye model further reduces the problem to solv-
ing the Laplace equation for transverse and longitudinal
phonons, which are coupled through non-trivial bound-
ary conditions, niσij

∣∣∣
boundary

= 0 [9, 11, 12], where n is

normal to the boundary and σ̂ is the stress tensor defined
below. The properties of the spectra of Laplace opera-
tors as a function of geometry and type of the boundary
is an old question going back to the 1911 work by Weyl
[13]. For Neumann-type boundary conditions, which are

the case for a phonon billiard, the Weyl law establishes
a positive mesoscopic correction to the density of states
(DoS) proportional to the ratio of the perimeter, P , and
area, A of the billiard [9, 14]. Specifically, for acoustic
phonons in two dimensions, the correction to the total
DoS is

1

A
[N(ω)−NBulk(ω)] =

ηω

4πc⊥

P

A
+ o(ω), (1)

where N (ω) =
∑

ωl≤ω 1 is the number of eigenvalues
ωl < ω, c⊥ (c||) is the velocity of transverse (longitundi-
nal) phonons, and η is a positive dimensionless constant
of order one, which for free-surface boundary conditions
depends on the ratio c⊥/c|| only [14] (see appendix and
Fig. 1). The longitudinal phonon DoS also acquires a
positive correction (see, Fig. 1b), which eventually trans-
lates into an enhancement of the superconducting tran-
sition temperature.

Tc − Tc0
Tc0

∝ δλ

λbulk
≈

η∥P

2AkD
log

(
ωD

ω0eχ

)
− ω0

ωD
, (2)

where kD = ωD/c|| ∼ a−1 is the Debye cutoff of or-
der inverse lattice constant, whose exact value is deter-
mined by the total number of available phonon modes
held constant for a given area, A. In Eq. (2), we as-
sumed that the Fermi wavelength is the smallest length-
scale. λbulk and δλ respectively denote the bulk BCS
coupling strength and its modification in our geometry.
η∥ ∼ 1 is a dimensionless constant plotted in the inset
of Fig. 1b and ω0 ∼ c∥π/

√
A is a non-universal low-

energy cut-off of order finite-size quantization energy and
χ = log

c∥c⊥(
c2∥+c2⊥

) η
η∥

.

We consider a specific randomly generated shape
shown in Fig. 1a, which is clearly chaotic. All numer-
ical results are derived for this particular realization of a
2D grain, but due to self-averaging of relevant Eliashberg
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Figure 1. Electron pairing enhancement in chaotic grains. a) Schematic illustration of electron pairing in an irregular-shape
metallic grain. b) The total and the longitudinal contributions to the phonon density of states, δN (ω) = N(ω)−Nbulk(ω), are
shown in green and blue respectively. Red dashed lines are linear fits to the data including Eq. (1) for the total DoS. c) The
Fermi surface averaging of the overlap of the phonon eigenfuctions, αl, see Eq. ((9)), as a function of the eigenstate energy.
d) Numerical results for the frequency-dependent BCS parameter λ (ω) ≡ 2

∫ ω

0
dω′ω′−1α2F (ω′) and the logarithmic frequency

cutoff Ωln (ω) ≡ ωD exp
{

2
λ

∫ ω

0
dω′ω′−1 ln (ω′/ωD)α

2F (ω′)
}
. The superconducting transition temperature is determined by

λ = λ (ωco) and Ωln = Ωln (ωco).

parameters, we are able to validate our specific computa-
tional data with generic analytical results rooted in ran-
dom matrix theory. The starting point is the following
electron-phonon Hamiltonian

H =
∑
σ,m

ξmc
†
m,σcm,σ +

∑
ℓ

ωℓa
†
ℓaℓ

+ g
∑
σ

∫
A

d2r∇ · Φ⃗ (r)ψ†
σ (r)ψσ (r) , (3)

where Φ⃗ (r) =
∑

ℓ
ϕ⃗ℓ(r)√
2ωl

(
aℓ + a†ℓ

)
and ψσ=↑,↓ (r) =∑

m ζm (r) cm,σ are the phonon and electron operators re-
spectively and g is the electron-phonon coupling. ξm and
ζm(r) are the electron energies and wave-functions – the
spectrum of the Schrödinger operator. Note that in real
materials, the mean free path for electrons is often much
smaller than the system size, l ≪

