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Neutral atom arrays have emerged as a promising platform for both analog and digital quantum
processing. Recently, devices capable of reconfiguring arrays during quantum processes have enabled
new applications for these systems. Atom reconfiguration, or routing, is the core mechanism for
programming circuits; optimizing this routing can increase processing speeds, reduce decoherence,
and enable efficient implementations of highly non-local connections. In this work, we investigate
routing models applicable to state-of-the-art neutral atom systems. With routing steps that can
operate on multiple atoms in parallel, we prove that current designs require Ω(

√
N logN) steps

to perform certain permutations on 2D arrays with N atoms and provide a protocol that achieves
routing in O(

√
N logN) steps for any permutation. We also propose a simple experimental upgrade

and show that it would reduce the routing cost to Θ(logN) steps.

Introduction.—Arrays of optically trapped neutral
atoms have demonstrated impressive capabilities as a
platform for quantum simulation and quantum informa-
tion processing [1–9]. In contrast to architectures with
fixed connectivity [10, 11], atom arrays can be dynami-
cally reconfigured mid-computation, enabling paralleliza-
tion and fast implementation of computations and prim-
itives for fault tolerance [12–15]. Crucial to the suc-
cess of these applications is their fast and efficient circuit
synthesis using native interactions allowed by the hard-
ware. Recent works have investigated compilers tailored
to the unique capabilities of neutral atom arrays [16–
21]. In current designs, two-qubit gates are implemented
using a globally illuminating laser that simultaneously
couples pairs of atoms through Rydberg excitations if
they are transported within the Rydberg interaction ra-
dius Rb. Compilers make use of three steps: implement-
ing gates using the Rydberg interactions, mapping qubits
to atoms, and routing qubits (i.e., reconfiguring atoms).
Fast implementation of the atom reconfiguration step
enables a more efficient implementation of parallel two-
qubit gates between arbitrary pairs of atoms.

Atom reconfiguration is a generalization of quantum
routing, or performing a permutation σ : S → S on the
set of N qubits labeled with S = {0, . . . , N − 1}. Quan-
tum routing has been well-studied in architectures with
connectivity constraints described by a static coupling
graph [22–25]. However, the coupling graph model does
not represent the connectivity of reconfigurable atom ar-
rays as a single time-step can involve gates or swaps be-
tween qubits that were previously far away and have been
transported close to each other during the step. There-
fore, there is a need for new routing models that apply
to the specific capabilities of these platforms.

In this paper, we investigate routing models inspired
by experiments with one- and two-dimensional arrays of
reconfigurable neutral atoms. Figure 1(a) depicts routing
on a 2D rectangular array that performs a permutation
σ and rearranges the atoms (circles) into a desired order.

FIG. 1. (a) An example of an instance of a routing problem on
N = 9 qubits in a 2D lattice. (b) Schematic of atoms (smaller
blue dots) in a combination of SLM-generated traps (light
green disks) and AOD-generated traps (dashed red circles).
(c) Schematic of two scenarios for selecting atoms for trans-
fer: (i) Grid transfer, where atoms trapped in a static SLM
array are selected and transferred by an a AOD-defined grid.
(ii) Selective transfer, where atoms trapped in a static SLM
array are (de)selected by a second SLM and thus excluded
from being transferred to an AOD-defined array. Locations
of the deselected sites are marked by the orange circles. (d)
Time-series of SLM, AOD, and additional SLM trap poten-
tials (green, red, and orange curves, respectively), as well as
the total trap potential (black line) for selected (upper row)
and deselected (lower row) sites during a selective transfer.
The atom, following the potential minimum, moves to AOD
trap on selected sites but stays in SLM trap otherwise.
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All of our models are motivated by experiments in which
the atoms are trapped in optical tweezers generated by
a stationary Spatial Light Modulator (SLM) and, during
each step, are rearranged using movable Acousto-Optic
Deflector (AOD) optical tweezers. In Fig. 1(b), the green
circles represent the SLM traps that hold the atoms (blue
dots). AOD traps (red dashed circles) form on a grid of
intersecting AOD rows and columns (gray dashed lines).
The positions of the rows and columns can be contin-
uously adjusted, with the constraint that they do not
cross. Atoms trapped at the intersections can be coher-
ently transported within this dynamically adjustable grid
that maintains site order.

Two possibilities for the transfer of a subset of atoms
in an SLM array to and from a rectangular grid of
AOD traps are shown in Fig. 1(c). In a grid transfer
[Fig. 1(c)(i)], all the atoms in the SLM traps next to
the AOD grid are transferred to the AOD. This is how
AODs are utilized in current designs. In contrast, we
propose selective transfers [Fig. 1(c)(ii)], with which one
can choose to transfer only a subset of atoms from such
SLM traps to a subset of the AOD grid.

We prove lower bounds for routing on 2D arrays us-
ing either grid or selective transfers to load atoms be-
tween the SLM and AOD traps. We define each sin-
gle step of routing to be a rearrangement of atoms in
the SLM grid with a constant number of transfers be-
tween the SLM and a movable AOD. Each such step
can involve parallel, simultaneous operations on multi-
ple atoms. With this framework, we show that routing
with grid transfers on an array with N atoms requires
Ω(
√
N logN) steps for most permutations. For routing

with selective transfers, however, the corresponding lower
bound is only Ω(logN). Additionally, we provide routing
protocols that saturate these bounds up to constant fac-
tors, achieving routing with grid transfers and selective
transfers in O(

√
N logN) and O(logN) steps, respec-

tively. Therefore, selective transfers significantly speed
up routing on 2D arrays. For the case of routing with
grid transfers, we provide a protocol that performs any
sparse permutation—one with at most poly(logN) non-
identity elements per row (or column)—in poly(logN)
steps, improving the O(

√
N logN) result, which holds

for a generic permutation.

Experimental details.—Neutral atom platforms typi-
cally employ two types of optical tweezers: SLMs that
have the capability to generate arbitrary 2D arrays of
traps [26–28] by modulating the amplitude or phase of
an incident beam, but do not currently have the ability
to transport atoms during the execution of a quantum
computation due to their slow update rate; and AODs
that are formed at the intersection of two sets of rows
and columns and therefore, are constrained to grids of
traps [13, 27]. These rows and columns may be steered
independently, thus deforming their rectangular grid, but
no two columns or rows may cross to prevent atom col-

lisions or interference between the radio frequency tones
driving the device.

Both approaches we consider for selecting and trans-
ferring atoms from a stationary SLM to a movable AOD
are experimentally feasible. For the grid transfer, which
is shown in Fig. 1(c)(i) and is the current state-of-the-
art [14], the AOD trap potentials are turned on at the
location of the selected SLM sites, and are made deeper
than the SLM traps. The AOD traps are then moved
away, and the selected atoms, following the lowest poten-
tial, transfer from SLM to AOD. For the selective trans-
fer, shown in Fig. 1(c)(ii) and (d), we consider a similar
approach to grid transfer, with the use of an additional
SLM array to select and “deactivate” arbitrary sites from
transferring into the movable AOD array. The additional
SLM trap potentials are turned on at the grid sites that
are to be excluded from the transfer, and are made deeper
than both the primary SLM and AOD traps. This “des-
elects” atoms in these SLM traps from moving with the
AOD traps when the AOD traps are moved away while
the rest of the atoms of the grid are transferred to the
AOD traps.

For each routing model, we assume atoms are placed in
an SLM array. We then define single routing steps that
can be done with an AOD array. Every single step con-
sists of a constant number of pickups and drop-offs as well
as constant potential ramp-ups and ramp-downs of AOD
rows and columns and takes the atoms back to the orig-
inal SLM array. We then investigate the number of sin-
gle steps needed to implement different permutations of
the atoms and determine the maximum number of single
steps for the implementation of any permutation. This
maximum number is the model-specific routing number,
which captures the worst-case time to perform a permu-
tation in that model [see Def. S1 in the Supplemental
Material (SM) [29]].

