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Long-lived topological time-crystalline order
on a quantum processor

Liang Xiang 1,13, Wenjie Jiang 2,13, Zehang Bao 1,13, Zixuan Song 1,
Shibo Xu 1, Ke Wang 1, Jiachen Chen 1, Feitong Jin 1, Xuhao Zhu 1,
Zitian Zhu 1, Fanhao Shen 1, Ning Wang 1, Chuanyu Zhang 1, Yaozu Wu 1,
Yiren Zou 1, Jiarun Zhong 1, Zhengyi Cui1, Aosai Zhang 1, Ziqi Tan 1,
Tingting Li 1, Yu Gao 1, Jinfeng Deng 1, Xu Zhang 1, Hang Dong 1,
Pengfei Zhang 1, Si Jiang 2, Weikang Li 2, Zhide Lu 2, Zheng-Zhi Sun 2,
Hekang Li 1, Zhen Wang 1,3, Chao Song 1, Qiujiang Guo 1,3 ,
Fangli Liu 4,5, Zhe-Xuan Gong6,7, Alexey V. Gorshkov 4, Norman Y. Yao 8,
Thomas Iadecola 9,10, Francisco Machado 8,11, H. Wang 1,3 &
Dong-Ling Deng 2,3,12

Topologically ordered phases of matter elude Landau’s symmetry-breaking
theory, featuring a variety of intriguing properties such as long-range entan-
glement and intrinsic robustness against local perturbations. Their extension
to periodically driven systems gives rise to exotic new phenomena that are
forbidden in thermal equilibrium. Here, we report the observation of sig-
natures of such a phenomenon—a prethermal topologically ordered time
crystal—with programmable superconducting qubits arranged on a square
lattice. By periodically driving the superconducting qubits with a surface code
Hamiltonian, we observe discrete time-translation symmetry breaking
dynamics that is only manifested in the subharmonic temporal response of
nonlocal logical operators. We further connect the observed dynamics to the
underlying topological order by measuring a nonzero topological entangle-
ment entropy and studying its subsequent dynamics. Our results demonstrate
the potential to explore exotic topologically ordered nonequilibrium phases
of matter with noisy intermediate-scale quantum processors.

Phases of matter are often classified by broken symmetries and local
order parameters1. However, the discovery of topological order has
transformed this simple paradigm2,3. Two topologically ordered phases
with the same symmetries can showcase topologically distinct features,

such as different patterns of long-range entanglement and the emer-
gence of quasiparticles with different anyonic braiding statistics4–6.
These features are intrinsically nonlocal in that they cannot be dis-
tinguished by any local order parameter7,8 and also distinguish
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topologically ordered phases from symmetry protected topological
phases9. Unfortunately, topological order is usually restricted to the
ground state; mobile thermal excitations can hybridize nominally
degenerate ground states by traversing the system along nontrivial
closed loops. By introducing disorder, the motion of these excitations
can be arrested and the hybridization process suppressed. In the limit
where excitations are fully localized, the topological phase becomes
stable across the entire energy spectrum of the system10–18.

Time-periodic driving of a quantum many-body system enables
novel phases of matter that cannot exist in thermal equilibrium. A
prominent example is that of time crystals19–26, where discrete time
translation symmetry is spontaneously broken. Strikingly, the concept
of a time crystal can be extended to include topological order,
resulting in a new dynamical phase dubbed a topologically ordered
time crystal27. Unlike conventional time crystals, where the breaking of
time translation symmetry manifests in the dynamics of local obser-
vables, topologically ordered time crystals show such symmetry
breaking only for nonlocal logical operators.Whether or not this phase
has a truly infinite lifetime depends on the late-time stability of many-
body localization28–30; nevertheless, the dynamical features of the
system can still exhibit very long-lived signatures of localization per-
sisting beyond current experimental timescales. While signatures of
conventional time crystals without topological order have been
observed in a number of distinct systems, including trapped ions31,32,
spins in nitrogen-vacancy centers33,34, ultracold atoms35,36, solid-state
spin ensembles37–39, and superconducting qubits23,40,41, the observation
of a topologically ordered time crystal remains an open challenge.

