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We present an algorithm utilizing mid-circuit measurement and feedback that prepares Dicke
states with polylogarithmically many ancillas and polylogarithmic depth. Our algorithm uses only
global mid-circuit projective measurements and adaptively-chosen global rotations. This improves
over prior work that was only efficient for Dicke states of low weight, or was not efficient in both
depth and width. Our algorithm can also naturally be implemented in a cavity QED context using
polylogarithmic time, zero ancillas, and atom-photon coupling scaling with the square root of the
system size.

Preparing entangled states is a central goal in quan-
tum science. Dicke states are a key class of entangled
states [1]. The weight-w Dicke state for a system of n
spin- 12 particles is the symmetric equal-weight superposi-
tion of all configurations where w particles are spin down
and n − w are spin up. Such states are total angular
momentum eigenstates, and have featured prominently
in the study of quantum optics [1] and quantum mag-
netism [2]. More recently, in the context of quantum
information science, Dicke states have emerged as a po-
tential resource for quantum sensing [3–6] and quantum
algorithms [7–10]. Beyond these applications, it is also of
general interest to understand the capabilities and limi-
tations of shallow adaptive quantum circuits, for which
preparing such entangled states is a natural milestone.

Despite the theoretical simplicity of Dicke states, their
preparation remains an outstanding challenge, particu-
larly considering the limited coherence time and capabili-
ties of current, noisy intermediate-scale quantum (NISQ)
devices [11]. Protocols for preparing Dicke states have
been widely studied both in the abstract circuit model
and in various experimental setups; see for example
Refs. [7, 12–21] and [22–39], respectively. Among existing
circuits, the vast majority are only efficient for preparing
low-weight Dicke states; when the desired weight scales
with the system size, with w = n

2 being the hardest case,

these circuits have depths scaling as Ω(n1/4). We are
only aware of one prior work [17] that achieves a circuit
depth of O(log n) for all weights w, but it uses O(n2 log n)
ancilla qubits [40].

Here, we present a simple algorithm whose circuit im-
plementation is polylogarithmic in both depth and num-
ber of ancillas. Starting from the all spin-up state, we
perform the same rotation on each spin, followed by mea-
suring the collective magnetization, which projects onto
a Dicke state. If we measure the desired weight w, we are
done. If we measure some other w′, we rotate again by
some angle conditioned on w′, perform another measure-

ment, and repeat until we obtain w. The main technical
contributions of this work are the choice of the rotation
angles and the analysis of the expected number of itera-
tions to reach w.

The choice of rotation angles is motivated by a geomet-
ric phase-space representation of the Husimi-Q distribu-
tion as rings on a collective Bloch sphere. In this model,
collective rotations correspond to rotating the ring on the
sphere, and measurements correspond to projecting the
rotated ring onto a Dicke ring, as shown in Figure 1. We
choose the rotation angle so that the resulting ring has
maximal overlap with the ring for the desired Dicke state.

A central component of our protocol is the ability to
perform mid-circuit collective Jz measurements. No-
tably, this differs from measuring σz for each particle
individually. In our analysis of circuit complexity, we
use the fact that a collective Jz measurement can be
implemented in logarithmic depth [18, 41, 42]. On the
other hand, going beyond the circuit model, prior work in
cavity quantum electrodynamics has explored how such
measurements may be heralded by cavity photons or be
used in continuous-measurement-and-feedback schemes
to generate complex many-body entangled states [35, 43–
51]. Using these ideas, we also discuss a constant-time
implementation of this measurement in cavity systems.
The ability to efficiently prepare Dicke states using only
global operations opens the door to harnessing these
states for sensing tasks, where they offer a quantum-
enhanced precision that can achieve Heisenberg-limited
scaling, while offering robustness compared to other en-
tangled resources [39, 52].

Preliminaries.—Dicke states have a convenient rep-
resentation in terms of angular momentum eigenstates,
where the n qubits are viewed as spin- 12 particles. Let
Sk be the angular momentum operator for the kth qubit,
and let J =

∑n
k=1 Sk be the total angular momentum op-

erator. The Dicke states |j,m⟩ are simultaneous eigen-
states of J2 and Jz with quantum numbers j = n

2 and

ar
X

iv
:2

41
1.

03
42

8v
1 

 [
qu

an
t-

ph
] 

 5
 N

ov
 2

02
4



2

+)
+'

+"

#!" #!#

|+, 0⟩/$%&$'% 	|+, +⟩ /$%&&"'% 	|+, ((⟩ /$%&&#'% 	|+, ()⟩

Measure 
!! → #"

Measure 
!! → ##

Measure 
!! → 0

FIG. 1. A geometric representation of Algorithm 1 using the Husimi-Q distribution for the Dicke states, represented as rings
on the collective Bloch sphere. For each iteration i, the algorithm rotates the current state |j,mi⟩ by angle θmi about +y, so
that the corresponding ring is tangent to the ring of the target Dicke state, maximizing their overlap. For a target mt = 0,
the corresponding ring lies at the Bloch sphere equator. We project with a Jz measurement, and repeat until we measure the
desired state.

m ∈ {−j,−j + 1, . . . , j}, respectively. The Dicke state
|j,m⟩ is simply the uniform superposition of strings of
n = 2j bits with Hamming weight w = j −m.

