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We study the problem of implementing arbitrary permutations of qubits under interaction constraints in
quantum systems that allow for arbitrarily fast local operations and classical communication (LOCC). In
particular, we show examples of speedups over swap-based and more general unitary routing methods by
distributing entanglement and using LOCC to perform quantum teleportation. We further describe an example
of an interaction graph for which teleportation gives a logarithmic speedup in the worst-case routing time
over swap-based routing. We also study limits on the speedup afforded by quantum teleportation—showing an
O(

√
N log N ) upper bound on the separation in routing time for any interaction graph—and give tighter bounds

for some common classes of graphs.
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I. INTRODUCTION

Common theoretical models of quantum computation as-
sume that two-qubit gates can be performed between arbitrary
pairs of qubits. However, in practice, scalable quantum ar-
chitectures have qubit connectivity constraints [1,2], which
forbid long-range gates. These connectivity constraints are
typically represented by a simple graph, where vertices cor-
respond to qubits, and edges indicate pairs of qubits that
can undergo two-qubit gates. A quantum architecture with
N qubits is thus represented by a graph G with N vertices.
Circuits that use all-to-all connectivity must be transformed to
new circuits that respect the architecture constraints specified
by this graph. Simple transformations introduce polynomial
overhead in the worst case, so it is crucial to lower this
overhead.

A natural approach to mapping circuits to respect in-
teraction constraints is by permuting qubits using routing
protocols. Routing refers to the task of permuting packets of
information, or tokens, on vertices of a graph. In quantum
routing, tokens are data qubits, to be permuted on the graph
specified by the architecture’s connectivity constraints. Previ-
ous studies have used swap gates to perform routing [3,4],
and routing protocols from a classical setting using swap
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gates [5–7] can be naturally applied to the problem of routing
quantum data as well.

Faster routing protocols can be obtained by using a wider
range of quantum operations. For example, Hamiltonian evo-
lution can obtain a constant-factor speedup over swap-based
routing [8]. More details of the comparisons and advantages
of quantum routing models to classical routing models can be
found in Ref. [9]. However, these approaches rely on locality-
restricted unitary evolution, so the routing time is limited by
the propagation speed of quantum information [9,10].

In this paper, we additionally allow for fast local opera-
tions, measurement and feedback (LOCC). Since this model
allows for fast classical communication across long distances,
it is not similarly constrained by the propagation speed of
quantum information. For example, without prior shared en-
tanglement, quantum teleportation over arbitrary distances
can be performed in constant depth by using entanglement
swapping [11] in a quantum repeater protocol [12], as shown
in Fig. 1. Entanglement can also be distributed using quantum
network coding protocols [13]. The ability to perform telepor-
tation in constant depth immediately gives routing speedups
over swap-based methods and even over previous unitary
quantum routing methods, since teleportation can be used to
quickly exchange distant pairs of qubits.

We show that using measurement and feedback to help
prepare long-range entanglement can significantly decrease
the time required for routing, even without using a large
number of ancillas. In particular, we demonstrate the first
superconstant speedup for quantum routing over swap-based
routing in the setting where O(N ) ancillas are allowed, show-
ing a O(log N ) speedup for the hardest (i.e., worst-case)
permutations. Further, our main result proves the first non-
trivial limits on the advantage of teleportation-based routing
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FIG. 1. Constant-depth long-range teleportation protocol on a
path of seven qubits. The X and Z gates are classically controlled
by the parities of the two sets of measurement results. This protocol
can be extended to paths of any length without increasing the circuit
depth.

protocols by an O(
√

N log N ) upper bound on the speedup
over swap-based routing. Finally, we also show a swap-based
algorithm for sparse routing of k qubits on a graph G in
time O(k + diam(G)), where diam(G) is the diameter of G
(i.e., the maximum shortest-path distance between any pair of
vertices).

LOCC has previously been useful to give low-depth imple-
mentations of specific unitaries, such as quantum fanout [14],
long-range operations on the surface code [15], and the
preparation of a wide range of entangled states [16–19]. In
fact, previous work showed routing speedups by using ancil-
las [20] and by employing LOCC [21]. Using teleportation,
Rosenbaum [21] showed a protocol that implements any per-
mutation in constant depth. However, Rosenbaum’s protocol
uses O(N2) qubits to perform permutations on O(N ) qubits,
so that only a negligible fraction of the qubits are data qubits.
Engineering qubits is difficult, so it is preferable to use as
many of them as possible as data qubits to enable larger com-
putations. Therefore, in this paper we consider a more modest
O(1) ancillas per data qubit [i.e., there are O(N ) ancillas in
total]. The availability of O(1) ancillas per data qubit is natural
in some quantum systems, such as in NV center qubits [22],
quantum dots [23], and trapped ions [24]. We study quan-
tum routing with measurement and feedback in the restricted
ancilla setting. By studying routing in this regime, we make
progress on an open question posed by Herbert [20], asking to
what extent ancillas can be used to accelerate routing.

Routing is more powerful than state transfer and entangle-
ment distribution [25,26]. For example, routing qubits from
locally prepared Bell states can be used to generate long-range
entanglement. The upper bounds in our paper therefore also
apply to these tasks.

Our paper may be of interest to experimental efforts in sys-
tems, which allow for mid-circuit measurements. In particular,
the nonlocality enabled by measurement and feedback makes
large distances between qubits (i.e., large diameter connectiv-
ity graphs) less of a challenge for algorithm implementations.
Additionally, knowledge of (teleportation) routing may in-
form choices of connectivity in systems with these features. In

particular, our upper bounds can be used to compare routing
overheads on different architectures based on their spectral
and isoperimetric properties.