1D routing.—Some recently performed and proposed
neutral atom experiments involve operations on atoms
stored in a one-dimensional chain of static traps, or re-
quire routing of 1D chains of atoms as an experimental
subroutine [6, 15]. Therefore, before moving to 2D, we
consider the problem of permutingN atoms arranged in a
1D chain of static SLM traps. We define a single routing
step to be an in-order swap of two equal-sized subarrays
of the 1D chain (see Def. S3 in SM [29]). An example
of a possible implementation of a single routing step in
this model is shown in Fig. 2. A single step is given by
two disjoint ascending ordered sequences A = {ai} and
B = {bi} (with |A| = |B|) and swaps each ai with bi
while leaving the other atoms in place. This single step
involves four transfers of atoms between traps, and is
implemented purely via motion and AOD-SLM tweezer
transfers. The two subarrays A and B (orange and blue
atoms in Fig. 2, respectively), are swapped by picking
up A and replacing each atom in B pairwise in order
[Fig. 2(a-b)]. The vacant SLM traps left by A are like-
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FIG. 2. Step-by-step visualization of an in-order swap of two
subsets of atoms of a 1D chain. Orange and blue dots are
the two subsets involved in the swap, and gray dots are the
rest of the atoms. Green circles are the SLM traps that hold
the atoms before and after the swap. Red dashed circles are
AOD traps that are used to transport and swap the atoms.
(a) First, the first subset of atoms involved in the swap, A, are
picked up from SLM traps by the AOD traps and are trans-
ported next to the second subset of atoms, B. (b) Then, using
an additional row of AOD traps, A (B) atoms are moved into
(out of) the SLM traps. (c) Next, B atoms are transported
back to the original SLM traps occupied by A atoms. (d)
The final arrangement of the atoms after the swap.

wise replaced by those atoms from B [Fig. 2(b-c)]. A and
B are constrained to remain in order to prevent crossing
of AOD tones and atom collision.

Xu et al. [15] also describe a model of routing on 1D
chains of atoms in which one generates N/2 extra empty
SLM traps in addition to those N storing atoms. In
this model, each step utilizes only a constant number of
AOD-SLM transfers and AOD motion. The model’s sin-
gle step permutation is a riffle shuffle: an interleaving
of two unique rising sequences, analogous to interleaving
two parts of a deck of cards while shuffling them. With
this single step, they show that a divide-and-conquer al-
gorithm can implement any permutation in log2 N steps.

In analogy to the algorithm for routing with riffle shuf-
fles, one can implement any permutation in log2 N or-
dered swaps. Labeling the atoms by their destinations,
one can transport the atoms {0, . . . , N/2− 1} to the left
N/2 traps of the array in a single step by simply swap-
ping the sets of qubits on the left and right halves of the
array that are targeting the opposite side. Then, one
can continue to route smaller sets of atoms in parallel
in each partition until the permutation is completed (see
Sec. SIIA in SM [29]).

The routing numbers for both riffle shuffle and or-
dered swap models of 1D routing are lower bounded by
Ω(logN). We show this (see Sec. SII B in SM [29]) by
considering a general permutation σ and a set R of k
atoms whose relative order is reversed by σ. The proof
follows from the fact that, in any riffle shuffle, all the
atoms of the array are partitioned into two sets that re-
tain their relative order. One of these partitions is guar-
anteed to include at least half of those atoms inR. There-
fore, after each routing step, at least k/2 atoms from R
remain in reverse order. This implies that it takes at

least log2 k steps to route σ. For the reversal permu-
tation σr(i) = N − i − 1, all atoms are reversed, so the
worst case routing number is lower bounded by Ω(logN).
When considering routing with ordered swaps, the proof
is analogous.
2D routing.—For 2D atom arrays, we identify natu-

ral single-step permutations for the cases of routing with
grid and selective transfers. In the absence of selective
transfers, we take any single routing step to be an in-
order swap of two combinatorial rectangles R1 and R2

of the same dimension (see Defs. S4, S5 in SM [29]). A
combinatorial rectangle R is an array of points formed by
the intersection of two sets of rows and columns A and
B, with R = A × B = {(i, j) | i ∈ A, j ∈ B}. Its di-
mension is (|A|, |B|). Each combinatorial rectangle is or-
dered lexicographically first by row and then by column,
with the ith element of a rectangle denoted [R]i. For
example, ((1, 1), (1, 2), (3, 1), (3, 2)) is a dimension (2, 2)
rectangle. A single routing step with grid transfers is
the permutation σ that swaps, for all i, the ith atoms
of each rectangle, [R1]i and [R2]i, and leaves all other
atoms in place. The requirement that rectangles may be
swapped only in order stems from the column and row
non-crossing requirements of AODs. Figure 3 depicts the
implementation of such a swap via atom motion. It could
also be implemented by a combination of Rydberg gates
between the pairs of neighboring blue and orange atoms
in Fig. 3(b) and single-qubit gates before returning the
blue atoms to their original SLM traps.
With selective transfers, a single routing step is a

masked in-order swap of two combinatorial rectangles
(see Def. S6 in SM [29]). That is, for two combinato-
rial rectangles R1 and R2, and some masking function
M : Z → {0, 1}, any two atoms [R1]i and [R2]i with
M(i) = 1 are swapped, and all other atoms are left
in place. This single step could be implemented anal-
ogously to that seen in Fig. 3(a-c), with the AOD-SLM
transfers becoming selective transfers [see Fig. 1(c)(ii)] to
swap only the masked part of each rectangle of blue and
orange atoms.

Lower bounds on routing in both 2D models (i.e.,
with grid transfers and selective transfers) follow from
a counting argument (see Sec. SIII C in SM [29]). The
number of single-step permutations for N atoms on an√
N ×

√
N grid is 2O(N) and 2O(

√
N) with grid and selec-

tive transfers, respectively, while the number of permu-
tations is N ! = 2Θ(N logN). Since each permutation must
have a unique routing schedule, the worst-case permuta-
tion requires Ω(logN) steps with selective transfers, or
Ω(
√
N logN) steps with grid transfers.

We now present routing protocols for both 2D models
matching their lower bounds up to constant factors (see
Sec. SIIIA in SM [29]). These protocols borrow from the
theory of routing on a coupling graph, and take advan-
tage of a natural embedding of the d-dimensional hyper-
cube graph Qd into the 2D grid [14]. The vertices of Qd
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FIG. 3. Step-by-step visualization of a swap of two combinatorial rectangles of a 2D array. See the caption in Fig. 2 for
descriptions of symbols in the figure and of each panel.

are V = {0, 1}d (the set of all binary strings of length
d), and its edges are E = {(i, j) ∈ V × V | H(i, j) = 1},
whereH(i, j) is the binary Hamming distance, or number
of bits where i and j differ.

The 2D embedding maps each of N = 2d atoms to a
vertex of the hypercube Qd and positions it in 2D space
based on its binary address. The atoms are arranged on
a
√
2N ×

√
N/2 grid for d odd, or a

√
N ×

√
N grid

for d even, shown in an example for d = 4 in Fig. 4.
Each vertex is mapped to the corresponding atom on
the grid at coordinate (i, j), with row i and column j
the first ⌈d/2⌉ and last ⌊d/2⌋ bits of its binary address,
respectively. For example, the hypercube vertex 1001 is
mapped to coordinate (10, 01) (or (2, 1) in decimal).

With this embedding, one can choose a bit position
1 ≤ k ≤ d, and with selective transfers swap in a single
routing step any set of pairs of atoms (i, j) whose binary
addresses differ only on the kth bit. This is possible
because the set A of atoms whose kth bit is 0, and setB of
atoms whose kth bit is 1 each correspond to sets of atoms
that are equal-dimension combinatorial rectangles in the
hypercube embedding. Additionally, each i ∈ A, j ∈ B
that differ only on the kth bit also maintain the same
lexicographic order in their respective rectangle, so they
will be swapped with each other if an in-order swap of A
and B is performed. By choosing an appropriate masking
function M, the single selective transfers routing step
given by A, B, and M implements the swap of any set
of pairs of atoms differing only on the kth bit.

This primitive operation is used to implement an op-
timal routing algorithm for selective transfers. Refer-
ence [30] describes an algorithm for routing on the hyper-
cube. We apply this algorithm to the problem of routing
on neutral atoms with the hypercube embedding. The
output of the algorithm on Qd can be scheduled so that
it divides routing into a sequence of 2d− 1 steps, where
each step performs swaps across sets of edges (i, j) of Qd

where the addresses i, j differ only on some kth bit. Since
these are single routing steps with selective transfers, and
d = log2 N , this realizes a routing procedure for selective
transfers taking 2 log2 N − 1 routing steps.

