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The dominant noise in an “erasure qubit” is an erasure—a type of error whose occurrence and location
can be detected. Erasure qubits have potential to reduce the overhead associated with fault tolerance. To
date, research on erasure qubits has primarily focused on quantum computing and quantum networking
applications. Here, we consider the applicability of erasure qubits to quantum sensing and metrology. We
show theoretically that, for the same level of noise, an erasure qubit acts as a more precise sensor or clock
compared to its nonerasure counterpart. We experimentally demonstrate this by artificially injecting either
erasure errors (in the form of atom loss) or dephasing errors into a differential optical lattice clock
comparison, and observe enhanced precision in the case of erasure errors for the same injected error rate. In
the context of a clock with repeated measurement cycles, erasure can improve the stability by a factor of 2.
Similar benefits of erasure qubits to sensing can be realized in other quantum platforms like Rydberg atoms
and superconducting qubits.
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Noise, i.e., environment-induced decoherence, presents a
fundamental challenge in quantum sensing. While noise-
less sensing can exhibit so-called Heisenberg scaling in
precision with appropriately optimized probe states [1–4],
noise typically leads to a worse scaling [5–7]. Given certain
assumptions on noise, we can regain Heisenberg scaling
using an appropriate error correcting code [8–10], but such
schemes require a costly overhead in the ancilla and/or the
operations necessary for error detection and correction.
This places practical limits on how well such schemes can
improve metrological performance [11]; furthermore, find-
ing a noise-appropriate error-correction code can itself be a
challenge.
A complementary approach to noise resilience is to

engineer “erasure qubits” where the dominant noise is an
erasure error—a type of error that takes the qubit out of the
computational space and whose occurrence and location
can be detected [12]. A simple example is a photon encoded
in the polarization basis (i.e., H=V), where the absence of a
photon can be used to detect photon loss [13,14]. Recent
work has extended this concept to design qubit encodings
in other platforms that convert dominant errors into
erasures [15]. This has been proposed and demonstrated
for neutral-atom [15–18] and superconducting [19–21]
qubits, and also proposed for trapped ions [22].
Erasures are easier to protect against than errors with

unknown location. An error correcting code of distance d
can correct only bðd − 1Þ=2c errorswith unknown locations,

but can correct d − 1 erasures [23]. Consequently, the two-
qubit gate error-rate threshold is higher for erasure qubits
than for general qubits, sometimes allowing a lower over-
head in implementing correction schemes.
In this Letter, we show that, similar to a quantum

computer, not all noise processes degrade the performance
of a quantum sensor in the same way and that using erasure
qubits can improve sensor performance. The corresponding
performance gain can be quantified as an increase in Fisher
information. In particular, we show that the uncertainty
bounds for noisy sensing, given by the single-parameter
Cramér-Rao bound, can be tightened with erasure qubits.
Importantly, while fault-tolerant error correction demands
continuous monitoring of the system to control the growth
of errors, in quantum sensing, it is often sufficient to isolate
the erroneous data, preventing it from contributing to the
signal used for parameter estimation. We also use an optical
lattice clock to confirm experimentally that erasure errors
have a fundamentally different effect on sensing precision
than other sources of decoherence. Figure 1 illustrates a
very specific adaption of our technique to Ramsey spec-
troscopy of atomic ensembles.
Noise sensing—While, in Sec. S3 of the Supplemental

Material [24] we extend our arguments multiqubit sensing,
we focus here on a single-qubit sensor coupled to an
unknown parameter ϕ∈ ½0; 2πÞ via the generator σz=2 and
subject to noise. An input sensor state evolves under the
unitary expð−iϕσz=2Þ but can undergo a noise process E
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with a certain probability, q, leading to the channel
ρ0 → ð1 − qÞe−iϕσz=2ρ0eiϕσz=2 þ qEϕðρ0Þ.
Measurements are performed on the final state to obtain

an estimate ϕ̂. For noiseless sensing, the optimal sensing
protocol involves initializing the sensor as jþi ¼
ðj0i þ j1iÞ= ffiffiffi

