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Simulating the dynamics of electrons and other fermionic
particles in quantum chemistry [1], material science [2],
and high-energy physics [3] is one of the most promising ap-
plications of fault-tolerant quantum computers. However,
the overhead in mapping time evolution under fermionic
Hamiltonians to qubit gates [4–7] renders this endeavor chal-
lenging [8, 9]. We introduce fermion-qubit fault-tolerant
quantum computing, a framework which removes this over-
head altogether. Using native fermionic operations we first
construct a repetition code which corrects phase errors
only. We then engineer a fermionic color code which cor-
rects for both phase and loss errors. We show how to
realize a universal fermionic gate set in this code, including
transversal Clifford gates. Interfacing with qubit color
codes we realize qubit-fermion fault-tolerant computation,
which allows for qubit-controlled fermionic time evolution,
a crucial subroutine in state-of-the-art quantum algorithms
for simulating fermions [10–13]. We show how our frame-
work can be implemented in neutral atoms, overcoming
the apparent inability of neutral atoms to implement non-
number-conserving gates by introducing a neutral-atom
braiding gate using photodissociation of bosonic molecules.
As an application, we consider the fermionic fast Fourier
transform, an important subroutine for simulating crys-
talline materials [12], finding an exponential improvement
in circuit depth from O(N) to O(log(N)) with respect
to lattice site number N and a linear improvement from
O(N2) to O(N log(N)) in Clifford gate complexity com-
pared to state-of-the-art qubit-only approaches [14]. Our
work opens the door to fermion-qubit fault-tolerant quan-
tum computation in platforms with native fermions such
as neutral atoms, quantum dots and donors in silicon, with
applications in quantum chemistry, material science, and
high-energy physics.

Solving the dynamics of many strongly-interacting fermionic
quantum particles is central to numerous scientific and techno-
logical challenges, including explaining the dynamics of quarks
in the early universe, understanding the reaction dynamics of
molecules, and elucidating high-temperature superconductivity.
While qubit quantum computers promise to help solve these
open problems, simulating the evolution of fermions encoded
in qubits encounters a large overhead in both the number of
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FIG. 1. Logical fermions and architecture. a, A logical qubit is
encoded in a codeblock formed by many physical qubits. Similarly, we
encode a logical fermion into a codeblock formed by many physical
fermions. While logical qubit operators commute, logical fermionic
operators anti-commute between two codeblocks. Physical fermions
can be encoded in fermionic neutral atoms trapped in optical tweezers
or lattices (indicated by hour-glass shapes) or in electrons trapped
by electric fields in quantum dots or donors in silicon (Methods).
b, Neutral-atom architecture, circuit notation, and universal qubit-
fermion gate set. Single-fermion gates are performed by detuning
the tweezer potential; single-qubit gates by Raman lasers; CZ gates
by Rydberg lasers; braiding gates by photodissociation of molecules
as well as inter-tweezer tunneling. In the braiding gate, the site i,
c.f. definition in Eq. (4), is indicated by a cross. We distinguish fermion
sites from qubits by using dashed lines and drop the f superscript in
circuits.

two-qubit gates and the circuit depth [5–7], which means that a
solution of fermionic problems with near-term [8, 9] and even
fault-tolerant quantum computers [12] is extremely challeng-
ing. It is possible to circumvent this issue by using quantum
simulation platforms which host controllable fermionic degrees
of freedom, such as quantum dots [15], donors in silicon [16],
and light-trapped neutral atoms [17–20]. Using those plat-
forms, analog simulations of condensed-matter models have
been achieved [21–25] and proposals for studying quantum
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chemistry in an analog [26] or digital [27] way have been
made. However, turning these fermionic platforms from a
tool of scientific exploration into a computational tool requires
error-correction and fault-tolerance techniques, for which no
practical scheme has been found so far.

Here, we close this gap by introducing a framework for
fermion-to-fermion fault-tolerant quantum computation. We
first prove a theorem that fermionic error correction is not possi-
ble using only number-conserving gates, which are most easily
implemented in experimental platforms. We then show how
to circumvent this theorem by using a non-number-conserving
gate and concepts from Majorana error correction. This en-
ables us to introduce error-correcting codes for which we
explicitly show how to perform a universal gate set including
fault-tolerant transversal gates. To enable usage of state-of-the-
art quantum algorithms requiring qubit-controlled gates [10],
we introduce qubit-fermion fault-tolerant computation. We
apply our framework to time evolution under the Hamilto-
nian of a crystalline material and study the advantages of
our framework compared to all-qubit quantum computation.
Finally, we show how to realize these codes and their oper-
ations in neutral atoms by removing the previously assumed
restriction to number-conserving gates [27] in neutral atoms
and introducing the physics behind the implementation of a
non-number-conserving braiding gate.

FERMION-TO-FERMION ERROR CORRECTION GATE SET

Our central goal is the construction of an error correcting
code that encodes a logical fermion, which we define as a
creation operator c†a anti-commuting between different code-
blocks a and b, i.e. {c†a, cb} = δab, see Fig. 1a. This is by
contrast to fermionic operators encoded into a single code-
block of a topological error correcting code [7, 28, 29], which
are difficult to address via transversal gates [30] and whose
efficiency degrades when applied to fermion models that are
not local in 2D. Constructing logical operators that anticom-
mute between different codeblocks is impossible using physical
qubits because no qubit operator can be constructed which
anticommutes between separate codeblocks. Instead, we use
physical fermionic degrees of freedom p†i acting on physical
sites i and fulfilling {p†i , pj} = δij to encode logical fermions.
A physical fermion can be realized for example by a fermionic
atom trapped with light or an electron in a quantum dot. For
concreteness, we will focus on the former implementation and
comment on a quantum dot implementation in the Methods.
As a second crucial ingredient, we interface these fermions
with qubits, which are encoded in two internal energy levels of
an atom.

We first consider a fermion-number-conserving gate set
acting on many fermionic and qubit sites labeled by indices
i, j,

Tf
i = exp (i(π/4)ni) , (1)

CZf
ij = exp (iπninj) , (2)

CZqf
ij = exp (iπnqi nj) , (3)

along with the qubit Hadamard gate H, and the qubit phase
gate S. For this gate set to be universal (see Methods for a
proof), we also need a gate which moves fermions between
sites,

√
iSWAP

f

ij = exp
(
i(π/4)

(
p†ipj + h.c.

))
. For conve-

nience, we also define the gates Sfi = (Tf
i)

2 and Zf
i = (Sfi)

2

not necessary for universality. CZqf is a qubit-fermion gate
dependent on the fermionic number operator nj = p†jpj and
its qubit analogue nqi = |1⟩ ⟨1|i, i.e. the projector on the |1⟩
state of the qubit. Note that, in principle, we do not require
qubits for fermion universality [31], but as we will show, being
able to couple fermions to qubits will lead to key advantages.
Neutral-atom platforms are considered to be constrained to this
number-conserving gate set [27] as usually the atom number is
conserved during gates and each tweezer is initially prepared
in a number eigenstate.

The first question is therefore whether these number-
conserving operations suffice to encode logical fermions, which
is equivalent to demanding that the codestates are eigenstates of
the total fermion number operator. Unfortunately, such states
are not sufficient:

Theorem. An error-correcting code using eigenstates of the
total fermion number operator as codestates does not have
logical fermion operators.

The proof (Methods) relies on the fact that codestates that
are eigenstates of the total fermion number operator need to
be eigenstates with the same number eigenvalue due to the
Knill-Laflamme conditions. This means that logical operators
cannot change the total fermion number and therefore need
to be even weight in fermionic creation/annihilation operators.
Hence, logical operators are bosonic.

To circumvent this theorem, we use fermion parity eigenstates
as codestates, i.e. states that are superpositions of states that
contain either only an odd or only an even number of fermions.
A universal gate set on such states requires a non-number-
conserving gate. In analogy to the braiding operation performed
in Majorana nanowires [32], we define the braiding gate

BRAIDij = exp
(
i
π

4

(
p†i − pi

)(
p†j + pj

))
, (4)

which will also turn out to be a natural logical gate in our codes.
We propose a scheme to implement this gate in neutral atoms
at the end of this work.