The output of this algorithm is converted to an optimal
algorithm for routing without selective transfers. Each

selective transfer routing step, a masked swap of combi-
natorial rectangles, can be converted into O(

√
N) swaps

of combinatorial rectangles without a mask by simply
performing one swap for each row of the masked rectan-
gles. One may optimally decompose each masked rect-
angle into a sum of disjoint rectangles as well [31], but
in the worst case this still requires Ω(

√
N) rectangles, so

it does not improve the worst-case performance of the
algorithm. This algorithm for routing with grid transfers
takes at most

√
N(2 log2 N − 1) routing steps.

Sparse routing.—We have shown a significant sepa-
ration between the cost of 2D routing with and with-
out selective transfers. This routing advantage does not

FIG. 4. (a) The 4-dimensional hypercube graph Q4. Vertices
are given by orange and blue circles and are labeled by the bi-
nary address. For orange vertices the last bit is set to 0 (e.g.,
1110), and for blue the last is set to 1 (e.g., 0001). Edges
are given by solid or dashed gray lines. Dashed edges connect
vertices that differ on the last bit. (b) The 2D embedding
of Qd for d = 4. Atoms (orange and blue circles) are labeled
by the corresponding graph vertex. The graph is embedded
into a rectangular grid of N = 2d atoms. Each atom is as-
signed to a vertex of Q4 by concatenating its binary row and
column coordinates, shown by the red and blue labels. Sim-
ilarly to (a), orange and blue atoms correspond to addresses
with the last bit set to 0 and 1, respectively. Edges of the
hypercube connecting atoms that differ on the last bit are
depicted by gray dashed lines. Both the sets of orange and
blue atoms form combinatorial rectangles. Therefore, with
selective transfers, any set of pairs of orange and blue atoms
connected by dashed lines may be swapped in a single step.
In fact, any set of pairs of atoms whose addresses differ only
on some kth bit can be swapped in a single step.
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hold for a class of sparse permutations, defined as fol-
lows: A permutation σs is column(row)-sparse if σs is
non-identity on at most poly(logN) elements per col-
umn (row) (see Sec. SIIID in SM [29]). Any such row-
sparse or column-sparse permutation can be routed in
poly(logN) steps without selective transfers through an
iterative sparse routing procedure. In each iteration for
a column-sparse permutation, the procedure chooses two
sets of atoms A and B, such that B represents the des-
tination location of each atom in A. It uses a greedy
selection process to ensure that each atom in A and B
is in a unique column in its respective set, and that
|A| = |B| = Ω(

√
N). Each iteration performs a swap

of each i ∈ A with its destination σ(i) ∈ B, while leav-
ing other atoms undisturbed. It does so by performing a
compression step, which recursively swaps the atoms A
downwards to their own row, and then the atoms B to an
adjacent row. This step disturbs the positions of qubits
not in A or B. After this, 1D routing is performed on the
A row to align each i ∈ A to its partner σ(i) ∈ B in the
same column, and the two rows are swapped. Finally,
the compression procedure is inverted, thus completing
the swap of each i ∈ A, σ(i) ∈ B, and returning all
other atoms to their original positions, completing one
iteration. The procedure is similar for a row-sparse per-
mutation.

Each compression and its reverse take at most log2
√
N

steps, as does the 1D routing. In each iteration, Ω(
√
N)

atoms are routed to their destinations, and any sparse
permutation contains at most O(

√
N poly(log

√
N))

qubits, so poly(log
√
N) iterations are performed for a

total of poly(logN) routing steps.

Discussion and outlook.—We established a polynomial
bound for routing on 2D arrays in state-of-the-art re-
configurable neutral atom array designs. Conversely,
we showed that a simple experimental upgrade, selective
transfer between SLM and AOD grids, reduces the lower
bound to Ω(logN) steps, yielding a significant speedup.
Using a hypercube embedding for the qubits, we provided
protocols that perform any permutation in O(logN) and
O(
√
N logN) steps for routing with and without selec-

tive transfers, respectively, saturating the lower bounds.

All three stages of circuit compilation—scheduling
Rydberg-based two-qubit gates, mapping qubits to
atoms, and routing qubits—must be optimized together
to obtain the most efficient implementation. Compilers
such as [17] make use of satisfiability modulo theories
(SMT) solvers to find optimal solutions to these steps,
but since SMT problems are generally NP-hard, they
are prohibitively expensive for practical use. Alterna-
tively, compilers such as [16, 21, 32] make use of heuris-
tic solutions, which may be sub-optimal but can be ob-
tained more efficiently. In this work, we have shown lower
bounds on the time taken to perform the routing step,
as well as an optimal protocol for worst-case permuta-
tions, based on routing on the hypercube. However, this

protocol may not perform well for all permutations. Our
sparse routing protocol may be a useful heuristic routing
protocol that applies to a broad class of permutations
and routes efficiently. Future research can explore how
these various methods can be combined to maximize per-
formance and solver scalability.

Although our results are presented for rectangular ar-
rays, they are relevant to any array that can be consid-
ered a sub-array of a bigger rectangular one with only
O(N) additional sites, such as hexagonal, triangular, or
Kagome lattices. One can reduce the routing problem on
the non-rectangular sub-array A to a routing problem on
the rectangular array R where the permutation on R is
the same as the one on A for those sites and arbitrary for
R \A sites. Thus, all our bounds apply to such arrays as
well.

We proved the lower bound for routing with grid trans-
fers by a counting argument. It could be illuminating to
find a constructive proof for this statement that show-
cases properties of a permutation that make its imple-
mentation harder rather than only showing that hard
permutations exist.
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Lukin. Logical quantum processor based on reconfig-
urable atom arrays. Nature, 626(7997):58–65, Febru-
ary 2024. URL https://www.nature.com/articles/

s41586-023-06927-3.
[15] Qian Xu, J. Pablo Bonilla Ataides, Christopher A. Pat-

tison, Nithin Raveendran, Dolev Bluvstein, Jonathan
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SI. ROUTING MODELS

In this section, we formulate and study multiple models of routing motivated by current experimental
capabilities as well as a feasible upgrade. Each model is specified by a layout geometry in which the qubits
are placed (a 1D chain or 2D grid), and a set of permutations which are considered single routing steps. A
routing problem is then defined by a set of qubits S with |S| = N , a permutation σ : S → S specifying the
target configuration of the qubits, and a set of allowed single-step permutations M .

Definition S1 (Routing number). For a given model α with N atoms and a set of allowed single-step
permutations M , a routing sequence is a list of sequential operations, called routing steps, [m1,m2, . . .ml],
where each step mi is from the allowed set of single-step permutations M . The routing number rtασ(N) is
the minimum number of routing steps to implement the permutation σ.

We also define the worst-case routing number

rtα(N) = max
σ

rtασ(N). (S1)

(In some cases we omit the label α when the model is clear from context.)

The models we consider allow significant non-locality: moves involving the transportation of qubits across
the entire extent of the qubit array may be considered single steps, even though the current experimental
time cost of transporting a physical atom a distance d scales as

√
d in the far-distance limit [S1]. We

make this assumption because, at the scale of recent experiments, free-space transport times are typically
comparable to the time required to transfer atoms between AOD and SLM traps, with both being on the
order of ∼ 200µs [S2]. In addition, in practice there is negligible impact of transport on qubit fidelity, but
infidelities near ≲ 0.1% are caused by the transfer of atoms between tweezers. This further justifies our
choice of single moves as being operations that involve a fixed number of AOD-SLM transfers, as these
should incur a roughly constant level of error, regardless of the distance atoms are transported in a given
operation [S1, S2]. Finally, our analyses apply generally to logical qubits formed by blocks of atoms or
single-atom physical qubits, given the rectangular structure of AODs.

We describe two models of routing qubits stored in a one-dimensional line of static optical tweezers. In
the first, each single step is a riffle shuffle permutation. Each step is implemented by picking up a subset A
of the array and interleaving it in between other atoms in the array.
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Figure S1. An example of a single riffle shuffle routing step. Light green disks and dashed red circles are SLM- and
AOD-generated traps, respectively. Smaller orange dots are the atoms in the subset A (see Def. S2) and gray dots are
the rest of the atoms. (a) Orange atoms are picked up, moved down, and then transported in between their target
locations. (b) Additional AOD columns are ramped up, picking up the rest of the out-of-place atoms. All atoms
in the AOD traps are then transported downwards, expanded, and then put in place in the SLM traps. (c) Final
ordering.

