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In this Supplemental Material, we elaborate on the computation of the Fisher information for the case of sensing
using a single qubit subject to dephasing or depolarizing noise (Section S1) and demonstrate the claim in the main text
that the optimal single-qubit probe state remains unchanged in these settings relative to the noiseless case (Section S2).
We also extend our discussion of erasure errors from the case of a single qubit to multi-qubit ensembles subject to
both global and local depolarizing and dephasing noise channels (Section S3). Finally, we describe additional details
of the experimental implementation (Section S4).

S1. DEPOLARIZING AND DEPHASING NOISE

In this section, we describe in more detail how the Fisher information for single-qubit sensing subject to either
dephasing or depolarizing noise depends on the noise strength.

Recall that, in the main text, we began by considering the simplest form of noise where random single-qubit Pauli
operators act on the sensor with equal probability q/4. This gives rise to a depolarizing noise model of strength q
with Eϕ(ρ0) = 1/2. In Section S2, we will show that the optimal input state for sensing under depolarizing noise is
the same as for sensing without noise—that is, ρ0 = |+⟩ ⟨+|. If we measure the final state in some general basis given

by |±θ⟩ = (|0⟩ ± eiθ |1⟩)/
√
2, the corresponding Fisher information, for this choice of measurement basis, is given by

Fdepol =

〈(
∂ log px
∂ϕ

)2
〉

x∈{+,−}

=
(1− q)2 sin2 (ϕ− θ)

1− (1− q)2 cos2 (ϕ− θ)
. (S1)

Thus, choosing ϕ-dependent basis achieves the maximum Fisher information of (1 − q)2 [S1]. As having such prior
information about the unknown parameter value is unrealistic, the achievable Fisher information is usually lower than
the maximal value of (1− q)2.
Alternatively, if we assume that the noise channel can only impart a phase-flip during the sensing process with

probability q, we get a dephasing noise of the form Eϕ[ρ0] = σzρϕσz with ρϕ = exp (−iϕσz/2) ρ0 exp (iϕσz/2). For the
single-qubit sensing problem we consider here subject to such dephasing, noise we have the map

ρ0 → (1− q)ρϕ + qσzρϕσz = (1− 2q)ρϕ + (2q)
1
2
, (S2)

which is the same as a depolarizing noise model with a modified strength q → 2q. Dephasing and depolarizing noise
are often used to model realistic quantum devices [S2, S3]. In both of these cases, the Fisher information scales
quadratically in (1− q), meaning we fail to saturate the linear in (1− q) bound dictated by the convexity [S1].

S2. OPTIMAL INPUT STATES FOR NOISY SENSING

In this section, we show that the optimal input state for noisy sensing of a single parameter under depolarizing
noise is the same as that for noiseless sensing.

Consider a single-qubit input state, ρ0, which evolves under the sensing unitary Uϕ = exp(iϕH), with ϕ being the
unknown parameter we want to sense and H being the generator Hamiltonian. The quantum Fisher information, as
a function of the input state ρ0, with respect to the parameter ϕ, is given by Ref. [S4]

F(ρ0) = 4(2 tr(ρ20)− 1)| ⟨λ0|H|λ1⟩ |2, (S3)
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where λ0 and λ1 are the eigenvectors of ρ0. Because the depolarizing channel and the unitary channel commute, we
let the unitary act noiselessly on a depolarized input state, which is given by

ρ̃0 = (1− q)ρ0 + q
1
2
, (S4)

where q is the depolarization strength. Noting that the eigenstates of ρ̃0 and ρ0 are the same, Eq. (S3) evaluates to

F(ρ̃0) = (1− q)2F(ρ0). (S5)

Note that the above expression is generically true for all input states ρ0, meaning that the effect of noise is to simply
scale the Fisher information by (1 − q)2, regardless of the input state. Therefore, the optimal state to use for noisy
sensing is the same as that for noiseless sensing.

S3. MULTI-QUBIT ERASURES

In this section, we extend our comparison of erasure error with other types of errors to multi-qubit ensembles. We
focus on two cases, one where qubits in the ensemble are unentangled and another where the ensemble qubits are
fully entangled. We show that, in both cases, erasure qubits retain their metrological advantage.

Unentangled ensemble

Consider an experiment with n unentangled spins, each initialized in the |+⟩ state, and each evolving under the sens-
ing Hamiltonian exp (−iϕσz/2), such that the multi-qubit ensemble takes the tensorized form ρ⊗n

ϕ = (|ψ(ϕ)⟩ ⟨ψ(ϕ)|)⊗n

with |ψ(ϕ)⟩ = (eiϕ/2 |0⟩+ e−iϕ/2 |1⟩)/
√
2.