We assume the following primitives for our model of
computation: (1) prepare |0⟩⊗n

states on demand, (2)
perform collective rotations (uniform single-qubit gates)
about the y-axis, and (3) perform Jz measurements.
Note that both collective rotations, expressed via the uni-
tary e−iθJy , and Jz measurements preserve permutation
symmetry, leaving the quantum number j = n

2 fixed.
Below, we present an experimental setup where a col-

lective Jz measurement can be implemented inO(1) time,
independent of n. Even without access to collective
measurements, we can implement a Jz measurement in
the ordinary circuit model, where such a measurement
is equivalent to a projective Hamming weight measure-
ment, with only log(n) overhead. One approach is to set
⌊log(n)⌋+ 1 ancillas to be the measurement register and
accumulate the Hamming weight into those qubits. Ref-
erence [41] gives an implementation of this in O(log2 n)
depth with no additional ancillas.

Algorithm.—Our goal is to prepare the Dicke state
|j,mt⟩ for a desired target value of mt, starting from
the initial product state |j, j⟩ = |0⟩⊗n

. The basic algo-
rithm is to perform a uniform rotation e−iθJy for some
angle θ and measure Jz. If m = mt is measured, we are
done; otherwise, we iterate this procedure, choosing sub-
sequent rotation angles θ based on the prior outcome of
the measurement of Jz.
A natural strategy for choosing the rotation angles θ is

to maximize the overlap of the current state with the tar-
get Dicke state on each iteration of the algorithm. Since
both the initial state and the state following each collec-
tive Jz measurement are of the form |j,m⟩, the task is to
choose θ = θmt,m to maximize the quantity∣∣djmt,m(θmt,m)

∣∣2 =
∣∣⟨j,mt|e−iθmt,mJy |j,m⟩

∣∣2, (1)

where djmt,m(θ) are known as elements of the Wigner d-
matrix. While the functional form of these matrices is
known, it is practically difficult to optimize for arbitrary

j, m, and mt without resorting to numerical methods.
However, we identify a relatively simple analytic choice
of angle that is nearly optimal—in the sense that we nu-
merically observe only a constant overhead in time com-
pared to the optimal angle—and for which we provide a
rigorous analysis of the running time.

To find a suitable set of angles θmt,m and to under-
stand the properties of our algorithm, we find it useful
to first visualize the Dicke states in terms of their phase
space distributions. In particular, consider the Husimi-Q
distribution Q(Ω) = |⟨ψ|Ω⟩|2/π for a state |ψ⟩, where
|Ω⟩ is a coherent spin state oriented along an axis n
with polar and azimuthal angles Ω = (θ, ϕ) [53]. In
terms of the Dicke states, these are defined via |θ, ϕ⟩ =
e−iϕJze−iθJy |j, j⟩. We can thus geometrically map the
Q distribution for a state onto the surface of a collec-
tive Bloch sphere with radius

√
j(j + 1). The Q dis-

tribution for the Dicke state |ψ⟩ = |j,m⟩ is Qm(Ω) =
1
π

(
2j

j+m

)
cos2(j+m) θ

2 sin
2(j−m) θ

2 . On the collective Bloch
sphere surface, as j → ∞, these correspond to narrow
horizontal rings of radius rm =

√
j(j + 1)−m2 located

at a height m above the equator for m ̸= |j|; for m = ±j,
this instead corresponds to a narrow Gaussian distribu-
tion at either pole [54, 55]. For a uniform rotation of
|j,m⟩ via e−iθJy , the Q distribution undergoes the analo-
gous rotation on the collective Bloch sphere. This results
in a “tilted ring” distribution, where the normal vector
to the plane of the ring forms an angle θ to the z-axis.

Within this geometric picture, a reasonable choice of
angle θmt,m is one that maximizes the overlap of the Q
distributions of the rotated state and the target Dicke
state in the limit of large j. This maximum occurs when
the corresponding ring distributions intersect at a point
sharing the same tangent vector, as shown in Fig 1. This
condition is met for rotation angle

θmt,m = arcsin [(mrmt
−mtrm)/r20]. (2)

In the End Matter, we argue that our algorithm gener-
ically prepares arbitrary target Dicke states in time
O(log(j−mt)). In particular, we predict that the running
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FIG. 2. (a) For j = 50 and mt = 0, comparison of the numerically computed θ∗m and the chosen θm = arcsin(m
j
). (b) For the

same parameters, transition probability matrix Pr[m→ m′] of the base algorithm without resets, which is symmetric about the
origin, i.e., Pr[−m→ −m′] = Pr[m→ m′]. Inset shows the transition probabilities for the m′ = 0 slice. (c) Expected running
time for preparing the mt = 0 state with various algorithms. Our algorithm exhibits similar logarithmic scaling using the
geometric angles (blue circles) as with the numerically optimal angles (purple squares), both of which are exponentially faster
than the polynomial running time with the naive approach of resetting at every step (red triangles). (d) Expected runtime of
our algorithm using the geometric angle for any target state. In all cases, the mt = 0 state takes the longest.

time decreases with increasing mt, which is consistent
with numerical calculations discussed below.