We envision a zoned architecture in which the gates are
implemented in separate physical regions of the quantum
processor, which has been experimentally realized for qubit-
only neutral atom quantum computing in Ref. [33]; we specify
the zones in which each of the gates is performed in Fig. 1b,
and introduce our circuit notation.

To define our codes, it is convenient to introduce Majorana
fermion operators, which are the real and imaginary parts γi,
γ̃i of complex fermionic operators, p†i =

1
2 (γi + iγ̃i), fulfilling

{γi, γj} = 2δij = {γ̃i, γ̃j} and {γi, γ̃j} = 0. We construct
codes in which we encode two logical Majorana fermions
γL and γ̃L. These are then combined into a logical complex
fermion c† = 1

2 (γ
L + iγ̃L). In order for logical operators
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between different codeblocks to fulfill Majorana fermion anti-
commutation relations, they each must be a product of an odd
number of γi and γ̃i, i.e. they must have odd operator weight.

REPETITION CODE FOR PHASE ERRORS

We start with a repetition code which only corrects for phase
errors E = ni. This is the dominant error source in neutral
atoms [27]. As an introductory example, consider the two-site
code

|0⟩L =
1√
2
(|00⟩ − |11⟩) , (5)

|1⟩L =
1√
2
(|10⟩+ |01⟩) , (6)

where |11⟩ = p†2p
†
1 |00⟩ and p†1 |00⟩ = |01⟩ and |0⟩, |1⟩ denotes

the absence, presence of a fermion, respectively. The above
code can detect a single phase error, but does not detect loss
errors E = pi. The code has two logical Majorana fermion
operators γL = γ1 and γ̃L = γ̃2, from which we form a logical
complex fermion operator by c† = 1

2 (γ1 + iγ̃2). This operator
acts as c† |0⟩L = |1⟩L, c† |1⟩L = 0. We therefore interpret |0⟩L
and |1⟩L as logical fermionic Fock states. Two codeblocks a
and b each encode such an operator and they fulfill {c†a, c

†
b} = 0.

Hence, c† is indeed a logical fermion operator. This simple two-
site code is also a stabilizer code, see Fig. 2a: its codestates are
defined by the operator iγ̃1γ2 which acts as the unity operator
on both states, iγ̃1γ2 |0⟩L = |0⟩L and iγ̃1γ2 |1⟩L = |1⟩L. This
enables generalization to detecting N − 1 phase errors by
using N complex physical sites and the stabilizers iγ̃iγi+1 for
1 < i < N . For N ≥ 3, we can also correct phase errors
as we show below. This code can also be used as a purely
error-detecting code for all errors except atom-loss errors on
the edges. In fact, this is the code defined by the ground space
of the Kitaev chain, and the two logical Majorana operators
γ1 and γ̃N are its well-known edge states used as qubits in
Majorana nanowires [32]. However, by contrast to nanowires,
we do not implement the Kitaev Hamiltonian in our system.
Hence, we cannot rely on the gap between the ground space
of the Hamiltonian and the excited states in order to suppress
errors and keep the computation in the ground space of the
Hamiltonian. Instead, we require active error correction.

For implementing active error correction, we need to measure
where errors happened and correct for them, which we show
how to do in Fig. 2b. We use our qubit-fermion gate to map a
measurement of the fermion density n to a measurement of the
phase of the qubit, which we transform to a measurement of the
population of the qubit using Hadamard gates. To measure the
stabilizer instead of n on the fermions we conjugate the qubit-
fermion gate with two braiding gates as well as phase gates.
An ancilla qubit is used for each of the stabilizers. Dependent
on the measurement outcome, Zf gates are performed on the
fermions to correct for the errors. This scheme shows the
first advantage of using qubits: destructive qubit readout is
faster than a non-destructive n measurement [35]. To prepare a
logical codestate |0⟩L, we use a chain of braiding gates—the S†

d

c
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FIG. 2. Logical operations for a repetition code protecting against
phase errors. a, Illustration of splitting physical fermions for N = 3
into virtual Majorana fermions. Stabilizers are given by iγ̃1γ2, iγ̃2γ3,
and the logical fermionic creation operator is given by c† = 1

2
(γ1 +

iγ̃3). b, Syndrome measurement and correction. The two stabilizers
are measured by using a Hadamard test on qubits. Conditioned on
the measurement outcome, gates are performed to correct for errors.
c, Encoding circuit, translated from Ref. [34], realized as a chain of
braidings. Note that (Sf)† can be interpreted as intra-site braiding. d,
Logical gates.

√
BRAID31 = exp

(
−π

8
γ̃3γ1

)
, which only acts on

the two edge atoms. See Methods for a derivation of these circuits.

gates effectively braid the two Majoranas on the same physical
site, Fig. 2c. Note that we do not error correct the qubit ancillas,
which is reasonable because their dephasing time is much
longer than that of the fermions and we only act with a handful
of gates on them before measuring.

Next, we discuss how to implement logical gates. We show
the circuits in Fig. 2d, see Methods for a proof. The basic
building block for the logical CZf is the physical CZf . Similar
to the stabilizer measurement, conjugation with braiding gates
“spreads” the entanglement induced by the physical CZf to the
correct site, with Sf gates selecting whether γ̃ or γ is acted upon.
The braiding gate is simple as it amounts to a physical braiding
gate between γ1 of one block and γ̃N of the other. The Sf gate
amounts to a braiding gate between the first and N th site of a
single codeblock. Similarly, the Tf gate is implemented as a
braiding operation with half the duration of the Sf gate. Finally,
the qubit-fermion CZqf is implemented similarly to the CZf

by conjugating the physical CZqf with braid and phase gates.
The utility of this code is based on the fact that, in neutral

atoms, phase errors are orders of magnitude more frequent than
atom-loss errors. However, because braiding gates convert a
single phase error into two correlated atom-loss errors, which
cannot be detected, the depth of the circuits which can be
performed in practice is still limited by the phase coherence
time. Hence, this code is not fault-tolerant even in the absence
of atom-loss errors. The fact that logical gates only act on
the edge fermions on the other hand reduces the depth of the
circuits, as the gate overhead for implementing logical gates is
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independent of N . It might be beneficial to reduce gate depth
further by replacing the CZfgates and BRAIDs in Fig. 2d with
their arbitrary-angle versions, which turns our gates to arbitrary-
angle logical gates. However, for large-scale computations, a
truly fault-tolerant code is necessary.

FERMION-QUBIT FAULT TOLERANCE

We now show how to construct an error-correcting code
correcting for both phase errors E = n and atom-loss errors
E = p and show how to perform fault-tolerant gadgets. In the
context of encoding qubits in Majorana nanowire platforms,
Bravyi, Terhal, and Leemhuis [31] noted that a particular class
of qubit error correcting codes, so-called weakly self-dual
Calderbank-Shor-Steane (CSS) codes, can be converted into
a Majorana stabilizer code by replacing qubit operators in the
stabilizers by Majorana fermions. Motivated by the prospect
of high error-resilience for codes with odd-weight logical oper-
ators, they noted that for codes with an odd number of physical
Majorana fermions, a single odd-weight logical operator can
be encoded. This operator is given by the total parity, i.e. the
product of all Majorana operators. Our key observation is that,
because there is an odd number of physical Majorana fermions,
this logical operator is in fact a logical Majorana fermion op-
erator. Even more importantly, our framework using complex
physical fermions enables the encoding of two such Majorana
codes in the same set of physical fermions. It turns out that
a general prescription to constructing complex fermion codes
from weakly self-dual CSS codes is to replace the Z operators
in the qubit code stabilizers by γ operators and the qubit X
operators by γ̃ operators, see Fig. 3a. The logical Majorana
operators are then given by the two parities γL =

∏N
i=1 γi

and γ̃L =
∏N

i=1 γ̃i, from which we construct a single logical
fermion operator c† = 1

2

(
γL + iγ̃L

)
. As an example, we

consider the family of triangular honeycomb Majorana color
codes, which using our procedure above, encodes a single
logical fermion with odd distance d into N = (3d2 + 1)/4
physical fermions. In particular, d = 3 is the fermionic version
of the Steane code [36], Fig. 3a. Such codes can correct d− 2
loss or phase errors.