2
p

, letting it accumulate relative phase,
and measuring it in the j�i basis [3]. Assuming that the
sensing is unbiased, that is E½ϕ̂� ¼ ϕ, the uncertainty in ϕ̂
is lower-bounded by the quantum Cramér-Rao bound
ðδϕÞ2 ¼ Eðϕ − ϕ̂Þ2 ≥ ½μF ðϕ; ρÞ�−1, where F ðϕ; ρÞ is the
quantum Fisher information and μ is the number of
measurements. In this Letter, we focus on the limit where
the number of measurements is large enough for the bound
to hold.
The single-parameter quantum Fisher information is a

convex quantity; that is, for a density matrix ρ ¼ αρ1 þ βρ2,
we have F ðαρ1 þ βρ2Þ ≤ αF ðρ1Þ þ βF ðρ2Þ. If we assume
that the error state Eϕðρ0Þ does not carry any information
about ϕ, i.e., F ½Eϕðρ0Þ� ¼ 0, we get an upper bound
F ½ð1 − qÞρϕ þ qEϕðρ0Þ� ≤ ð1 − qÞF ðρϕÞ. However, as we
show below, while this bound is not attainable using the
straightforward sensing scheme mentioned above, it is
attainable using sensors based on erasure qubits.
Depolarizing and dephasing noise—Consider the sim-

plest form of noise where random Pauli operators act on the
sensor with equal probability. This gives rise to a depola-
rizing noise of strength q with Eϕðρ0Þ ¼ 1=2. In the
Supplemental Material, Sec. S1 [24], we show that the
corresponding Fisher information is upper-bounded by
ð1 − qÞ2. If we instead consider a purely dephasing channel
(see Sec. S1 of Supplemental Material [24]), with σz
operator acting with probability q, the Fisher information
is same as that for depolarizing noise, but with a modified
strength 2q. Dephasing and depolarizing noise are often
used to model realistic quantum devices [26,27]. In both of
these cases, the Fisher information scales quadratically in
(1 − q), meaning we fail to saturate the bound dictated by
the convexity [7].

Erasure—Consider a noise process that takes the sensor
to a third state j − 1ih−1j that can be detected using
nondemolition measurements without perturbing the coher-
ence between the computational states j0i and j1i used in
sensing, i.e., Eϕðρ0Þ ¼ j − 1ih−1j. When the sensor is
equipped with erasure conversion, we add an erasure
detection step to the usual measurement protocol; if we
detect the erasure state j − 1ih−1j, we do nothing (record
“null”). Otherwise, we measure in the j�i basis as before.
While in quantum computing applications, it is important to
have midcircuit measurement of erasure errors with no
backaction onto the qubit levels [17,20], the measurements
in the quantum sensing protocols considered here are
terminal measurements. Therefore, it suffices to merely
distinguish j�i from erasure in the final measurement.
The erasure detection step prevents experimental errors

from creeping into the measurements used to derive the
estimator ϕ̂. The three outcomes of this sensing protocol are
j − 1i; jþi, and j−i, with measurement probabilities p−1 ¼
q and p� ¼ ð1 − qÞ½1� cosðϕÞ�=2, and the Fisher in-
formation associated with these three outcomes is
F erasure ¼ ð1 − qÞ, attaining a linear scaling in (1 − q).
Erasure errors in atomic clocks—Today, atomic clocks

can achieve a precision corresponding to an uncertainty of
less than 1 s over the lifetime of the Universe [28–30]. This
precision has enabled tests of foundational physical theo-
ries such as special and general relativity [31–34].
Continuing advances in atomic clock performance promise
to make them prime platforms for tests of fundamental
physics.
Atomic clocks work by measuring the deviation of the

frequency of a local oscillator fLO from a narrow transition
line. In an optical atomic clock, a laser serves as the local
oscillator, and is used to drive a stable transition with
reference frequency f0. The laser frequency is stabilized by
measuring the shift Δf ¼ fLO − f0 with respect to the
clock frequency using Ramsey spectroscopy. After each
Ramsey interrogation, the clock applies an electronic
correction to the laser source to compensate for frequency
drifts.
Measuring a frequency shift using Ramsey spectroscopy

amounts to phase estimation and has the same structure of
the sensing problem outlined above. The relevant figure of
merit for an atomic clock is the “fractional instability”
σ ¼ δfLO=f0, where δfLO is the uncertainty in the meas-
urement of fLO.
Historically, the performance of optical atomic clocks

has been limited not by the reference atoms, but rather by
noise from the laser probe. However, recent experiments
used correlated differential spectroscopy to bypass the
limitations of the local oscillator and achieve differential
clock comparisons limited by quantum projection noise
(QPN) of the atoms [31,35]. This provides an opportunity
to explore and reduce instability arising from errors acting
on the atoms.

