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Leveraging quantum information geometry, we derive generalized quantum speed limits on
the rate of change of the expectation values of observables. These bounds subsume and, for
Hilbert space dimension ≥ 3, tighten existing bounds—in some cases by an arbitrarily large
multiplicative constant. The generalized bounds can be used to design “fast” Hamiltonians
that enable the rapid driving of the expectation values of observables with potential ap-
plications e.g. to quantum annealing, optimal control, variational quantum algorithms, and
quantum sensing. Our theoretical results are supported by illustrative examples and an ex-
perimental demonstration using a superconducting qutrit. Possibly of independent interest,
along the way to one of our bounds we derive a novel upper bound on the generalized quan-
tum Fisher information with respect to time (including the standard symmetric logarithmic
derivative quantum Fisher information) for unitary dynamics in terms of the variance of the
associated Hamiltonian and the condition number of the density matrix.

Introduction.—Energy-time uncertainty rela-
tions and the associated quantum speed lim-
its were first formalized by Mandelstam and
Tamm [1]. They provided a lower bound for the
time t⊥ for a quantum system in a pure state to
reach an orthogonal state, given unitary evolu-
tion under some Hamiltonian. Since then, a vari-
ety of other bounds, all under the general head-
ing of “quantum speed limits,” have been de-
rived, providing bounds on the rate of change of
quantum states [2–11] and observables [12–16],
with applications to metrology [17, 18], quantum
thermodynamics [19–24], quantum control the-
ory [25], the analysis of quantum algorithms [26]
and many others [27].

Of particular note, Ref. [13] derived a set of
information-theoretic speed limits on the rate
of change of expectation values of observables
that hold for any probability-conserving dynam-
ics. For a fixed observable A and a state ρ,

|ȧ| ≤ ∆A
√
ISLD, (1)

where ȧ := Tr [Aρ̇] (here, ρ̇ := dρ/dt) is the ve-
locity of the expectation value of A in the state
ρ, (∆A)2 := Tr(ρA2) − Tr(ρA)2 is the variance

of A, and ISLD is the so-called symmetric loga-
rithmic derivative (SLD) quantum Fisher infor-
mation (QFI) with respect to time. The SLD
QFI has a simple interpretation: it quantifies
how much the state ρ changes as t → t+ dt.

Equation (1) consists of two components:
(1) a dynamics-independent term, ∆A, that de-
pends on the uncertainty of the observable in
question with respect to the current state ρ; (2)
an observable-independent term,

√
ISLD that de-

pends only on the underlying state and the dy-
namics of the system. Both of these terms have
geometric content, as they can each be associ-
ated with a natural notion of an inner prod-
uct between Hermitian operators. In particular,
considering ρ as a point in a one-dimensional
manifold of quantum states parameterized by
the time t, ISLD is a natural choice of Rieman-
nian metric on the space of density matrices [28].
It is a metric in that it provides a notion of dis-
tance between each point ρ(t) and ρ(t+ dt).

Stronger versions of Eq. (1) can be obtained
by splitting A and ISLD into their incoherent (di-
agonal) and coherent components (off-diagonal)
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in the eigenbasis of ρ [13]. In particular,

|ȧ| ≤ (∆AC)
√

ISLD
C + (∆AI)

√
ISLD
I , (2)

where, the subscripts C and I denote the coher-
ent and incoherent parts, respectively. We have
not yet defined precisely what the incoherent and
coherent parts of ISLD are (ISLD is a number,
not an operator!), but, qualitatively, ISLD

C (ISLD
I )

quantifies how much the eigenvectors (eigenval-
ues) of ρ change as t → t+ dt.

Key Results.—Before delving into the math-
ematical details, we summarize the key results:
First, we show that the bounds in Eq. (1) and
Eq. (2) are each but one example in a much
richer family of geometric quantum speed lim-
its. In particular, we leverage the fact that the
choice of inner product on the (tangent space of
the) manifold of quantum states that leads to
ISLD and ∆A is not unique [28, 29]; thus, both
the SLD QFI and the variance can be replaced
with generalized quantities in Eqs. (1) and (2).
Subject to the natural constraint that the associ-
ated Reimannian metric (i.e. QFI) is contractive
(i.e. distances shrink under noise), these gener-
alized notions of QFI and of variance are char-
acterized by a special set of functions f (defined
rigorously below). We demonstrate that, for any
valid choice of f ,

|ȧ| ≤ (∆fA)
√
If , (3)

and, also,

|ȧ| ≤ (∆fAC)

√
If
C + (∆AI)

√
II . (4)

We dropped the f -superscript on the incoherent
terms because, for incoherent operators, the gen-
eralized QFI and variance are identical for all f .
We prove that Eq. (4) is tighter than Eq. (3).

Eqs. (1) and (2) correspond to one partic-
ular choice of f . For Hilbert space dimension
≥ 3, we show that, for the optimal choice of
f , Eqs. (3) and (4) are generically tighter than
Eqs. (1) and (2), respectively, in some cases by
an arbitrarily large multiplicative factor. These
improvements come from taking advantage of
the freedom in choosing a natural inner product
on the manifold of quantum states to tighten the

slack in the Cauchy-Schwarz inequality that un-
derlies such bounds. Our results are supported
by a toy example and an experimental demon-
stration using a superconducting qutrit. We also
show how our bounds inform the construction
of novel control Hamiltonians to rapidly drive
observables with applications to, e.g., quantum
annealing and quantum machine learning.

Finally, for arbitrary coherent dynamics
driven by a Hamiltonian H and assuming inco-
herent dynamics driven by entanglement with an
environment via a Hamiltonian H int, we obtain
a looser, but simpler, speed limit

|ȧ| ≤ √
κρ∆

fAC∆H + 2∆AI∆H int, (5)

where κρ is the condition number of ρ (i.e. the
ratio of its largest eigenvalue to its smallest
eigenvalue). Importantly, unlike If , this bound
does not depend directly on ρ̇ and is expressed in
terms of more easily accessible physical quanti-
ties. For f = fSLD and mixed states with κρ < 4,
Eq. (5) tightens the original speed limit on ob-
servables derived by Mandelstam and Tamm [1].
Along the way to Eq. (5), we derive a new bound
on any QFI that may be of independent interest.