For the remainder of this paper, we focus on the case
mt = 0, corresponding to the Dicke state with maximal
interspin entanglement. Then Eq. (2) reduces to θ0,m =

arcsin(m/
√
j(j + 1)). For simplicity and with negligible

impact, we approximate this as θm := arcsin(m/j). We
see in Fig. 2(a) that our choice of θm is numerically close
to the optimal θ∗m that maximizes Eq. (1).

As shown in Fig. 2(b) and its inset, there are some m
for which |dj0,m(θm)|2 < |dj0,j(θj)|2, i.e., we have a lower
probability of reaching the m = 0 state with the optimal
rotation than if we start over with m = j and rotate by
π
2 . In these cases, we choose to reset all qubits to |0⟩
and restart from m = j. Empirically, we observe this to
hold for |m| ≳ j3/4. Though there is negligible difference
in the numerical runtime, we include this reset whenever
|m| > j1/2 for ease of the formal proof in the Supplement.
The final procedure is Algorithm 1.

Algorithm 1 Preparation of the mt = 0 Dicke state
using global rotations and Jz measurements

1: Initialize 2j qubits each to |0⟩, m = j
2: while m ̸= 0 do
3: Rotate by exp(−iθmJy)
4: m← measure Jz

5: if |m| >
√
j then

6: Reset all qubits to |0⟩, m = j

Runtime analysis.—In this section we sketch the proof
of the main result. The full calculations are provided in
the Supplemental Material. We consider each iteration
of the while loop to take unit time.

Theorem 1. Algorithm 1 prepares the Dicke state |j, 0⟩
in expected O(log j) time.

At a high level, our strategy is to show that ⟨|m(t)|α⟩,
the expectation of |m|α at time t for some constant α > 0,
decays to 0 exponentially in t. This means that, given any
ε > 0, we can achieve ⟨|m(t)|α⟩ < ε within logarithmic
time. Since the values of m are discretized, if ⟨|m(t)|α⟩ <
ε, then the probability of being in the m = 0 state after t
steps is Pr[m(t) = 0] > 1−ε, as shown in the supplement.
First, we show that starting from the initial m = j

state, we can obtain |m| ≤ √
j in expected O(1) time.

This follows since the measurement outcomes are binomi-
ally distributed around 0, and we obtain a measurement
within a standard deviation with constant probability.
Next, we use the stationary phase approximation to

show that, for 1 ≪ m ≤ √
j, we have the following

asymptotic expansion of the Wigner d-matrix element:

djm′,m(θm) =

√
2

πm
[1− (1− x)2]

−1/4×

cos
[
m(1−x) arccos(1−x)−m

√
1−(1−x)2 + π

4

]
+O(max{m2/j2, 1/mj}) (3)
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for 0 < m′ < 2m where x = m′/m, and the matrix
element is negligible for other m′.
We do not have asymptotic expressions for the Wigner

d-matrix elements for m >
√
j, but these are not needed

as we simply reset if we measure m >
√
j. However,

resetting tom = j drastically increases the expectation of
|m| at that time step. Nevertheless, at the next time step
we expect to recover a state with m ≤ √

j with constant
probability. Thus, we introduce a proxy variable M :=
min(|m|,√j + 1). This still has the desirable property
that if ⟨M(t)α⟩ < ε, then the probability of reaching
m = 0 after t steps is at least 1− ε.
Using the asymptotic expansion in Eq. (3), we show

that there exists a constant c < 1 such that, for every
m, we have

∑2m
m′=0|d

j
m′,m(θm)|2 Mα

M ′α < c, where M ′ is
defined as a proxy for m′ analogously toM . This implies

that ⟨M(t+1)α⟩
⟨M(t)α⟩ < c for each t, so ⟨M(t)α⟩ < ct⟨M(0)α⟩ =

ct(
√
j + 1)α. Therefore, for any desired ε > 0, we can

attain ⟨M(t)α⟩ < ε with

t =
α log(

√
j + 1) + log(1/ε)

log(1/c)
= O(log j) (4)

steps, as claimed.
Numerics.—Our algorithm can be understood as a

discrete-time Markov chain with 2j+1 states correspond-
ing to m ∈ {−j,−j + 1, . . . , j}. The transition probabil-
ities Pr[m → m′] = |djm′,m(θm)|2 can be arranged into a
stochastic matrix P , where Pab is the probability of tran-
sitioning from the ath to the bth state. A visualization
of P is shown in Fig. 2(b).
This is an absorbing Markov chain with the single ab-

sorbing state m = 0. The average number of steps be-
fore absorption can be calculated directly from P [56].
Figure 2(c) numerically compares the performance of Al-
gorithm 1 with variations in the choice of angles. In
particular, our geometrically motivated angles θm =
arcsin(m/j) perform slightly worse than the optimal an-
gles θ∗m, but exhibit the same logarithmic scaling for the
expected number of steps, with a relatively small con-
stant prefactor.