Initialize /2 t Initialize /2 t /2 Readout

Erasure Detection

Dephasing Erasure

/2 Readout

FIG. 1. Illustration of Ramsey interrogation of an ensemble of
two-level sensors undergoing dephasing (left) and erasure (right)
noise. Time evolution of the quantum sensors is represented by
black lines inside the Bloch spheres. Erasure errors are shaded out
in the right ensemble. Bottom plots show respective fringe
contrasts.
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A Ramsey-like protocol is used to measure the phase ϕ
accumulated over the measurement time Tc. ϕ is related to
the frequency difference between the oscillator and the
atom as ϕ ¼ 2πTcðΔfÞ; the local oscillator frequency is
thus inferred as fLO ¼ f0 þ ϕ=ð2πTcÞ. The fractional
instability is then expressed in terms of the uncertainty
in the estimate of ϕ, which can, in turn, be bounded using
the Cramér-Rao bound,

σ ¼ δfLO
f0

¼ 1

2πTc

δϕ

f0
; δϕ ≥

1

F 1=2 ; ð1Þ

where F is the single-parameter Fisher information asso-
ciated with measurement of the phase shift ϕ. Ramsey
interrogation of the clock state is similar to the single-
parameter sensing problem of calculating the unknown
parameter λ in the Hamiltonian H ¼ λσz=2 driving a two-
level system. The optimal measurement protocol, in both
cases, is to start in state jþi, evolve freely under the
Hamiltonian, and measure the resulting state in the j�i
basis. The quantum information associated with a single
measurement of the parameter is F ¼ 1 (assuming
no noise).
In an optical lattice clock, on each interrogation, we

measure the ensemble of N atoms, and we repeat this τ=Tc
times, where τ is the total measurement time and Tc is the
time of each measurement cycle. For independent sensors,
Fisher information increases additively, giving a lower
bound on the fractional instability,

σ ¼ 1

2πTc

δϕ

f0
≥

1

2π

1

f0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

N
1

Tcτ

s
: ð2Þ

We can now consider how the bounds on fractional
instability change with (i) undetectable noise that keeps the
sensor state within the sensing subspace, and (ii) erasure
noise that takes the quantum state out of the sensing
subspace.
For the former case, consider a dephasing noise model

that decoheres a state at a fixed rate. Dephasing noise in an
atomic clock can arise from inhomogeneous light shifts
from the lattice, line broadening from atomic collisions, or
a magnetic field gradient [35]. During Ramsey spectros-
copy, dephasing noise has the same effect as a fully
depolarizing channel (see discussion in Sec. S1 of the
Supplemental Material [24]); after interrogation time Tc,
the clock state is assumed to be in a fully mixed state 1=2
with probability q ¼ 1 − e−ΓTc, where Γ is the rate of
convergence to a fully mixed state. With probability 1 − q,
the clock state stays intact.
The error rate q is obtained by measuring the Ramsey

fringe contrast C, which decays as ∝ e−Γt. For this
depolarizing rate, the Fisher information of the sensor is
F depol ≤ ð1 − qÞ2, giving the lower bound on fractional
instability

σdepol ≥
1

1 − q
1

2π

1

f0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

N
1

Tcτ

s
¼ σ

1 − q
; ð3Þ

where the error strength q is determined by the inter-
rogation time Tc.
For erasure noise models, similar to dual-rail photonic

qubits for which photon loss is an erasure error, we can
consider errors due to loss of the atoms from the lattice
during the measurement, or equivalently due to imperfect
initialization of the atoms at the start of the measurement.
Assume that each atom is lost during clock interrogation (or
is incorrectly initialized) with probability q. In contrast to a
bit-flip or a dephasing noise, such a noise takes the sensor
out of the computational subspace, and can be accounted
for in subsequent data processing. Consequently, lost or
incorrectly initialized atoms do not contribute to the signal
used to estimate the accumulated phase, leading to a better
signal-to-noise ratio. The Fisher information in this case is
F ¼ ð1 − qÞ, giving a lower bound