Mathematical Details.—Let Md denote the
set of d-dimensional Hermitian matrices. De-
fine the space of density operators D := {ρ ∈
Md |Tr ρ = 1, ρ ≥ 0} over the d-dimensional
Hilbert space Hd. Restricting our attention to
positive-definite ρ ∈ D, we have a Riemannian
manifold [30], i.e. we can associate a Riemannian
metric gρ with each point ρ on the manifold of
positive-definite states, providing a notion of in-
finitesimal distance between two full rank states
ρ and ρ+ dρ.

It is natural to require that g be contrac-
tive under noise, i.e. gTρ(TA, TB) ≤ gρ(A,B),
where T is a completely positive trace-preserving
map and A,B are elements of the tangent space
at ρ (traceless Hermitian matrices of dimension
d) [31]. As alluded to above, all such metrics
can be identified with a function f : R+ →
R+ known as a symmetric, normalized opera-
tor monotone function [28]. These functions f
obey: (i) continuity; (ii) for matrices A ≥ B > 0,
f(A) ≥ f(B) > 0 (operator monotonicity); (iii)
xf(x−1) = f(x), for x > 0 (symmetry); (iv)
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f(1) = 1 (normalization). Call the set of func-
tions satisfying these properties F.

These functions are important because they
lead to a generalized meanmf (x, y) := xf(x−1y)
of a pair of either positive real numbers or
positive definite, commuting (super-) opera-
tors [32] [33]. The properties of F imply various
natural properties for the mean mf (x, y), e.g.,
mf (x, x) = x and mf (x, y) = mf (y, x) [34].

In the context of quantum speed limits, con-
sider A = B = ρ̇; the distance If = 4gfρ

(
ρ̇, ρ̇

)
is

called the generalized QFI with respect to time
for the state ρ [35]. In particular [36, 37],

If := Tr
[
ρ̇mf (Lρ, Rρ)

−1(ρ̇)
]
, (6)

where Lρ(·) := ρ(·), Rρ(·) := (·)ρ, and
mf (Lρ, Rρ) are positive definite super-operators
and, thus, invertible.

We will consider a particular one-parameter
set of functions Fβ ⊂ F [38]. Two important
elements are fβ=1(x) = (1 + x)/2, correspond-
ing to the standard SLD QFI, and fβ=−1(x) =
2x/(1 + x), corresponding to the right logarith-
mic derivative (RLD) QFI. The associated mean
mf is largest (smallest) over all F for fSLD (fRLD),
where it corresponds to the arithmetic (har-
monic) mean. See the supplemental material for
a full mathematical description of Fβ [34].

We can also define a generalized variance as

(∆fA)2 := Tr
[
A0m

f (Lρ, Rρ)(A0)
]
, (7)

where A is Hermitian and A0 := A−Tr(ρA) [29].
For f = fSLD, Eq. (7) is the usual variance.

Using these definitions, it is straightforward
to derive Eqs. (3) and (4). To begin, de-
fine an f -dependent “logarithmic derivative”
operator Lf := mf (Lρ, Rρ)

−1(ρ̇). Note that
If = (∆Lf )2. Using that Lρ and Rρ are pos-
itive definite, |ȧ| =

∣∣Tr[ρ̇A]
∣∣ =

∣∣Tr[ρ̇A0]
∣∣ =∣∣Tr[mf (Lρ, Rρ)(Lf )A0]

∣∣. Applying the Cauchy-
Schwarz inequality gives Eq. (3).

Splitting A and Lf into coherent and incoher-
ent parts in the eigenbasis of ρ =

∑
j pj |j⟩ ⟨j |,

a similar derivation [34] yields the bound in
Eq. (4). Furthermore, one finds that Eq. (4)
is generically tighter than Eq. (3), coinciding if

and only if (∆fAC)
√
II = (∆AI)

√
If
C [34].

Bound Comparison.—While the new speed
limits specified by Eqs. (3) and (4) are of in-
dependent interest from the perspective of infor-
mation geometry, to be of broader utility, there
must exist triplets (ρ, ρ̇, A) where the tightest
bound corresponds to f ̸= fSLD, so that the new
bounds are tighter than those of Ref. [13]. It is
not immediately clear if this is possible: on one
hand, If ≥ ISLD for all f ∈ F; on the other,
∆fA ≤ ∆SLDA for all f ∈ F. Tighter bounds
depend on the tightening of the variance term
winning out over the loosening of the QFI term.

As the incoherent term in Eq. (4) is identical
for all f , to find improved bounds it is sufficient
to consider only the coherent term. To this end,

define the coherent ratio ξf :=
(∆fAC)2If

C

(∆SLDAC)2ISLD
C

. If

ξf < 1, the generalized bound Eq. (4) is tighter
than the case with f = fSLD derived in Ref. [13].

For a qubit, it is straightforward to show that
no improvement is possible from the generalized
bounds [34]. However, moving to larger systems,
a qutrit (d = 3) is already sufficient to demon-
strate two facts: (1) there are triplets (ρ, ρ̇, A)
such that the generalized bounds with f ̸= fSLD

are tightest; (2) for every fβ ∈ Fβ, there exists
(ρ, ρ̇, A) such that the tightest bound, optimized
over this family, is fβ.