The extractable information about the unknown parameter ϕ depends on the choice of measurement we make on
the ensemble, which can be a general positive-operator valued measure (POVM). The maximum information obtained
by optimizing over all possible POVMs is given by the quantum Fisher information (QFI). For product states, the
QFI is additive: F(ρ⊗n) = nF(ρ). Therefore, for the unentangled ensemble, the QFI of the entire ensemble of spins
is n times the QFI of a single spin.

Consequently, the QFIs for an ensemble that undergoes depolarizing noise and erasure noise are n(1 − q)2 and
n(1 − q), respectively, where we have borrowed the single-spin QFI from the main text. For both types of noise,
the Fisher information scales with n, implying that the standard deviation in the estimator of ϕ scales, following the
Cramér-Rao bound, as 1/

√
n.

Entangled ensemble

Now, we consider the case of a fully-entangled ensemble. More specifically, we consider the multi-qubit sensor

state given by the GHZ state
(
|0⟩⊗n

+ |1⟩⊗n
)
/
√
2, which, in the absence of noise, evolves to ρϕ = |ψn

ϕ⟩ ⟨ψn
ϕ | with

|ψn
ϕ⟩ =

(
e−inϕ/2 |0⟩⊗n

+ einϕ/2 |1⟩⊗n
)
/
√
2. This is the optimal probe state for noiseless sensing under the given

Hamiltonian.
For a generic mixed probe state ρ we may calculate the QFI under a unitary encoding of the parameter ϕ by

calculating the eigenvalues λi and the eigenvectors |λi⟩ of ρ and evaluating the following expression [S4]:

F =
∑
k,l

λk+λl ̸=0

2 · |⟨λk|∂ϕρ|λl⟩|2

λk + λl
=

∑
k,l

λk+λl ̸=0

2 · |⟨λk|i(A · ρ− ρ ·A)|λl⟩|2

λk + λl
=

∑
k,l

λk+λl ̸=0

2 · (λk − λl)
2

λk + λl
| ⟨λk|A|λl⟩ |2. (S6)

Above, we have used the fact that ∂ϕρ = ∂ϕ
(
e−iϕA · ρ0 · eiϕA

)
= −i(A · ρ− ρ ·A), where ρ0 is the initial sensing state,

and A is the generator corresponding to the sensing process. In the case of multi-qubit sensing, where the unknown

parameter ϕ couples to each of the sensors via a σz/2 operator, we have A =
∑n

i=1 σ
(i)
z /2, where σ

(i)
z indicates that

the operator acts on qubit i (with identity on the rest of the qubits).
For ease of exposition, we first consider the case where the noise acts globally. The depolarizing noise takes the

state to a globally depolarized or fully-mixed state, that is

ρϕ → ρ̃ϕ = (1− q)ρϕ + q
1n

2n
, (S7)
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and the erasure error takes the state to a global erasure state, which we denote by ρ⊥, that is

ρϕ → ρ̃ϕ = (1− q)ρϕ + qρ⊥. (S8)

A global erasure state is a state that is outside the sensing subspace and is detectable without affecting the sensing
space. For example, consider a GHZ state and a noise channel consisting only of an odd number of bit-flips. Measuring
the parity of the state will reveal the occurrence of the error. As a result, the entire subspace of odd parity can be
considered a global erasure state.

We now compute the Fisher information corresponding to the depolarizing and erasure channels by considering
the eigenvalues in Eq. (S7) and Eq. (S8), respectively. As the noiseless state ρϕ has only one non-zero eigenvalue,
in the noiseless case, the sum in Eq. (S6) only includes one term. With the addition of depolarizing noise, the
eigenvalues of the depolarized noisy state include contributions from the maximally mixed state: one eigenvalue is
(1 − q) + q/2n (with eigenvector |+ϕ⟩ = (e−inϕ/2 |0⟩⊗n

+ einϕ/2 |1⟩⊗n
)/
√
2) and the rest are q/2n (with eigenvectors

{|−ϕ⟩ = (e−inϕ/2 |0⟩⊗n−einϕ/2 |1⟩⊗n
)/
√
2}∪{|êk⟩}k∈[2,2n−1], where |êk⟩ runs over the 2n−2 computational basis states

other than |0⟩⊗n
and |1⟩⊗n

. The non-zero contributions to Eq. (S6) come from two choices of k and l, when |λk⟩ = |+ϕ⟩
and |λl⟩ = |−ϕ⟩ (and vice versa). For each of the two terms, we have |λk − λl| = (1− q), λk + λl = q · 21−n + (1− q)
and | ⟨λk|A|λl⟩ | = n/2. Therefore, we obtain