σatom−loss ≥
1ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p 1

2π

1

f0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

N
1

Tcτ

s
¼ σffiffiffiffiffiffiffiffiffiffiffi

1 − q
p : ð4Þ

The two noise processes therefore contribute differently to
the fractional instability. In Sec. S3 of the Supplemental
Material [24], we show that this analysis holds also for an
ensemble of sensors with or without entanglement.
We study the response of fractional stability to error rates

for the two types of errors using a differential clock
comparison experiment (see Sec. S4 of the Supplemental
Material for details [24]) in a multiplexed optical lattice
clock [31,35] as illustrated in Fig. 2(a). Two spatially
resolved ensembles of 87Sr atoms are used, and their
relative frequency shift is measured through synchronous
Ramsey interrogation with the same clock laser as shown in
Fig. 2(b). The differential frequency between the ensembles
can be determined by parametrically plotting the measured
excitation fractions from each experiment and fitting to the
resulting ellipse, as shown in Fig. 2(c). The synchronous
measurement overcomes the limitation placed on inter-
rogation time by the laser’s frequency instabilities (line
width). Denoting the frequency shifts of the ensembles by
ϕa and ϕb, the fractional instability in Eq. (1) thus be-
comes δðϕa − ϕbÞ. Assuming the ensembles have the
same number of atoms and the same coherence, the
variance in the relative shift is the sum of individual vari-
ances, Varðϕa − ϕbÞ ¼ VarðϕaÞ þ VarðϕbÞ ¼ 2VarðϕbÞ.
This contributes a factor of

ffiffiffi
2

p
to Eq. (2). The scaling

of instability with noise in Eqs. (3) and (4) remains
unchanged.
In one set of experiments, an example of which is shown

in Fig. 2(d), we tune the erasure error rate while keeping the
coherence time of the atoms fixed. In order to controllably
vary the erasure loss rate, we can intentionally introduce an
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error in our atom initialization, which is equivalent to a
noise model where atoms are lost during the experiment.
Any atoms not initialized in the correct hyperfine ground
state are removed from the optical lattice and do not
contribute to the estimate of the accumulated phase differ-
ence. On average N0 atoms are loaded in each experiment
before initialization. The average number of atoms partici-
pating in phase estimation is used to derive the probability
of an erasure error, i.e., q ¼ 1 − hNi=hN0i.
In another set of experiments, an example of which is

shown in Fig. 2(e), we intentionally induce decoherence of
the atomic superposition while holding the erasure rate

steady. This is achieved by detuning the wavelength of the
optical lattice away from the “magic wavelength” [28] to
induce an inhomogeneous lattice light shift as the atoms
experience different lattice trap depths due to their finite
radial temperature, resulting in a dephasing of the ensem-
bles. The strength of effective decoherence is then mea-
sured using Ramsey fringe contrast, i.e., q ¼ 1 − C. By
artificially introducing noise, we can isolate the salient
differences between the various types of noise and directly
compare to theoretical predictions.
In Fig. 2(f), we plot the Allan deviation, experimentally

calculated using a jackknifing technique [36,37], from the

FIG. 2. (a) Diagram of two ensembles of 87Sr loaded into the same 1D optical lattice trap. The ensembles, separated vertically by 1 cm,
can be interrogated simultaneously with a laser directed along the axis of the trap. A camera image of the ensembles is shown on the
right. (b) Experimental sequence (timing not to scale) used for differential comparisons of the ensembles. The atoms, initialized in the
ground state, are synchronously probed with a Ramsey interrogation technique. We choose a Ramsey dark time, τ, of 8.0 s and a
sequence time of 9.67 s. (c) The excitation fraction of each ensemble is plotted parametrically, tracing out an ellipse corresponding to the
differential phase between the ensembles. This ellipse corresponds to an atom number N of 1915(24) atoms and a contrast C of 0.78(1).
This gives a value of qerasure ¼ 0.00ð2Þ and qdephase ¼ 0.22ð1Þ (d) The atom number is decreased relative to the ellipse in (c) while
keeping the contrast constant. This ellipse corresponds to an increase in erasure error. This ellipse has an atom number N of 551(14)
atoms and a contrast C of 0.82(2), giving qerasure ¼ 0.68ð1Þ and qdephase ¼ 0.18ð2Þ (e) The contrast is decreased relative to the ellipse in
(c), while keeping atom number approximately the same. This ellipse corresponds to an increase in dephasing error. This ellipse has an
atom number N of 2112(28) atoms and a contrast C of 0.30(4), giving qerasure ¼ 0.00ð2Þ and qdephase ¼ 0.70ð4Þ. (f) Extracted stabilities
from ellipses shown in (d) and (e). The stability for the orange dephasing curve is 3.1ð1Þe-17= ffiffiffi