Finally, in Fig. 2(d), we examine the preparation of
Dicke states with arbitrary mt, utilizing our choice of
angles θm,mt in Eq. (2). For various fixed j, we observe
that this choice of angle results in an average number
of steps strictly less than that required for the mt = 0
case. We argue in the End Matter that this behavior is
expected, and that the corresponding average number of
steps scales as O(log(j −mt)).
Measurement methods.—Collective Hamming weight

measurements may be directly implemented on an ensem-
ble of n atomic qubits in which one of the two qubit states
is coupled to a single-mode cavity. We illustrate this by
considering three-level atoms as depicted in Fig. 3(a),
with states {|0⟩, |1⟩, |e⟩}, where |0⟩ and |1⟩ are the com-
putational subspace and the cavity dispersively couples
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FIG. 3. Two schemes to experimentally implement Hamming
weight measurements, illustrated for n = 8 qubits. (a) Probe
on the side-of-fringe in the dispersive cavity regime, with pho-
ton counting in transmission to determine cavity shift mag-
nitude (inset: level diagram for our detection scheme). (b)
Probe simultaneously at each possible resonance frequency in
the resonant cavity regime, with heterodyne transmission de-
tection to determine which frequency tone transmits.

|1⟩ to |e⟩, i.e. with a large detuning between the cavity
frequency and the atomic transition frequency between
|1⟩ and |e⟩. In the rotating frame of a bare cavity photon
(at lab frame frequency ωc), the atom-cavity interaction
Hamiltonian is

H = a†a

n∑
k=1

g2

δk
Pk (5)

where a† (a) creates (annihilates) a cavity photon, 2g
is the single-photon Rabi frequency, δk is detuning of
the kth atom from the cavity, and Pk = 1

2 (I − 2(Sk)z).
For our application, we set all detunings to be equal,

i.e. g2

δk
= χ for all k for some constant χ. Thus, the

total cavity shift is ∆a = χP, where P =
∑

k Pk, and
the lab-frame cavity transmission spectrum is T (ω) =

κ2

(ω−ωc−∆a)2+κ2 , where κ is the cavity linewidth and ω is

the angular frequency of the cavity probe.
Assuming that the maximum total cavity shift is suf-

ficiently small, i.e., χn ≪ κ, we can probe on the
side of the transmission peak, as depicted in Fig. 3(a),
taking ω − ωc = κ, to yield a Fisher information of

I(∆a) = 4κ2

(2κ2−2κ∆a+∆2
a)

2 for a single photon. The

Cramer-Rao bound then gives Var(∆̃a) ≥ 1
I(∆a)

=(
κ−∆a +

∆2
a

2κ

)2
∼ κ2 for any unbiased estimator ∆̃a

of ∆a. Averaging over N photons and taking P = ∆a

χ

gives Var(P̃ ) ∼ 1
N

(
κ
χ

)2
. We ensure that this variance is

O(1) by taking N ∼
(
κ
χ

)2
photons.

This scheme is straightforward, and the assumption of
small total cavity shift is easy to satisfy experimentally.
However, the number of photons required is quite large
because the differential signal between possible Hamming
weight measurements is, by assumption, small.
It is more experimentally advantageous to maximize

the differential signal regardless of atom number, maxi-
mizing the resolvability of neighboring Hamming weights.
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Therefore we may place the cavity on resonance with the
|1⟩ ↔ |e⟩ transition, which yields the bare cavity trans-
mission spectrum if all atoms are in |0⟩ and vacuum Rabi
spectra with splitting 2g

√
n1 for Hamming weights n1.

The task of Hamming weight measurement is then the
task of determining which of the possible spectra is real-
ized by the cavity.

To this end, we propose a multichromatic probe laser
with a spectral peak at each of the possible vacuum Rabi
resonances, as depicted in Fig. 3(b), and power in each
peak chosen to yield equal transmitted photon number.
In the fully resolved limit, this laser probes each Ham-
ming weight possibility in a time and with a number of
transmitted photons which is independent of the total
atom number. The frequency of the cavity transmission
signal, which carries the desired Hamming weight infor-
mation, may be revealed using standard optical hetero-
dyne techniques.

The principal cost of this scheme is the requirement
that the atom-cavity coupling g is Ω(

√
n), to be able

to resolve neighboring peaks that are g
√
n− g

√
n− 1 ∼

g/
√
n apart. Additionally, while not a fundamental lim-

itation, the number of tones and bandwidth to produce
the multichromatic probe laser and perform optical het-
erodyne measurement scale linearly with n.
Discussion.—In this paper, we have shown an algo-

rithm for preparing Dicke states with depth and width
logarithmic in the number of qubits. The algorithm is
compatible with existing experimental platforms, using
only sequences of global single-qubit rotations and collec-
tive Hamming weight measurements. We have proposed
an experimental framework in which the collective mea-
surements can be performed in constant depth, leading
to a log-depth circuit. Even in the absence of collective
measurements, using existing Hamming weight protocols
gives a circuit for preparing Dicke states in polylog depth,
outperforming several recent works in the regime where
the desired weight is linear in the number of qubits. This
is also the first such algorithm that only uses logarithmi-
cally many ancilla qubits.