Fdepol =
n2 · (1− q)2

q · 21−n + (1− q)
. (S9)

For erasure error, the inclusion of the erasure state ρ⊥ introduces eigenvectors that are orthogonal to the eigenvectors
of the noiseless state ρϕ. The non-zero contributions to Eq. (S6) come from two choices of k and l, when |λk⟩ = |+ϕ⟩
and |λl⟩ = |−ϕ⟩ with eigenvalues λk = 1− q and λl = 0 (and vice versa), such that the Fisher information evaluates
to

Ferasure = n2(1− q). (S10)

Note that, in the limit n→ ∞, we get

lim
n→∞

Fdepol = Ferasure. (S11)

We explain this limit as follows: the depolarizing noise takes the state to a maximally mixed state which has an
exponentially small overlap with the original codespace. If we can engineer complicated non-local measurements,
we can detect if the state has left the sensing subspace defined by the GHZ state. While this erasure-detection
measurement is easy for an erasure state, this can be extremely difficult to engineer for a generic depolarized state.

Crucially, such a limit does not hold for arbitrary noise. For example, consider the global dephasing noise

ρϕ → (1− q)ρϕ + qZ⊗nρϕZ
⊗n, (S12)

where Z = −i exp (iπσz/2). We have Z⊗nρϕZ
⊗n = ρϕ+nπ; the dephasing error keeps the sensor within the sensing

codespace. For even n, global dephasing noise has no effect on the ensemble, that is, ρϕ+nπ = ρϕ for even n. However,
for odd n, this state has a QFI given by

Fdephas = n2(1− q)2, (S13)

which does not have an asymptotic limit that tends to the Fisher information corresponding to erasure noise.

While we considered the effects of global noise in the analysis above, a more realistic noise model would include
local noise acting independently on all qubits in the ensemble. For local depolarizing and local erasure noise, the noise
model would look like

ρϕ →
∑

k∈{0,1}n

(1− q)n−|k|q|k| trk(ρϕ)⊗ E⊗|k|, (S14)

where we sum over all possible combinations of errors in n qubits, |k| denotes the Hamming weight of the binary
vector k, trk(ρ) denotes the reduced density matrix obtained by tracing out qubits on which the noise acts, and
E⊗|k| denotes the local error on qubits defined k. For local depolarizing noise, E = 1/2, and for local erasure noise,
E = |⊥⟩ ⟨⊥|, where |⊥⟩ is the local erasure state on each individual sensor. For local dephasing noise, the noise model
is instead given by

ρϕ →
∑

k∈{0,1}n

(1− q)n−|k|q|k|Zk · ρϕ · Zk, (S15)
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FIG. S1. Quantum Fisher information with local independent depolarizing (red solid lines), dephasing (green solid lines), and
erasure (gray dashed lines) noise for n between two (lightest shade) and eight (darkest shade). The QFI for depolarizing noise
approaches the QFI for erasure noise for large n.

where Zk denotes a composite Pauli operator with Z operators in position i whenever ki = 1 and identity operator
otherwise.

We can evaluate the QFI of these noise processes for different q and different n numerically. The results are plotted
in Fig S1. We observe that, similar to the global noise model, erasure error has the largest QFI, and the QFI for
depolarizing noise approaches the QFI for erasure at large n.

S4. EXPERIMENTAL IMPLEMENTATION

In this section, we provide additional details on various aspects of the experimental demonstration of our results.

Sample preparation

In order to measure the impact of erasure and dephasing errors on a quantum system, we perform differential
measurements of two spatially-resolved ensembles of 87Sr atoms loaded into a one-dimensional (1D) optical lattice.
To prepare the atomic sample, we use a standard two-stage magneto-optical trap (MOT) technique based on the broad-
linewidth (≈ 30 MHz) 1S0 - 1P1 transition at 461 nm and the narrow-linewidth (≈ 7.5 kHz) 1S0 - 3P1 transition at
689 nm. These trapped atoms are then transferred to a 1D optical lattice, which is created through a retro-reflected
laser beam tuned to the “magic” wavelength at 813 nm.