Furthermore, teleportation routing can also provide large
advantages for specific permutations, which makes it useful
for efficient implementations of algorithms on near-term ar-
chitectures. This is also of relevance to fault-tolerant quantum
computation, as a major obstacle to the implementation of
promising quantum error-correcting codes, such as qLDPC
codes [27,28], is their need for long-range syndrome measure-
ments [29,30]. This can be alleviated by using teleportation
to route together distant qubits from each syndrome. Further,
protocols to prepare code states and implement logical oper-
ations in locality-restricted architectures are constrained by
Lieb-Robinson bounds. Recent paper [31] has shown how
the use of measurements can accelerate such tasks. Rout-
ing schemes enabled by the use of teleportation can also be
considered on fault-tolerant architectures, such as, for exam-
ple, to perform logical circuits across surface code patches.
More generally, the use of measurement and feedback enables
speedups from the ability to implement long-range interac-
tions quickly, which can also make algorithms much easier to
run on near-term architectures [14].

Our paper is organized as follows. After introducing the
models in Sec. II, we discuss known upper and lower bounds
on the routing time for both swap-based and teleportation
routing in Sec. III. We also introduce an improved algorithm
for sparse routing (i.e., routing of a small subset of tokens)
with swaps and ancillas. In Sec. IV, we use teleportation
to speed up specific permutations. In Sec. V, we compare
teleportation routing to swap-based routing for arbitrary per-
mutations, and we give an example of a O(log N )-factor
speedup over swap-based routing. In Sec. VI, we show an
O(

√
N log N ) upper bound on the speedup of teleportation

routing over swap-based routing for all graphs, and show
tighter bounds for some common classes of graphs. Finally,
we conclude in Sec. VII with a discussion of the results and
some open questions.

II. PRELIMINARIES

We consider architectures consisting of N data qubits con-
nected according to a simple graph G [with vertex set V (G)
and (undirected) edge set E (G)], where an edge (u, v) ∈
E (G) represents a connection between qubits u, v ∈ V (G),
and |V (G)| = N . We consider only connected graphs, i.e.,
graphs in which there is a path from any vertex to any other
vertex.

We assume there are a constant number of ancillary qubits
per data qubit that can interact only with the data qubit. Fur-
ther, we assume that disjoint two-qubit gates can be performed
between adjacent qubits in depth 1. Up to a constant overhead,
this is equivalent to having fast (instantaneous) ancilla inter-
actions since any unitary on the data qubit and ancillas can
be decomposed into a constant number of two-qubit gates. As
our results are asymptotic, they are insensitive to a constant
overhead.

Ancillary qubits corresponding to different data qubits
are not directly connected. However, gates between ancillary
qubits of neighboring vertices can be performed in depth 1
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FIG. 2. (a) A grid architecture with ancillas (blue) interspersed
between data qubits (black). The red ovals indicate which ancilla
corresponds to each data qubit. (b) An equivalent architecture in our
model.

by swapping ancillas with their corresponding data qubits,
performing the desired two-qubit gate between data qubits,
and swapping again with the ancillas. This model can be
implemented in realistic quantum architectures with attached
ancillas [22–24] as well as architectures with grid connectivity
such as superconducting qubits [1,32]. For example, Fig. 2(a)
shows an architecture where ancillas are interspersed with
data qubits on a grid. This can be represented in our model as
Fig. 2(b). Both models are equivalent and can simulate each
other with only constant depth overhead.

The task of routing involves permuting data qubits on the
graph. We use the notation

{(1, π (1)), (2, π (2)), . . . , (N, π (N ))} (1)

to denote a permutation on N vertices, where π (i) is the vertex
to which we must move the ith qubit. We also write

[N] := {1, 2, . . . N}. (2)

We consider the following models of routing.
(1) Swap routing. In this model, the only allowed gates

between adjacent qubits are swap gates.
(2) LOCC routing. In this model, we are allowed to per-

form arbitrary two-qubit gates on disjoint pairs of qubits in a
single time step. Further, in the same time step, we are allowed
to perform single-qubit measurements (on data and ancilla
qubits) and adaptively apply arbitrary single-qubit gates. We
refer to this as fast measurement and feedback. Gates in later
time steps can be applied adaptively, conditioned on all previ-
ous measurement results.

(3) Teleportation routing. In this model, data qubits can be
teleported along disjoint paths to ancilla registers at arbitrary
distances in depth 1. Using this ability, a swap between the
ends of a path can be performed in constant depth. Note that
the qubits along a teleportation path cannot be involved in
any other operations during a round of teleportation. How-
ever, teleportation between multiple pairs of qubits can be
performed in parallel if there exist paths for each pair that have
no more than a constant number of intersections per vertex,

since we allow a constant number of ancilla qubits per data
qubit. This model is a specialization of LOCC routing as the
ability to perform fast measurement and feedback allows us
to perform quantum teleportation, transporting a single qubit
to any vertex in constant depth. The entanglement required
for quantum teleportation is produced using an entanglement
swapping protocol [11], as depicted in Fig. 1. A swap between
the ends of a path can be performed by teleporting the qubit at
each end to the opposite end, or by performing gate teleporta-
tion [33] of a swap gate.

We are particularly interested in the routing time rt(G, π ),
which is the minimum circuit depth to perform the permuta-
tion π on the data qubits of G. The worst-case routing time of
a graph G is

rt(G) := max
π∈SN

rt(G, π ) (3)

where SN is the symmetric group, i.e., the group of all permu-
tations of N elements. We let rttele(G) denote the routing time
in the teleportation model, rtLOCC(G) denote the routing time
in the LOCC model, and rtswap(G) denote the routing time in
the swap model.

III. BOUNDS ON ROUTING TIME

In this section, we discuss known bounds on the routing
time for both swap and LOCC routing.

A. Lower bounds

If a permutation can only be implemented by sending a
large number of tokens through a small number of vertices,
then any circuit for performing it must have high depth, since
each vertex can only hold one token at a time. This gives a
natural lower bound on the routing time. To formalize this, we
consider the vertex expansion (or vertex isoperimetric number)
c(G) of a graph G, defined as follows.