Our results illustrate the power of utilizing a phase
space approach based on the Q distribution, which af-
fords an intuitive geometric understanding of our algo-
rithm and, crucially, provides an effective choice of ro-
tation angles for our algorithm. These nearly optimal
parameters alleviate the need for any numerical optimiza-
tion in our approach, and also enable an analytic study
of the asymptotic properties of our algorithm.

The cavity system used to implement our collective
measurements also holds potential for further applica-
tions. The small number of expected iterations makes
this suitable for near-term implementation. Even if the
qubits decohere, it is inexpensive to simply reset the ex-
periment and retry.

In this work, we were only concerned with Hamming
weight measurements, which arise from setting all de-

tunings to be equal. A natural extension is to relax the
assumption that all atoms couple to the cavity equally,
allowing for a richer class of measurements. For ex-
ample, we may obtain a superposition of Dicke states
|j,m⟩+|j,−m⟩ (which has metrological applications [52])
by probing at the midpoint frequency.
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End Matter—Geometric argument

In this End Matter, we give the details of a geometric argument that Algorithm 2 reaches the |j,mt⟩ Dicke state
in O(log(j −mt)) iterations. We let mt ≥ 0 without loss of generality as the mt ≤ 0 case is symmetric via a global
flip. For simplicity, we do not include a reset condition analogous to that in Algorithm 1 as it is not needed for our
argument.

Algorithm 2 Preparation of arbitrary |j,mt⟩ Dicke state using global rotations and Jz measurements

1: Initialize 2j qubits each to |0⟩, m = j
2: while m ̸= mt do
3: Rotate by exp(−iθmt,mJy), where θmt,m = arcsin [(mrmt −mtrm)/r20]
4: m← measure Jz

We describe the expected behavior within the geometric picture, whose relevant quantities are shown in Fig. 4(a).
The strategy is similar to the proof of Theorem 1. First, we use the geometric model to derive a coarse-grained
expression for the transition probabilities in the large-j regime. Within this model, we compute the transition
probabilities Pr[m → m′] as the overlap of the Q distribution ring of |j,m′⟩ with the rotated ring from |j,m⟩. Then
we show that, for some constant α > 0, the expected deviation ⟨(m′ −mt)

α⟩ decays exponentially in time. The
conclusion then follows in the same manner.

We begin by computing the arc length of a circular segment a distance a from the center of a ring of radius r, as
shown in Fig. 4(b). This is equivalently described by the arc length of the circular sector of angular width θ, defined
such that cos(θ/2) = a/r. The corresponding arc length is then s = 2r arccos(a/r), and we have the (unsigned)
infinitesimal arc length

ds =
2 da√

1− (a/r)2
. (6)

Now, consider a horizontal ring at height m above the origin (with radius rm), and rotated by an angle θmt,m about
+y so that the bottom edge of the rotated ring lies at height mt; θmt,m is defined via Eq. (2). For the differential arc
length of this rotated ring, we have the relation a = (m′ −mt)/ sin θmt,m − rm, so

ds =
2rm dm′

(m′ −mt)
√
2rm sin θmt,m/(m

′ −mt)− 1
. (7)

This expression is defined in the range mt < m′ < mt + 2rm sin θmt,m.

a)

! "#

$

b)

+'
(!

( !"!,"

+&

""

#

(′

FIG. 4. (a) Geometry of the (rotated) Dicke states, idealized as rings on the collective Bloch sphere, corresponding to the
large-j limit of the Husimi-Q distribution. We show the ring corresponding to |j,m⟩ (green) before (dotted) and after (solid)
a rotation by an angle θmt,m. We also show the ring for the corresponding target state |j,mt⟩ (purple). Other variables m′

and a used in our calculation of the probability distribution function are shown in red. (b) A two-dimensional cross section of
a Dicke ring with the relevant parameters for calculating arc length.
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In the large j limit, where the Q-distribution of the state e−iθmt,mJy |j,m⟩ is well represented by this tilted ring,
we assume that the probability to obtain Jz = m′ is proportional to the arc length lying between m′ and m′ + dm′.
Properly normalizing, we thus have the continuous probability distribution function (pdf)

p(m′,m;mt) =
1

πrm sin θmt,m{[(m′ −mt)/(rm sin θmt,m)][2− (m′ −mt)/(rm sin θmt,m)]}1/2
(8)

for mt < m′ < mt + 2rm sin θmt,m, and assume zero probability for m′ outside this range. We note that while the
integral of this expression converges, the pdf diverges at mt and mt+2rm. This indicates that the overlap probability
is maximal at these points, and we thus utilize the set of rotation angles θmt,m for preparing target Dicke states
|j,mt⟩.
This offers a coarse-grained way to predict moments of Jz. In particular, Eq. (8) takes the form of a beta distribution,

with moments

⟨(m′ −mt)
α | m⟩ =

∫ mt+2rm sin θmt,m

mt

(m′ −mt)
αp(m′,m;mt) dm

′ (9)

=
B(α+ 1/2, 1/2)

π
(2rm sin θmt,m)

α
(10)

for beta function B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and gamma function Γ(x). Here, ⟨(m′ −mt)
α | m⟩ is the expectation

of (m′ −mt)
α, conditional on the previous state being |j,m⟩.