Definition S2 (Single riffle shuffle routing step). For a one-dimensional array of N qubits with relative
positions S = {0, 1, . . . , N − 1}, a single routing step is a permutation σ : S → S given by A ⊂ S and
functions f : A→ S, g : S \A→ S, such that

σ(i) =

{
f(i) if i ∈ A

g(i) otherwise.
(S2)

The functions f and g are constrained to be strictly increasing over their domains:

∀i, j ∈ A, i < j =⇒ f(i) < f(j) (S3)

∀i, j ∈ S \A, i < j =⇒ g(i) < g(j). (S4)

We depict an example implementation of a single riffle shuffle step in Fig. S1. With a 1D lattice of
sufficiently spaced SLM traps, one performs a riffle shuffle by transporting the qubits in A to appropriate
positions between the lattice, and then picking up the rest of the array and expanding it by steering the
AOD columns independently to place all of the atoms in SLM traps again. It should be noted that the
transport of occupied AOD traps over empty SLM traps is avoided in order to maximize transport fidelity.
Alternatively, Ref. [S3] describes another possible implementation: one generates an additional set of N/2
empty static tweezers, and then expands the whole array (again, by spacing out the AOD columns) to leave
vacancies where one would like to insert A, transports A into these vacancies, and then expands or contracts
the array to prepare for the next routing step.

We define an alternative form of 1D routing in which a single step is an in-order swap between subsets
A and B of the array. Each single step of this model can be implemented by two riffle shuffles, but we do
not know if every riffle shuffle can be implemented in a constant number of in-order swap steps. We show
later that routing with riffle shuffles achieves a constant factor speedup of log(3)/ log(2) over in-order swaps
when reversing the order of all qubits. Notably, with in-order swaps, only the atoms being swapped are
transferred between traps, whereas with riffle shuffles one may be required to transfer every atom of the
array between SLM and AOD traps to insert even a single qubit into a different location in the array.

Definition S3 (Single in-order swap routing step). For a row of atoms whose positions are labeled by S =
{0, 1, . . . , N−1}, one single swap is a permutation σ : S → S for which ∃A,B ⊆ S, A = {a1, a2, . . . , ak}, B =
{b1, b2, . . . , bk}, A ∩B = ∅, a1 < a2 < · · · < ak, b1 < b2 < · · · < bk and

σ(i) =





bi if i ∈ A

ai if i ∈ B

i otherwise.

(S5)

In Fig. S2, we show an example of a rearrangement-based implementation of a single step in this model,
where rearrangement-based means utilizing only AOD-SLM transfers and shuttling. One could alternatively
implement single steps in this model via parallel swap gates, forming pairs of qubits in A with those in B
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Figure S2. An example of a single step with 1D in-order swaps. (a) Orange qubits are picked up, moved down and
then transported beneath their target locations. (b) Additional AOD columns are ramped up, picking up the blue
qubits. Qubits are then transported upwards, replacing blue with orange. (c) One row of the AODs is ramped down,
depositing the blue qubits, and then orange qubits are transported to their destinations. (d) Final ordering.

by transport followed by a combination of single qubit and CZ gates between the pairs of qubits A and B.
This approach would likely introduce correlated errors not present in the rearrangement approach, however.

We next formulate models of routing in two dimensions. In our first model, one only performs grid
transfers of atoms, and a single step is a swap of any two rectangles (subgrids) of the same dimension in a
2D grid of atoms.

Definition S4 (Combinatorial Rectangle). A combinatorial rectangle R is a set of the form A×B = {(i, j) |
i ∈ A, j ∈ B}, where A,B ⊂ Z are the rows and columns of the rectangle. We refer to the ith element of a
rectangle R as [R]i, where the points are ordered lexicographically, first by row, and then by column [i.e.,
R = {1, 3} × {1, 3} is ordered R = ((1, 1), (1, 3), (3, 1), (3, 3))]. The dimension of a rectangle R, dim(R), is
the ordered pair (|A|, |B|).
Definition S5 (Single routing step with grid transfers). For N = mm′ atoms on an m×m′ grid of static
traps, a single step of routing is an in-order swap of two disjoint rectangles, represented by a permutation
σ such that there exist rectangles R1, R2 of the same dimension, with R1 and R2 sharing no points, where

σ(j) =





[R2]i if j = [R1]i for some i

[R1]i if j = [R2]i for some i

j otherwise.

(S6)

Figure S3 shows the steps to perform a swap between rectangles by rearranging the atoms. One uses grid
transfers to pick up a rectangle R1 and translate its rows and columns to be placed half of a lattice constant
to one side of an equal-dimension rectangle R2 [panel (b)], then picks up R2 [panel (c)], translates both R1

and R2 by half of a lattice constant such that R1 goes to the former location of R2 and deposits it there
[panel (d)], and then translates and deposits R2 in the former location of R1 [panel (e)]. We require R1 and
R2 to have equal dimension, but not necessarily the same shape, as one may deform the array R in transport.
Finally, our definition prevents the reordering of columns or rows in any of the swapped rectangles R1 or R2,
as crossing AOD columns or rows would induce atom collisions, and potentially damage the AOD hardware,
as mentioned in the main text. Alternatively, we could implement these single-step swaps via entangling
gates analogously to 1D in-order swaps: transport the rectangle R1 to form nearest-neighbor pairs with
those qubits in R2, perform combinations of CZ gates and single-qubit gates to implement a swap, and
finally transport the rectangle R1 back to its original place. However, this again introduces the drawback
of correlated noise.

Finally, we consider a more powerful model of routing, extending the capabilities of grid transfers, in
which one utilizes selective transfers to swap less constrained subsets of the 2D array.

Definition S6 (Single routing step with selective transfers). For N atoms whose positions are labeled
by S2D ⊆ Z × Z, a single step of routing is a permutation σ : S2D → S2D given by two equal-dimension
rectangles R1, R2 and a masking functionM : Z→ {0, 1}, such that

σ(j) =





[R1]i if j = [R2]i andM(i) = 1 for some i

[R2]i if j = [R1]i andM(i) = 1 for some i

j otherwise.

(S7)
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Figure S3. Step-by-step visualization of a swap of two combinatorial rectangles of a 2D array. Orange and blue dots
are the two subsets involved in the swap, and gray dots are the rest of the atoms. Green circles are the SLM traps
that hold the atoms before and after the swap. Red dashed circles are AOD traps that are used to transport and swap
the atoms. (a) First, the first subset of atoms involved in the swap, A, are picked up from SLM traps by the AOD
traps and are transported next to the second subset of atoms, B. (b) Then, using an additional row of AOD traps,
A (B) atoms are moved into (out of) the SLM traps. (c) Next, B atoms are transported back to the original SLM
traps occupied by A atoms. (d) The final arrangement of the atoms after the swap.

Though this model has expanded capabilities beyond routing with grid transfers, the other constraints
associated with AODs remain: only the columns and rows of the array can be steered independently, and
no two columns or rows may cross. The primitive operation of routing in this model is similar to routing
with grid transfers, except that one can selectively choose which pairs of atoms are swapped between two
rectangles with the masking functionM.

SII. RESULTS FOR ROUTING IN 1D

In this section, we analyze one-dimensional routing. We first show algorithms for routing and upper
bound the routing number of both one-dimensional models. We then show lower bounds on the routing
number for both models via two proof techniques, one of which returns a stronger constant factor.

A. Protocols for 1D Routing

In this subsection, we discuss protocols for 1D routing. Xu et al. [S3] present an algorithm for routing
with riffle shuffles. Their procedure works by partitioning qubits into the left and right parts of the array
according to each qubit’s destination side. This can be done with a single shuffle, picking up all qubits
targeted towards the right half of the array and inserting them at the far-right end (i.e., those whose labels
are in the set {i | i ≤ ⌊N/2− 1⌋, σ(i) > ⌊N/2− 1⌋}). The algorithm then works recursively on the left and
right partitions of the array, further dividing each in half so that each quarter of the whole array contains
only qubits being routed to that quarter, etc., until all of the qubits are in their target locations. Each
successive partitioning of the array remains a single shuffle step, as each interleaves atoms in order without
crossing over into any other partitions of the array. The recurrence for the number of insertion steps is thus
T (N) ≤ T (n/2) + 1, which results in T (N) ≤ log2(N) steps. This upper-bounds the routing number for
routing with shuffles as rt(N) ≤ log2(N). We demonstrate below a matching lower bound on this model, of
rt(N) ≥ log2(N) steps, hence showing their work is optimal and that rt(N) = log2(N).