Magically, this fermion Steane code yields highly intuitive
and easy-to-implement fault-tolerant logical gates. Of central
utility is the fact that we can use qubits for controlled operations.
We use this fact to measure stabilizers using the Hadamard
test, as shown in Fig. 3b. From these stabilizers, we can
reconstruct whether a γ̃ or γ error (or both) happened on a
fermion. Such single-Majorana errors are corrected by coupling
an ancilla site a prepared in |0⟩ to the site with the error, acting
with (BRAIDai)

2 = γiγ̃a and then measuring the ancilla.
The measurement circuit in Fig. 3b is made fault-tolerant by
for example using the Shor scheme, i.e. replacing the single
ancillary qubit with a set of qubits in a cat state and repeatedly
measuring the stabilizers. This stabilizer measurement is also
used for fault-tolerant preparation of the logical codestates from
a trivial starting state. Note that the correction of stabilizers
is optional for both state preparation and error correction—
instead of enforcing stabilizers to be +1, their value can instead

Qubit
Steane
Code

Fermion
Steane
Code

ba

c

d e f

Rydberg
laser

Merge
atoms

Split atoms

Log. qubit Log. fermion

g h

FIG. 3. Fermion-qubit fault-tolerant quantum computation. a,
Construction of the fermionic Steane code, the smallest member of
the family of color codes we consider. Stabilizers are obtained by
replacing products of X (Z) operators in the qubit code with products
of γ (γ̃), respectively. Corners on areas with the same color are
part of a stabilizer as shown for the bottom left area. b, Mid-circuit
measurement of −γ1γ2γ3γ4 (counting sites from bottom to top). By
inverting the BRAIDs (i.e. BRAID12 → BRAID21), we measure
−γ̃1γ̃2γ̃3γ̃4, the other stabilizer. c, Neutral-atom implementation of
transversal CZqf gates, performed by interleaving a logical qubit and
fermion and applying a global Rydberg laser. This implements the
circuit shown in subfigure e. d, Transversal CZf . This is implemented
by the logical qubit in subfigure c with a logical fermion. e, Transversal
qubit-fermion CZqf . Transversal f, BRAID and g, Sf gates are
similarly implemented by parallel operations. h, Tfgate. Implemented
by using a T gate applied on an ancilla qubit, which is then mapped
onto the fermion. All the operations shown here are straightforwardly
generalized to codes with larger (odd) d (see Methods).

be tracked [37].
Transversal logical gates are implemented, similar to qubit

Steane codes, by applying the corresponding physical gate
in parallel on all atoms, c.f. Fig. 3c-g (Methods). This set
of gates turns out to be the Majorana Clifford gates BRAID,
CZf , Sf , which in analogy to qubit Clifford gates map a single
Majorana operator string to another single Majorana string.
These transversal Clifford gates are inherently fault-tolerant
as an error on one physical codeblock can only spread to one
physical fermion in the other codeblock.

One of the key tools enabled by our approach is the interfacing
of our fermionic Steane code with a qubit Steane code (with
matching N ) using the qubit-fermion CZqf gate: by applying
physical CZqf in parallel (see Fig. 3e), we realize a logical,
transversal CZqf . This enables fault-tolerant qubit-fermion
quantum computation. In particular, we will discuss in the next
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fSWAP [14] FFFT [39] FFFT

Depth O(N) O(N logN) O(logN)

Cliffords O(N2) O(N2 log(N)) O(N logN)

FIG. 4. Fermion-qubit logical quantum simulation primitives
and comparison to the qubit-only approach. a, Qubit-controlled
arbitrary-angle interaction gate. The box with label “θ/4” is a qubit
gate exp(−i(θ′/2)X) with θ′ = θ/4, synthesised from discrete gates
using the Solovay-Kitaev algorithm. b, Qubit-controlled arbitrary-
angle braiding gate. The gray box is the qubit-controlled braiding
gate exp(−(π/4)Zγ̃iγj). c, FFFT circuit implemented using logical
fermions. Crossing lines indicate swapping, implemented by move-
ment of the atoms. d, Corresponding FFFT circuit implemented using
logical qubits, c.f. Ref. [40]. e, Decomposition of the n-mode FFFT
into an arbitrary-angle phase gate exp(−iθn) with θ = θnk = 2πk/n
and a two-mode FFFT. f, Compilation of the two-mode FFFT into
fermionic fault-tolerant gates. g, Depth and Clifford complexity of
qubit-only and fermion-qubit algorithms for simulating the kinetic
energy term in crystalline materials, i.e. the first term in Eq. (7).

session that this has immense utility for implementing modern
quantum algorithms for simulating fermions.

This gate set of BRAID, CZqf , CZf , Sf , together with H
and S on qubits, forms the “qubit-fermion Clifford group” as it
maps a Majorana-qubit string to a single other Majorana-qubit
string. This gate set needs to be combined with a Tfgate or
a qubit T gate to enable universal qubit-fermion computation.
While Majorana fermion schemes for T -gate synthesis have
been proposed [38], they are more involved than qubit schemes
due to the requirement to create two-fermion magic states. We
instead propose using a qubit T gate applied on a qubit Steane
code and transferring it to the fermions using our transversal
logical CZfgate, Fig. 3h. This therefore enables a significant
simplification compared to Majorana T-gate synthesis.

LOGICAL QUBIT-FERMION QUANTUM SIMULATION

A prime area of application for fermionic quantum computing
is simulating electrons in molecules and materials. In second
quantized approaches, the continuous-space wavefunctions of

electrons are cast into a discrete lattice model through a choice
of basis, which leads to a Hamiltonian coupling fermionic
operators as Hqchem =

∑
ij Jijc

†
i cj +

∑
ijkl Vijklc

†
i c

†
jckcl,

with Jij and Vijkl constants that depend on the choice of basis.
This generally leads to a number of Hamiltonian terms scaling
as ∼ N4 with the basis size N . For a Trotterized simulation,
this implies the same scaling for the number of gates per Trotter
step. However, for crystalline materials, the plane-wave-dual
basis [12] enables writing the chemistry Hamiltonian as

H = FFFT† ∑
i

ϵiniFFFT

+
1

2

∑
ij

Uij

(
ni −

1

2

)(
nj −

1

2

)
, (7)

where ϵi, µi, and Uij are classically calculable coefficients and
FFFT denotes the fermionic fast Fourier transform [40]. This
formulation hence reduces the scaling of the number of terms
to ∼ N2. Efficient algorithms for dynamics, as well as for
ground and finite-temperature state preparation, in addition
require controlling this Hamiltonian on a qubit [10, 11].

Our next goal is therefore to implement qubit-controlled
arbitrary-angle evolution under each of the terms in Eq. (7)
individually. Time evolution under the Hamiltonian ϵini
until time t is implemented by replacing the T gate in
Fig. 3h with an approximate arbitrary-angle rotation of an-
gle ϵit, where t corresponds to time, synthesized from dis-
crete gates with e.g. the Solovay-Kitaev algorithm. The in-
teraction gate exp

(
−iZ θ

2 (ni −
1
2 )(nj −

1
2 )
)

is implemented
by the circuit shown in Fig. 4a, which maps the arbitrary-
angle single-qubit gate onto the fermions using CZqf gates.
A related gadget shown in Fig. 3b realizes an arbitrary-
angle qubit-controlled braiding gate exp(− θ

2Zγ̃iγj), where
again CZqf gates map the phase gate from the qubit to a
fermion. The BRAIDs then “spread” the gate onto the second
fermion. Two such gadgets are combined to yield the qubit-
controlled hopping gate via exp

(
iJij∆tZ

(
c†i cj + h.c.

))
=

exp(−J∆t
2 Zγ̃jγi) exp(−J∆t

2 Zγ̃iγj). These arbitrary-angle
gates also enable time evolution under the more general Hamil-
tonian Hqchem by using the compilations in Ref. [27]. Finally,
we need to implement the FFFT, which may be reduced to the
1D FFFT circuit shown in Fig. 4c, c.f. Ref. [40]. In analogy
to the classical fast Fourier transform, it uses a divide-and-
conquer reduction to two-site Fourier transforms F k

N (Fig. 4e,
f) whose phases depend on the number of sites N and an index
k. Despite the fact that it is a 1D transformation, it requires
non-local connectivity, which we can simply implement by
moving the tweezers.