To prepare two atomic ensembles, we first load atoms from the 689 nm MOT into one region of the lattice for
roughly 20 ms. The 689 nm MOT is then displaced along the lattice propagation axis by adjusting the current in the
MOT coils to shift the location of the magnetic field zero, and a second region of the lattice is loaded for about 25 ms
to achieve roughly equal atom numbers. The separation between the two ensembles used in the data shown in Fig. 2
of the main text is approximately 0.8 mm.

Hyperfine state initialization

Following loading into the lattice from the MOT, we spin polarize the atoms into the stretched state |1S0,mF = +9/2⟩,
followed by in-lattice cooling on the 1S0 -

3P1 transition both axially (sideband cooling) and radially (Doppler cooling).
We then initialize the sample into our desired hyperfine state |e,mF = +3/2⟩ through three successive σ− transitions
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through the ground (1S0, g) and clock (3P0, e) states hyperfine manifold, i.e. |g,mF = +9/2⟩ → |e,mF = +7/2⟩,
|e,mF = +7/2⟩ → |g,mF = +5/2⟩, and |g,mF = +5/2⟩ → |e,mF = +3/2⟩. Each clock pulse is followed by a “clean-
up” pulse on the 1S0 - 1P1 transition (3P0 - 3S1 and 3P2 - 3S1 transitions) to remove any residual atoms in the ground
(clock) state.

Synchronous Ramsey interrogation

We perform synchronous Ramsey differential measurements on the |g,mF = +5/2⟩ ↔ |e,mF = +3/2⟩ transition,
consisting of an initial π/2 pulse, followed by a period (T ) of no laser light, referred to as Ramsey interrogation time
or Ramsey dark time, and a final π/2 pulse. The synchronous Ramsey technique we employ in this work uses 2 atomic
ensembles interrogated simultaneously with a shared clock laser beam along the lattice axis, as shown in Fig. 2(a)
and (b) of the main text. The populations in the ground and excited clock states of two ensembles are read out in
parallel with imaging pulses along the lattice axis, with scattered photons collected on a camera (Andor, iXon-888).
The excitation fraction is extracted through P = (Ne−Nbg)/(Ng+Ne−2Nbg), where Ng, Ne, and Nbg are the ground
state population, excited clock state population, and background counts without atoms, respectively.

Because the free evolution time T (8 s) is orders of magnitude longer than the local oscillator coherence time (about
100 ms), the phase of the final π/2 pulse is random. The excitation fraction of these two ensembles (P0 and P1) can
be written as

P0 =
1

2
(1 + C0 cos(θl)),

P1 =
1

2
(1 + C1 cos(θl + ϕd)),

(S16)

where C0 and C1 are the respective contrasts of each ensemble, θl is the random laser phase, and ϕd is a fixed relative
phase. When the excitation fractions from the two regions are plotted parametrically, the data traces out an ellipse
due to the fixed relative phase between the Ramsey fringes of the two ensembles. The relative phase can then be
extracted through a least-squares fit to the ellipse, as detailed in our previous work [S5]. To extract the stability
of the measured relative phase between the ensembles, we use a jackknifing technique [S6] to construct an Allan
deviation, which can be fit with a slope corresponding to a white noise model due to laser frequency noise. To extract
the contrast, we use the variance of the measured excitation fraction for each ensemble given as

Ci = 1−
∣∣∣∣1−√

8σ2
i

∣∣∣∣ . (S17)

The final contrast is then given as the average of the two ensembles.

Lattice-induced dephasing

Due to radial motion within the 1D optical lattice, trapped atoms experience a varying lattice intensity as they
sample the Gaussian profile of the laser beam. This results in ac Stark shifts of both the ground and excited states
of the atom based on its radial motion within the lattice potential. At the ‘magic wavelength’, the polarizabilities of
the ground and excited states are equal such that the trapping light causes an equal, at least to leading order, shift
in the energies of the ground and excited states. As we detune from the magic wavelength in this experiment, the
dephasing error rate increases due inhomogeneous broadening from the radial motion, which manifests as a reduced
contrast of the ellipses from the synchronous Ramsey comparisons. To perform the measurements shown in Fig. 2
of the main text, we use a TiSapphire laser (Matisse C from Sirah) at 368.55486(1) THz, corresponding to our
operational magic wavelength, that is frequency locked to a wavemeter with an accuracy of approximately 10 MHz.
In the measurements show in Fig. 2(g) of the main text, we detune a maximum of 2.0 GHz away from the magic
wavelength, which corresponds to a contrast of 0.21(3).
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