√
A and hence random

matrix theory description for electrons arises irrespective
of boundary conditions. In contrast, ωℓ and ϕ⃗l (r) are
the phonon eigenfrequencies and eigenfunctions, which

are sensitive to the boundary and follow from the Navier-
Cauchy equation [9] below

ρ
¨⃗
ϕl ≡ −ρω2

ℓ ϕ⃗l = (ξ + ν)∇
(
∇ · ϕ⃗l

)
+ ν∆ϕ⃗l, (4)

where ξ and ν are Lamé parameters, ρ is the mate-
rial density, and the two sound velocities are c∥ =√
(ξ + 2ν) /ρ, c⊥ =

√
ν/ρ. We assume c∥/c⊥ = 2 [15–

17] and free-surface boundary condition. For a given
grain geometry, Eq. (4) is solved using the finite-element
methods available in open-source software [18]. The to-
tal bulk number of states below a certain energy ω is
NBulk (ω) = ω2(c−2

∥ + c−2
⊥ )/4π.

We now generalize the Eliashberg theory of phonon-
mediated Cooper pairing to chaotic grains. Define
electronic Nambu spinor fields Ψ(r) = {ψ↑ (r) , ψ

†
↓ (r)}

and the corresponding imaginary-time Green’s function
Ĝr,r′ (τ) = −

〈
TΨ(r, τ)⊗Ψ† (r′, 0)

〉
, where T is the

time-ordering operator. The Nambu matrix-valued self-
energy is given by: Σ̂r,r′ (τ) = −g2Dr,r′ (τ) τ̂3Ĝr,r′ (τ) τ̂3
where τ̂i are Pauli matrices in Nambu space and
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Dr,r′ (τ) = −
〈
T
{
∇ · Φ⃗ (r, τ)∇ · Φ⃗ (r′, 0)

}〉
. Further-

more, we include electronic disorder by means of an ad-
ditional self-energy term Σ̂r =

(
4πνF0 τel

)−1
τ̂3Ĝr,r (τ) τ̂3,

where νF0 is the electronic DoS at the Fermi energy and
τel is the elastic scattering time. As we show in the SM
in diffusive limit, the superconducting gap obeys the fol-
lowing local self-consistency equation:

∆(iϵn) = −g2νF0 Tπ
∑
n′

Deff (iϵn − iϵn′)
∆ (iϵn′)

|ϵn|Z (iϵn′)
,

(5)
where T is the temperature, ϵn = (2n + 1)πT and Z
is the quasiparticle renormalization factor. The effective
phonon propagator is defined by:

Deff (iΩn) = A−1

∫
d2rd2r′J2

0 (kF |r− r′|)Dr,r′ (iΩn) ,

(6)
where J0 is the Bessel’s function of the first kind, kF is
Fermi momentum and Ωn = 2πnT . Eqs. (5, 6) constitute
the standard frequency-space Eliashberg equations [19]
and we can thus estimate the critical temperature using
McMillan-Allen-Dynes formula [20, 21]:

Tc =
Ωln

1.2
exp

{
− 1.04 (λ+ 1)

λ− µ∗ (1 + 0.62λ)

}
. (7)

Here, the effective BCS coupling strength
and the logarithmic cut-off frequency are de-
fined as λ = 2

∫
dωω−1α2F (ω), Ωln =

ωD exp
{

2
λ

∫
dωω−1 ln (ω/ωD)α

2F (ω)
}
, where ωD is

Debye energy, µ∗ denotes Coulomb pseudo-potential
which we set to 0.1 throughout and α2F (ω) is the
Eliashberg function [19, 22]:

α2F (ω) =
g2νF0
2Aω

∑
l

δ (ω − ωl)α
2
l (8)

where νF
tot is the electron density of states and the dimen-

sionless matrix element of phonon eigenstates averaged of
Fermi surface is

α2
l =

∫
d2rd2r′Cl (r)Cl (r

′) J2
0 (kF |r− r′|) , (9)

where νF0 is the electronic DoS at the Fermi energy and
we defined the divergence as Cl (r) ≡ ∇ · ϕ⃗l (r).