ADVANTAGES OVER QUBIT QUANTUM SIMULATION

We now show that our approach yields an exponential depth
advantage over the most efficient qubit algorithm for simulating
trotterized time evolution under the kinetic energy term in crys-
talline materials (first term in Eq. (7)). The, to our knowledge,
most efficient qubit algorithm uses fermionic-SWAP (fSWAP)
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networks, leading to O(N) depth and O(N2) Clifford gates
per Trotter step, whereN is the number of fermionic sites in the
model [14]. Local encodings of qubits into fermions [5–7] yield
little advantage for such all-to-all connected hoppings. The
FFFT described above can also used in qubits, where atom rear-
rangements are replaced by layers of fSWAP=SWAP·CZ gates,
Fig. 4d. These layers cannot be contracted even in all-to-all
connected hardware such as tweezer arrays or trapped ions [9].
This leads to a gate depth of O(N logN) and O(N2 log(N))
Clifford gates, which is worse than the fSWAP network imple-
mentation.

By contrast, in our fermionic platform, the fact that fSWAP
gates are implemented by atom rearrangements and can there-
fore be contracted (Fig. 4c), leads to a Clifford complexity of
O(N log(N)) and a depth of O(logN), yielding an exponen-
tial improvement for the latter. Moreover, our compilation of
the constituent FFFT subroutines (see Fig. 4e, f) only takes
two braiding and three single-fermion gates and T-gate depth
1, which is more gate-efficient than currently known qubit
decompositions taking three CNOTs, nine single-qubit gates
and T-gate depth 2 [13].

For the more general Hqchem, at first sight, no depth ad-
vantage is possible because fermi-SWAP networks achieve the
optimal depth O(N3) [14], which our approach reproduces
with a smaller prefactor. However, asymptotically, there are
only O(N2) non-negligible terms in the often-used Gaussian
basis [41]. We therefore expect that, for large N , we will
again yield at least an ∼ N depth advantage by the fact that
our fermion approach always achieves the optimal depth by
parallelization, whereas in the qubit approach, most of the
fermi-SWAP network would still have to be traversed.

Within our fault-tolerant gate set, no advantage in the number
of T gates is possible if the T-gate count is the only parameter
which is optimised for. This can be directly seen by mapping
the fermionic gates to qubit gates using the Jordan-Wigner
transform and noting that only the Tf gate requires T gates
(Methods). We note that steady progress in T-gate synthesis
means they do not completely dominate the simulation cost
over Clifford gates [30].

IMPLEMENTATION IN NEUTRAL ATOMS

Finally, we describe how to implement our framework in
neutral atoms, which requires the implementation of the univeral
qubit-fermion gateset shown in Fig. 1. CZqf and CZf are
implemented using a high-lying Rydberg state of the atom,
similarly to the routinely implemented qubit-qubitCZq [27, 42].√
iSWAP

f
is implemented by bringing two tweezers close to

each other, inducing tunneling of atoms between the sites [27] or
by placing the atoms into an optical lattice [43] and controllably
performing tunneling by using superlattices [44]. Tf , Sf , Zf

are implemented by detuning the trapping frequency of the
target tweezer or optical lattice site. What is left to show is
how to implement BRAID. We propose its realisation as a
product BRAIDij = PAIR′

ij

√
iSWAP

f

ij , where PAIR′
ij is

b c
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FIG. 5. Implementation of the braiding gate in neutral atoms. a,
Illustration of the sequence of operations to implement an effective
braiding gate. Braiding is a product of pairing and the tunneling gate√
iSWAP

f
= Ut↓(π/4). Ut↓(θ) and U↑↓(θ) act only on fermions,

while the beamsplitter acts only on molecules, and Udiss is a fermion-
molecule gate. The pairing gate dissociates a bosonic molecule
into two fermions on two separate sites. The pulse duration of the
dissociation interaction depends on the average number N = ⟨b†b⟩ of
molecules in the tweezer. b, The molecules are formed from the same
atomic species as the fermionic atoms used. c, Ramsey sequence
to probe the effective coherence of a “Bell-pair” (|00⟩+ i |11⟩)/

√
2

created by the effective pairing gate. The phase gate is defined as
exp(−iθn). The beamsplitter gate, defined above Eq. (9), has phase
θ = π/4. d, Ramsey fringes as a function of initial molecule Fock
state number N . e, Simulated pairing gate infidelity as a function of
molecule Fock state number N . See Fig. S1f for the circuit used to
determine the infidelity.

the pairing gate

PAIR′
ij = exp

(
i
π

4

(
p†ip

†
j + h.c.

))
. (8)

To implement pairing, we propose the pulse-sequence in
Fig. 5a. It employs photodissociation of homonuclear diatomic
bosonic molecules consisting of the same atomic species as the
fermions [45], see Fig. 5b. Photodissociation realizes the boson-
fermion gate Udiss = exp

(
−i π

4
√
N

(
bip

†
i↑p

†
i↓ + b†ipi↓pi↑

))
,

where b is the bosonic annihilation operator of molecules (we
assume there are N of them) residing in the ground state of the
tweezer and obeying commutation relations [bi, b

†
j ] = δij .

↑ and ↓ label two internal states of the atom, where so
far we assumed that all atoms reside in ↓, i.e. pi = pi↓.
In order to convert this same-site gate into a non-local
gate, we conjugate it with a fermion spin-selective tunneling
Ut↓(θ) = exp

(
−iθ

(
p†i↑pj↑ + h.c.

))
and a fermionic spin-

flip U↑↓(θ) = exp
(
−iθ

(
p†i↓pi↑ + h.c.

))
. To suppress inter-
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actions between the molecules and the fermions, the molecules
reside in a separate tweezer when not in use for gates and are
tunneled into the target tweezer by moving the two tweezers
close to each other, implementing a beam-splitter operation
BS(θ) = exp

(
θ
(
b†i bj − h.c.

))
. Altogether, the sequence in

Fig. 5a implements

PAIRij = exp

(
i
π

4
√
N

(
bkp

†
ip

†
j + h.c.

))
. (9)

We now discuss how we use Eq. (9) to effectively implement
Eq. (8). If the molecules were in a coherent state with large
amplitude

√
N , we could replace b → ⟨b⟩ =

√
N and the

two gates would be equal. However, in the case of atoms
trapped in dipole traps, Fock states or mixtures thereof are
more naturally prepared than coherent states. To overcome this
conceptual challenge, we use the little-known fact that large-N
Fock states cannot be distinguished from coherent states by
measurements [46].

To show that we can indeed effectively implement Eq. (8)
employing a large-N Fock state of molecules, consider the
thought experiment shown in Fig. 5c. The first pairing gate is
supposed to create a “fermionic Bell-pair” (|00⟩+ i |11⟩)/

√
2.

To probe whether there is coherence, a phase gate with phase
θ is applied and a second PAIR gate rotates the measurement
basis into the effective Bell basis. This realizes a Ramsey-
type experiment. Simulating this experiment numerically, we
find Ramsey fringes with a contrast that approaches unity as
N → ∞. This shows that, after the first pairing gate, there was
indeed effective coherence between states |00⟩ and |11⟩. An
intuitive way to understand this observation is that the molecule
number distribution in each mode after the beamsplitter is
approximately Poissonian—just like in a coherent state. The
entanglement between both modes then leads to an effective
phase coherence between the modes. This effective coherence
is then revealed by the second pulse, which disentangles the
fermions from the molecules. We say “effective” coherence
because the reduced density matrix of the fermions is always
diagonal; indeed, by measuring the total number of molecules,
one projects the fermions onto |00⟩ or |11⟩. Therefore, it
is important that the molecules are not measured while the
fermions are entangled with them. In Fig. S1, we additionally
perform state tomography numerically, showing that the state
after the first pairing gate is indeed effectively a Bell pair.