τ
p

, and the stability for the purple erasure
curve is 1.93ð8Þe-17= ffiffiffi

τ
p

. Even with similar error rates, the erasure error leads to lower instability than dephasing error. (g) Measured
fractional instability against error rate q for erasure error and dephasing error. For the dephasing noise, the error rate q is derived from the
differential Ramsey fringe contrast as q ¼ 1 − C. For atom loss, the error rate is taken to be q ¼ 1 − N=N0, where N0ðNÞ is the average
number of atoms in both ensembles before (after) interrogation. The solid lines correspond to the quantum-projection-noise-limited
stability at zero error rate [Eqs. (4) and (3) with no free parameters]. Note that zero-erasure curve is offset to account for the maximum
achievable contrast of ≈0.8. The reduced chi-squared value for the data compared to the theory curves is 2.14.
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ellipses in Figs. 2(d) and 2(e). In Fig. 2(g), we plot the
extracted differential instability of the clock comparison
against the error rates for dephasing and erasure errors. We
observe that the measured instabilities are consistent with
the scalings predicted by the lower bounds on Fisher
information given by Eqs. (3) and (4).
Several recent optical lattice clock experiments have

already implicitly taken advantage of erasure errors by
demonstrating atom-atom coherence times significantly
exceeding the lifetime of atoms [31,35]. Future experi-
ments could benefit by engineering erasure conversion of
errors due to lattice Raman scattering and spontaneous
emission. While Fig. 2(g) appears to promise dramatic
improvements in fractional instability by converting
dephasing errors into erasure errors for high error rates
q > 0.5, note that this high error regime is not where clocks
typically operate, and furthermore the bounds shown in the
figure and given by Eqs. (3) and (4) are for a fixed
interrogation time Tc. In reality, Tc should be adjusted
to minimize the clock instability for a given type of error
and error rate. For a QPN-limited, zero-dead-time differ-
ential clock comparison subject to dephasing errors with an
exponential decay in contrast C with rate Γ, C ¼ Coe−ΓTc ,
converting all dephasing errors into erasure errors and
reoptimizing the interrogation time results in at most a
factor of

ffiffiffi
2

p
reduction in instability. For finite dead times,

the improvement in instability can be larger, as erasure
errors enable longer interrogation times without significant
degradation in instability. For a QPN-limited clock com-
parison in the limit of long dead times Td ≫ 1=Γ, the
reduction in instability from complete erasure conversion
for optimized coherent interrogation times asymptotically
approaches 2.
Discussion—In this Letter, we discuss erasure errors in

quantum sensing. We relate the metrological gain for
erasure qubits with the saturation of Fisher information.
We also discuss erasure errors in atomic clocks and
experimentally demonstrate the different ways by which
general errors and erasure errors affect the clock stability.
Similar benefit may be realized in sensing with other

multilevel quantum systems. An erasure qubit composed of
a 3P0 state and a Rydberg state in an alkaline-earth(like)
atom [15–18] can be used to measure electric fields. A
dual-rail superconducting erasure qubit [19–21] can be
used to measure the coupling strength between the two
constituent qubits. Finally, an erasure qubit based on the
ground and the second excited state of a transmon [19] can
be used to measure the transmon frequency (and potentially
a magnetic field oscillating at a frequency larger than the
frequency that dominates qubit dephasing) or a two-photon
Rabi frequency coupling the two states.
Additionally, quantum sensors may be used as spectator

qubits, where they are embedded into a quantum computer
among “data qubits” performing the actual quantum
computation, to sense noise, drifts, and fluctuations [38],

allowing for feedback-based error mitigation. Improving
the performance of such sensors by engineering erasure
conversion is a promising approach toward near-term error
resilience.
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