Definition 1. The vertex expansion of a graph G is

c(G) := min
X⊆V (G)

|δX |
min{|X |, |X |} , (4)

where

X = V (G) − X (5)

is the complement of X , and

δX = {v ∈ X | ∃ u ∈ X s.t.(u, v) ∈ E (G)} (6)

is the vertex boundary of X .
Note that c(G) � 1,

min
X⊆V (G)

|δX |
min{|X |, |X |}

= min
X⊆V (G)

(
|δX |

min{|X |, |X |} ,
|δX |

min{|X |, |X |}

)

= min
X⊆V (G)

min(|δX |, |δX |)
min{|X |, |X |}

� 1. (7)
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In addition, for a connected graph, since |δX | � 1 and
min{|X |, |X |} � N

2 for any X , we have c(G) � 2
N Therefore,

for connected graphs, c(G) ∈ [ 2
N , 1].

Any connected simple graph G satisfies the following.
Theorem 1 (Isoperimetric lower bound [9]).

rtLOCC(G) � 2

c(G)
− 1. (8)

Since rtswap(G) � rttele(G) � rtLOCC(G), this lower bound
applies to swap- and teleportation-based routing as well.

We can also lower bound the swap-based routing time by
the diameter of the graph (i.e., the maximum shortest-path
distance between any pair of vertices) since swapping two
vertices at distance d requires a swap circuit of depth at
least d .

Theorem 2 (Diameter lower bound).

rtswap(G) � diam(G). (9)

Note that this bound does not apply to teleportation or
LOCC routing.

B. Upper bounds

On any graph, a classical swap algorithm can route on an
N-vertex tree in depth O(N ) [7]. Recall that we only consider
connected graphs, so we can always route on a spanning tree
with swaps in depth O(N ). We thus have the following upper
bounds.

Theorem 3. For any N-vertex connected graph G,

rtswap(G) = O(N ) (10)

This bound also implies that rttele(G) = O(N ) and
rtLOCC(G) = O(N ).

We can prove a tighter bound for sparse routing. Let
rtswap(G, k) denote the worst-case routing time on G over
permutations that move at most k tokens. Using reversals, [9]
gives a routing algorithm that takes depth O(diam(G) + k2).
We improve this result, using swaps with ancillas, to show the
following.

Theorem 4 (Sparse routing). For any N-vertex connected
simple graph G and k ∈ [N],

rtswap(G, k) = O(diam(G) + k). (11)

Proof sketch. Call all tokens v with π (v) �= v marked.
There are k marked tokens. There are three main steps in our
algorithm:

(1) Hide all unmarked tokens in the ancillas by performing
swaps. Route the k marked tokens to span a tree subgraph in
time O(diam(G)).

(2) Permute the k tokens on the tree subgraph, using the
procedure from [7], in time O(k).

(3) Reverse the first step, thereby moving the k tokens
from the subgraph to the appropriate target locations in time
O(diam(G)). Restore the unmarked tokens from the ancillas.

See Appendix A for the full proof. �

IV. FASTER PERMUTATIONS WITH TELEPORTATION

The ability to perform teleportation immediately sug-
gests possibilities for speedups over swap-based routing.

FIG. 3. Permutations on a 1D lattice.

Swap-based routing must obey the diameter lower bound
(Theorem 2), so permutations that involve long-range swaps
(e.g., between diametrically separated pairs of vertices)
should be sped up by teleportation.

We define the teleportation advantage for a specific per-
mutation to quantify this speedup,

adv(G, π ) := rtswap(G, π )

rttele(G, π )
. (12)

We now consider the following permutation on the
path graph PN : πdiam = {(1, N ), (2, 2), . . . , (N − 1, N −
1), (N, 1)} [see Fig. 3(a)].

By the diameter lower bound, this permutation takes depth
�(N ) with swaps. However, with teleportation it takes depth
O(1), showing that adv(PN , πdiam ) = �(N ).

This further generalizes to permutations that require mul-
tiple long-range swaps. For example, consider a rainbow
permutation πα

rainbow, as depicted in Fig. 3(b). This permuta-
tion involves performing Nα swaps across a 1D lattice for
some α ∈ [0, 1]. With swaps, this takes depth �(N ) by the
diameter bound, but with teleportation it takes depth Nα , by
a procedure that simply teleports each pair into place sequen-
tially. This gives a polynomial advantage: adv(PN , πα

rainbow) =
O(N1−α ).

These permutations allow speedups bounded by the di-
ameter of the graph. Any single teleportation step can be
simulated by swaps in depth O(diam(G)), by simply swap-
ping along the shortest path between the initial qubit and the
final destination. Intuitively, one might therefore expect that
teleportation routing could achieve at most a diameter-factor
speedup. However, there exist some graphs and permutations
for which we can obtain even larger speedups. Teleportation
speedups are not limited by the graph diameter since telepor-
tation protocols can utilize multiple longer paths together to
avoid intersections.

To illustrate this, consider the example of a wheel graph
WN+1, as shown in Fig. 4. The (N + 1)-vertex wheel graph,
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FIG. 4. Permutation π l
wheel (shown by red double-sided arrows)

that exchanges l pairs of vertices on the wheel graph WN+1 (shown in
black).

with central vertex N + 1, has edges

E (WN+1) = {(u, v) | u − v = 1 (mod N ) or v = N + 1}.
(13)

The diameter of WN+1 is 2. On this graph, consider the permu-
tation (shown in red in Fig. 4)

π l
wheel := {(1, N/l ), (N/l + 1, 2N/l ), . . . ,

(N − N/l + 1, N )} (14)

that exchanges l pairs of vertices spaced along the “rim” of
the wheel (assume l | N). For swap-based algorithms, this
can be done in depth min{3l, N/l − 1} by routing the qubits
sequentially through the central vertex or routing them in
parallel along the “rim”, whichever is faster.