We probe the gate fidelity of our effective pairing gate in
Fig. 5e using Choi state tomography, which we generalize to
fermionic gates, see circuit shown in Fig. S1. We find that only
100 molecules suffice to create a gate with > 99.8% fidelity.
In the Methods, we also show that even a mixed state with a
Poissonian number distributation can be used instead of |N⟩.
Non-trivially, Fig. 5c and Fig. 5d show that our scheme works
even if the second pairing gate is not performed on the same
molecule site, which enables full parallelizability of pairing
operations. For that to be the case, the molecule tweezers need
to be effectively coherent with respect to each other, just like
lasers manipulating different qubits within a quantum computer
need to be phase-locked. The cross-coherence of molecule
tweezers is guaranteed by creating them from one common Fock

state with a beamsplitter as done in Fig. 5c. To parallelize this
further, many molecule tweezers can be created by repeatedly
applying beamsplitters starting from one large Fock state, for
example by tunneling from a single large dipole trap.

OUTLOOK

Our work opens the field of fermion-qubit error correction
and fault-tolerant algorithms. Of prime importance is the error
threshold of our codes for the strongly biased errors present
in experiments. Moreover, fermionic versions of quantum
low-density-parity check codes may be developed to enable
a finite rate of logical fermions per codeblock. Due to our
reliance on transversal gates, algorithmic fault tolerance can be
explored within our approach [30]. Finally, we assumed that
the bosonic molecule mode does not need to be error-corrected,
which might require a more restrictive lower bound on the
mode occupation N .

Our present scheme employs single-species fermions. While
two-species models, for example spin up and spin down elec-
trons in quantum chemistry, can be mapped to single-species
computation, an architecture involving two species, as partially
employed in our pairing gate, might make the implementation
more efficient.

We have so far mainly used the presence of qubits as a helper
to implement logical operations. In high-energy physics, the
possibility to directly simulate qubit-fermion models enables
simulation of fermions coupled to large-spin degrees of freedom
in lattice gauge theories [27, 47]. For this purpose, qudits could
be directly implemented with large-spin atomic species [48, 49],
rotational levels of molecules [50], or an oscillator mode [51].
Relatedly, the depth-efficiency of our approach might enable
simulation of quantum gravity models [52].

Boson-fermion models could be studied by combining our
schemes with oscillator-qubit quantum simulation [47, 53]
using either motional modes of neutral atoms in tweezers [47,
54] or bosonic atoms. Suitable boson-to-boson error correction
schemes would need to be found [55, 56]. This way, the
longstanding problems of the influence of phonon-electron
interactions on thermal, structural, and vibrational material
properties [57] as well as the interplay of molecular vibrations
with the electronic wavefunction in chemistry [58] could be
investigated using potentially vastly shallower circuits than
with qubit-only platforms.

Finally, our architecture might offer an advantageous ap-
proach not only for simulating fermions but also for quantum
computations that are natively qubit-only. We encoded logical
fermion operators in odd-weight fermion operators—instead,
logical qubits can be encoded in even-weight logical operators,
for example Majorana surface codes which have been shown
to have high thresholds [59]. One advantage of this approach
is that lost atoms are replenished by coupling to the molecule
bath, offering an alternative to continuous atom reloading [43],
which is one of the challenging aspects of neutral-atom quantum
computing.
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[49] T. V. Zache, D. González-Cuadra, and P. Zoller, Fermion-qudit
quantum processors for simulating lattice gauge theories with
matter, Quantum 7, 1140 (2023).

[50] V. V. Albert, J. P. Covey, and J. Preskill, Robust Encoding of a
Qubit in a Molecule, Phys. Rev. X 10, 031050 (2020).

[51] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in
an oscillator, Phys. Rev. A 64, 012310 (2001).

[52] S. Xu, L. Susskind, Y. Su, and B. Swingle, A Sparse Model of
Quantum Holography, (2020), arXiv:2008.02303.

[53] E. Crane, K. C. Smith, T. Tomesh, A. Eickbusch, J. M. Martyn,
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Methods

PROOFS

Proof of Theorem

In this section, we present the details behind the proof of the
Theorem.

We first discuss some preliminaries. To construct a valid
code, we need to satisfy the Knill-Laflamme condition [60]. It
ensures that errors do not send codestates to states that have
an overlap with other codestates. If this condition were not
fulfilled, then the detection of an error could lead to a projection
onto the wrong codestate, which is an uncorrectable logical
error. Formally, the condition states that, for an error operator
E to be detectable, PEP ∝ P needs to be fulfilled, where P
is the projector on the codespace, i.e. the space spanned by the
logical codestates |0⟩L and |1⟩L, representing, respectively, the
absence and presence of a logical fermion.

Lemma 1. Codestates that are eigenstates of the total number
operator in a single codeblock, Ntot =

∑
j nj , must have the

same number eigenvalue.

Proof. The Knill-Laflamme condition for phase errors E = nj
implies PNtotP ∝ P . Furthermore, having codestates that are
number eigenstates implies (1− P )NtotP = 0. Taking these
two conditions together, we find NtotP ∝ P . This implies that
all codestates must have the same number eigenvalue.

Definition. Fermionic logical operators are operators that
anti-commute between two codeblocks.

We note that this definition does not exclude fermionic
logical operators that anti-commute within one codeblock [29].
However, our definition is more restrictive - logical operators
that anti-commute within one codeblock may commute between
two codeblocks. This is for instance the case when encoding two
anti-commuting logical operators in a qubit surface code [28].

Lemma 2. Fermionic logical operators have odd weight in
physical Majorana operators.

Proof. First, we define new Majorana operators η such that
η2i = γi and η2i+1 = γ̃i. We then write the logical operators
Oa and Ob on two codeblocks as a product of η Majorana
operators. Two such products of Majorana operators fulfill [31]

OaOb = (−1)|A|·|B|+|A∩B|ObOa, (S1)

where A and B are the supports on which Oa and Ob are
defined (i.e. on the lattice on which the η operators are defined).
Because Oa and Ob are defined on two codeblocks, their
support does not overlap, |A ∩ B| = 0. Therefore, they can
only fulfill fermionic anti-commutation relations if |A| and |B|
are odd, i.e. if the two operators have odd weight.

Theorem. An error correcting code using number eigenstates
as codestates does not have fermionic logical operators.

Proof. First, consider stabilizer codes using number eigenstates.
In this case, by Lemma 1, the total fermion parity exp(iπNtot)
is a stabilizer because all the codestates have the same number
eigenvalue, which is an integer. As noted in proposition 6.1 in
Ref. [31], this implies that there cannot be an odd-weight logical
operator. To repeat the argument in Ref. [31], this is because
all logical operators need to commute with the stabilizers and
hence the total fermion parity. This is only possible if they are
even weight in Majorana operators, which means they are not
fermionic logical operators by Lemma 2.

More generally, consider two logical operators OL
a and OL

b
acting on two codeblocks a and b. For them to be logical
fermionic operators, they need to fulfill anti-commutation
relations when acting on the codespace, i.e. {OL

a , O
L
b }PaPb =

0, where Pa and Pb are the projectors on the code spaces of a
and b. To see whether this is the case, consider OL

aO
L
b PaPb.

Because of Lemma 1, the total fermion parity in codeblock a
commutes withPa. Hence, the operator decomposition ofPa in
terms of Majorana operators must only contain operator strings
with even weight. Eq. (S1) then implies that Pa commutes
with any fermion operator in codeblock b, in particular the
logical ones, OL

aO
L
b PaPb = OL

aPaO
L
b Pb. Note that for OL

a

to be a logical operator, (1 − Pa)O
L
aPa = 0 must hold [61],

implying OL
aPa = PaO

L
aPa. Because PaO

L
aPa only acts on

the code space, it commutes with the fermion parity. Hence, its
operator decomposition only contains even-weight operators
and therefore commutes with any operator in codeblock b. This
implies OL

aPaO
L
b Pb = OL

bO
L
aPaPb. Hence, [OL

a , O
L
b ]PaPb =

0 and logical operators are not fermionic.

Proof of absence of T-gate advantage

In this subsection, we present a proposition proving that
there is no T-gate advantage.