For 0 < α < 1, we have ⟨(m′ −mt)
α | m⟩ < c(m −mt)

α for some j-independent constant 0 < c < 1. To see this,
we first note that

B(α+ 1/2, 1/2)

π

(2rm sin θmt,m

m−mt

)α
≤ B(α+ 1/2, 1/2)

π
2α, (11)

using the fact that r0 ≤ rmt
≤ rm for all m such that m ≥ mt, m ≤ j. Now let f(α) = ln[B(α + 1/2, 1/2)2α/π].

We have f ′′(α) = ψ(1)(α+ 1/2)− ψ(1)(α+ 1), where ψ(n)(α) = d(n+1) ln Γ(α)/d(n+1)α is the polygamma function of
order n. From the series representation ψ(n)(α) = (−1)n+1n!

∑∞
k=0(α + k)−(n+1) [58], we see that ψ(1)(α) is strictly

decreasing for all α > 0, since ψ(2)(α) < 0. This implies that f ′′(α) > 0, so f(α) is convex for α > 0. Now, f(0) = 0
and f(1) = 0, so for 0 < α < 1 we have f(α) < 0 and the right-hand side of Eq. (11) is strictly upper bounded by 1.
For any fixed α in this range, we may therefore select a (j-independent) constant c < 1 such that Eq. (10) is strictly
upper bounded by c(m−mt)

α.
Thus ⟨(m′ −mt)

α⟩ decays by a factor of c at each step of Algorithm 2. Let ⟨(m′ −mt)
α⟩k denote the expectation

after k steps. We initially have ⟨(m′ −mt)
α⟩0 = (j −mt)

α, so by induction ⟨(m′ −mt)
α⟩k < ck(j −mt)

α. Now, if we
require ⟨(m−mt)

α⟩n < ε for some ε > 0, this can be achieved in

n >
α ln(j −mt) + ln(1/ε)

ln(1/c)
(12)

steps, or n = O(log(j −mt)), as claimed.
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Supplemental Material: Asymptotic expansions of Wigner d-matrices

In this Supplement, we rigorously analyze the time to prepare the mt = 0 Dicke state. We proceed via three
lemmas.

Lemma 1. Starting from m = j, we can obtain a state with |m′| ≤ √
j in expected O(1) time.

Proof. From m = j, we rotate by θj =
π
2 , which gives the state

e−i(π/2)Jy |j, j⟩ =
( |0⟩+ |1⟩√

2

)⊗n

=
1

2n/2

∑
x∈{0,1}n

|x⟩ . (13)

The probability of measuring weight w is
(
n
w

)
/2n, which is a binomial distribution with mean n

2 and variance n
4 . If

|m′| > √
j, then the difference between w and the mean is of the same order as the standard deviation, so that the

probabilities of those instances sum up to a bounded O(1) probability, independent of n. In such a case, we simply
reset and try again. The expected number of attempts to succeed is O(1).

Lemma 2. In the regime m = ω(1), m = O(
√
j), and 0 < m′ < 2m, we have

djm′m(βm) =

√
2

πm

cos
[
m(1− x) arccos(1− x)−m

√
1− (1− x)2 + π

4

]
[1− (1− x)2]

1
4

+O(max{m2j−2,m−1j−1}), (14)

where βm = arcsin(m/j) and x = m′/m.

Proof. We start by rewriting the Wigner d-matrix element as the following integral (see Eq. (11) in [59]):

djm′m(βm) =
(−1)m

′−m

2π

[
(j +m′)!(j −m′)!

(j +m)!(j −m)!

] 1
2

×
∫ 2π

0

(
ei

ϕ
2 cos

βm
2

+ ie−iϕ
2 sin

βm
2

)j−m(
e−iϕ

2 cos
βm
2

+ iei
ϕ
2 sin

βm
2

)j+m

eim
′ϕ dϕ . (15)

By shifting the integration variable ϕ→ ϕ+ π
2 , we can equivalently write this as

djm′m(βm) =
(−1)m

′−m

2π

[
(j +m′)!(j −m′)!

(j +m)!(j −m)!

] 1
2

×
∫ 2π

0

(
cos

βm
2

+ e−iϕ sin
βm
2

)j−m(
cos

βm
2

− eiϕ sin
βm
2

)j+m

ei(m
′−m)ϕ dϕ . (16)

We now focus on the integrand, which can be split into the product of a positive magnitude and a phase part:

djm′m(βm) =
(−1)m

′−m

2π

[
(j +m′)!(j −m′)!