Here, we report the observation of a long-lived prethermal
topologically ordered discrete time crystal, with eighteen program-
mable superconducting transmon qubits arranged on a two-
dimensional square lattice. By optimizing the device fabrication and
control process, we push the median lifetime of these qubits to
T1 ≈ 163μs and the median simultaneous single- and two-qubit gate
fidelities above 99.9% and 99.4%, respectively. Together with a neu-
roevolution algorithm42 that outputs near-optimal quantum circuits
for digitally simulating four-body interactions, this enables us to suc-
cessfully implement Floquet surface code dynamicswith an optimized
quantum circuit of depth exceeding 700, consisting of more than
2300 single- and 1400 two-qubit gates. We measure the dynamics of
nonlocal logical operators and local spin magnetizations and find that
the former show a robust subharmonic response, whereas the latter
decay quickly to zero and do not show period-doubled oscillations.
This differs drastically from symmetry breaking and symmetry-
protected topological discrete time crystals, where local, rather than
nonlocal, observables exhibit subharmonic response. We further
reveal the long-range quantum entangled nature of topological order
by preparing a many-body eigenstate of the Floquet unitary and
measuring its topological entanglement entropy with different sub-
system sizes and geometries43,44. We obtain near-expected values for
the measured topological entanglement entropy, which deviates sig-
nificantly from the trivial-state value of zero and provides strong evi-
dence for the presence of topological order.

Results
Theoretical model and experimental setup
We consider the periodically driven rotated surface code model on a
2D lattice with open boundary conditions27,45 (see Methods):

HðtÞ= H1, 0 ≤ t <T 0,

H2, T 0 ≤ t <T ,

�

H1 �
π
2

X
k

σx
k +

X
k

Bk � σk ,

H2 � �
X
p

αpAp �
X
q

βqBq,

ð1Þ

where σk = ðσx
k ,σ

y
k ,σ

z
kÞ is a vector of Pauli matrices acting on the k-th

qubit; Bk denotes an on-site field drawn randomly and independently
from a ball with radius B; the plaquette operators Ap =

Q
m2pσ

z
m and

Bq =
Q

n2qσ
x
n are products of Pauli operators on the corresponding

plaquettes (Fig. 1a); αp and βq are coefficients uniformly chosen from
[0, 2π); the drive period is fixed as T =2T 0 =2, which roughly
corresponds to a 1.4-μs runtime for the corresponding quantum
circuit in our experiment.

We note that, other than the discrete time-translation symmetry,
H(t) breaks all microscopic symmetries due to the presence of the
random on-site fields Bk in H1. The Floquet unitary that fully char-
acterizes the dynamics of the system reads UF = U2U1, with U1 = e

�iH1

and U2 = e
�iH2 being the unitary operators generated by the Hamilto-

nians H1 and H2, respectively. H2 represents the Hamiltonian of the
rotated surface code model, whose energy spectrum is two-fold
degenerate and whose eigenstates show topological order7,46. Owing
to their topological nature, the degenerate eigenstates can only be
distinguished by nonlocal string operators such as ZL =

Q
k2Pz

σz
k or

XL =
Q

k2Px
σx
k , which traverse the lattice through the path Pz or Px (see

Fig. 1a). We label each eigenstate pair by ∣Z ðlÞ
L = ± 1i for each eigenstate

with quasi-energy ϵl (see Supplementary Note 1.A). In the limit B→0,U1

represents a perfectflip of all spins. As a result, the driveH1 reorganizes
the topologically ordered eigenstate pairs of H2 into Floquet eigen-
states ∣EðlÞ

± i of the form ∣EðlÞ
± i / ∣Z ðlÞ

L = 1i± ∣Z ðlÞ
L = � 1i. The quasi-energies

of the corresponding cat-like eigenstates are split by quasi-energy π
(Fig. 1b). As a result, the stroboscopic dynamics of the nonlocal
operator ZL exhibits a stable subharmonic oscillation with 2T periodi-
city as illustrated in Fig. 1c, which breaks the discrete time-translation
symmetry by the drive period T (see Supplementary Note 1.C). These
Floquet eigenstates also exhibit topological order, which is essential
for the robustness of the subharmonic response of the nonlocal string
operators ZL.