Proposition 1. Fermion-to-fermion error correcting codes
with transversal BRAID, CZf , Sfgates and non-transversal
Tfgate do not have a lower minimal Tf -gate count than the
T-gate count of the equivalent qubit circuit.

Proof. We show this by converting the fermionic circuit to a
qubit circuit using the Jordan-Wigner encoding. The CZf gate
maps to a qubit CZ, which can be compiled to qubit Clifford
gates, whereas Sf and Tf gates directly map to S and T gates,
respectively. BRAID gates map to multi-qubit gates, but their
compilation is possible using only Clifford gates. Hence, it
is always possible to construct a qubit circuit with exactly the
same number of T gates as the fermion circuit.

Proof of universality of the discrete qubit-fermion gate set

In this subsection, we show the universality of our discrete
qubit-fermion gate set.

Proposition 2. BRAID, CZf , CZqf , H, S and T (or Tf ), are
universal for qubit-fermion quantum computation.
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Proof. We would like to do universal qubit-fermion quantum
computation on a system with Lq qubits and Lf fermions. To
do this, we introduce 2Lq fermionic ancillas and encode Lq

qubits into dual-rail fermion qubits, i.e. |0⟩ → |01⟩, |1⟩ → |10⟩.
We then swap the initial qubit state into those dual-rail fermion
qubits (we discuss how to do so below). We then perform
the qubit-fermion circuit entirely using the universal fermionic
gate set BRAID, CZf , and Tf [31] on the Lf + 2Lq fermions
(where Tfgates are implemented using additional qubit ancillas
and T, H and CZqfgates as shown in Fig. 3h). At the end of
the circuit, we swap the information back from the fermionic
ancillas into the qubits.

It remains to show how to implement dual-rail-qubit SWAP
gates. A SWAP gate is decomposed into three CNOT gates of
two types, one where the qubit is the control and one where
the dual-rail qubit is the control. If the dual-rail qubit is the
control, a CNOT is simply HCZqfH, where the CZqf is acting
on the first fermion site (because it is in |1⟩ when the dual-rail
qubit is in |1⟩). If the qubit is the control, we decompose the
CNOT as

ei
π
4 (1−XDR)(1−Z). (S2)

Noting that XDR = c†1c2 + c†2c1, we can decompose this gate
into a qubit phase gate, a π/4 hopping gate, and a π/4 qubit-
controlled hopping gate, whose compilations are shown in
Fig. 4b in terms of the claimed gate set.

COMPILATION OF LOGICAL OPERATIONS

We show that the circuits shown in Fig. 2 and Fig. 3 indeed
implement the target logical operations.

Useful identities for fermion gates

In this subsection, we provide useful identities for proving
circuit identities.

First, we summarize in Table S1 how Majorana and qubit
operators transform under our gate set.

BRAID gate identities

In our discrete gate set, the only braiding operation we con-
sider is BRAIDij = exp

(
−π

4 γ̃iγj
)
. For the compilations of

logical gates, the braidings exp
(
−π

4 γ̃iγ̃j
)

and exp
(
−π

4 γiγj
)

are also useful. These can be engineered by

exp
(
−π
4
γ̃iγ̃j

)
= (Sfj)

†BRAIDijS
f
j ,

exp
(
−π
4
γiγj

)
= SfiBRAIDij(S

f
i)

†,

BRAID†
ij = Zf

jBRAIDijZ
f
j , (S3)

which can be proven by rewriting BRAIDij =
1√
2
(1− γ̃iγj)

and using the transformations in Table S1. Note that
(BRAIDij)

† ̸= BRAIDji.

γi γ̃i γj γ̃j Zi Xi

Tf
i

1√
2
(γ̃i + γi)

1√
2
(γ̃i − γi)

Sf
i γ̃i −γi

Zf
i −γi −γ̃i

Hi Xi Zi

Zi -Xi

BRAIDij −γj γ̃i

CZf
ij γiZ

f
j γ̃iZ

f
j γjZ

f
i γ̃jZ

f
i

CZqf
ij Ziγj Ziγ̃j Zi Zf

jXi

TABLE S1. Transformation of Majorana and qubit operators
under our gate set. We show U†AU , where U is specified in the
first column and A in the first row. The indices are defined such that
braiding is given by BRAIDij = exp

(
−π

4
γ̃iγj

)
and qubit-fermion

controlled-Z as CZqf
ij = exp (−iπnq

i nj). An empty field means that
the operator is invariant. Note that Zf

i = −iγ̃iγi.

CZ gate identities

From (nq)2 = nq and n2 = n it follows that

exp(−iπnqi nj) = 1− 2nqi nj ,

exp(−iπninj) = 1− 2ninj . (S4)

Repetition code logical operations

In this subsection, we show explicitly that the circuits shown
in Fig. 2 realize logical gates in the repetition code. Logical
gates need to leave the stabilizers invariant. For the repetition
code, the logical Majorana fermions are distinct from those
on which the stabilizers act (c.f. Fig. 2a). The logical gate
compilations below do not act on the Majorana fermions which
are part of the stabilizers and therefore leave stabilizers invariant.
What is left to show is that our compilations act as they should
on the logical Majoranas. To do so, recall that the two logical
Majoranas of a single codeblock are given by single physical
Majorana fermion operators on the edges, γL = γ1 and γ̃L =
γ̃N , and, in particular, n = 1

2 (1 + iγ̃LγL) = 1
2 (1 + iγ̃Nγ1).

In the following, we will drop the “L” superscripts and instead
denote the codeblock in the superscript. For example, γ̃aN is
the γ̃L logical Majorana operator of codeblock a.

Logical CZf gate

Writing the logical CZf gate between two codeblocks a and
b in terms of logical Majoranas, we get

exp
(
−iπnanb

)
=

1

2

(
1 + iγ̃aNγ

a
1 + iγ̃bNγ

b
1 − γ̃aNγ

a
1 γ̃

b
Nγ

b
1

)
.

(S5)
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We construct this gate from a physical CZf gate between the
two edge sites, which in terms of the Majoranas is written as

exp
(
−iπna1nb1

)
=

1

2

(
1 + iγ̃a1γ

a
1 + iγ̃b1γ

b
1 − γ̃a1γ

a
1 γ̃

b
1γ

b
1

)
, (S6)

where na1 is the number operator acting on the first site of
codeblock a. While the general form is already correct, we
need to replace γ̃b1 → γ̃bN and γ̃a1 → γ̃aN . Such a “replacement
operation” is performed by conjugating with braidings (see
Table S1):

exp
(
−iπnanb

)
= e

π
4 γ̃b

N γ̃b
1e

π
4 γ̃a

N γ̃a
1 e−iπna

Nnb
1e−

π
4 γ̃a

N γ̃a
1 e−

π
4 γ̃b

N γ̃b
1 . (S7)

Using Eq. (S3) to express this sequence in terms of BRAID
and Sfgates, we find the circuit shown in Fig. 2d. Note that
this compilation also works in the same way for an arbitrary-
angle gate exp(−iθnanb) by replacing the physical CZfwith
e−iθna

Nnb
1 .

Logical braiding gate gate.

A logical braiding gate is given in terms of the Majorana
fermions as

BRAIDab = exp
(
−π
4
γ̃aNγ

b
1

)
. (S8)

This is in fact a physical braiding gate between the edges of
two codeblocks, as depicted in Fig. 2d.

Logical qubit-fermion gate.

Similarly, we decompose the logical qubit-fermion gate as

exp (−iπnqna) = e
π
4 γa

1 γ
a
N e−iπnqna

N e−
π
4 γa

1 γ
a
N . (S9)

Again using Eq. (S3), we find the circuit shown in Fig. 2d.

Logical phase gate.

A logical fermion phase gate exp (iθna) is written in terms
of the Majorana fermions as

exp

(
i
θ

2
(1 + iγ̃aNγ

a
1 )

)
. (S10)

Therefore, this gate is, up to a global phase, equivalent to an
arbitrary-angle braiding between the two edge Majoranas. In
particular, the Sfgate is equivalent to BRAIDand the Tfgate is
a π/8 braiding.

Syndrome measurement.