For 1D routing with in-order swaps, one can make a small alteration to the routing procedure from
Ref. [S3]: simply replace the partition step with a swap between the qubits on the left half targeting the
right half. The number of atoms that are in the wrong partition on each side of the array must be the same,
so this swap may always be performed. Likewise, one recurses on the left and right partitions, continuing to
partition the array into quarters, etc., and each successive partitioning remains parallel as they all address
distinct regions of the array. This leads to the same recurrence for the number of steps, and T (N) ≤ log2N .
We demonstrate below a lower bound on this model of rt(N) ≥ log3(N) steps, determining the routing
number to within a constant factor: log3(N) ≤ rt(N) ≤ log2(N).



5

B. Lower bounds for 1D Routing

To demonstrate lower bounds for 1D routing models, we define a monotone set R(σ) related to the
reversal permutation. We then show that the size |R(σ)| of this monotone set can only decrease by a
constant factor at each step when routing any permutation, even with an arbitrary amount of extra empty
static traps or ancilla qubits.

Definition S7 (1D Reversal Monotone Set). For a permutation σ : S → S over S = {0, 1, . . . , N − 1}, the
reversal set R(σ) is the largest subset x ⊆ S such that

∀i, j ∈ x, i < j =⇒ σ(i) > σ(j). (S8)

If there are multiple x that satisfy this condition, then we choose the lexicographically first such set.

The reversal set R(σ) is thus a largest subset of qubits that are reversed with respect to one another
in the permutation σ. For example, in the permutation σ =

(
0 1 2 3 4
1 4 0 3 2

)
, R(σ) = {1, 3, 4}. In this notation,

elements i, j at the top and bottom of a column, respectively, indicate that σ sends the ith atom in the array
to the jth location. Underlines indicate the elements of the domain in the reversal set. For the reversal
permutation σr(i) = N−1−i, it is clear that |R(σr)| = N , and that for any permutation σ, 1 ≤ |R(σ)| ≤ N .

We now show that the size of this monotone set can only decrease by a constant factor at each step when
implementing any permutation in 1D. For each model, consider a permutation σ : S → S and a routing
schedule of permutations σ1, σ2, . . . , σk, where σi is the ith permutation applied and is an allowed single
step in the relevant model, and implement σ such that σ = σkσk−1 . . . σ1. These steps are ordered swaps or
riffle shuffles, depending on the chosen routing model. Before the ith step, we let τi denote the remaining
permutation to be executed to implement the goal permutation σ, or τi =

∏i
j=k σj . We claim that for

routing with riffle shuffles, |R(τi+1)| ≥ 1
2 |R(τi)|, and with in-order swaps, |R(τi+1)| ≥ 1

3 |R(τi)|.

Theorem S1. When routing with riffle shuffles, the size of the largest reversal in a routing schedule can
only decrease by a factor of 1

2 at each step, or |R(τi+1)| ≥ 1
2 |R(τi)|.

Proof. As τi+1 and τi are related by a riffle-shuffle permutation, τi = τi+1σi, there are two possible cases.
Case 1: In the ith step σi, j ≥ 1

2 |R(τi)| qubits from the set R(τi) are picked up and inserted elsewhere.
In this case, these j qubits retain their relative ordering, and thus form a reversal. This guarantees that
|R(τi+1)| ≥ j ≥ 1

2 |R(τi)|.
Case 2: In the ith insertion step σi, j < 1

2 |R(τi)| qubits from the set R(τi) are picked up and inserted
elsewhere. In this case, k = |R(τi)| − j ≥ 1

2 |R(τi)| qubits are not involved in the insertion, and retain their
relative order, forming a reversal. This guarantees that |R(τi+1)| ≥ k ≥ 1

2 |R(τ)|.

We also show the analogous proof for routing with in-order swaps:

Theorem S2. For in-order swaps, the size of the largest reversal in a routing schedule can only decrease
by a factor of 1

3 at each step, or |R(τi+1)| ≥ 1
3 |R(τi)|.

Proof. As τi+1 and τi are related by a single swap step, τi = τi+1σi, there are two possible cases.
Case 1: In the ith swap step σi, j ≥ 1

3 |R(τi)| qubits from the set R(τi) are swapped with j′ ≤ j other
qubits in R(τi) and j − j′ qubits in S \ R(τi). In this case, these j qubits retain their relative ordering and
are a reversal, thus |R(τi+1)| ≥ j ≥ 1

3 |R(τi)|.
Case 2: In the ith swap step σi, j < 1

3 |R(τi)| qubits in R(τi) are swapped with j′ ≤ j other qubits in
R(τi) and j − j′ qubits in S \ R(τi). In this case, k = |R(τi)| − j − j′ ≥ 1

3 |R(τi)| qubits in R(τi) are not
involved in the permutation and remain a reversal. Therefore, |R(τi+1)| ≥ k ≥ 1

3 |R(τi)|.

We have shown that the reversal monotone |R(τi)| decreases by at most a factor of 1
2 or 1

3 in each step
when implementing any permutation with riffle shuffles or in-order swaps, respectively. After the final step in
implementing σ, the remaining permutation is the identity id, and |R(id)| = 1. Denoting the number of steps
to implement a reversal of size k by r̃tr(k), we can lower bound the number of steps needed to implement any
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permutation σ in 1D: rt(σ) ≥ r̃tr(|R(σ)|), so for some constant c in each model, r̃tr(N) ≥ 1 + r̃tr(
N
c ). This

recurrence has the solution r̃tr(N) ≥ logc(N). For riffle shuffles, c = 2, so by considering a reversal of N
qubits, rt(N) ≥ log2(N). For in-order swaps, c = 3, so rt(N) ≥ log3(N). We note that the constant-factor
discrepancy in lower bounds results from the fact that it takes only log3N in-order swaps to implement
the reversal. This is done by swapping the first and last thirds of the array in a single step, and then
recursing on each third of the array and performing the same swap of first and last thirds until the reversal
is implemented.

We can show bounds with the same asymptotic scaling in N up to a weaker constant factor for both of
these 1D models by a counting argument, which applies generally to all models of routing, as follows.

Theorem S3. For a routing model α over N qubits with a set of k single-step permutations, rtα(N) ≥
N log(N/e)

log k − 1.

Proof. For N qubits, there are N ! possible permutations. By the pigeonhole principle, in j routing steps,
one may only generate at most kj+1−1

k−1 ≤ kj+1 unique permutations. This can be seen my counting the
number of nodes of a tree with branching factor k and height j. To generate all possible N ! permutations,
we need at least j steps with

kj+1 ≥ N ! ≥
(
N

e

)N

, (S9)

so

j ≥ N log N
e

log k
− 1 (S10)

as claimed.

Applying this, we see that in the case of routing with riffle shuffles over N qubits, one starts by selecting
one of

(
N
i

)
size 0 ≤ i ≤ N subsets of the array, then chooses one of

(
(N−i)+i

i

)
ways to insert the selected

qubits between the remaining N − i qubits. This means there are k ≤ ∑N
i=0

(
N
i

)(
N
i

)
=

(
2N
N

)
≤ (2e)2N

possible single insertion steps. This shows that, for riffle shuffles, rt(N) ≥ logN−1
2(1+log 2) − 1. For in-order swaps

over N qubits, the number of single steps is upper bounded by the number of pairs of equal-sized unique

subsets of the array, so k ≤∑N
i=0

(
N
i

)2
=

(
2N
N

)
. This also leads to rt(N) ≥ logN−1

2(1+log 2) − 1.

SIII. RESULTS FOR ROUTING IN 2D

We now analyze two-dimensional routing.

A. Protocols for 2D Routing

In this subsection, we present an algorithm for routing in two dimensions for both grid transfers and
selective transfers. The algorithm takes advantage of a natural embedding of the d-dimensional hybercube
graph Qd in 2D space that allows for parallel rearrangement between its hypercube subgraphs of smaller
dimensions [S2]. Qd can be defined recursively by successive Cartesian graph products of the K2 complete
graph on two vertices: Qd = K×d

2 . Equivalently, one can construct the hypercube graph Qd by taking
a set of vertices Vd = {0, . . . , 2d − 1} and connecting them via the set of edges Ed = {(v1, v2) | v1, v2 ∈
Vd, H(v1, v2) = 1} where H(v1, v2) is the Hamming distance between v1 and v2 (i.e., two vertices v1 and v2
are connected if they differ on only one bit).