(j +m)!(j −m)!

] 1
2
∫ 2π

0

g(ϕ)eif(ϕ) dϕ , (17)

g(ϕ) = exp
[j −m

2
log(1 + sinβm cosϕ) +

j +m

2
log(1− sinβm cosϕ)

]
, (18)

f(ϕ) = (m′ −m)ϕ− (j −m) arctan
sinϕ tan βm

2

1 + cosϕ tan βm

2

− (j +m) arctan
sinϕ tan βm

2

1− cosϕ tan βm

2

. (19)

We choose the rotation angle βm = arcsin(m/j) according to the optimal angle predicted by the geometric picture,
as discussed in the main text.

In order to make further approximations in the j → ∞ limit, we first consider the derivatives of the functions g(ϕ)
and f(ϕ) with respect to ϕ:

dg(ϕ)

dϕ
= −g(ϕ) sinβm sinϕ

j sinβm cosϕ+m

1− sin2 βm cos2 ϕ
, (20)

df(ϕ)

dϕ
= −(m−m′)− (j −m) tan βm

2 (cosϕ+ tan βm

2 )

1 + (tan βm

2 )2 + 2 cosϕ tan βm

2

− (j +m) tan βm

2 (cosϕ− tan βm

2 )

1 + (tan βm

2 )2 − 2 cosϕ tan βm

2

. (21)
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For m,m′ = ω(1) and m = O(
√
j), the magnitude function g(ϕ) varies much slower (by an extra factor of sinβm =

m/j) relative to the phase function f(ϕ), and we can apply the stationary phase approximation to the integral in
Eq. (16). In this regime, noting that sinβm = m/j, the derivative of the phase function can be well approximated as

df(ϕ)

dϕ
= −(m−m′)−m cosϕ[1 +O(m2j−2)], (22)

so that, under the stationary phase approximation (see Sec. 3 of Ref. [60]), we have that in the j → ∞ limit, with
m,m′ = ω(1) and m = O(

√
j), the following equation holds:

lim
j→∞

m,m′=ω(1)
m=O(

√
j)

∫ 2π

0

g(ϕ)eif(ϕ) dϕ =
∑

ϕs=π±arccos m−m′
m

g(ϕs)e
if(ϕs)±iπ

4

√√√√ 2π∣∣∣d2f(ϕ)
dϕ2

∣∣∣
ϕ=ϕs

+O(max{m2j−2,m−1j−1}). (23)

Substituting Eq. (23) back into Eq. (17), we obtain the desired approximate asymptotic expression for the Wigner
d-matrix in this regime:

lim
j→∞

m,m′=ω(1)
m=O(

√
j)

djm′m(βm) =

√
2
π

[
j2−m′2

j2−m2

] 1
4

[m2 − (m−m′)2]
1
4

cos

[
(m−m′) arccos

m−m′

m
−
√
m2 − (m−m′)2 +

π

4

]

+O(max{m2j−2,m−1j−1}). (24)

Rewriting with x = m′/m gives the result.

Note that, if m′ < 0 or m′ > 2m, then Eq. (22) does not have a solution for ϕ ∈ [0, 2π], meaning that the d-matrix
element is negligible up to leading order.

As a corollary of Lemma 2, in the regime where m = ω(1) and |m′ −m| = O(1), we have

lim
j→∞

djm′m(βm) = Jm−m′(m), (25)

where Jℓ(x) is the Bessel function of the first kind. As the zeros of the Bessel function are transcendental [61], we see
that the asymptotic transition probabilities from m to m′ are nonzero in this regime with |djm′m(βm)|2 = Θ(1).

Define the random variable M by

M =

{
m |m| ≤ √

j√
j + 1 |m| > √

j.
(26)

This is a proxy for m. We also introduce M ′ as a function of m′ in a similar fashion, as the reset drastically increases
m′ to j, making the expectations of ⟨m′α⟩ suboptimal for the runtime analysis.

Lemma 3. There exists a constant c < 1 and positive exponent 0 < α < 1 such that, for every m = ω(1) and m ≤ √
j,∑

m′

∣∣djm′m(βm)
∣∣2M ′α

Mα
< c. (27)

Proof. Now consider

∑
m′

P(m→ m′)
M ′α

Mα
=

(1−∑m′<
√
j |d

j
m′m(βm)|2)(√j + 1)α +

∑
m′<

√
j |d

j
m′m(βm)|2m′α

mα
. (28)

We can make use of the asymptotic expression in Eq. (24) to simplify this expression. We first note that, for j → ∞
with m,m′ = ω(1) and m = O(

√
j), the reset probability is given by

1−
∑

m′<
√
j

|djm′m(βm)|2

= 1− 1

π

∑
m′<

√
j

{
1 + sin

[
2(m−m′) arccos m−m′

m − 2
√
m2 − (m−m′)2

]√
m2 − (m−m′)2

+O(max{m2j−2,m−1j−1})
}
. (29)
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In the large-j limit, we can further approximate this expression as an integral: making use of Eq. (14), we have
(henceforth still under the conditions j → ∞, m,m′ = ω(1), and m = O(