For small but finite B, the system’s integrability is broken and the
eigenstate pairs are no longer exactly split by π. However, this devia-
tion arises from the motion of excitations across the system which
mixes the different topological sectors, which is strongly suppressed
by the disorder in αp and βp. Until this thermalization occurs, t≲ tth, the
system’s dynamicswill exhibit robust perioddoubling dynamics,much
like in the B =0 case. All our experimental and theoretical observations
of perioddoubling behavior pertain to this “prethermal” regimewhich,
in the small-B regime, is much larger than the experimentally acces-
sible timescales.

Our experiments are carried out on a programmable flip-chip
superconducting processor with 18 transmon qubits arranged on a 2D
square lattice (see Supplementary Note 2.A for detailed information
about the device). To implement H(t), the four-body terms with ran-
dom strengths in H2, which are vital for the eigenstate topological
order at high energy, pose an apparent challenge since four-body
interactions do not naturally appear in the superconducting system.
We therefore exploit the idea of digital quantum simulation to
implement H(t) with quantum circuits (Fig. 1d), which are obtained via
a neuroevolution algorithm42 (see Methods and Supplementary
Note 1.G). We mention that these quantum circuits are near-optimal
and can implement H(t) in an analytical fashion without any Trotter
error, independent of αp, βp, and Bk. With these efficient quantum
circuits, improved gate fidelities, and coherence times, we are able to
implement and probe the unconventional dynamics of the system up
to 20 driving periods.

Subharmonic response for nonlocal observables
The characteristic signature of topological time-crystalline eigenstate
order is the breaking of the discrete time-translation symmetry for
nonlocal logical operators, manifested by persistent oscillations with
period 2T. To this end, we define the normalized auto-correlation
function A1=d

L ðtÞ= sign½hZLð0ÞZLðtÞi�jhZLðtÞij1=d for the d-body string
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operator ZL, where 〈 ⋯ 〉 represents the expectation value and the
d-th root is used to indicate the geometricmean value.When d = 1, this
generalization reduces to the standard auto-correlation function for
single-qubit operators23,40, while allowing for a direct comparison
across different lengths of string operators (see Supplementary
Note 2.F for more details). We begin by studying the evolution of the

disorder-averaged auto-correlator A1=d
Li

ðtÞ for operators fZLi
g (d = 3) at

the solvable limit B = 0, which are averaged over 24 random realiza-
tions by sampling Hamiltonian parameters αp, βq and random z-basis
initial states. From Fig. 2a, it is evident that, in the topologically

ordered regime, A1=d
Li

ðtÞ oscillates with a 2T periodicity for up to 20

driving cycles. We mention that A1=d
Li

ðtÞ exhibits a gradually decaying

envelope due to extrinsic experimental imperfections, rather than
internal thermalization, which is confirmed by numerical simulations
(lines in Fig. 2a) incorporating experimentally measured gate errors
and decoherence times. Indeed, the ideal numerical simulations show
that the internal thermalization time of the system without experi-
mental noise is far longer than 20 driving cycles (Supplementary

Note 1.D). In the frequency domain, A1=d
Li

shows a peak at the sub-

harmonic frequency of the drive periodω/ω0 = 0.5, as shown in Fig. 2b.
We also note that the string operator XLdoes not showperiod-doubled
oscillations, and no subharmonic peak is observed in the frequency
domain.

Although the 2T-period subharmonic oscillations of nonlocal
observables fZLi

g already sharply distinguish our experiment from

previous works23,31–33,40, where only local observables break time-
translation symmetry, we further demonstrate that the observed Flo-
quet topological order is a nonlocal effect by contrasting with the
dynamical behavior of local operators fσz

kg. The auto-correlation

function hsign½σz
kð0Þ�σz

kðtÞi decays to zero quickly without evident
oscillations (Fig. 2c), even though the periodic drive is locally applied
to each qubit. The striking contrast between nonlocal operators fZLi

g
and local operators fσz

kg exposes the locally indistinguishable nature of
the Floquet topological order and rules out the possibility of trivial
oscillations arising from driving a noninteracting system.