Our embedding of the hypercube in 2D space is as follows. For the hypercube Qd on N = 2d qubits,
we arrange the set of qubits on a

√
2N ×

√
N/2 grid for d odd or a

√
N ×

√
N grid for d even. An

example for d = 4 is shown in Fig. S4. We label each qubit by an integer corresponding to its column or
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Figure S4. The embedding of the hypercube Q4 in a 2D array of traps. Higher-order bits (in red) correspond to the
binary representation of the row and lower-order bits (in blue) correspond to the column.

row, formed by the ⌊d/2⌋-bit binary representation of the row and ⌈d/2⌉-bit binary representation of the
column concatenated. For example, a qubit in row 3 and column 1 would be written 1001, shown with our
convention of highlighting the corresponding row bits in red and column bits in blue.

Routing utilizes the recursive structure of hypercubes. One can observe that the induced subgraph on
Qd made by vertices that only start with 0 forms the hypercube graph Qd−1, and likewise for those vertices
starting with 1. We define this idea in general, as our algorithm calls for routing on these hypercube
subgraphs recursively.

Definition S8 (Subhypercube). For the hypercube Qd, the subhypercube given by a bit string a ∈ {0, 1}∗,
where {0, 1}∗ indicates the set of all bit strings of any length, is the induced subgraph given by the vertices
of Qd whose binary addresses start with a. Formally, the vertices of the subhypercube are

Va(Qd) = {q ∈ Qd | ∃b ∈ {0, 1}d−|a| s.t. q = ab}, (S11)

where ab indicates the concatenation of the binary strings a and b. The edges of the subhypercube are those
in Qd connecting pairs of vertices in Va(Qd). One could also think of the subhypercube as the hypercube
graph Qd−|a|, with none of its edges disturbed but each vertex renamed by prepending the bit string a to
its binary address. Though we could also specify a hypercube subgraph of Qd by considering the vertices
that all share some ith bit, our definition only considers fixing the leading bits as this is the useful concept
for our algorithm.

Our routing algorithm schedules sets of parallel swaps between vertices of the hypercube graph that differ
on some specified bit at each step. It is useful to introduce two definitions related to this concept: the cut,
which partitions the vertices into two sets depending on their d′th bit, and the cutset, which is the set of
edges connecting vertices from different sides of the partition.

Definition S9 (Cut and cutset of a dimension d′ on the hypercube). The cut across dimension d′ is the
sets of vertices Cd′ = (V1, V2), where V1 are the vertices whose d′th bit are 0, and V2 are the vertices whose
d′th bit are 1. Formally,

V1 = {v ∈ Qd s.t ∃a ∈ {0, 1}d′ , b ∈ {0, 1}d−d′−1, v = a0b} (S12)

and

V2 = {v ∈ Qd s.t ∃a ∈ {0, 1}d′ , b ∈ {0, 1}d−d′−1, v = a1b}, (S13)

where a0b indicates the string made by concatenating the binary strings a, 0, and b, and likewise for a1b.
The cutset is the set of edges connecting pairs of vertices from V1 and V2 that differ only on the d′th bit:

Ed′ = {(v1, v2) ∈ E(Qd) | v1 ∈ V1, v2 ∈ V2}. (S14)
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It should be noted that the subgraph induced by vertices V1 on Qd is the graph of 2d
′
subhypercubes

given by the bit strings a0, ∀a ∈ {0, 1}d′ , but with additional edges connecting vertices of each subhypercube
within each side of the cut. Similarly, the subgraph induced by V2 on Qd is the graph of 2d

′
subhypercubes

given by a1,∀a ∈ {0, 1}d′ . In the main text, Fig. 4(a) depicts the cut (V1, V2) = C3 on the hypercube Q4,
with V1 given by orange vertices and V2 by blue. The edges of the cutset E3 are given by dashed lines.

Next, we show that, given any subset E′ of the cutset of edges Ed′ of Qd, one can perform a swap
across the pairs of qubits connected by the edges in E′ in a single step with selective transfers, provided
the qubits are arranged in our hypercube embedding. Each edge e ∈ E′ connects pairs of vertices across
the cut Cd′ = (V1, V2). Both V1 and V2 correspond to the set of qubits with the d′th bit set to 0 or 1, so
they are formed by eliminating either a set of rows or columns from the set of all N qubits, depending on
the value of d′. This means V1 and V2 are rectangles of the same dimension. Then, by choosing a proper
masking functionM : Z→ {0, 1}, the selective transfers swap step given by V1, V2, and M will swap all of
the atoms across the desired set of edges E′. To perform the same set of swaps across E′ using only grid
transfers, we instead must break down the subsets of atoms of V1 and V2 which are being swapped into
sets of disjoint rectangles, and perform a series of swaps with these. The problem of decomposing sets of
qubits into rectangles is studied in Ref. [S4], where an optimal algorithm utilizing a theorem prover and
polynomial-time heuristic are presented. Additionally, it is known that, for a rectangular array of points of
size m×m′, there exist subsets needing at least min(m,m′) rectangles to be described. As we embed in a√
2N ×

√
N/2 or

√
N ×

√
N grid, breaking down some selective transfers swap steps into swaps of disjoint

rectangles generally will require Ω(
√
N) rectangles, and thus the naive method of decomposing a point array

into a single rectangle per row or a single rectangle per column never performs worse than the worst case of
an optimal algorithm. For this reason, we will see that there is often a factor of

√
N advantage in routing

with selective transfers as compared to grid transfers. This advantage does not hold, however, in the case
of sparse routing, where, as we show in Section SIIID, there is only a polylogarithmic separation between
the models’ routing numbers for this task.

Finally, with these primitives, we show an algorithm (Alg. 1) for routing with selective transfers based
on prior works in hypercube graph routing. Its output can be converted to a routing schedule for routing
with grid transfers. It is shown in Ref. [S5] that, in the case of routing by swaps on a coupling graph,
rt(G×G′) ≤ 2 rt(G′)+ rt(G). Routing in such a product graph can be performed as follows. First, route in
parallel across the subgraphs corresponding to copies of G so that each subgraph corresponding to a copy
of G′ contains a set of vertices representing all addresses from G′ (the existence of a set of permutations
that can be performed across the copies of G to satisfy this requirement is guaranteed by Hall’s marriage
theorem). Then, route on the copies of G′ to put the vertices’ G′ addresses in order. Finally, route in the
copies of G to correct all the vertices’ G addresses. This completes routing of G×G′.

We show this algorithm can be scheduled to run in 2d− 1 steps for our embedding of Qd = K2 ×Qd−1.
The first step of the algorithm performs a set of swaps across the copies of K2, which is a selected subset of
the cutset edges E0 of the graph. We have already shown this to be a single selective transfers routing step.
This subset is chosen by a matching procedure so that each side of the cut contains a set of vertices whose
last d− 1 bits form the set of all d− 1 length bit strings. We outline this matching procedure in Sec. SIII B.
Following this, the algorithm recurses, calling for routing on each Qd−1 subgraph in the cut C0. This sorts
each subhypercube on each side of the cut so that the last d − 1 bits of each atom’s destination match its
location address, but leaves the first bit of each address potentially out of place. We perform one more swap
across a subset of edges of the cutset E0, swapping those atoms whose first bits of their destination don’t
match their location to put them in place. Again this is a single selective transfers step.