This is optimal up to constant factors, by the following rea-
soning. If there exists a data token that does not pass through
the central node, the routing time must be at least N/l − 1,
which is the travel distance along the rim. On the other hand,
if every data token passes through the central node, then there
must be at least 2l steps in the algorithm. Therefore,

rtswap
(
WN+1, π

l
wheel

)
� min{2l, N/l − 1}. (15)

However, in the teleportation routing model, this permu-
tation can be performed in constant depth by performing l
teleportations in parallel along nonintersecting paths on the
wheel rim. Therefore,

rttele
(
WN+1, π

l
wheel

) = O(1). (16)

Setting l = √
N/2, we obtain a maximum teleportation

advantage adv(WN+1, π
l
wheel ) = �(

√
N ) for this class of per-

mutations, even though diam(WN+1) = O(1). Teleportation
therefore enables super-diametric speedups.

V. TELEPORTATION ADVANTAGE

While πdiam, πα
rainbow, and π l

wheel allow for teleportation
speedups, they are not the worst-case permutations on their
respective graphs. For example, consider the full reflection
on the line graph, i.e., a rainbow permutation with α = 1.
This permutation requires depth �(N ) for both swap- and
teleportation-based routing. Similarly, on the wheel graph
with an even number of vertices, the permutation π with

FIG. 5. The graph L(n). The black lines show edges between
layers, while blue lines show edges within a layer (colored for
visibility).

π (i) = i + �N/2� mod N for all i ∈ [N] requires depth �(N )
for both types of routing as well. Thus, although these graphs
have teleportation speedups for specific permutations, there
is no separation between their swap and teleportation routing
numbers.

To compare the relative strength of the teleportation routing
model to the swap-based routing model for all permutations,
we aim to understand how much teleportation improves worst-
case permutations. We measure the relative strength of the
teleportation model by the separation in teleportation and
swap-based routing numbers, which we define as the worst-
case teleportation advantage,

adv(G) := rtswap(G)

rttele(G)
. (17)

Note that this is not the worst-case ratio of routing numbers
for a single specific permutation, i.e., adv(G) is not nec-
essarily the same as maxπ adv(G, π ). (Indeed, as discussed
above, these two quantities differ for the path and wheel
graphs.) Instead, adv(G) can be thought of as the speedup
teleportation provides for the general task of routing on a par-
ticular graph in the worst case, rather than for implementing
a specific permutation. It also allows us to compare different
graphs: teleportation routing offers greater worst-case guaran-
teed speedups on graphs with higher adv(G).

It is not immediately obvious that we should expect adv to
be greater than 1 for any graph. However, we now describe
a graph that does offer a worst-case speedup for teleporta-
tion. This graph, which we denote by L(n) (with N = 2n − 1
vertices), has adv(L(n)) = n = log2(N + 1). The graph L(n)
(depicted in Fig. 5) has

V (L(n)) = {(r, i) | r ∈ [n], i ∈ [2r−1]} (18)

and

E (L(n)) = {((r, i1), (r, i2)) | r ∈ [n], i1 < i2 ∈ [2r−1]}
∪ {((r1, i1), (r2, i2)) | r2 − r1 = 1, i1, i2 ∈ [2r−1]}.

(19)

In words, L(n) is a ladder formed by arranging complete
graphs K2k for k ∈ {0, 1, . . . , n − 1} in horizontal layers, and
then connecting every vertex in a given layer with every vertex
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one layer above or below. The total number of vertices in this
graph is

N =
n−1∑
k=0

2k = 2n − 1. (20)

The diameter of L(n) is exactly n − 1 = log2(N + 1) − 1.
Theorem 2 then implies

rtswap(L(n)) = �( log(N )). (21)

With teleportation, we show that routing can be performed
in depth O(1). The key idea behind the teleportation protocol
is that every layer of L(n) has one more node than all the layers
above it together. This allows us to identify a unique node
in each layer corresponding to any node from a higher layer.
We can then route tokens by simply teleporting along the path
formed by the unique nodes from each layer, corresponding to
the source vertex of the token to be routed.

This teleportation routing procedure establishes the follow-
ing.

Proposition 1. rttele(L(n)) = O(1).
Proof. For any permutation π ∈ S2n−1, we construct a set

of paths {P(u, π (u)) | u ∈ V (L(n))} between every node and
its destination such that each vertex of the graph belongs to at
most four paths in the set.

Label every vertex in the graph with an n-bit address as
follows. To every node in the subgraph K2i (corresponding to
layer i + 1 of the ladder), assign a unique integer u in the range
[2i, 2i+1 − 1]. (Since the layer is a complete graph, the order
within a layer is arbitrary.) Equivalently, we may refer to node
u by its binary representation b(u), which is an (i + 1)-bit
string with a leading 1, i.e., of the form b(u) = (1 . . .).

For any vertex u ∈ V , define r(u, i) to be the vertex whose
address is (10i−1b(u)), i.e., the address of u appended to a
leading 1 i places to the left. Note that r(u, i + 1) is adjacent to
r(u, i) and lies in the layer immediately below r(u, i). Define
r(u, 0) = u.

Now, given two vertices u, v separated by a distance d ,
define a canonical path P(u, v) = P(v, u) as the sequence
of the following nodes: (u, r(u, 1), . . . , r(u, d − 1), v), where
we assume u < v without loss of generality. If d = 1, then
P(u, v) = (u, v). We now show that for any permutation π ∈
S2n−1, the set of canonical paths {P(u, π (u)) | u ∈ V (L(n))}
intersects any vertex at most four times.

Fix an arbitrary vertex v. By construction, v lies in
P(v, π (v)) and P(v, π−1(v)). Now suppose a path P(u, π (u))
passes through v /∈ {u, π (u)}. Then either u < v < π (u) or
π (u) < v < u. Without loss of generality, we assume the
former. Since P(u, π (u)) is canonical, b(v) = (10ib(u)) for
some i � 0. Suppose a different path P(u′, π (u′)) also in-
tersects v. Then there are two cases to consider: u′ < π (u′)
and u′ > π (u′). In the first case, b(v) = (10i′b(u′)). This is
only possible when i = i′ and u = u′, which implies that
P(u′, π (u′)) = P(u, π (u)) (giving one intersecting path at v).
In the second case, the same reasoning implies that u = π (u′).
In this case, there are two intersecting paths P(u, π (u)) and
P(π−1(u), u) at v. Therefore, in addition to P(v, π (v)) and
P(v, π−1(v)), at most two other paths can intersect at v, giving
a total of at most four paths.