We now provide a numerical estimation of the criti-
cal temperature in the chaotic grain shown in Fig. 1 (a).
Throughout this work we consider the limit ξ ≫ L ∼

√
A,

kFL ≫ 1, L ≫ l, where l is the mean-free path and ξ
is the superconducting coherence length in diffusive limit
(see SM). Assuming the following parameters for Alu-
minum films T bulk

c = 1.2K [1] and ωD/kB ≈ 428K we get
the bulk parameters Ωbulk

ln /ωD ≈ 0.37 and λbulk ≈ 0.44.
We note that within our model, we do not need the ex-
plicit knowledge of microscopic parameters such as g. For
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Figure 2. Divergencies of eigenvectors of Navier-Cauchy equa-
tions in chaotic grain. Insets show their Fourier transforms
|C(k)|2 for kx, ky ∈ [−1.6kl, 1.6kl], where kl = ωl/c∥. Fourier
transform is defined as C (k) =

∫
d2rC (r) e−ikr.

the chaotic grain in Fig. 1 (a), the proper cutoff frequency
ωco/ωD ≈ 0.97 for c⊥ = 3000m/s. We now evaluate the
matrix elements in Eq. (9) numerically (see Fig. (1) (c))
and find the modified BCS parameters λ/λbulk ≈ 1.023
and Ωln/Ω

bulk
ln ≈ 0.99. Combining these factors, we get

the critical temperature enhancement Tc/T bulk
c ≈ 1.1.

To get further insight, we apply random matrix theory
to phonon eigenvectors. Typical divergences of eigenvec-
tors Cl (r) and their Fourier transforms at high energies
are shown in Fig. (2). In momentum space, we observe a
random-speckle structure at momenta corresponding to
the energy of the state. Relying on the arguments pio-
neered by Berry [9, 23, 24], we conjecture that at suffi-
ciently short distances and sufficiently far away from the
boundary, the correlation function of the phonon modes
at high energies takes the following form (see also SM):

Cl (r)Cl (r′) ≈ A−1
νph
∥ (ωl)

νph
tot (ωl)

ω2
l

c2∥
J0

(
ωl

c∥
|r− r′|

)
, (10)

where νph
∥ (ω) = N ′

∥(ω) corresponds to the DoS

of longitudinal phonons, which is νph
∥ (ω) ≡

A−1
(
ω/c∥

)−2 ∫
d2r

∑
l Cl (r)Cl (r) δ (ω − ωl). The

resulting longitudinal DoS is shown in Fig. (2) (c),
where we subtract the bulk contribution. We find
that at high energies the DoS ν∥ follows Weyl’s law
δν∥ ≈ η∥P/(4πAc∥) with η∥ ≈ 0.79. With this scaling
we can also benchmark our assumption in Eq. (10). In
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Fig. (1) (c) we plot the matrix elements α2 for different
eigenstates and compare with the analytical formu-
las (10, 9) α2 (ω) ≈ {νph

∥ (ω) /νph
tot (ω)}4ω/

√
4c2∥k

2
F − ω2,

where the total DoS νph
tot(ω) = N ′(ω). Together with

Eqs. (8, 9) this yields the expression for the Eliashberg
function at high energies:

α2F (ω)

2g2νF0
≈

νph
∥ (ω)√

4c2∥k
2
F − ω2

, (11)

Eq. (11) implies log-singular corrections to the
electron-phonon interaction parameter λ, since the den-
sity of states is non-vanishing at low energies according
to Weyl’s law Eq. (1). However, our treatment is valid
only at sufficiently large energies and therefore we will
have to impose a low-energy finite-size cut-off ω0 which
is sensitive to grain geometry and can be found by fitting
to numerical data. By doing so, we find ω0 ∼ πc∥/

√
A

for longitudinal phonons.
We note that the enhancement of Tc is a direct con-

sequence of the Weyl’s law which implies softening of
phonons associated with the slower scaling of the density
of states. Combining Eq. (11), and taking into account
the high- and low-energy cut-offs we get the analytical es-
timate for the Tc enhancement provided in Eq. (2) which,
in our parameter regime, comes predominantly from the
BCS coupling strength renormalization. We note that
the low-energy cut-off is non-universal and can poten-
tially be different for other grain geometries.