Note that besides the recursive step, the routing algorithm only ever calls for swaps across a subset of
the cutset E0. Thus, when the recursive step is called, the algorithm considers the subhypercubes given by
bit strings 0 and 1, and performs swaps across subsets of E1, E2, E3, etc. By scheduling these swaps so all
of the swaps across E1 occur at the same step (and likewise for E2, E3, etc.), routing on each subhypercube
across the cut is done in parallel, and each set of swaps across each cutset Ei is done in parallel. Since the
procedure makes one parallel recursive call and two selective transfers steps, it routes in T (d) = 2+T (d−1)
selective transfers steps, which means T (d) = 2d − 1 (equivalently, T (N) = 2 log2N − 1). This shows that
rt(N) ≤ 2 log2N − 1 with selective transfers. To route with only grid transfers, one converts each selective
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Algorithm 1 Hypercube routing with selective transfers
j

▷ Subroutine to fix errors betweensubhypercubes given by bit-strings a0 and a1. Described in Sec. SIII B ◁
procedure Cut-Errors(a ∈ {0, 1}∗, d ∈ Z, σ : [2d]→ [2d])

Vc1 ← the vertices of the subhypercube given by a0
Vc2 ← the vertices of the subhypercube given by a1
▷ Ec is the subset of the cutset across dimension |a| connecting subhypercubes a0 and a1 ◁
Ec ← {(v1, v2) ∈ E(Qd) | v1 ∈ Vc1 ∧ v2 ∈ Vc2}
G = (V,E)← (Vc1 ∪ Vc2, ∅)
Mark the edges in Ec green and add them to E
C ← {(i, j) | ∃b ∈ {0, 1}d−1−|a|, σ(i) = a0b ∧ σ(j) = a1b}
for all (i, j) ∈ C do

if i and j are on the same side of the cut given by a then
Add (i, j) to E, marked red

else
Add (i, j) to E, marked blue

▷ Now we construct the error graph, and perform perfect matching ◁
GE = (VE , EE)
VE ← {e ∈ E | e is marked red}
for all Paths P ⊂ E on G of green and blue edges connecting pairs of red edges e1, e2 ∈ E do

EE ← (e1, e2)
Ep ← the edges of a perfect matching on the graph GE

σE ← id
for all e = (v1, v2) ∈ Ep do

▷ Note: v1, v2 are red edges in E ◁
P ← the green edges of a path of only green and blue edges connecting the edges v1, v2 ∈ E
σ′ ← the permutation corresponding to swaps along the edges of P
Perform σ′ ▷ This corresponds to a single selective transfers step
σE ← σ′σE ▷ We don’t have to worry about commutativity issues, as all the P selected in this loop will be

disjoint from each other
return σE

▷ Generates a routing procedure for the permutation σ using selective transfers. Can be readily converted to one
using grid transfers. ◁

procedure Hypercube-Routing(a ∈ {0, 1}∗, d ∈ Z, σ : [2d]→ [2d])
σ1 ←Cut-Errors(a, d, σ)
σ′ ← σ−1

1 σ ▷ The remaining permutation to route σ
▷ Note: The next two calls can be parallelized with selective transfers ◁
σ2 ← Hypercube-Routing(a0, d, σ′)
σ3 ←Hypercube-Routing(a1, d, σ′)
σ′ ← σ−1

3 σ−1
2 σ−1

1 σ ▷ The remaining permutation
Ec ← the cutset on Qd given by a
▷ At this point, the only errors remaining in the hypercube are pairs of atoms across the cutset whose high
order bits are on the wrong cut side ◁

EE ← {(v1, v2) ∈ Ec | v1 ̸= σ′(v1)}
σf ← the permutation corresponding to swaps along the set of edges EE

Perform σf ▷ This is one selective transfers step
return σ1σ2σ3σf

transfers step from this algorithm into a series of grid transfers as outlined earlier, leading to a
√
N increase

in the number of steps. Thus, for grid transfers, rt(N) ≤
√
N(2 log2N − 1).
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B. Matching Procedure

In this subsection, we describe the matching procedure mentioned in Alg. 1. An example of a routing
sequence on the hypercube Q4, including the matching step, is shown in Fig. S5. In Fig. S5(a), the atoms
are depicted in the 2D embedding, with their destination address indicated by the label the arrows point
to. We underline the first bit to indicate that this is the highest level of the recursive routing step, and
that we will depict the steps that perform swaps across the cutset E1 (the set of edges connecting atoms
that differ on the first bit). The remaining bits are overlined to indicate that they represent the destination
address in the subhypercube they are being routed to. The matching procedure begins in Fig. S5(b). Green
edges are added to connect vertices of the hypercube that differ on the first bit (note, we refer to the vertex
address, not its destination address marked by the arrow). Then, blue edges are added to connect atoms
whose destination addresses differ on the first bit. This creates a series of loop graphs. We highlight one
loop graph by leaving its edges solid and making the other loops dashed.

In the next step, shown in Fig. S5(c), we continue matching. If two qubits are connected by a blue
edge, but reside on the same side of the cut C1, we consider them to be an “error” and convert this
blue edge to a red edge. Then, on each loop graph, a perfect matching is performed, and green edges
found to be in the perfect matching are marked orange. There are only two possible perfect matchings
on each loop, as one must choose the green edges of alternating paths connecting red edges, since, in a
perfect matching, each red error edge only has one matched edge connecting it. For any loop, the overlined
part of the qubits’ destinations on each side of the cut form a family of two sets (in the highlighted loop
in Fig. S5(b), {{100, 100}}, {000, 000}}). This set always satisfies Hall’s marriage condition, so a perfect
matching corresponding to a traversal of the set always exists.

Figure S5(d) shows the result of swapping across the matching edges found in the last step. The sets of
overlined addresses on each side of the cut C1 across the first bit in the array are now unique. In Fig. S5(e),
routing on the subhypercubes given by the addresses 0 and 1 is performed, thus sorting the atoms. Pairs
of qubits that are on the wrong side of the cut C1 are connected by an edge again. Figure S5(f) shows the
array after these edges are swapped, thus sending all atoms to their destination.

C. Lower Bounds for 2D routing

In this subsection, for both models of 2D routing, we derive lower bounds on the routing number by
applying Theorem S3.

Theorem S4. For 2D routing with grid transfers, rt(N) = Ω(
√
N logN) for a square grid of N = m×m

atoms.

Proof. When routing with grid transfers, each single step is a swap between two disjoint rectangles.
The number of pairs of rectangles in a m × m grid upper bounds the number of swap steps, so k ≤
∑

i,j

((
m
i

)(
m
j

))2
=

(
2m
m

)
≤ (2e)4m, as each rectangle is specified by a subset of m rows and columns.

Applying Theorem S3, we find rt(N) ≥
√
N(logN−1)
4(1+log 2) − 1.

Theorem S5. For 2D routing with selective transfers, rt(N) = Ω(logN).

Proof. Each single step with selective transfers is specified by two combinatorial rectangles R1 and R2 and
a masking functionM : Z→ {0, 1}. Since the step results in a swap of two subsets of the array, the number
of single steps k is upper bounded by the number of equal sized subsets of the array, just as in 1D routing
with in-order swaps. Thus, k ≤ (2e)2N and rt (N) ≥ logN−1

2(1+log 2) − 1.

In two dimensions, the swap operation with selective transfers retains the basic fact that there are two
sets of atoms that are picked up and remain in order with respect to each other in each set. This suggests
that our lower bound in one dimension applies to two dimensions as well, as we now demonstrate.
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Figure S5. Illustration of the matching procedure for hypercube routing. (a) The vertices of the atoms shown in
the hypercube embedding, with arrows pointing to the binary vertex addresses of their destination. Underlined bits
indicate the side of the cut C0 (Def. S9) of the destination. Overlined bits indicate the address of each destination in
the subhypercube (Def. S8) it is routed to. (b) Loops are formed by adding green edges between each vertex on each
side of the cut, and blue edges between vertices whose destinations have the same (overlined) subhypercube address.
(c) Blue edges that connect vertices on the same side of the cut C0 are considered errors, and marked red. Green
edges that are part of the perfect matching are marked orange. (d) All other edges are removed to highlight only
the edges of the perfect matching. Swaps between qubits connected by matched edges are performed. (e) Routing
is called recursively on each subhypercube of the cut C0. Only first (overlined) bits remain out of order, so swaps
(marked by orange edges) are scheduled to swap qubits into their destination. (f) Routing is completed.
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Consider implementing a reversal on a subset of a single row of atoms of size n in an infinite two-
dimensional grid of empty static traps. Since we are in 2D, the set of qubits is some set S2D ⊆ Z×Z. Once
again we may define a reversal monotone on this array of the largest subset of atoms that are in unique
columns, and are being routed to in reverse order to another set of unique columns. We still let σ denote
the target permutation, implemented by steps σ = σkσk−1 . . . σ1, and denote the remaining permutation at
each step by τi =

∏i
j=k σj .