Example. Consider a qutrit. In the eigenbasis
of ρ =

∑
j pj |j⟩ ⟨j |, let A02 = A12 = 0, vij :=

2|(ρ̇)ij |2, and mf
ij := mf (pi, pj). Then [34]

ξf =
v01 + v02

(
mf

01

mf
02

)
+ v12

(
mf

01

mf
12

)
v01 + v02

(
mSLD

01

mSLD
02

)
+ v12

(
mSLD

01

mSLD
12

) . (8)

Consider evolution under a Hamiltonian H =
i(Ω/2)(|g⟩ ⟨e|+ |e⟩ ⟨f |)+h.c., where |g⟩ , |e⟩ , |f ⟩
are the computational basis states. For simplic-
ity, consider ρ diagonal in the computational ba-
sis, so that we can identify the computational
basis with the eigenbasis of ρ. Thus, v02 = 0, so
we can ignore the middle term in both the nu-
merator and denominator of Eq. (8) and turn
our attention to the third terms. Using that
mSLD

ij ≥ mf
ij ∀ f , ξf < 1 if p1 ≈ p2 (so that

mSLD
12 ≈ mf

12, as mf (x, x + ϵ) ≈ x for all f if
ϵ ≪ 1); and, also, |p0 − p1| is sufficiently large

(so that mSLD
01 ≫ mf

01).
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This qualitative description is made precise
in Fig. 1, where we minimize ξf over fβ ∈ Fβ

for equally-spaced grid points (p0, p1, p2) on the
probability simplex with pj ∈ [0.0025, 0.995]
∀ j [39]. There are large regions of parameter
space where the generalized bounds are tighter
than existing bounds. Here, the optimal fβ is
f−1 = fRLD. For p0 = ϵ3, p1 = ϵ, p2 = 1−p0−p1,
we have ξf = O(ϵ), indicating that arbitrarily
large multiplicative improvements over existing
bounds are possible by taking ϵ → 0 [34].

This example is also well-suited for a proof-of-
principle experimental demonstration. Leaving
the details to the supplemental material [34], we
prepare a superconducting qutrit in a diagonal
mixed state ρ by letting the qutrit naturally de-
cay for a time tdecay from the |f ⟩ state. Driving
both the |g⟩ ↔ |e⟩ and |e⟩ ↔ |f ⟩ transitions,
we extract the speed |ȧ| of the Pauli-X observ-
able in the {|g⟩ , |e⟩} subspace from estimates of
the rate of change of the populations of these
states. We repeat this for many initial states
prepared via the natural decay of the qutrit and
compare the measured speeds to the fSLD− and
fRLD−based bounds, computed directly from the
experimentally-determined states at 10µs inter-
vals along the decay trajectory, as shown in the
inset of Fig. 1. While both bounds constrain the
measured speeds within experimental error for
small tdecay, the new fRLD-based bound is signif-
icantly tighter than the fSLD-based bound.

The problem becomes richer if v01, v02, v12 ̸=
0. Here, the optimal choice of fβ ∈ Fβ can occur
for any β ∈ [−1, 1] as one moves through the pa-
rameter space, demonstrating fact (2) above [34].

Saturation and “Fast” Hamiltonians.—As
the upper bounds come from the Cauchy-
Schwarz inequality, Eqs. (3) and (4) are tight
when A0 ∝ Lf . In the eigenbasis of ρ, this
corresponds to the condition (A0)ij = γ

ρ̇ij
mf (pi,pj)

for some constant γ. In the example above, A
has only a single pair of non-zero components
Aij , Aji; thus if the bounds are tight for any f ,
they are tight for all f . In general, however, the
saturation of the speed limits is f -dependent. In
fact, one can construct examples where the SLD-
based bound is loose, while, with an appropriate
choice of f , the generalized bounds are tight [34].

A natural question immediately follows:

FIG. 1. For the qutrit example described in the text,
ξf for the optimum fβ ∈ Fβ as a function of the
eigenvalues p0, p1, p2 of the diagonal state ρ, plotted
using barycentric coordinates. ξf < 1 corresponds
to the new bounds being tighter. In these regions,
ξf is minimized for fβ=−1 = fRLD. The dashed lines
in the main plot and the inset separate these regions
from where there is no improvement over the SLD-
based bounds. The states used in the experimental
demonstration are prepared by letting the qutrit de-
cay from |f ⟩ for a time tdecay ∈ [11, 101]µs leading
to the one-parameter family of states depicted with
the black curve on the probability simplex. In the
inset, the experimentally extracted value for |ȧ| driv-
ing at a Rabi frequency of Ω = (2π)10 MHz for a
number of initial states along this trajectory is com-
pared to the RLD and SLD bounds computed di-
rectly from experimentally-determined states. The
dotted gray line shows the simulated speed for these
same states. Error bands are the standard devia-
tion of the mean over 21 preparations of the states.
For small tdecay, the new fRLD-based bound is signif-
icantly tighter than the old fSLD-based bound.

what choice of dynamics leading to the satura-
tion of Eq. (4) (determined by a choice of f ∈ F)
maximizes |ȧ|? As the f -dependence of the an-
swer relies only on the coherent part of Eq. (4),
we restrict our attention to Hamiltonian dynam-
ics to emphasize the role of f . For the appropri-
ate choice of Hamiltonian Hf,fast

ρ,A , it holds that

|ȧ| = (∆fAC)
√
If
C . Using that ρ̇ = −i[H, ρ],

Hf,fast
ρ,A = − i

γ

∑
j ̸=k

mf (pj , pk)

pj − pk
Ajk |j⟩⟨k| (9)

for some constant γ [40], where we assume
that pj ̸= pk. The optimal f that max-
imizes |ȧ| over coherent-quantum-speed-limit-
saturating dynamics will be state- and observ-
able dependent. Importantly, using Hf,fast

ρ,A for
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f ̸= fSLD can lead to larger |ȧ| than fSLD alone.
See supplemental material for an example [34].

Such Hamiltonians may be hard to imple-
ment for large systems, but they could guide the
construction of alternative Hamiltonians built
from a limited set of controls. This approach
could help to design [41] and understand the per-
formance [26] of quantum annealing algorithms
or to provide improved versions of quantum nat-
ural gradient descent [42] or, for quantum sens-
ing, to determine optimal Hamiltonians with
which to couple an unknown parameter, given
a limited set of observables.

Bounds Using Energy Variance.—It is desir-
able to also derive quantum speed limits in terms
of more directly physical and easily accessible
quantities than the generalized QFIs. Consider
unitary dynamics driven via a Hamiltonian H
and assume any nonunitary dynamics are due to
entanglement with an environment via a Hamil-
tonian H int consisting of all terms with support
on both the system and the environment. Then

If
C ≤ κρ(∆H)2, II ≤ 4(∆H int)2, (10)

where κρ is the condition number of ρ and
(∆H int)2 is computed for the joint state of the
system and the environment. The first bound is
new [34]; the second is from Ref. [13]. Plugging
Eq. (10) into Eq. (4) yields Eq. (5).