Finally, construct one Bell pair for every edge in every
canonical path P(u, π (u)), using distinct local ancillas for
every pair. The number of Bell pairs shared at any vertex is at
most 6 = O(1), requiring six local ancillas per vertex. Using
the standard repeater protocol (fig. 1) along each canonical
path, one can then carry out simultaneous teleportation of all
data qubits to their destination vertices v �→ π (v) in constant
depth. Therefore, any permutation of the qubits can be imple-
mented in depth O(1). �

VI. BOUNDING THE TELEPORTATION ADVANTAGE

In the previous section, we described a graph with loga-
rithmic teleportation advantage. In this section, we examine
limits on the teleportation advantage. In order to understand
the power of teleportation in general, we specifically aim to
bound the maximum teleportation advantage

adv∗ := max
G

adv(G) (22)

over all graphs with a fixed number of vertices. This quantity
measures the maximum speedup teleportation can provide on
worst-case permutations for any graph. We also show tighter
bounds on the advantage for some common classes of graphs.

We immediately have an upper bound on adv from The-
orem 3. Since any teleportation algorithm must have depth
�(1), and a swap algorithm can implement any permutation
in depth O(N ), we have

adv∗ = O(N ). (23)

We now show a tighter bound.

A. Advantage for general graphs

Combining Theorem 1 and Theorem 2, we have

rtswap(G) � max

{
2

c(G)
− 1, diam(G)

}
. (24)

We now consider the relationship between diam(G) and 1
c(G) .

Intuitively, increasing the diameter while keeping N constant
“stretches” the graph, tightening bottlenecks. This causes
c(G) to decrease. Similarly, eliminating bottlenecks in the
graph requires adding more edges across cuts, thereby increas-
ing the connectivity of the graph and reducing the diameter.
We thus expect that graphs with higher diameter will have
higher 1

c(G) , and graphs with small 1
c(G) will have small diam-

eter. We can express this relation more precisely as follows.
Lemma 1. For any connected simple graph G,

diam(G) � 2
log N

2

log (1 + c(G))
+ 2. (25)

Proof. See Appendix B. �
One might expect graphs with large diameter to allow large

speedups, since the diameter lower bound only applies to swap
routing. However, as illustrated by Lemma 1, graphs with
large diameter also have tight bottlenecks, and therefore, by
Theorem 1, are not likely to permit large speedups.

We now show our main results bounding the advantage.
Our main technical result bounds the advantage in terms of
the diameter of the graph. We note that this bound also applies
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to the separation between swaps and teleportation routing for
any permutation, and not just the worst-case separation.

Lemma 2. adv(G) = O(
√

N + diam(G)).
Proof. We construct a swap-based protocol that

can simulate a single round of teleportation in depth
O(

√
N + diam(G)), thereby upper bounding the teleportation

advantage.
A single round of a teleportation protocol performs tele-

portation along a set of paths. These paths must intersect no
more than a constant number of times per vertex, since there
are only a constant number of ancillas per vertex.

For all paths from the teleportation protocol of length at
most

√
N , we swap along the paths in parallel. Since each

vertex only has a constant number of paths going through
it, a qubit can move through every vertex in constant depth.
Therefore, these swaps can be performed in depth O(

√
N ).

For an N-vertex graph, the number of paths of length at
least l that intersect at most a constant number of times is
in O(N/l ). Therefore, since each long path corresponds to a
single token, after routing along all paths of length at most√

N , we have O(
√

N ) tokens left to route. By Theorem 4, this
can be done in depth O(

√
N + diam(G)).

We can thus simulate each teleportation round in depth
O(

√
N + diam(G)), which completes the proof. �

Combining our results, we now have a bound on the advan-
tage for any graph.

Theorem 5. adv∗ = O(
√

N log N ).
Proof. First, combining Theorem 3 and Theorem 1, we

have

adv(G) = O(N · c(G)). (26)

Combining this bound with the bound from Lemma 2, we
have

adv(G) � min{O(N · c(G)), O(
√

N + diam(G))}. (27)

We know that c(G) > 0. Using the fact that log(x) � 1 − 1/x
for x > 0, we have

1

log (1 + c(G))
� 1

c(G)
+ 1 = O

(
1

c(G)

)
, (28)

where in the last equality we used c(G) � 1. Applying this to
Lemma 1 and Eq. (27), we have

adv(G) � min

{
O(N · c(G)), O

(√
N + log(N )

c(G)

)}
. (29)

Recall the definition of the maximum teleportation advantage
from Eq. (22):

adv∗ := max
G

adv(G). (30)

Therefore,

adv∗ � max
G

min

{
O(N · c(G)), O

(√
N + log(N )

c(G)

)}
.

(31)
As c(G) varies, the two bounds in the minimum vary in-
versely. The first bound, from Eq. (26), is monotonically
increasing in c(G) for c(G) ∈ (0, 1]. The second bound is
monotonically decreasing in c(G) for c(G) ∈ (0,

log N√
N

]. Note
that when c(G) ∼ 1/N [recall that c(G) � 2/N], the first

bound is smaller, while when c(G) ∼ log N√
N

, the second bound
is smaller. The largest minimum of the two bounds is thus
obtained when they are equal.

The minimum of the two bounds is thus maximized when
c(G) = √

(log N )/N . Note that even if a graph with c(G) =√
(log N )/N does not exist, any other value of c(G) will

result in a smaller right-hand side of Eq. (29). With c(G) =√
(log N )/N , we obtain

adv∗ = O
(√

N log N
)

(32)

as claimed. �
This bound applies to any graph, and is thus independent of

the diameter of the graph. Therefore, this result shows that in
graphs with diameter ω(

√
N log N ), we cannot obtain a rout-

ing time separation between teleportation- and swap-based
routing that is proportional to the diameter.