Definition S10 (2D Reversal Monotone). For qubits in a 2D array with coordinates given by S2D ⊆ Z×Z,
and a permutation σ : S2D → S2D, the 2D reversal monotone R2D(σ) is the largest subset x ⊆ S2D that
satisfies the following:

∀i, j ∈ x, i ̸= j =⇒ Col(i) ̸= Col(j) and Col(i) < Col(j) =⇒ Col(σ(i)) > Col(σ(j)) (S15)

Here Col indicates the column of a coordinate tuple, i.e., Col((i, j)) = j. We can now see clearly that
the same proof steps restrict this monotone to decrease only by a factor of 1

3 at each step of any routing
sequence.

Theorem S6. |R2D(τi+1)| ≥ 1
3 |R2D(τi)| for 2D routing with selective transfers.

Proof. Case 1: In a single step, j ≥ 2|R2D(σ)|/3 qubits in R2D(σ) are swapped. This must be done by
masking the swap of two combinatorial rectangles, such that two sets of atoms A and B are swapped. Both
A and B have j/2 qubits, and the relative ordering of the qubit’s columns within both A and B must remain
the same, so these j/2 qubits still form a 2D reversal. Therefore, |R2D(τ i+1)| ≥ j/2 ≥ 1

3 |R2D(τi)|.
Case 2: Otherwise, j < 2|R2D(σ)|/3 qubits in R2D(σ) are involved in the swap. These j qubits form

a reversal, so |R2D(τ i+1)| ≥ j ≥ 1
3 |R2D(τi)|.

Therefore, when routing with selective transfers, implementing the single reversal of a row of m atoms
has the recurrence T 2D(m) ≥ 1 + T 2D(m/3), regardless of how many rows are in the grid. Therefore
rt(N) ≥ log3(

√
N). Asymptotically, this lower bound improves upon the bound in Theorem S5 by a factor

of 1+log 2
log 3 ≈ 1.54.

D. Sparse Routing with grid transfers

In this subsection, we discuss sparse routing. While the task of general routing with grid transfers takes
Ω(
√
N logN) steps for most permutations, this model turns out to be well suited to the task of sparse

routing, where only a small number of qubits are permuted. We formalize this in terms of the number of
qubits per row and column that will be routed.

Definition S11 (Column-sparse and row-sparse permutations). A column-sparse or row-sparse permutation
σ : S → S over S = {1, 2, . . . , N} is a permutation that is nonidentity for O(poly(logN)) qubits per column
or row, respectively.

We show that any column-sparse or row-sparse permutation can be implemented with O(poly(logN))
grid transfer steps via the following procedure.

Theorem S7. For a column-sparse or row-sparse permutation σ, rt(N, σ) = O(poly(logN)) with grid
transfers.

Proof. In the targeted sparse permutation σ on a grid of size m ×m, N = m2, consider the set of qubits
A ⊂ S2D = Zm × Zm for which ∀i ∈ A, σ(i) ̸= i. We assume σ to be column-sparse in the sense that A has
O(poly(logN)) qubits per column. We describe a procedure to implement σ in Algorithm 2. The general
outline of the procedure is to choose a set of qubits i, σ(i) ∈ S2D that come from a set of independent
columns such that no more than a qubit i and its destination σ(i) are in the same column in the set. From
there, a compression procedure packs these qubits into two adjacent rows, where 1D routing is performed,
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Algorithm 2 Column-sparse routing

Require: ∀(i, j), (i′, j′) ∈ A, j = j′ =⇒ i = i′ ▷ Ensure qubits are in unique columns

Require: ∀b ∈ B,Col (b) ≥ k ▷ Ensure qubits start in columns ≥ k
▷ Compress the qubits in A to row k ◁
procedure Compress(B ⊆ S2D, m ∈ Z, k ∈ Z)

if m = 0 then
return id

▷ The set of columns with a qubit in B above the row midpoint of the array ◁
C ← {j | (i, j) ∈ A, i > ⌊m2 ⌋+ k}
▷ The two sets of rows, either above or below the midpoint ◁
R1 ← {k, . . . , ⌊m/2⌋+ k}
R2 ← {⌊m/2⌋+ k + 1, . . . , 2⌊m/2⌋+ k}
σ1 ← the permutation corresponding to a swap of rectangles R1 × C and R2 × C
Perform σ1

B′ ← {
(
i,
(
j − k mod ⌊m2 ⌋

)
+ k) | (i, j) ∈ B

)
} ▷ The locations of the qubits in B after the swap.

σ2 ← Compress(B′, ⌊m2 ⌋, k)
return σ2σ1

Require: σ is a column-sparse permutation as in definition S11
procedure SparseRoute(σ : S2D → S2D)

if σ = id then
return id

A← {q ∈ S2D s.t q ̸= σ(q)} ▷ The set of qubits addressed non-trivially by σ
Mark all of the qubits in A black
B1 ← ∅
B2 ← ∅
while ∃q ∈ A s.t. q and σ(q) are black do

B1 ← B1 ∪ {q}
B2 ← B2 ∪ {σ(q)}
E ← {q′ ∈ A s.t {Col(q′),Col(σ(q′))} ∩ {Col(q),Col(σ(q))} ≠ ∅}
Mark the qubits in E red

σ1 ← Compress(B1, m, 1)
B′

2 ← {σ1b | b ∈ B2} ▷ Keep track of how the qubits in B2 move during the compression of B1

σ2 ← Compress(B′
2, m− 1, 2)

Perform 1D routing on the first row so that all the original pairs of q ∈ B1, σ(q) ∈ B2 are in the same column,
and store this permutation as σ3

Swap the first and second row, and store this permutation as σ4

Perform the inverse routing schedules σ−1
2 σ−1

1

▷ At this point, the qubits B1 will have been routed to their destination ◁
σ′ ← σ1σ2σ

−1
4 σ−1

3 σ−1
2 σ−1

1 σ ▷ The remaining permutation to be performed
SparseRoute(σ′)

and then by reversing the compression procedure half of the selected qubits will have been routed to their
destination. This process is repeated until σ is realized.

The sparse routing protocol first marks all of the qubits in A black, indicating that they have not been
eliminated yet. It then iteratively chooses any pair of black qubits q ∈ A and σ(q), and adds them to sets
B1 and B2, respectively. Next, it eliminates any qubits that might conflict with the routing of q to σ(q),
marking red any qubit q′ and its destination σ(q′) where either q′ or σ(q′) share a column with q or σ(q).
Once the protocol is no longer able to select any more pairs of black qubits q, σ(q), it compresses the qubits
in B1 into a single row, as well as those in B2 to an adjacent row. After this, 1D routing is performed
on the row corresponding to B1, bringing together pairs q, σ(q) in the same column. Finally, the two rows
are swapped, and compression is reversed, thus swapping qubits q ∈ B1 with their destination σ(q) ∈ B2.
The algorithm recurses on the remaining permutation to be performed, which is still guaranteed to meet
the sparseness requirements. Though the compression procedure scrambles the qubits outside of B1 and
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B2 within their columns, as we reverse it at the end of the round no qubits other than B1 and B2 end up
moving.

To see that this algorithm implements σ in O(poly(logN)) steps, we show that the compression procedure
generates O(logm) steps at most, and that the routing procedure selects sufficiently large sets B1 and B2

per round such that only O(poly(logN)) rounds must be performed. For each compression procedure,
compression of a set of qubits in independent columns is performed by selecting those columns containing
qubits in rows > ⌊m/2⌋, and swapping the top and bottom halves of the column. This brings all of the
qubits into rows ≤ ⌊m/2⌋, and then this procedure recurses, folding selected columns in quarters, etc., until
all of the qubits are in the first row. This clearly takes at most log2m steps.

To justify the size of the routing procedure’s selection of qubits, observe that each time a pair of qubits
q, σ(q) are added to B1 and B2, at most O(poly(logm)) qubits are marked red. This is because each column
can only contain poly(logm) elements affected by the permutation by definition, so when the two columns
Col(q) and Col(σ(q)) are eliminated, there can only be poly(logm) pairs of qubits being routed into or out
of these columns. As there are k = O(mpoly(logm) elements in the permutation, the procedure routes
k/O(poly(logm)) elements into place per round, thus requiring k

k/O(poly(logm)) = O(poly(logm)) rounds

total.
Overall, each round uses at most 2 log2m steps to perform two compressions and log2m steps of 1D

routing, a single-step swap, and then at most 2 log2mmore steps to reverse the two compressions. This makes
the total steps generated O(poly(logm)) (5 log2+1) = O(poly(logm)). Thus, for any sparse permutation
σ, rtσ = O(poly(logm)) = O(poly(logN)).

[S1] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander
Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. A quantum
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