As ∆fA ≤ ∆A for all f , the tightest bound
in Eq. (5) will always correspond to f = fRLD.
However, even for the loosest choice f = fSLD, if
κρ < 4 then Eq. (5) is tighter than existing simi-
lar bounds, given by Eq. (5) with

√
κρ(∆

fAC) →
2(∆AC) [13]. κρ < 4 holds for nearly fully
mixed states; for instance, a thermal state ρ ∝
exp(−βH) with β ≤ log(4)/(2 ∥H∥s). See sup-
plemental material for more discussion [34].

Discussion.—Leveraging the tools of quan-
tum information geometry, we prove novel quan-
tum speed limits for observables that are generi-
cally tighter than previously derived bounds [13].
The family of inner products we use have also
been used to derive tighter bounds for multipa-
rameter quantum metrology [43], generalized un-
certainty relations [44, 45], and quantum speed
limits on the evolution of states [6, 46]. We ex-
pect these inner products and the novel bounds
in this work can also be applied in other settings

where the SLD QFI is used [47], e.g., for analyz-
ing quantum machine learning models [48, 49] or
parameter estimation problems [50].
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Supplemental Material

This supplemental material includes the following: a summary of key definitions and a detailed
definition of the family Fβ (Section S1), a description of how the properties of f ∈ F imply properties
of the means mf (x, y) (Section S2), a proof of the coherent-incoherent bound and the implications
for a qubit (Section S3), a demonstration that the generalized bounds can yield arbitrarily large
multiplicative improvements (Section S4), experimental details (Section S5), an example showing
that all fβ ∈ Fβ can yield the tightest bound (Section S6), details on the saturation of bounds
(Section S7), an example of “fast” Hamiltonians (Section S8) and details on the bounds in terms
of energy variance (Section S9).

S1. SUMMARY OF KEY DEFINITIONS

In this section, we provide, in Table S1, a summary of the key quantities and their mathematical
definitions. In these definitions, as in the main text, A denotes a general Hermitian observable.

Quantity Mathematical Expression
ȧ Tr(ρ̇A)

(∆A)2 Tr(ρA2)− Tr(ρA)2

A0 A− Tr(ρA)
mf (x, y) xf(x−1y)
∗(∆fA)2 Tr

[
A0 m

f (Lρ, Rρ)(A0)
]

Lf mf (Lρ, Rρ)
−1(ρ̇)

If Tr[ρ̇mf (Lρ, Rρ)
−1(ρ̇)]

= Tr[Lfmf (Lρ, Rρ)(Lf )]

*equals (∆A)2 for f = fSLD.

TABLE S1. Definitions of key mathematical quantities.

We also provide a complete mathematical description of the one-parameter family of operator
monotone functions Fβ used in the main text. In particular,

fβ(x) :=


β(1−β)(x−1)2

(xβ−1)(x1−β−1)
, β ∈

[
− 1, 12

)
\ {0}

x−1
log x , β = 0(
1+xβ

2

)1/β
, β ∈

[
1
2 , 1

]
.

(S1)

Some important examples from this family and their associated means are summarized in Ta-
ble S2.

Name β f(x) mf (x, y)

SLD 1 1+x
2

x+y
2

Wigner-Yanase 1
2

1+
√
x

4

√
x+

√
y

4

RLD −1 2x
1+x

2xy
x+y

TABLE S2. Important examples of f ∈ Fβ and the associated means.
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S2. FROM OPERATOR MONOTONE FUNCTIONS TO MEANS

In this section, we review how the properties of the operator monotone functions F imply certain
natural properties of the associated means. Recall that mf (x, y) := xf(x−1y). Here, we consider
x, y ∈ R+ or as commuting, positive definite (super-) operators. As described in the main text,
the operator monotone functions f ∈ F have the following properties:

(i) Continuity.

(ii) For matrices A ≥ B > 0, f(A) ≥ f(B) > 0 (operator monotonicity).

(iii) xf(x−1) = f(x), for x > 0 (symmetry).

(iv) f(1) = 1 (normalization).

These properties of f ∈ F imply the following (non-exhaustive) list of properties for the associ-
ated means:

(i’) mf (x, y) is continuous.

Follows directly from property (i) and the definition of mf (x, y).

(ii’) mf (x, x) = x.

Follows from property (iv):

mf (x, x) = xf(x−1x) = xf(1) = x.

(iii’) mf (x, y) = mf (y, x).

Follows from property (iii):

mf (x, y) =
x

xy−1
f(y−1x)

= yf(y−1x) = mf (y, x).

(iv’) x ≤ y =⇒ x ≤ mf (x, y) ≤ y.

Follows from properties (ii), (iv) and (iii’):

mf (x, y) = xf(x−1y) ≥ xf(1) = x,

mf (x, y) = yf(y−1x) ≤ yf(1) = y.

(v’) x ≤ x′, y ≤ y′ =⇒ mf (x, y) ≤ mf (x′, y′).

Follows from properties (ii), (iv), and (iii’) almost identically to the demonstration of property
(iv’).

S3. COHERENT-INCOHERENT BOUND

In this section, we derive the split coherent-incoherent bound of Eq. (4), repeated here for
convenience:

|ȧ| ≤ (∆fAC)

√
If
C + (∆AI)

√
II . (S2)

We also demonstrate how to express the quantities in this bound in the eigenbasis of ρ =∑
j pj |j⟩ ⟨j | and use these expressions to show that the split coherent-incoherent bound in Eq. (S2)

is generically tighter than the non-split bound in Eq. (3) of the main text.
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Proving the Coherent-Incoherent Bound

To derive Eq. (S2), note that

ȧ = Tr[mf (Lρ, Rρ)(Lf
I + Lf

C)(A0,I +A0,C)]

= Tr[mf (Lρ, Rρ)(Lf
I )A0,I ]

+ Tr[mf (Lρ, Rρ)(Lf
C)A0,C ], (S3)

where we use that the cross terms vanish under the trace. The subscripts C and I denote the
coherent and incoherent parts of each operator in the eigenbasis of ρ, respectively. The bound in
Eq. (S2) then follows immediately by applying the Cauchy-Schwarz inequality.