Next we show tighter bounds for a few common families
of graphs.

B. Grids

For d-dimensional grids (i.e., P�d
n , the d-fold Cartesian

product of the path graph Pn, with N = nd vertices), the vertex
cut bound (Theorem 1) gives

rtLOCC
(
P�d

n

)
� 2

c
(
P�d

n

) − 1 � n − 1, (33)

where c(P�d
n ) � 2/n follows from considering a hyperplane

that bisects the grid along one dimension. From [5], we have

rtswap(G1�G2) = 2rtswap(G1) + rtswap(G2). (34)

Therefore, the swap routing time of a d-dimensional grid
is O(dN1/d ) = O(dn). For constant d , this saturates the cut
bound in Eq. (33). Therefore, there is no worst-case speedup
from either teleportation or full LOCC, i.e., adv(P�d

n ) = 1.

C. Expander graphs

We bound the advantage for spectral expander graphs to
be poly(log N ). The (normalized) Laplacian of a graph, G, is
defined as

Lu,v =
⎧⎨
⎩

1 if u = v

− 1√
dvdu

if (u, v) ∈ E (G)
0 otherwise,

(35)

where dv is the degree of vertex v. The matrix L is symmetric
and positive such that we can order its eigenvalues as 0 =
λ0 � λ1 � · · · � λn−1. We write λ(G) for λ1 of the Lapla-
cian of G. Spectral expander graphs are graphs of bounded
degree with λ(G) = �(1). For a comprehensive introduction
to spectral graph theory, consult [6].

To bound the advantage for spectral expander graphs, we
first use the following upper bound on the swap-based routing
number. Let d∗ := maxv∈V dv

minv∈V dv
denote the degree ratio of a graph.

Theorem 6 ([9]). For any graph G and permutation π ,

rtswap(G, π ) = O

(
d∗

λ(G)2
log2 N

)
. (36)
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Combining this result with the lower bound of Theorem 1,
we immediately get

adv(G) = O

(
d∗c(G) log2 N

λ(G)2

)
. (37)

Thus graphs with λ(G) = �(1) and d∗ = O(1) (such as spec-
tral expanders) have at most a polylogarithmic advantage.

D. Hypercubes

The swap-based routing time for a d-dimensional hyper-
cube Qd is [5,34]

rtswap(Qd ) = �(d ). (38)

Since |V (Qd )| = N = 2d ,

rtswap(Qd ) = log N. (39)

Now, we will show that c(Qd ) = �( 1√
d

). In a hypercube,
Hamming balls (i.e., sets of all points with Hamming weight
� r for some integer r) have the smallest boundary of all sets
of a given size [35]. Taking the Hamming ball of radius d/2
as X , we have |X | = 2d−1 and |δX | = ( d

d/2

) = �(2d/
√

d ).

Therefore, c(G) = �(1/
√

d ). Using Theorem 1, we have
rttele(G) = �(

√
d ) = �(

√
log N ). Teleportation thus offers at

most an O(
√

log N ) advantage on hypercubes.

E. Other graphs

The cyclic butterfly graph Br has been proposed as a
constant-degree interaction graph that allows for fast circuit
synthesis [3,36]. Each of the N = r2r vertices is labeled
(w, i) ∈ {0, 1}r × [r]. Vertices (w, i) and (v, i + 1 mod r) are
connected if w = v or if w and v differ by exactly one bit in
the ith position. The cyclic butterfly has diameter O(log N ),
degree 4, and rtswap(Br ) = O(log N ) [36].

We now show that the O(log N ) protocol is optimal even
for teleportation routing on the cyclic butterfly graph, so
adv(G) = O(1). Bipartition the vertices into sets X, X such
that X consists of all rows with bit j = 0 for some j, and X
consists of all rows with bit j = 1. For this partition, |X | =
r2r−1 and |δX | = 2r , so c(G) � 2/r. Since r = �(log N ),
c(G) = O( 1

log N ), so from Theorem 1, adv(G) = O(1).
The complete graph KN has rtswap(KN ) = O(1), and there-

fore has adv(KN ) = 1.
Finally, graphs with poor expansion properties—in particu-

lar, with vertex expansion c(G) = O( poly(log N )
N )—have at most

polylogarithmic advantage by Eq. (26).

VII. DISCUSSION

In this paper, we have used quantum teleportation to speed
up the task of permuting qubits on graphs. We have shown
examples of specific types of permutations that can be sped
up by teleportation. Further, we have shown an example of a
graph that exhibits a worst-case teleportation routing speedup
of log N . Our main technical result (Theorem 5) is a gen-
eral upper bound of O(

√
N log N ) on the worst-case routing

speedup. We also show that many practical architectures can-
not implement arbitrary interactions with low overhead, even

with fast LOCC (unlike previous study, which only consid-
ered unitary evolution). Such a negative result provides useful
constraints for the design of quantum devices, suggesting that
designing new architectures may prove fruitful.

Our work leaves an open question on whether there exists
a graph with adv(G) = ω(log N). Such a graph cannot be a
spectral expander graph as per Theorem 6. From Lemma 1,
we know that a graph with large diameter will have poor
expansion properties [small c(G)] and therefore will not have
a large teleportation advantage as per Eq. (26). Some can-
didate graphs for a superlogarithmic teleportation advantage
are those with c(G) ≈ √

(log N )/N . Such graphs may come
closer to achieving a teleportation advantage given by the
upper bound of Theorem 5.

Furthermore, we believe that there should exist a tighter
upper bound than Theorem 5 on the maximum teleportation
advantage for any graph. This is one particularly interesting
direction in resolving the advantage of a teleportation proto-
col over swaps. There could be more sophisticated methods
that give tighter bounds by exploiting parallelism. A possible
approach to tightening this bound would be to show a swap
protocol that performs routing from multiple teleportation
rounds in parallel, since swap paths need not obey the strict
conditions of teleportation paths (namely, allowing only a
constant number of path intersections per vertex).