Topologically ordered Floquet eigenstates
The Floquet eigenstates bear intrinsic topological order and exhibit
long-range quantum entanglement characterized by the topological
entanglement entropy Stopo43,44 (see Supplementary Note 1.B). To
reveal the underlying global entanglement, we prepare an eigenstate
ofUF andmeasure its Stopo for different system sizes. In the B→ 0 limit,
eigenstates of UF correspond to superpositions of degenerate eigen-
states of H2 (see Fig. 1b). The eigenstate we prepare is the symme-
tric superposition of ground states of H2, given by
∣Eð0Þ

+ i= 1ffiffi
2

p ð∣Z ð0Þ
L = 1i+ ∣Z ð0Þ

L = � 1iÞ. We prepare it from a simple initial
product state using a quantum circuit whose depth grows linearly with
the system size (see Supplementary Note 1.H)47:

∣Eð0Þ
+ i= 1

24
ð1 +XLÞ

Y
q

ð1 +BqÞ∣0i�18: ð2Þ

1 2 3 4 5 6
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-1 10

t
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c ZL
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b

...

= (l)
L|Z =1�− (l)
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= (l)
L|Z =1�+ (l)

L|Z = 1�|E� �l
��

ε
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Q
ua

si
-e

ne
rg

ie
s

-

-

=

= CZX( ) Y( ) Z( )X( ) U(XX)

U(XXXX)

U(ZZ)

U(ZZZZ)

(l)

(l)

Fig. 1 | Periodicallydrivensurface codemodel. aRotated surface codemodel on a
three-by-six square lattice. The circled numbers label the qubits. The dark and light
gray regions represent plaquette operators Ap and Bq, respectively. The thick black
(red) line represents the nonlocal string operator ZL (XL). b Topologically ordered
Floquet eigenstates in the limitB→0. The quasi-energies of each pair of eigenstates
∣EðlÞ

± i are split by π. c Schematic of the stroboscopic dynamics of the string opera-
tors ZL and XL. Under periodic driving, the expectation value of ZL exhibits a per-
sistent subharmonic oscillation with a period of 2T, while XL preserves a constant
value of zero. d Decomposition of the Floquet unitary UF (B = 0) into elementary

quantum gates. U1 is realized by applying π pulses to all the qubits. Since all the
plaquette operators commute with each other, U2 is constructed by sequentially
applying four groups of them. Plaquette unitaries e�iApT=2, labeled by U(ZZZZ) and
U(ZZ), and e�iBqT=2, labeled by U(XXXX) and U(XX), are further decomposed into
sequences of single-qubit rotations and two-qubit controlled-Z gates. X(θ), Y(θ),
and Z(θ) denote single-qubit rotations by an angle θ around the x-, y-, and z-axis,
respectively. e�iBqT=2 can be implemented by sandwiching e�iAqT=2 with Hadamard
gates. In the experiment, the whole circuit is further compiled to reduce the depth
and suppress hardware noise (Supplementary Note 2.E).
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We then measure the plaquette operators {Ap} and {Bq} (left panel of
Fig. 3a), and an average value of ~ 0.95 is observed, which is note-
worthy given that these operators encode four-body correlations. The
high-fidelity gates and long coherence times achieved in our
experiment are of crucial importance to obtain such a high average
value of the measured stabilizers (see Supplementary Note 2.B). We
also measure the expectation values of string operators fXLi

,ZLi
g and

find that hEð0Þ
+ ∣ZLi

∣Eð0Þ
+ i � 0 and hEð0Þ

+ ∣XLi
∣Eð0Þ

+ i � 1 (rightpanel of Fig. 3a).
These experimental results are in good agreement with theoretical
predictions, providing strong evidence that the prepared state is
indeed a Floquet eigenstate as desired.