Therefore, it remains to explicitly show that the cross terms indeed vanish. That is, we must
show that

Tr[mf (Lρ, Rρ)(Lf
I )A0,C ] = 0, (S4)

Tr[mf (Lρ, Rρ)(Lf
C)A0,I ] = 0. (S5)

To show this we will use the matrix representation of the super-operators Lρ = ρ⊗I andRρ = I⊗ρT ,
which act on vectorized versions of the regular operators. That is, for an operator O, we denote
its vectorized form in an arbitrary basis as

|O) :=
∑
i,j

Oij |i⟩ ⊗ |j⟩ =
∑
i,j

Oij |ij) , (S6)

where we use the rounded “ket” |·) to denote vectors in the super-operator vector space.

Specifically, in the eigenbasis of ρ =
∑

j pj |j⟩ ⟨j |, we can write Lρ =
∑

ij pi |ij) (ij | and Rρ =∑
ij pj |ij) (ij |. It is then easy to show, in this basis, that

mf (Lρ, Rρ) := Lρf(L
−1
ρ Rρ)

=
∑
ij

pif(p
−1
i pj) |ij) (ij |

=
∑
ij

mf (pi, pj) |ij) (ij | , (S7)

where we used that mf (pi, pj) := pif(p
−1
i pj). Consequently,

mf (Lρ, Rρ)(Lf
I )

=
∑
ij

mf (pi, pj) |ij) (ij |
∑
k

(Lf
I )kk |kk)

=
∑
i

(Lf
I )iim

f (pi, pi) |ii)

=
∑
i

pi(Lf
I )ii |ii) , (S8)

from which it it is easy to show Eq. (S4), as A0,C is off-diagonal in this basis. Similar computations
allow one to show Eq. (S5).
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Generalized Quantities in State Eigenbasis

For analysis of the bounds it is helpful to derive expressions for the elements of the split coherent-
incoherent bound in Eq. (4) (alternatively, Eq. (S2)) in the eigenbasis of ρ =

∑
j pj |j⟩ ⟨j |. In

particular, it holds that:

(∆fAC)
2 =

∑
i ̸=j

∣∣(A0)ij
∣∣2mf (pi, pj), (S9)

If
C :=

(
∆Lf

C

)2
=

∑
i ̸=j

∣∣(ρ̇)ij∣∣2 1

mf (pi, pj)
, (S10)

(∆AI)
2 =

∑
i

pi
∣∣(A0)ii

∣∣2, (S11)

II :=
(
∆Lf

I

)2
=

∑
j

pj

(
d log pj

dt

)2

. (S12)

Recall, we drop the f -superscript on the incoherent terms because, for incoherent operators, the
generalized quantum Fisher information and variance are identical for all f [51]. Furthermore, II is
simply the classical Fisher information of the probability distribution specified by the eigenvalues
{pj}d−1

j=0 of ρ.
We now sketch the derivation for these expressions. Using Eq. (S7),

mf (Lρ, Rρ)(A0)

=
∑
ij

mf (pi, pj) |ij) (ij |
∑
kl

(A0)kl |kl)

=
∑
ij

(A0)ijm
f (pi, pj) |ij) . (S13)

Undoing the vectorization and plugging into Eq. (7) of the main text yields

(∆fA)2 := Tr
[
A0m

f (Lρ, Rρ)(A0)
]

= Tr

[∑
ijkl

(A0)kl |k⟩ ⟨l| (A0)ijm
f (pi, pj) |i⟩ ⟨j |

]
=

∑
ij

∣∣(A0)ij
∣∣2mf (pi, pj). (S14)

Restricting A to its coherent component A → AC yields Eq. (S9). Similarly, considering A → AI

and using thatmf (pi, pi) = pi yields Eq. (S11). Essentially identical manipulations prove Eqs. (S10)
and (S12) starting from the definition of If in Eq. (6) and using that ρ̇ = mf (Lρ, Rρ)(Lf ).

All bounds are equivalent for a qubit

The results of the previous section can be used to demonstrate a simple proposition, the results
of which were described in the main text.

Proposition 1. For a qubit, (∆fAC)
√
If
C = (∆SLDAC)

√
ISLD
C for all f ∈ F.

Proof. In both Eqs. (S9) and (S10), there is a single pair of equal terms for a qubit. Thus, working

in the eigenbasis of ρ, (∆fAC)
√
If
C = 2|(A0)01||ρ̇01| for all f , proving the result.
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Coherent-Incoherent Bound is a Generically Tighter Upper Bound

As stated in the main text, the coherent-incoherent bound of Eq. (4) of the main text (al-
ternatively, Eq. (S2)) is always at least as tight as the non-split bound of Eq. (3) of the main
text,

|ȧ| ≤ (∆fA)
√
If . (S15)

To prove this, we start from Eq. (S14) for the generalized quantum f -variance of A in the
eigenbasis of the state ρ. We then split A0 := A − Tr(ρA) into its coherent and incoherent parts
and simplify the resulting expression as follows:

(∆fA)2 =
∑
ij

∣∣(A0)ij
∣∣2mf (pi, pj)

=
∑
ij

[∣∣(A0,I)ij
∣∣2 + ∣∣(A0,C)ij

∣∣2]mf (pi, pj)

= (∆fAI)
2 + (∆fAC)

2

= (∆AI)
2 + (∆fAC)

2, (S16)

where in the last line we drop the f subscript for the variance of the incoherent operator AI , as
for diagonal operators the variance evaluates to the usual variance for all f .

Therefore, the ratio of the right-hand side of Eq. (S15) and the right-hand side of Eq. (S2) can
be computed to be

(∆fA)
√
If

(∆fAC)
√
If
C + (∆AI)

√
II

=

√√√√√[
(∆AI)2 + (∆fAC)2

][
If
C + II

][
(∆fAC)

√
If
C + (∆AI)

√
II
]2

=

√√√√√√1 +
(∆fAC)2II + (∆AI)2If

C − 2(∆fAC)(∆AI)
√
If
CII[

(∆fAC)
√
If
C + (∆AI)

√
II
]2

=

√√√√√√√1 +

[
(∆fAC)

√
II − (∆AI)

√
If
C

]2
[
(∆fAC)

√
If
C + (∆AI)

√
II
]2 ≥ 1. (S17)

Thus, the coherent-incoherent bound in Eq. (S2) is tighter than the non-split bound in Eq. (S15).