In conclusion we note the existence of an optimal size
of a grain for a given shape. Fixing the dimensionless
parameter, ζ = P/

√
A, and varying Tc (2) over the char-

acteristic size,
√
A, we find the optimal condition as fol-

lows

1 =
ω0

ωD
exp

(
2A

Pη∥

ω0

c∥
+

c⊥c∥
c2⊥ + c2∥

η

η∥
+ η∥

)

The corresponding change in the BCS strength is given

by: δλ/λbulk ≈ η∥ζ

2π exp

{
− 2π

η∥ζ
− c⊥c∥

c2⊥+c2∥

η
η∥

− 1

}
. We

thus find that the critical temperature have a strong de-
pendence on the grain geometry. For example for a circu-
lar grain ζ◦ = 2/

√
π, while for our grain ζ ≈ 6.4, which is

significantly larger. Clearly, the geometry can be further
optimized to create grains with a higher Tc for a given
material.

Real granular superconductors are composed of a vari-
ety of grains of different shapes and sizes. Each grain has
its own Tc and there is a probability distribution of tran-
sition temperatures in the material. The overall positive
shift – Eq. (2) – corresponds to the average transition
temperature ⟨Tc⟩. However, even for T > ⟨Tc⟩, there will
exist a subset of grains with higher individual transition
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tunneling

Figure 3. A schematic illustration of a superconducting
Josephson network of superconducting grains with random
geometries. Dark and light blue regions represent supercon-
ducting and non-superconducting grains respectively. Arrows
represent Josephson tunneling between the grains.

temperature. The global superconducting critical point
in such a system is determined by a percolation tran-
sition where a Josephson network of coupled supercon-
ducting grains spanning the entire sample first appears.
This temperature can be considerably higher than ⟨Tc⟩,
and such mesoscopic grain fluctuations provide another
mechanism for enhancing superconductivity in granular
materials similar to [25, 26].
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Appendix A: Navier-Cauchy equations

Here we review the elastic equations inside a grain. We
define the local lattice displacement vector ϕ⃗ obeying [9]:

ρ
d2

dt2
ϕ⃗ = ∇ · σ̂(ϕ⃗),

where ρ is the material density and σ is the stress tensor,

σ̂(ϕ⃗) = ξ1Trϵ̂+ 2νϵ̂

where λ and µ are Lamé constants and the strain tensor
is assumed to be

ϵi,j =
1

2
(∂jϕi + ∂iϕj)

With this, we get:

ρ
d2

dt2
ϕi =

∑
j

∂jσj,i(ϕ⃗) = (ξ + ν) ∂i
∑
j

∂jϕj + ν
∑
j

∂2jϕi,

or in the vector form:

ρ
d2

dt2
ϕ⃗ = (ξ + ν)∇

(
∇ · ϕ⃗

)
+ ν∆ϕ⃗,

The coefficients λ and µ can be straightforwardly related
to bulk sound velocities. Indeed, in Fourier space we get:

ω2ϕ⃗k =
ξ + ν

ρ
k
(
k · ϕ⃗k

)
+
ν

ρ
k2ϕ⃗k

Projecting onto the longitudinal and transverse compo-
nents we get: ω =

√
ξ+2ν

ρ k and ω =
√
ν/ρk. The longi-

tudinal speed of sound is thus c∥ =
√

ξ+2ν
ρ .

In our calculations, we assume the free-surface bound-
ary conditions, which are equivalent to the absence of
restoring force at the boundary n · σ̂(ϕ⃗) = 0, where n is
the normal vector to the boundary.