Having prepared the Floquet eigenstate, we further measure its
topological entanglement entropy for two different subsystem sizes:
four qubits and six qubits. We follow a protocol developed in ref. 47
and divide the subsystem into three parts: A, B, and C (upper panels of
Fig. 3b). Stopo can be extracted from the following combination of von
Neumann entanglement entropies43,44:

Stopo = SA + SB + SC � SAB � SAC � SBC + SABC , ð3Þ

where SA is the von Neumann entropy for region A, while AB means
the union of regions A and B, and similarly for other terms. For the
eigenstates of UF, the theoretically predicted value of Stopo is� ln 243.
For each region i, we perform quantum state tomography on the
whole (four-qubit or six-qubit) subsystem and reconstruct ρi to cal-
culate the corresponding fidelity FðρiÞ= tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρi

p
ρideal
i

ffiffiffi
ρi

pp
and von Neu-

mann entropy Si = � trðρi lnρiÞ, where ρideal
i is the reduced density

matrix of region i obtained by tracing out the complementary region
of the ideal Floquet eigenstate. The experimentally measured Stopo,
Si, and F(ρi) are shown in the lower panels of Fig. 3b. The measured
von Neumann entropy for each region agrees well with the corre-
sponding ideal value. In addition, we observe that �Stopo= ln 2 is
0.86 ± 0.02 for the four-qubit and 0.84 ± 0.08 for the six-qubit
subsystem, which is incompatible with the trivial-state value of zero
and provides strong evidence for the nontrivial topological nature of

the prepared Floquet eigenstate. The deviation between the
measured Stopo and its corresponding ideal value is due to limited
coherence times and gate errors, which is confirmed by numerical
results using a noise model estimated via independent measure-
ments (our numerical simulations show that �Stopo= ln 2 is 0.85 and
0.82 for the four-qubit and six-qubit subsystems, respectively; see
Methods and Supplementary Note 3).

Robustness against local perturbations
Topological order is expected to be robust against small local per-
turbations. In our experiment, we investigate the robustness of the
subharmonic response of nonlocal logical operators and of the
entanglement dynamics to local perturbations by turning on the ran-
dom on-site fields in H1. We vary the perturbation strength B and
measure A1=d

Li
ðtÞ and Stopo(t), with results plotted in Fig. 4.

Figure 4a shows themeasureddisorder-averaged auto-correlation

function A1=d
Li

ðtÞ for fZLi
g under weak (B = 0.1) and strong (B = 3.0)

perturbations, which are averaged over 24 realizations with randomly
drawn initial states, αp, βq, and Bk. With a small perturbation (B = 0.1),

A1=d
Li

ðtÞ continues to exhibit persistent subharmonic response up to 20

driving periods (upper panel of Fig. 4a), which is a defining feature of
the time-translation symmetry breaking for nonlocal operators and
shows the robustness of the observed prethermal topologically
ordered discrete time crystal. In contrast, with a strong perturbation

(B = 3.0), the measured A1=d
Li

ðtÞ decays quickly to zero and shows no

subharmonic response (lower panel of Fig. 4a); at large B, the large
onsite field rapidly destroys the topological order preventing any
robust period doubling dynamics. To explore the crossover from the
time-crystalline to trivial dynamics, we vary the perturbation strength
B and Fourier transform the measured time-domain signals. Fig. 4b
shows the Fourier amplitudes at ω/ω0 = 0.5 with B ranging from 0 to
3.0. We find a small plateau at B ≲ 0.25, which further supports the
robustness of the topologically ordered time-crystalline dynamics
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Fig. 2 | Time-translation symmetry breaking for nonlocal observables with
B = 0. aDynamics of nonlocal observables. Auto-correlation function for the three-
body string operators fZLi

g (thickblack lines) and instantaneous expectation values
for the six-body string operators fXLi

g (thick red lines) are shown in the upper six
and lower three panels, respectively. Experimental data points (dots) are obtained
from averaging over 24 random realizations, with error bars representing the
standard error of the statistical mean. The numerical results (lines) are computed
by taking into account qubit decoherence and gate errors (Supplementary Note 3).