We have primarily focused on the teleportation model
of routing. However, teleportation routing is a special case
of the more general LOCC model of routing. We cur-
rently do not know whether the full power of LOCC can
provide a super-constant speedup over teleportation rout-
ing. This is analogous to another open question, namely
whether routing with arbitrary two-qubit gates—or even with
arbitrary bounded two-qubit Hamiltonians—can provide a
super-constant speedup over swap-based routing [9].

Herbert [20] posed the question of establishing to what
extent ancillas can be used to reduce the routing depth. Rosen-
baum [21] showed an O(1) routing protocol on N qubits
with O(N2) ancillas [i.e., an advantage of O(N )], while sys-
tems without ancillas cannot perform LOCC or teleportation
routing, and therefore cannot exhibit any speedups. We have
investigated an intermediate regime, and have shown that a
linear number of ancillas cannot allow for speedups greater
than O(

√
N log N ). It remains an open question to further

investigate the space-time tradeoff between the number of
ancilla qubits and the routing time.

We assume noiseless circuits, but in the presence of noise
the performance of teleportation protocols depends directly
on the fidelity of the required resource Bell pairs. We are
primarily interested in ways to use teleportation for routing,
and Bell pairs are necessary for this process. Our current tele-
portation routing model does not distinguish between routing
over long or short paths, but a more comprehensive model of
routing could prioritize shorter paths as they will be less error
prone without error correction. Alternatively, we could use a
purification protocol [37] to prepare high-fidelity Bell pairs
at the cost of additional ancillas and overhead, or we could
encode our state in an error-correcting code [38] to suppress
the error rate when operating between nodes. If operating in
a quantum network, we can make use of protocols general-
izing entanglement swapping from Bell basis measurements
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to n-qubit GHZ states to improve the performance of repeater
protocols in lossy quantum networks [39]. Alternatively, we
can prepare a high-fidelity Bell pair by performing multiple
repeater protocols along different paths in parallel [40] or
using multiplexers on each edge [41].

A more general task than routing is to perform unitary
synthesis, i.e., decompose a particular unitary into two-qubit
gates that can be applied on our locality-constrained qubits.
It remains an open question to understand how much unitary
synthesis can be sped up by using LOCC with a linear num-
ber of ancillary qubits. Previous study has shown an �(N )
speedup for implementing fanout [14] and preparing GHZ and
W states [16], and an �(

√
N ) speedup for preparing toric code

states [16], which takes time �(
√

N ) without LOCC [42].
Previous study has also shown how measurements of cluster
states can be used to efficiently prepare long-range entan-
glement [18] and states with exotic topological order [19].
In principle, LOCC could provide superlinear speedups for
unitary synthesis, as we currently have no upper bounds on
the advantage for arbitrary unitaries.
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APPENDIX A: SPARSE ROUTING

Previous study [9] shows an O(diam(G) + k2) swap-based
routing algorithm to route k vertices on a graph G. In this
Appendix, we show that using swaps with a constant number
of ancillas per qubit, this result can be improved to be linear
in k.

We first introduce the following definitions.
Definition 2 (Null token). A null token is a dummy token

that can be routed anywhere. In quantum routing, all ancillas
are initialized with a null token in state |0〉.

FIG. 6. Advancing a train of tokens, as in Algorithm 1. Blank
vertices hold state |0〉. The dashed lines represent connections with
the local ancilla qubits.

Definition 3 (Train). A train is a set of non-null tokens
along a path subgraph of G.

Now we show how a train can advance, i.e., translate by 1
along its length.

Lemma 3. A train can advance in depth 5.
Proof. Suppose we want to move a train of length l towards

some vertex r. We define the head of a train as the token on
the vertex closest to r, and the tail as the token on the vertex
furthest from r. Consider the path subgraph spanned by the
vertices the train lies on as well as the vertices of the shortest
path from the head to r. Let the tail lie on vertex 0, and head
lie at vertex l − 1. We use Algorithm 1 to advance the train
such that after 5 time steps, the tail of the train is at vertex 1
and the head at l . This procedure is depicted in Fig. 6. �

ALGORITHM 1. Advance a train.

Input: Train T from vertices 0 to l − 1 on a path. Vertex l has a null
token. The data token on vertex i is data(i), and the token on the
corresponding ancilla is ancilla(i).
1 parallel for i = 1, 3, . . . :
2 swap data(i) with ancilla(i)
3 parallel for i = 0, 2, 4, . . . :
4 swap data(i) with data(i + 1)
5 swap data(i + 1) with ancilla(i + 1)
6 parallel for i = 1, 3, . . . :
7 swap data(i) with data(i + 1)
8 swap data(i) with ancilla(i)

We now define a token cluster.
Definition 4 (Token cluster). A token cluster is a set of

trains such that each train contains a token on a vertex that
is adjacent to a vertex with a token from another train in the
token cluster.

Token clusters move as in Fig. 7, by Algorithm 2. Once a
train joins a token cluster, it remains connected and part of the
token cluster.

We now prove Eq. (11), which we reproduce here for
clarity.

Theorem 4 (Sparse routing). For any N-vertex connected
simple graph G and k ∈ [N],

rtswap(G, k) = O(diam(G) + k). (11)

Proof. Let us call the k tokens on vertices

{v ∈ V (G) | π (v) �= v} (A1)

marked tokens, and let the remaining token be unmarked
tokens. Our algorithm involves three phases.
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FIG. 7. Joining trains of tokens.

Phase 1: First, we swap the unmarked tokens into local
ancilla qubits and store them there for the duration of routing.
Every vertex that initially held an unmarked token now holds
a null token.

Next, we select some vertex r of G arbitrarily (in practice,
selecting r to be at the center of the graph may provide
constant-factor speedups). We now move all marked tokens
towards vertex r by swapping along the shortest possible
paths, until the tokens span a set of vertices forming a tree con-
nected to r. The tokens are moved in parallel, and when their
paths intersect, the tokens move as trains, as per Lemma 3.
When the paths of multiple trains intersect, they form a token
cluster, and can be moved as in Algorithm 2.