The two are equal if and only if (∆fAC)
√
II = (∆AI)

√
If
C . This precisely mirrors the results

derived in Appendix F of Ref. [13] for the special case f = fSLD.

S4. ARBITRARILY LARGE MULTIPLICATIVE IMPROVEMENTS FROM
GENERALIZED BOUNDS

In this section, we demonstrate the claim that arbitrarily large multiplicative improvements in
the bounds are possible compared to the existing fSLD-based bounds of Ref. [13]. In particular, we
show this by example by demonstrating that the quantity ξf can be made arbitrarily small in the
qutrit example of the main text.
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It is simple to compute that for this example v01 = 1
2Ω

2(p1 − p0)
2 and v02 = 1

2Ω
2(p2 − p1)

2.
Then using Eq. (8) for f = fRLD, the fact that m

RLD
ij = 2pipj/(pi+ pj) and mSLD

ij = (pi+ pj)/2, and
a bit of elementary algebra we have that

ξRLD =
p1 + p2

p2(p0 + p1)

[
(p1 − p0)

2(p0 + p1)p2 + (p2 − p1)
2p0(p1 + p2)

(p1 − p0)2(p1 + p2) + (p2 − p1)2(p0 + p1)

]
. (S18)

Consider p0 = ϵ3, p1 = ϵ, p2 = 1− ϵ− ϵ3 for some small ϵ. Then,

ξRLD = ϵ+O(ϵ2), (S19)

proving the desired result. Such states correspond to the lower right corner near p2 = 1 in Fig. 1
of the main text.

S5. EXPERIMENTAL DETAILS

In this section, we provide details behind the experimental demonstration discussed in the qutrit
example described in the main text. We use a superconducting transmon qutrit [52] to collect the
data presented in the proof-of-concept measurement in Fig. 1. The qutrit is a standard X-mon
style device with a Ta ground plane on a sapphire substrate and a Al/AlOx/Al junction. The qutrit
is coupled to a coplanar waveguide resonator for dispersive readout of the qutrit state [53, 54]. A
dedicated drive line is used to apply coherent control on the qutrit (see Ref. [55] for further details
on the measurement setup). The relevant qutrit parameters are listed in Table S3.

We initialize the qutrit in the |f ⟩ state using two consecutive π-pulses on the |g⟩−|e⟩ and |e⟩−|f ⟩
transitions. By varying the delay time between the state initialization and the beginning of the
experiment, we utilize the natural depolarization of the excited states to generate purely diagonal
mixed states in the |g⟩ , |e⟩ , |f ⟩ basis. We fit the population dynamics to a simple decay chain
model given by the Bateman equation [56, 57] to verify our initialization scheme and qutrit state
readout as shown in Fig. S1. This data is used to determine population values and uncertainties
used in Fig. 1.

To carry out the experiment shown in Fig. 1, we initialize the qutrit in a mixed state via the
depolarization technique described above. After the state is initialized, we estimate Ẋge for the
specified Hamiltonian, H = i(Ω/2)(|g⟩ ⟨e| + |e⟩ ⟨f |) + h.c., by applying simultaneous drives for a
variable amount of time on the |g⟩− |e⟩ transition with drive strength Ωge and |e⟩− |f ⟩ transition
with drive strength Ωef about the Pauli-Y axis of the Bloch spheres associated with these subspaces.
We measure ⟨Xge⟩ by applying a π/2-pulse before qutrit state readout to map the observable onto
the population of the qutrit state: ⟨Xge⟩ = Pe−Pg, where Pg,(e) is the extracted population of the
|g⟩ (|e⟩) qutrit level. We measure the rate of change of the populations by varying the drive time
and fitting a line to the short time dynamics (0 ns to 16 ns evolution time) of Pg,e. We use the
population rates of change to calculate the speed Ẋge = Ṗe − Ṗg under the measurement mapping.

We collect data points with interleaved |g⟩ , |e⟩ , |f ⟩ reference measurements for population ex-
traction. For each point, we collected 20000 averages. We compute uncertainties of fitted Ṗg,e from
the linear least-squares fit of the populations. These uncertainties are used to obtain the the error
bars on Ẋge shown in Fig. 1 of the main text. Data available upon request.

S6. ANY BOUND CAN BE TIGHTEST

In this section, we provide an example demonstrating the claim in the main text that for every
fβ ∈ Fβ, there exists (ρ, ρ̇, A) such that the tightest bound, optimized over this family, is fβ.
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FIG. S1. Repeated measurements of qutrit populations after variable decay time from the |f ⟩ state. Solid
lines are the fit to the Bateman equations with decay rates listed in Table S3. Data is used to calibrate the
state preparation technique used in Fig. 1.

Parameter Value
ωge 2π · 2.78 GHz
ωef 2π · 2.63 GHz
Ωge 2π · 10 MHz
Ωef 2π · 10 MHz
Γeg 14.7 µs−1

Γfe 18.4 µs−1

TABLE S3. Qutrit parameters for the device used in the experimental measurements. νge(ef) is the transition
frequency between the |g⟩ and |e⟩ (|e⟩ and |f ⟩) states of the qutrit. Γeg(fe) is the measured decay rate from
the |e⟩ to |g⟩ (|f ⟩ to |e⟩) state (defined as 1/T1). Ωge(ef) is the Rabi rate applied to the |g⟩ to |e⟩ (|e⟩ to
|f ⟩) transition.

This example is similar to the qutrit example of the main text. Let the observable of interest is
A = |g⟩ ⟨e| + |e⟩ ⟨g|, and, as in that example, we focus on diagonal ρ, so that this corresponds to
A = |0⟩ ⟨1|+ |1⟩ ⟨0|.

Consider driving the system with the Hamiltonian H = −(i2π)(2.5MHz)(|0⟩ ⟨1| + 4 |1⟩ ⟨2| +
|0⟩ ⟨2|)+h.c.. In Fig. S2, we show the β that minimizes the coherent ratio ξfβ as a function of the
eigenvalues {pj}2j=0 of ρ, revealing a rich structure in the fβ yielding the tightest bound.