For the measurement of the syndromes iγ̃iγi+1, we
study the following transformation of the final Z measure-
ment of the ancilla qubits: U†ZancU where we use U =

HancCZ
qf
anc,i+1BRAIDi+1,iS

f
iHanc. Using the transformation

rules in Table S1, we find U†ZancU = Zanciγ̃iγi+1, and,
therefore, initializing the ancilla in |0⟩, a measurement of the
ancilla yields a measurement of iγ̃iγi+1. The additional gates
in Fig. 2b compared to the circuit defined here are needed to not
disturb the logical information. This enables true mid-circuit
error correction.

Color code logical operations

In this subsection, we show that the circuits in Fig. 3 for CZf ,
BRAID, and CZqfare indeed logical gates.

We show that stabilizers transform to products of stabilizers
and that the gates transform the logical Majorana operators in
exactly the same way as the physical gates transform physical
Majorana operators (c.f. Table S1). Therefore, we study the
unitary transformation U†γLU and U†γ̃LU of the logical
Majorana operators under the circuits shown in Fig. 3. All of
the gates are transversal because each physical gate acts only
on a single physical fermion in each codeblock, similarly to the
qubit-only architecture in Ref. [33].

Similar to the notation in the previous Methods subsection
on repetition code logical operations, we attach a superscript
to physical Majorana operators to indicate the codeblock and
let the physical site index i only run from 1 to the number of
physical sites within the codeblock. For example, γai indicates
physical lattice site i in codeblock a, where i ∈ {1, 7} for the
seven-site triangular color code. The below calculations hold
for all triangular color codes.

BRAID gate

The gate

BRAIDab =
∏
i

exp
(
−π
4
γ̃ai γ

b
i

)
(S11)

is a logical braiding gate. To see this, first note that the
individual braiding gates commute with Majorana operators
on sites j ̸= i because they are quadratic. Therefore, this gate
transforms the logical operators γ̃a =

∏
i γ̃

a
i and γb =

∏
i γ

b
i
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as

BRAID†
abγ̃

L
b BRAIDab

=
∏
i

exp
(π
4
γ̃ai γ

b
i

)
γbi exp

(
−π
4
γ̃ai γ

b
i

)
=

∏
i

γ̃ai = γ̃La , (S12)

BRAID†
abγ̃

L
aBRAIDab

=
∏
i

exp
(π
4
γ̃ai γ

b
i

)
γ̃ai exp

(
−π
4
γ̃ai γ

b
i

)
=

∏
i

(
−γbi

)
= −γLb , (S13)

where in the very last step we used the fact that the triangular
color codes have an odd number of physical fermions.

Stabilizers transform to stabilizers because they are products
of an even number of Majorana fermions consisting of only
either γ or γ̃, but not both. Braiding will transform them to
products of the other type residing on the same lattice sites
of the other codeblock. Because of the self-duality (in the
sense of the symmetry γ ↔ γ̃ of the stabilizers) of our code,
the resulting product is also a stabilizer. Because stabilizers
consist of an even product of Majorana operators, there is also
no minus sign resulting from the transformation.

Sf gate

The transversal gate

Sfa =
∏
i

Sfi (S14)

is shown to be a logical phase gate Sf in the same way as the
BRAID gate.

CZf gate

The CZfgate is given by

CZf
ab =

∏
i

exp
(
−iπnai nbi

)
. (S15)

To check the transformation of the logical operators, consider

(
CZf

ab

)†
γaCZf

ab =
∏
i

exp
(
iπnai n

b
i

)
γai exp

(
−iπnai nbi

)
(S16)

=
∏
i

(−iγai γ̃bi γbi ) (S17)

= −iγLa γ̃Lb γLb . (S18)

The last step is non-trivial: the global sign is a combination of
the overall (−i)n and a minus sign resulting from reordering

the physical Majorana fermions. The triangular Honeycomb
color codes have n = (3d2 + 1)/4 physical fermions for odd
d [62]. For convenience, we define a d̃ as d = 2d̃ + 1, and
write n = 3d̃2 +3d̃+1. One can show that

∏n
i=1(γ

a
i γ̃

b
i γ

b
i ) =

(−1)⌊n/2⌋
∏n

i=1 γ
a
i

∏n
i=1 γ̃

b
i

∏n
i=1 γ

b
i . Therefore, the overall

prefactor is given by (−i)3d̃2+3d̃+1(−1)⌊(3d̃
2+3d̃+1)/2⌋ = −i

for all integer d̃.
Similarly, stabilizers transform to products of stabilizers after

the transformation. To see the global sign, note that, in the
triangular color codes, stabilizers are products of either four
or six Majorana operators. For four operators, (−i)4 = 1 and
the sign from reordering is (−1)⌊4/2⌋ = 1. For six operators,
(−i)6 = −1 and the sign from reordering is (−1)⌊6/2⌋ = −1,
again yielding an overall +1.

CZqf gate

Our qubit-fermion gate CZqf is implemented as

CZqf
ab =

∏
i

exp
(
−πnq,ai nbj

)
. (S19)

This is shown in the same manner as the previous
gates. In particular, the fact that

∏n
i=1(γ̃

a
i γ

a
i ) =

(−1)⌊n/2⌋
∏n

i=1 γ̃
a
i

∏n
i=1 γ

a
i leads to the correct minus signs.

Stabilizers map onto products of fermion and qubit stabilizers
under the action of this gate. Therefore, it is a valid logical
qubit-fermion gate.

PAIRING GATE

In this section, we present some details of the neutral-atom
scheme for implementing pairing presented in the main text.

Non-local pairing from on-site pairing

We demonstrate that the pulse sequence shown in Fig. 5a of
the main text indeed implements the target inter-site braiding
gate

PAIRij = exp

(
i
π

4
√
N

(eiφbkp
†
ip

†
j + h.c.)

)
, (S20)

where we generalized the definition in the main text to include
a phase φ. The pulse sequence is arranged such that the
dissociation gate

Udis = exp

(
−i π

4
√
N

(eiφbip
†
i↑p

†
i↓ + h.c.)

)
(S21)

is conjugated with a series of unitaries. We therefore have
to show that these unitaries transform bosonic and fermionic
creation/annihilation operators in such a way that Udis is trans-
formed into PAIRij . First, the beamsplitter gate

BS = exp
(π
4
(b†i bk − h.c.)

)
(S22)
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b

c

d f

ge

a

FIG. S1. Benchmarking the pairing gate. Pairing gate definition in Eq. (S20), with the occupation number entering its phase given by ⟨Ni⟩ of
the mode i it acts on. a, Circuit for implementing the Ramsey circuit, reproduced from Fig. 5c of the main text. The beamsplitter phase is
π/4. b, Ramsey fringes, reproduced from Fig. 5d of the main text. c, Contrast C and offset D obtained from fitting 1

2
+ 1

2
(C cos(θ)−D)

to the Ramsey fringes in subfigure b. d, Circuit for performing tomography within the |00⟩ and |11⟩ manifold. The beamsplitter phase is
arccos

(√
⟨N2⟩ /(⟨N1⟩+ ⟨N2⟩)

)
, chosen such that the average occupation number of the first, second bosonic mode (counted from the top)

is ⟨N1⟩, ⟨N2⟩ after the beamsplitter, respectively. e, Infidelity 1 − ⟨ψ|ρ|ψ⟩, where |ψ⟩ = (|00⟩ + i |11⟩)/
√
2 and ρ is the density matrix

reconstructed from the numerical tomography. Initial state is the same is in a. f, Circuit for numerically measuring the average gate fidelity
for all possible input states of the form α |00⟩ + β |11⟩. The Choi state is defined as |ψChoi⟩ = (|0000⟩ + |1111⟩)

√
2. The tomography is

performed within the subspace spanned by the states |0000⟩, |0011⟩, |1100⟩, |1111⟩. g, Infidelity 1− ⟨ψChoi| ρ |ψChoi⟩ for either a Fock state
input |N⟩ on mode 1 (black line) or a mixed state on mode 1 with a Poissonian number distribution with average boson number ⟨N1⟩+ ⟨N2⟩
(colored lines). The black line is shown in Fig. 5e of the main text.

acts as (BS†)2b†iBS
2 = b†k. Hence, (BS†)2UdisBS

2 =

exp
(
−i π

4
√
N
(bkp

†
i↑p

†
i↓ + h.c.)