Appendix B: Derivation of the eigenvector ansatz

Here we provide a heuristic derivation of the eigen-
vector ansatz Eq. (10) following conventional argument
related to the short-distance correlations in chaotic
systems. More precisely, we define: fA (ω, r, r′) =∑

l Cl (r)Cl (r
′) δ (ω − ωl), where Cl (r) is the eigenvec-

tor divergence. The correlation function of divergences
can now be inferred from f assuming an unbounded sys-
tem as follows [14, 23, 27]:

Cl (r)Cl (r′) = A−1ν−1
tot (ω) f∞ (ω |r− r′|) ,

https://doi.org/10.1007/BF02710433
https://doi.org/10.1007/BF02710433
https://doi.org/ 10.5281/zenodo.10447666
https://doi.org/ 10.5281/zenodo.10447666
https://doi.org/10.1088/0951-7715/1/3/001
https://doi.org/10.1103/PhysRevB.77.100502
https://doi.org/10.1209/epl/i2004-10003-3
https://doi.org/10.1209/epl/i2004-10003-3
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where f∞ = limA→∞ fA.

f∞ (ω, r, r′) =
∫

d2k

(2π)
2 k

2eikrδ
(
ω − c∥k

)
= ν∥ (ω)

ω2

c2∥
J0

(ω
c
|r− r′|

)
where J0 is Bessel’s function of the first kind and ν∥ (ω)
is the longitudinal density of states.

Appendix C: Weyl’s law for phonon billiards with
free-surface boundary conditions

Here we provide an explicit expression for the Weyl pa-
rameter, η, used in Eq. (1). This parameter was derived
in Ref. [14] as follows

η =
4
√
γ
− 3 +

1

κ

+
4

π

∫ 1

1/κ

arctan


(
t2 − 1

)2
4t2

√
1− t2

√
t2 − 1

κ2

 dt, (C1)

where κ = c∥/c⊥ and γ is a solution to the following
equation belonging to the interval ]0, 1[:

γ3 − 8γ2 + 8

(
3− 2

κ2

)
γ − 16

(
1− 1

κ2

)
= 0 (C2)

We note that the value of η is agreement with our nu-
merical simulations.

Appendix D: Diffusive limit

Here we derive the effective interaction within the
quasi-classical approximation [28–30] assuming the in-
teraction is changing sufficiently slowly in space which
is the case in our parameter regime kD < kF . We start
by rewriting the self-energy equation in momentum space
for the relative coordinate:

Σ̂R,k (iϵn) =

− 1

βA

∑
n′

∑
k′

DR,k−k′ (iϵn − iϵn′) τ̂3ĜR,k′ (iϵn′) τ̂3,

where we performed the Fourier transform with respect
to the relative coordinate. The center-of-mass (COM)
coordinate is defined as R = (r+r′)/2). In the following,
we perform a quasi-local approximation for the phonon
propagator by restricting both momenta to the Fermi
surface [20, 21]. In this case, the self-energy depends
only on the COM coordinate. Disorder scattering can be

added in a similar way as we discuss in the main text. We
now consider a quasiclassical approximation for electrons
by defining ĝR ≡ i

π

∫
dξk τ̂3ĜR,k, which obeys the Usadel

equation in the diffusive limit:

D∇ (ĝR∇ĝR) = −
[
ĝR, ϵnτ3 + iΣ̂Rτ3

]
, (D1)

where D = v2F τel/2 is the diffusion coefficient, τel de-
notes the disorder scattering rate and we restricted the
self-energy to its value on the Fermi surface Σ̂R (iϵn) ≡
Σ̂R,k=kF

(iϵn) according to the local approximation. The
vacuum boundary condition for the quasiclassical Green’s
function is given by n · ∇gR = 0, where n is the vector
normal to the boundary. We also perform the standard
quasi-local approximation for the self-energy:

Σ̂R (iϵn) =
1

β
νF0 iπ

∑
n′

〈
DR,kF−k′

F
(iϵn − iϵn′)