Whereas the instantaneous expectation values for fXLi
g remain zero, the auto-

correlators for fZLi
g exhibit stable subharmonic oscillations for up to 20 cycles (see

Supplementary Note 2.F for measurement details). b Fourier spectra of time-
domain signals observed in a, where a stable subharmonic frequency peak appears
for fZLi

g but not fXLi
g. c Dynamics of the auto-correlation function for local

observables fσz
kg. Such auto-correlations decay quickly to zero, in sharp contrast to

those of the string operators fZLi
g.
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against weak perturbations. As B increases, the Fourier amplitude
decays monotonically and becomes almost flat at B ≳ 2.5, where the
topological order is very quickly destroyed and no period doubling
dynamics survives. Sample-to-sample amplitude fluctuations over 24
random realizations (inset of Fig. 4b) display a sharp increase at the
same value of B where the Fourier amplitude starts to decay, further
highlighting the location of the crossover between the prethermal
topological time-crystalline and the trivial dynamics.

We further study the dynamics of the topological entanglement
entropy under local perturbations. We first prepare the system in the
B = 0 Floquet eigenstate ∣Eð0Þ

+ i and then let it evolve under H(t) with
varying B. In Fig. 4c, we plot the measured StopoðtÞ for B = 0.1 and
B = 3.0, respectively. From this figure, we see that StopoðtÞ drops more
quickly at strong perturbation B = 3.0 due to the breakdown of the
topological phase. We note that StopoðtÞ also has a slow decay even for
B = 0.1 due to the accumulated gate errors in the circuit, which is
confirmed by the numerical simulations (the dashed lines in Fig. 4c)
(see Supplementary Note 3). In addition, we measure plaquette and
string operators after evolution under UF for a single time step (see
Fig. 4d). From this figure, it is clear that their values are largely pre-
served for B = 0.1, unlike the case of B = 3.0, where these values drop to
near zero. We further measure the disorder-averaged Stopoðt =TÞ as a
function of B (Fig. 4e). Similar to the Fourier spectrum amplitudes in
Fig. 4b, Stopoðt =TÞ also decaysmonotonically with increasing disorder

strength. Although, in general, the topological entanglement entropy
tends to be destroyed by quench dynamics48,49, the fact that it exhibits
a plateau in theweakdisorder regime (B≲0.25) implies a slowdecay of
the topological time-crystalline order, offering a different character-
ization of the topological time crystalline behavior and further vali-
dating its robustness against perturbations. We emphasize that the
relationship between the observed nonzero topological entanglement
entropy and the topological order in a general quantum state and away
from equilibrium is complex. Here, we interpret the slowdecay of Stopo
as an indicator of slow melting of the topological order. This is sup-
ported by theoretical arguments based on prethermalization and by
experimental measurements of the fidelity between the topologically
ordered initial state and the state obtained by evolution over up to five
Floquet periods, which remains large provided B is sufficiently weak
(see Supplementary Note 1.D).

We note that, for the generic local perturbations considered in
our experiment, the overlap between a bare logical operator and its
corresponding dressed logical operator may vanish in the thermo-
dynamic limit. This would render the observation of time-crystalline
behavior for the bare logical operator infeasible27. In addition, to
observe the time-crystalline behavior, it is also crucial that
fQ σx

k ,ZLg=0 is satisfied, which requires that the length of ZL be odd. A
possible way to maintain time-crystalline signatures in bare logical
operators in the thermodynamic limit and to remove the requirement
of odd length ZL is to consider a surface code with a hole, as discussed
in depth in ref. 27. In our experiment, we do not adopt such a layout
becausemeasuring the correspondingnonlocal logical operatorwould
become very challenging with the current device.

Discussion
In summary, we have experimentally observed signatures of a
long-lived topologically ordered time crystal in the prethermal
regime with a programmable superconducting quantum pro-
cessor. In contrast to previously reported conventional time
crystals, the topologically ordered time crystal studied here
builds upon a truly long-range entangled phase, such that dis-
crete time-translation symmetry breaking only occurs for non-
local logical operators. As a result, this experiment is more
challenging than our previous one on symmetry-protected topo-
logical (SPT) time crystals23, requiring 2D qubit connectivity,
deeper circuit depth, higher gate fidelity, and longer coherence
time. With significantly improved quantum computing hardware
(see Supplementary Table 2), we observed persistent sub-
harmonic response for logical operators independent of the
initial state and demonstrated the robustness of this response to
generic perturbations without any microscopic symmetry. In
addition, we also prepared a topologically ordered Floquet
eigenstate and measured its topological entanglement entropy,
which agrees well with theoretical predictions and clearly shows
the intrinsic topological nature of the observed time crystal. Our
work shows that the topologically ordered time crystal differs
from previously studied time crystals23,31–33,40 in terms of mea-
surability, stability, and entanglement structure.