ALGORITHM 2. Token cluster movement.

Input: Set of token clusters; vertex r.
1 In each token cluster, advance the train with head closest to r by 1

using Algorithm 1.
2 If any two token clusters are adjacent, join them as a single token

cluster.
3 If the head of any train T1 is adjacent to the tail of another train T2,

join them as a single train with the head of T2 and the tail of T1.

Any given train is at most diam(G) distance away from
r at the start of Phase 1. At every time step, a train either
advances by 1 vertex towards r, or is part of a token cluster
in which another train closer to r advances. Therefore, every
token cluster becomes connected to r in depth O(diam(G)),
since in every token cluster, at least 1 train must reach r in
depth O(diam(G)). In particular, in O(diam(G)) depth, all
non-null tokens must span a tree containing r, and thus have
merged into a single token cluster.

Phase 2: Now we have k vertices spanning a tree T . Sup-
pose token v is mapped to the vertex t (v) in T after Phase 1.

Note that the token u that was originally at t (v) must also be a
marked token, and therefore must now lie in T . We route the
tokens on T according to a permutation π ′ such that

π ′(t (v)) := t (π (v)) (A2)

for all t (v) ∈ V (T ), in depth 2k [5].
Phase 3: We now simply perform Phase 1 in reverse.

During Phase 1, the marked token at u was mapped to t (u).
Therefore, after Phase 3, the token at t (u) is mapped to vertex
u. Therefore, the following mapping is applied to all vertices
with marked tokens:

u
Phase 1−−−→ t (u)

Phase 2−−−→ t (π (u))
Phase 3−−−→ π (u). (A3)

�
The combined depth of the three phases is at most O(k +

diam(G)).

APPENDIX B: PROOF OF DIAMETER-EXPANSION
TRADE-OFF

In this Appendix, we prove Eq. (25), adapting Proposition
3.1.5 from [43] to vertex neighborhoods rather than edge
neighborhoods.

Lemma 1. For any connected simple graph G,

diam(G) � 2
log N

2

log (1 + c(G))
+ 2. (25)

Proof. For any vertex v ∈ V , denote by C(v, k) the set of
all vertices that are at distance k from v. We call C(v, k) a
circle of radius k centered on v. Note that C(v, k) ∩ C(v, k′) =
∅ when k �= k′. Next, define

D(v, k) :=
k⋃

r=0

C(v, r) (B1)

to be the disk of radius k centered on v. Observe that
C(v, 0) = D(v, 0) = {v}. Finally, choose an integer ρ(v) such
that |D(v, ρ(v))| � N/2 < |D(v, ρ(v) + 1)| and call it the
horizon of v. For any vertex, a horizon exists and is an integer
between 0 and diam(G) − 1.

By definition, for all k � ρ(v) + 1, we have

|C(v, k)| � c(G) · |D(v, k − 1)|. (B2)

Applying this inequality gives

|D(v, ρ(v))| = |C(v, ρ(v))| + |D(v, ρ(v) − 1)| (B3)

� (1 + c(G))|D(v, ρ(v) − 1)|. (B4)

Recursing until we reach the base case D(v, 0) = {v}, we
obtain

N/2 � (1 + c(G))ρ(v), (B5)

giving

ρ(v) � log(N/2)

log (1 + c(G))
. (B6)

Next, for any two vertices u, v ∈ V , let d (u, v) denote the
distance between u, v. We claim that

d (u, v) � ρ(u) + ρ(v) + 2. (B7)
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To see this, note that by definition, |D(u, ρ(u) + 1)| > N/2
and |D(v, ρ(v) + 1)| > N/2, which implies that D(u, ρ(u) +
1)

⋂
D(v, ρ(v) + 1) �= ∅ by the pigeonhole principle. There-

fore, there exists a vertex t such that d (u, t ) � ρ(u) + 1
and d (t, v) � ρ(v) + 1. By the triangle inequality, we have
d (u, v) � ρ(u) + ρ(v) + 2 as claimed.

Finally, we use Eq. (B7) and maximize the distance over
all vertex pairs u, v to get

diam(G) � 2 log(N/2)

log (1 + c(G))
+ 2 (B8)

as claimed. �

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, and D. A.
Buell et al., Quantum supremacy using a programmable super-
conducting processor, Nature (London) 574, 505 (2019).

[2] C. Monroe and J. Kim, Scaling the ion trap quantum processor,
Science 339, 1164 (2013).

[3] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons,
and S. Sivarajah, On the qubit routing problem, in TQC 2019,
LIPIcs (2019), Vol. 135, pp. 5:1–5:32

[4] A. M. Childs, E. Schoute, and C. M. Unsal, Circuit transforma-
tions for quantum architectures, in TQC 2019, LIPIcs (2019),
Vol. 135, pp. 3:1–3:24.

[5] N. Alon, F. R. K. Chung, and R. L. Graham, Routing permuta-
tions on graphs via matchings, SIAM J. Discrete Math. 7, 513
(1994).

[6] F. Chung, Spectral Graph Theory (American Mathematical So-
ciety, Providence, RI, 1996).

[7] L. Zhang, Optimal bounds for matching routing on trees, SIAM
J. Discrete Math. 12, 64 (1999).

[8] A. Bapat, A. M. Childs, A. V. Gorshkov, S. King, E. Schoute,
and H. Shastri, Quantum routing with fast reversals, Quantum
5, 533 (2021).

[9] A. Bapat, A. M. Childs, A. V. Gorshkov, and E. Schoute, Ad-
vantages and limitations of quantum routing PRX Quantum 4,
010313 (2023).

[10] E. H. Lieb and D. W. Robinson, The finite group veloc-
ity of quantum spin systems, Commun. Math. Phys. 28, 251
(1972).
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