)
. Similarly,

Ut↓ = exp
(
−iπ

2
(p†i↓pj↓ + h.c.)

)
(S23)

acts as U†
t↓p

†
i↓Ut↓ = ip†j↓ and

U↑↓ = exp
(
−iπ

2
(p†i↑pi↓ + h.c.)

)
(S24)

acts as U†
↑↓p

†
i↑U↑↓ = ip†i↓. Therefore,

PAIRij = U†
↑↓U

†
t↓(BS

†)2UdisBS
2Ut↓U↑↓, (S25)

which is the sought-after pulse sequence when identifying
spinless fermions with fermions in the ↓ state. The Hermitian
conjugate of each gate is performed by conjugating with phase
gates, e.g. U†

↑↓ = Zf
↓U↑↓Zf

↓.

Benchmarking the pairing gate

Here we show that Eq. (S20) indeed effectively implements
a pairing gate as defined in Eq. (8) when the molecule/boson

mode on which it acts has large occupation. To do so, we discuss
three different standard benchmark experiments and study them
numerically: Ramsey spectroscopy, state tomography of a Bell
state, and process/gate tomography based on measuring the
entanglement fidelity.

Ramsey experiment

First, we want to test whether there is effective coherence
created after applying the pairing gate. As for qubits, this is
done by performing a Ramsey-type experiment, i.e. applying
two π/2 pairing pulses, with a phase gate in-between. At
the same time as testing whether this is the case, we also test
whether two separate molecule/boson modes can be used for
the two pulses. It is clear that these gates need to be effectively
phase coherent. We achieve this by creating two modes with
Poissonian number distributions, mimicking a coherent state,
by applying a 50/50 beamsplitter on the state |N0⟩, see Fig. S1a
(also shown in Fig. 5c of the main text). Being able to perform
both gates using separate bosonic modes is important—this
tests whether ultimately we can parallelize pairing operations.
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In Fig. S1b (also shown in Fig. 5d of the main text), we show
the result of the Ramsey sequence. We indeed find a Ramsey
fringe, verifying that effective coherence has been created
in the fermions. The contrast increases with N as shown
in Fig. S1c, and a slight offset of the oscillations is visible.
More quantitatively, we fit an oscillatory function to the fringe
(see figure caption for its definition), finding that the contrast
approaches unity as ∝ 1/N . At the same time, the offset
decreases with the same functional dependence. Hence, in the
limit N → ∞, perfect Ramsey oscillations are approached.

Bell-state fidelity

In order to probe that the state after the pairing gate is not only
an effective coherent superposition, but exactly the state that
we aim to prepare, in Fig. S1d we construct a circuit effectively
performing Bell-state tomography. To do so, we perform
three separate circuits: we always first apply a pairing gate to
effectively prepare the Bell state |00⟩+ i |11⟩ and then perform
either a pairing gate with φ = 0 or φ = π/2 or no pairing
gate at all. From these three measurements, we reconstruct
the density matrix in the |00⟩ and |11⟩ manifold. In order to
separate the boson-number dependence of the preparation step
from the tomography step, we choose the beamsplitter phase
such that the boson number N1 of the mode we use to perform
the second gate is much larger than the boson numberN2 of the
mode we use to perform the first gate. Having reconstructed
the density matrix, we show the infidelity of the Bell-state
preparation as a function of N2, for different values of N1.
We find in Fig. Fig. S1e that the curves collapse as N1 → ∞,
indicating again a power-law dependence of ∝ 1/N . Crucially,
already for N2 ≈ 20, we find a Bell-state fidelity of approx.
99.9%.

Gate fidelity

Finally, we would like to benchmark our gate for all possible
initial states. To do so, we perform gate/process tomography by
measuring the entanglement fidelity Fe, relying on the relation

Favg = 1− dFe + 1

d+ 1
, (S26)

where d is the Hilbert-space dimension and

Favg =

∫
dψ ⟨ψ|U†E(|ψ⟩ ⟨ψ|)U |ψ⟩ (S27)

is the state-averaged fidelity between the target unitary U and
the realized channel E . The entanglement fidelity is measured
by first preparing the Choi state |ψChoi⟩ = 1√

d

∑d
i=1 |i⟩ |i⟩,

constructed using an ancillary system of the same size as the
target system, applying the target channel E ⊗ 1, and finally
performing state tomography on the resulting state. In our case,
E is the pairing gate and hence all gates stay in the even parity
sector such that d = 2, |ψChoi⟩ = 1√

2
(|00⟩ |00⟩+ |11⟩ |11⟩),

and the tomography is only performed in that sector.

We show the entanglement fidelity in Fig. S1g, black line
(same as Fig. 5e), as a function of the boson number N2 in the
second mode, where the result is converged with respect to N1.
We find that > 99.8% gate fidelity is achieved for N2 = 100.

Finally, in experiment, it is much easier to prepare a mixed
state with Poissonian number distribution with average number
N̄ = N1 + N2 rather than a Fock state, for example by
preparing a Bose-Einstein condensate [63] in that tweezer (N̄
is the number of condensed molecules in the ground state of the
tweezer). In that case, there will be a shot-to-shot miscalibration
of the angle of the pairing gate, leading to a further source of
infidelity. To check the robustness of our gate with respect to
this effect, we replace the initial state |N0⟩ of the molecules
with a state ρN̄ ⊗ |0⟩ ⟨0|, where ρN̄ =

∑
n pN̄ (n) |n⟩ ⟨n| and

pN̄ (n) = N̄ne−N̄

n! is a Poisson distribution with mean N̄ . The
phase of the pairing gate is fixed to π/

(
4
√
N̄
)

. We show
the resulting average infidelity as red lines in Fig. S1g. We
find that, for small N2, the result is indistinguishable from
the Fock-state result. For larger N2, deviations occur. These
deviations become smaller as N1 increases. Hence, we can
expect that as N̄ and N2 increase, arbitrarily high fidelities can
be achieved even when the initial molecule state is a mixed
state with a Poissonian number distribution.

Experimental considerations

We discuss more detailed considerations for the parameter
regimes that need to be fulfilled to implement the pairing
scheme.

For spin-selective tunneling Ut↓, a magnetic field gradient
needs to be applied to suppress tunneling of the ↑ spin species.
Similarly, to guarantee that no fermionic atoms tunnel from
the target tweezer into the BEC tweezer during the application
of the beamsplitter (BS), we apply a magnetic field gradient
and detune the two trap frequencies such that the detuning
induced by the magnetic field gradient is compensated by the
tweezer detuning for the molecules. Because the molecules
carry twice the magnetic moment of atoms, the atom tunneling
is still suppressed by the residual gradient. For dissociation,
the rf frequency νRF is chosen to bridge the bare atom energy
ν↑ − ν↓ as well as the binding energy EB of the molecule
and the trap depth ωtweezer of the target tweezer (which again
enters due to the differing magnetic moments of atoms and
molecule), νRF = ν↑− ν↓+EB+ωtweezer. This can be easily
fulfilled: typical trap frequencies are in the tens of kHz, and
binding energies in 6Li2 are in the hundreds of kHz, for 84Sr2
even in the hundreds of MHz [45, 64, 65]. Binding energies
may be tuned by a Feshbach resonance, however this needs to
be counterbalanced with the interactions between bosons and
fermions as well as between the ↓ and ↑ fermions, which need
to be small for the duration of the gate. The coupling g also
needs to be much smaller than the tweezer trap frequency in
order to guarantee that the atom pair is created in the motional
ground state of the tweezer.
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Implementation in dots and donors in silicon

In a solid-state implementation in dots or donors, spin-
polarized electrons encode fermions. Qubits with long coher-
ence times can be encoded in nuclear spins, in which case a

CZqf gate is implemented using the hyperfine interaction [66].
Alternatively, a qubit can be encoded in the electron spin. Both
qubit-qubit and qubit-fermion entangling gates are then im-
plemented by Heisenberg exchange [67, 68]. Single-fermion
gates may be realized using electric-field gates, and the pairing
gate using the proximity effect to a superconductor [69], where
Cooper pairs take the role of molecules.
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