The topologically ordered eigenstates of the Floquet unitary
are theoretically predicted to exhibit a perimeter law, where the
expectation value of a Wilson loop scales with the perimeter
rather than the area enclosed17,27. As a result, the late-time values
of the nonlocal logical operators under the Floquet drive also
exhibit a perimeter law, i.e., they will exponentially decay with
their length (see Supplementary Note 1.E). However, it is still
challenging to experimentally observe such long-time behaviors
in current NISQ50 devices, so we leave this for future experimental
investigations. The high controllability and programmability of
the superconducting processor demonstrated in our experiment
also paves the way to exploring a wide range of other exotic non-
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equilibrium phases with intrinsic topological order that are not
accessible in natural materials. In particular, it would be inter-
esting and important to realize various dynamically-enriched
topological orders51. Indeed, our experiment has demonstrated all
necessary building blocks for implementing the Floquet-enriched
topological order that hosts dynamical anyon permutation51 and
emergent non-Abelian anyons52,53. An observation of such an
unconventional phenomenon would also mark an important step
in deepening our understanding of exotic non-equilibrium
phases.

Methods
Surface code model
Here, we provide a comprehensive introduction to the model, which
we use to realize the long-lived topological time-crystalline order.
Toric code is usually defined on a square lattice with periodic
boundary condition. Thus, the defining manifold is a torus. Consider a
L × L square lattice with periodic boundary condition. It contains L2

vertices, 2L2 edges, and L2 plaquettes. The qubit is put on each edge of
the lattice and two kinds of local operators can be defined. For each
plaquette, we can define the product of the σz

k operators on each edge
surrounding the plaquette as the corresponding plaquette operator.
There are L2 plaquette operators. For each vertex, we define the pro-
duct of the σx

k operators on each edge connecting with the vertex as
the corresponding vertex operator. There are L2 vertex operators. This
definition gives a stabilizer code that can store quantum information.

However, in current quantum devices, qubits are usually connected
with the nearest ones and periodic boundary condition is challenging
to accomplish. Instead, stabilizer codes defined in open manifolds are
more likely to be realized. Therefore, we concern with a square lattice
with an open boundary condition.

To satisfy the requirements of a stabilizer code, the surface code
on an openmanifold has two kinds of boundaries in alternating order:
the z-type boundary and the x-type boundary. At the z-type boundary,
one of the qubits associated with the plaquette operators is removed,
and at the x-type boundary, one of the qubits associated with the
vertex operators is removed. Thus, in the bulk, the stabilizer operators
are the same as those in the toric code. At the boundaries, the corre-
sponding plaquette and vertex operators are only applied to the
reserved three qubits.

We note that, for each pair of operators, if they are both the
plaquette operators or vertex operators, they must commute with
eachother. Besides, if they belong to different classes, theymust share
an overlap with an even number of qubits (0 or 2). In addition with the
anti-commutative relation σz

k ,σ
x
k

� �
=0, we conclude that any pair of

operators from different classes commute with each other. Without
modifying the topological properties, we can drop evenmore auxiliary
qubits and rotate the surface code to obtain the model we used in the
main text. For a m × n lattice, there aremn qubits, (m − 1)(n − 1) four-
body stabilizers, and m + n − 2 two-body stabilizers. Thus, such code
will encode a single qubit of quantum information (see Supplementary
Note 1.A for details).
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Fig. 4 | Robustness of the topological time-crystalline eigenstate order.

a Measured disorder-averaged auto-correlation function A1=d
Li

ðtÞ for string operators

fZLi
g with B = 0.1 (upper panel) and B = 3.0 (lower panel). Error bars denote the

standard error of the statistical mean over 24 random realizations. b Amplitudes of