〉
ĝR (iϵn′) τ̂3,

where the phonon propagator is averaged over direction
of the difference of two Fermi wavevectors kF − k′

F and
νF0 is the fermion density of states. We now look for
a critical temperature and linearize the Usadel’s equa-
tion with respect to the anomalous component. To this
end we use the ansatz gR = g(0) + fR = signϵnτ3 + fR,
where fR is purely off-diagonal. We write the local self-
energy in the conventional form iΣ̂Rτ3 ≈ ZR (iϵn) τ0 +
∆R (iϵn) τ1, where Z is the quasiparticle renormalization
factor and ∆R is the gap. From Eq. (D1) we get:

D∇2f̂R = −2τ1∆R + 2 |ϵn|ZR (iϵn) f̂R, (D2)

The characteristic length of this diffusion equation is
thus given by the coherence length of the superconductor
ξ ≈

√
D/
(
2πTZR

)
as expected. In the limit when the

coherence length is large, the fR changes little between
the boundaries and we can write

f̂R ≈ τ1∆R (iϵn)

|ϵn|ZR (iϵn)

where the averaging is taken over the grain area. The
self-consistency equation becomes:

∆R (iϵn) = − 1

β
ν0π

∑
n′

〈
DR,kF−k′

F
(iϵn − iϵn′)

〉 ∆R (iϵn′)

|ϵn|ZR (iϵn′)
.

We note that ∆R is simply the self-energy and it is not
equivalent to the superconducting gap which is uniform.
Moreover, we are interested in averaging over the grain
area (since it defines Tc and the actual gap):

∆R (iϵn) = − 1

β
ν0π

∑
n′

〈
DR,kF−k′

F
(iϵn − iϵn′)

〉 ∆R (iϵn′)

|ϵn|ZR (iϵn′)
.
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b)

Figure 4. Fit of the numerical data for λ (ω) and Ωln (ω).
Grey dashed lines are fits using Eq. (11) with ω0 ≈ 1.1c∥/

√
A

for the BCS pairing strength and ω0 ≈ 1.5c∥/
√
A for the

logarithmic cut-off frequency.

Let us now explicitly derive the interaction (note that
integral can be taken over the infinite space):

〈
DR,kF−k′

F
(iΩn)

〉
≡
∫
d2R

A
DR,kF−k′

F
(iΩn) =

=

∫
d2R

A

∫
d2r

〈
e−i(kF−k′

F)r
〉
DR,r (iΩn)

= A−1

∫
d2rd2r′J2

0 (kF |r− r′|)Dr,r′ (iΩn)

Which is the same interaction as in the main text.
We now provide details of an analytical estimation of

the transition temperature in Eq. (2). We first compute
the BCS pairing strength and the logarithmic cut-off fre-
quency exactly numerically and with the approximate
Eliashberg function Eq. (11) as shown in Fig. (4) (a).
The non-universal low-energy behavior is modeled as a
sharp cut-off. We find a nearly perfect fits with our an-
alytical estimate of spectral density Eq. (11).

Let us now assume that we fix the grain shape but per-
form a scaling transformation. We assume the low-energy
cut-off frequencies are scaled accordingly. At the same
time, the high-energy behavior is correctly captured by
our analytical expression Eq. (11). Within these assump-
tions we find in the analytically tractable limit kF → ∞
and expanding in the system size P/A ∼ L−1, ω0 ∼ L−1:

λ− λbulk

λbulk
≈

η∥P

2AkD

{
log

(
ωD

ω0eχ

)}
− ω0

ωD

In Fig. (4) (b) we compare this approximation with the
exact integral over Eliashberg function Eq. (11). We find
a reasonably good agreement. We also numerically esti-
mate the change in Ωln which is found to be small and
we assume it can be absorbed into the frequency cut-off
of the BCS constant.

1. Critical temperature

We now discuss how the change in the BCS strength λ
and the cut-off frequency Ωln affect the critical tempera-
ture. From Eq. (7) we get

δTc
Tc

≈ 4.74
λ− λbulk

λbulk
,

where we used our estimation of the bulk pairing strength
λbulk ≈ 0.44.
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