S7. SATURATION OF BOUNDS

In this section, we provide additional details on when the bounds considered in this work are
saturated.

Starting with Eq. (3) of the main text, this speed limit is tight when A0 ∝ Lf . To better
understand this condition, it is, again, helpful to work in the eigenbasis of ρ. In the super-operator
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vector space,

Lf := mf (Lρ, Rρ)
−1(ρ̇)

=
∑
ij

1

mf (pi, pj)
|ij) (ij |

∑
kl

ρ̇kl |kl)

=
∑
ij

ρ̇ij
mf (pi, pj)

|ij) . (S20)

So Eq. (3) is tight if (and only if)

(A0)ij = γ
ρ̇ij

mf (pi, pj)
, (S21)

for all i, j and some constant γ. Observe the f -dependence of this saturation condition. That
is, given some fixed observable A, dynamics, and a state ρ, the bounds are generically saturable
only for a particular choice of f . There are special cases where the f -dependence is eliminated:
for instance, if everything is fully incoherent, the fact that mf (pi, pi) = pi for all f removes the f
dependence.

Clearly, if and only if A0 ∝ Lf , then also AC ∝ Lf
C and AI ∝ LI (where we drop the f subscript

because it is irrelevant for incoherent terms). So, this condition also implies the saturation of the
split coherent-incoherent upper bound in Eq. (4).

Note that, for the example in the main text (a qutrit with a fully coherent observable and
only a01 ̸= 0), if the bounds are saturated for any f , they are saturated for all f . In particular,

|ȧ| = (∆fA)
√
If = (∆fAC)

√
If
C for all f in this example if and only if v01 ̸= 0 and v12 = v02 = 0.

This is because only A01, A10 are non-zero for this choice of observable; thus, the saturability
condition in Eq. (S21) is especially simple, and the f dependence can be absorbed into the constant
γ. If there is more than a single relevant pair i, j in the saturability condition of Eq. (S21), then
we can recover the f -dependence.

For the case of purely coherent dynamics driven by a Hamiltonian H, it is informative to rewrite

FIG. S2. For a qutrit, optimal fβ ∈ Fβ to minimize the coherent ratio ξfβ (Eq. (8) with v01, v02, v12 ̸= 0) as
a function of the eigenvalues {pj}2j=0 of ρ. In the inset, the optimal β is shown as a function of p1 for fixed
p0 = 0.0375 (along dotted line in main figure).
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Eq. (S21) as

Aij = −iγ
Hij(pj − pi)

mf (pi, pj)
, (S22)

where we use that ρ̇ = −i[H, ρ] and Hij are the matrix elements of H in the eigenbasis of ρ.

Example of Saturating the Bounds

In the main text, we claim one can construct examples where the SLD-based bounds are loose,
but one of our new generalized bounds can be tight for the appropriate choice of f . Here, we show
such an example.

To begin, as γ is independent of i and j, Eq. (S22) implies the necessary condition for the
saturation of the bound in Eq. (4) for purely coherent dynamics:

Hij(pj − pi)

Aijmf (pi, pj)
=

Hkl(pl − pk)

Aklmf (pk, pl)
(S23)

for all i, j, k, l such that Aij , Hij , Akl, Hkl ̸= 0. This condition is not sufficient as Eq. (S22) must
also hold for matrix elements where Aij = 0 and/or Hij = 0. Let us assume for simplicity that
these conditions are satisfied trivially so that, when Hij = 0, also Aij = 0.

Define x := pi/pj , y := pk/pl, and c = HklAij/(HijAkl). Then, we have the necessary condi-
tion(s):

cf(x)− f(y) = cyf(x)− xf(y), (S24)

where x, y > 0. Generically, c ∈ C, but it is clear (as x, y, f(x), f(y) > 0) that, unless c ∈ R,
Eq. (S24) has no solutions. So we restrict our attention to the case that c ∈ R.

Consider two qubits with H = X1X2 and let A = Y1X2 − X1Y2/2. We have one non-trivial
saturation condition in this example corresponding to an identification of the indices i → 00, j →
11, k → 01, and l → 10. The associated c = 1

3 . Also, x := p00/p11 and y := p01/p10.

It is fairly straightforward to work out that, in this setting, with f(t) = fSLD(t) = (1 + t)/2,
Eq. (S24) becomes

x =
1 + 2y

2 + y
. (S25)

As a concrete example, p00 = 0.3, p01 = 0.4, p10 = 0.1, p11 = 0.2, corresponding to y = 4 and
x = 3/2, obeys this saturation condition.

In contrast to the first example, valid solutions to the condition for f(t) = fRLD(t) = 2t/(1 + t)
do not correspond to those for the condition in Eq. (S25). In particular, here, Eq. (S24) becomes

x =
y2 − 1±

√
34y2 + y4 + 1

6y
. (S26)

Any solutions to this equation with x, y > 0 correspond to states that satisfy the generalized
quantum speed limit associated with fRLD. For instance, p00 = (

√
89 − 3)/20, p01 = 0.4, p10 =

0.1, p11 = (13 −
√
89)/20, corresponding to y = 4, x = (15 + 3

√
89)/24, satisfies Eq. (S26), but

clearly not Eq. (S25). Therefore, we have constructed an example where the generalized bounds
can be tight when the SLD-based bounds are not.
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S8. FAST HAMILTONIAN EXAMPLE

In this section, we provide an example where the optimal “fast” driving Hamiltonians (see
Eq. (9) of the main text) derived based on the generalized quantum speed limits can yield larger
|ȧ| than the existing SLD-based fast driving Hamiltonians.

In particular, consider a qutrit with the observable of interest as A = |0⟩ ⟨1| + |1⟩ ⟨2| + h.c..
For this observable and a range of different states ρ, we optimize over the “fast” Hamiltonians
Hf,fast

ρ,A with respect to functions f ∈ Fβ (see Eq. (S1)) for fixed spectral norm. In Fig. S3, we plot

the ratio of the speed with the optimal Hf,fast
ρ,A from the result of this maximization to the speed

with HfSLD,fast
ρ,A as a function of the eigenvalues p0, p1 of ρ. Observe that there is a whole band

of states where the optimal driving Hamiltonian is derived from f ̸= fSLD. Therefore, we have a
demonstration that the generalized bounds can be used to derive faster driving Hamiltonians than
the usual SLD-based bounds. Here, the driving Hamiltonians based on the generalized bounds can
increase |ȧ| by up to approximately twenty percent relative to the SLD-based drives.