Fourier spectra at ω/ω0 = 0.5 as a function of B. Fourier transform of A1=d
L ðtÞ is per-

formedusing averaged time-domain signals over fZLi
g for up to t = 6T. Eachdata point

is averaged over 24 random realizations. Error bars are the standard deviation (S.D.)
for 24disorder realizations. Insert: The S.D. of Fourier spectra amplitudes atω/ω0 =0.5
as a function of B. c Quench dynamics of the disorder-averaged topological

entanglement entropy Stopo from the initial state ∣Eð0Þ
+ i (which is a Floquet eigenstate

at B = 0) for different B. Here, Stopoðt ≠0Þ is obtained by performing state tomography

on a four-qubit subsystem and the average is over 12 random realizations; Stopoðt =0Þ
is obtained via the same state tomography process and averaging over five repetitions
of eigenstate preparation. d Measured plaquette and string operators for the eigen-

state ∣Eð0Þ
+ i after single-step UF evolution at B = 0.1 and B = 3.0. e, Stopoðt =TÞ as a

function of random field strength B, which is averaged over 12 random realizations.
Numerical simulations (dashed lines) in b, c, and e are carried out with noisy quantum
gates (see Supplementary Note 3 for details).

Article https://doi.org/10.1038/s41467-024-53077-9

Nature Communications |         (2024) 15:8963 6

www.nature.com/naturecommunications


Circuit
To implement the time evolution of surface code model, we decom-
pose the evolution unitary into digital quantum circuits. It is straight-
forward to realize the Floquet drive U1ðtÞ= e�itH1 with tensor products
of single-qubit rotations, which can be represented with Euler angles.
However, the circuit construction of U2ðtÞ= e�itH2 is more challenging
due to the two-body and four-body operators.

The variational quantum circuit is a powerful tool for NISQ com-
putation and quantum simulation and has been intensively studied in
recent years54,55. We adapt this method to construct the quantum cir-
cuit for the evolution. The circuit construction for the evolution
operator of H2 can be divided into two steps. First, we need to find an
appropriate circuit ansatz with variational parameters. Second, we
optimize the variational parameters in this ansatz to minimize the
distance between the corresponding quantum circuit and the target
unitary. In our work, we use the neuroevolution method42 to find a
suitable variational quantum circuit architecture. In short, we con-
struct a directed graph where each node represents a block of quan-
tum gates that can be implemented in parallel, and where the directed
edges denote allowed sequences of blocks. A quantum circuit can then
be represented as a directed path in this graph. We sample several
paths from this graph, and use the gradient descent method to opti-
mize their parameters.Using such amethod,wefind anexperimentally
friendly ansatz analytically representing the target evolution unitary
(see Supplementary Note 1.G for details).

Numerical simulation of the noisy circuit
We employ the Monte Carlo wavefunction method56 to numeri-
cally simulate the noisy circuits. It requires fewer computational
resources than the master-equation approach because it evolves
the system state vector of size 2N during the calculation rather
than the density matrix of size 2N × 2N. In this context, we use the
state-vector simulator provided by Qiskit57 for the numerical
calculation of system dynamics.

To model realistic errors in experimental circuits, we use
quantum channels of energy relaxation, dephasing, and depolar-
izing. These channels are represented as probabilistic mixtures of
different operators. Parameters of each error channel are esti-
mated from the experimental benchmarks of gate errors and
device performance (see Supplementary Note 3 for details). Error
operators are sampled according to the noise model and ran-
domly inserted after each ideal gate. As a result, the state vectors
evolve along many quantum trajectories corresponding to many
noise realizations. Values of the desired observable are obtained
by averaging over an ensemble of such quantum trajectories,
which resembles repeated measurements for evaluating the
expectation value of an observable in experiments.

Data availability
The data generated in this study have been deposited in the Zenodo
database under accession code https://doi.org/10.5281/zenodo.
1369213458.

Code availability
The simulation codes used in this study are available in theCodeOcean
capsule at https://codeocean.com/capsule/8032749/tree/v1.
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