FIG. S3. Plot of the ratio of the speed with the optimal Hf,fast
ρ,A to the speed with H

fSLD,fast
ρ,A as a function

of the eigenvalues p0, p1 of ρ. Note the bands of states where f ̸= fSLD yield larger |ȧ|.

S9. BOUNDS IN TERMS OF ENERGY VARIANCE

In this section, we show that at the cost of loosening the bounds we can obtain bounds similar
to Eq. (4) that depend on physical quantities more easily accessible and easily interpretable than
the quantum Fisher informations If .

In particular, we can show that

If
C ≤ 4max

pi,pj

(
mSLD(pi, pj)

mf (pi, pj)

)
(∆H)2 (S27)

where (∆H)2 is the (usual, SLD-based) variance of the Hamiltonian H driving the coherent dy-
namics. In the case of f = fSLD this reduces to the well-known relationship ISLD

C ≤ 4∆H [58].
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To see Eq. (S27) we use ρ̇ = −i[ρ,H] and Eq. (S10) to write

If
C =

∑
i ̸=j

(pi − pj)
2

mf (pi, pj)
|Hij |2

≤
∑
i ̸=j

(pi + pj)
2

mf (pi, pj)
|Hij |2. (S28)

Then, from the definition of mSLD(pi, pj), which corresponds to the arithmetic mean, (pi + pj) =
2mSLD(pi, pj), so

If
C ≤ 4

∑
i ̸=j

(mSLD(pi, pj))
2

mf (pi, pj)
|Hij |2

≤ 4max
pi,pj

(
mSLD(pi, pj)

mf (pi, pj)

)∑
i ̸=j

mSLD(pi, pj)|Hij |2

= 4max
pi,pj

(
mSLD(pi, pj)

mf (pi, pj)

)
(∆HC)

2

≤ 4max
pi,pj

(
mSLD(pi, pj)

mf (pi, pj)

)
(∆H)2, (S29)

proving Eq. (S27). In the next-to-last line we use Eq. (S9), and in the last line we use that
(∆HC)

2 ≤ (∆H)2.
Even simpler bounds can be found by considering f = fRLD and using that mf (pi, pj) ≥

mRLD(pi, pj) for all f ∈ F:

If
C ≤ max

pi,pj

(
(pi + pj)

2

2pipj

)
(∆H)2. (S30)

Now, letting κij := pj/pi,

max
pi,pj

(
(pi + pj)

2

2pipj

)
7→ max

κij

1

κij
(1 + κ2ij). (S31)

This expression is maximized by either making κij as large or small as possible (note that the
expression above is identical with κij → κ−1

ij ). Without loss of generality, let us take pj ≥ pi. Then
the maximum κij = maxpi,pj (pj/pi) is the condition number κρ of ρ. Therefore,

If
C ≤ κρ(∆H)2. (S32)

As a final simplification (and further loosening of the bound), we can use that 4(∆H)2 ≤ ∥H∥2s
where the seminorm is defined as the difference in the maximum and minimum eigenvalues of
H [59]. This gives us a bound that depends only on the maximum and minimum eigenvalues of ρ
and H:

If
C ≤ κρ ∥H∥2s . (S33)

Finally, if there are incoherent dynamics and we assume the source of this non-unitary dynamics
is entanglement with an environment via a Hamiltonian H int that includes all terms with support
on both the system and environment then, as proven in Ref. [13],

II ≤ 4(∆H int)2 ≤
∥∥H int

∥∥2
s

(S34)
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where this variance is calculated on the joint state of the system and the environment.
Putting together Eqs. (S32) to (S34) gives the quantum speed limit:

|ȧ| ≤ √
κρ∆

fAC∆H + 2∆AI∆H int. (S35)

As ∆fA ≤ ∆A for all f , the tightest bound of this form will always correspond to f = fRLD. Even
for f = fSLD, however, Eq. (S35) is guaranteed to be tighter than the existing bounds [13]

|ȧ| ≤ 2∆AC∆H + 2∆AI∆H int (S36)

if κρ < 4. For these states the new bound in Eq. (S32) is tighter than the bound ISLD
C < 4(∆H)2

used in Ref. [13]. As described in the main text, the κρ < 4 condition is met, for instance, for a
thermal state ρ ∝ exp(−βH) with β ≤ log(4)/(2 ∥H∥s).

However, as stated in the main text, the range of states where Eq. (S35) is tighter than Eq. (S36)
will be much larger (and observable dependent) than the condition κρ < 4 suggests. This is because
the regions of parameter space where κρ correspond closely with those where ∆fAC ≪ ∆AC , as
can be seen from Eq. (S9).

For instance, consider the example in the main text. Recall in this example we consider a qutrit
with coherent dynamics driven by a Hamiltonian ∝ (i |0⟩ ⟨1| + i |1⟩ ⟨2|) + h.c. and the observable
of interest is A = AC = |0⟩ ⟨1|+ |1⟩ ⟨0|. In Fig. S4 we plot the ratio of the new bound in Eq. (S35)
(Eq. (5) of the main text) with f = fRLD to the bound in Eq. (S36) as a function of the eigenvalues
p0, p1, p2 of ρ. As expected, the new bound is tighter when κρ < 4, but there is also an extended
observable-dependent region of parameter space beyond this region where the new bound is tighter.

FIG. S4. For the qutrit example of the main text, plot of the ratio of the new bound in Eq. (S35) (Eq. (5)
of the main text) with f = fRLD to the bound in Eq. (S36) as a function of the eigenvalues p0, p1, p2 of ρ,
plotted in barycentric coordinates. The region where κ < 4 is marked by the dashed lines. In this region,
the new bound is guaranteed to be tighter for any observable A. However, there is also a large region of
parameter space beyond this region where the new bound is still tighter.
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