√
j))

1−
∑

m′<
√
j

|djm′m(βm)|2

= 1−
∫ 2

0

H

(√
j

m
− x

)
1 + sin

[
2m(1− x) arccos(1− x)− 2m

√
1− (1− x)2 + π

2

]√
1− (1− x)2

dx

π
+O(max{m2j−

3
2 ,m−1j−

1
2 })

= 1−
∫ 2

0

H

(√
j

m
− x

)
dx

π
√
1− (1− x)2

+O(max{m2j−
3
2 ,m−1j−

1
2 }). (30)

Here, H(·) denotes the Heaviside step function. Now we divide the analysis of Eq. (28) into two cases. First, if

m <
√
j/2, then the step function is always 1, so the integral is

∫ 2

0
dx

π
√

1−(1−x)2
= 1, and the reset probability in

Eq. (30) is negligible. In this case, Eq. (28) gives

m <
√
j/2 :

∑
m′

P(m→ m′)
m′α

mα
=

∑
0≤m′≤2m

|djm′m(βm)|2m
′α

mα
+O(max{m2j−

3
2 ,m−1j−

1
2 }). (31)

Substituting Eq. (14) into the above equation, we obtain

m <
√
j/2 :

∑
m′

P(m→ m′)
m′α

mα

=

∫ 2

0

xα
1 + sin

[
2m(1− x) arccos(1− x)− 2m

√
1− (1− x)2 + π

2

]√
1− (1− x)2

dx

π
+O(max{m2j−

3
2 ,m−1j−

1
2 })

=

∫ 2

0

xα dx

π
√
1− (1− x)2

+O(max{m2j−
3
2 ,m−1j−

1
2 }). (32)

We can explicitly compute the integral on the right-hand side as∫ 2

0

xα dx

π
√

1− (1− x)2
=

1

π

∫ π

0

(1− cos θ)α dθ =
2α

π

∫ π

0

sin2α
θ

2
dθ =

2α

π
B(α+ 1

2 ,
1
2 ), (33)

where B(·, ·) denotes the beta function.

Noting that sin2α θ
2 < ( θ2 )

2α for all θ > 0, we can upper bound Eq. (33) as

2α

π

∫ π

0

sin2α
θ

2
dθ <

2α

π

∫ π

0

θ2α

22α
dθ =

π2α

2α(2α+ 1)
. (34)

Expanding the function π2α

2α − (2α+ 1) in a Taylor series, it is straightforward to show that this expression is strictly
smaller than 0 for α ∈ (0, 0.1), so for such values of α, π2α/[2α(2α+ 1)] < 1, and therefore

m = ω(1), m <
√
j/2 :

∑
m′

P(m→ m′)
m′α

mα
< 1. (35)

(Alternatively, we show in the End Matter that Eq. (33) is at most 1 for all α ∈ (0, 1).)

In the other regime m >
√
j/2, we compute the contribution from the reset separately. In this case, from Eq. (30),

we can write the reset probability as

√
j ≥ m >

√
j/2 : 1−

∑
m′<

√
j

|djm′m(βm)|2 = 1−
∫ √

j
m

0

dx

π
√
1− (1− x)2

+O(max{m3j−2, j−1}) (36)

=
1

2
− arcsin(

√
j

m − 1)

π
+O(m3j−2), (37)
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so that, in this regime, we can derive an upper bound for Eq. (28) as

∑
m′

P(m→ m′)
m′α

mα
<

(
1

2
− arcsin(

√
j

m − 1)

π
+O(m3j−2)

)
(
√
j + 1)α

mα
+

∑
m′<

√
j

|djm′m(βm)|2m
′α

mα

=

(
1

2
− arcsin(

√
j

m − 1)

π
+O(m3j−2)

)(√
j

m

)α(
1 +O(j−

1
2 )
)

+

∫ √
j

m

0

xα
1 + sin

[
2m(1− x) arccos(1− x)− 2m

√
1− (1− x)2 + π

2

]√
1− (1− x)2

dx

π
+O(m3j−2)

=

(
1

2
− arcsin(

√
j

m − 1)

π

)(√
j

m

)α

+

∫ √
j

m

0

xα dx

π
√

1− (1− x)2
+O(m3−αj−2+α

2 )

=

(
1

2
− arcsin(

√
j

m − 1)

π

)(√
j

m

)α

+
1

π

∫ π−arccos(
√

j
m −1)

0

(1− cos θ)α dθ +O(m3−αj−2+α
2 )

=
arccos(

√
j

m − 1)

π

(√
j

m

)α

+
2α

π

∫ π−arccos(
√

j
m −1)

0

sin2α
θ

2
dθ +O(m3−αj−2+α

2 )

<
arccos(

√
j

m − 1)

π

(√
j

m

)α

+

[
π − arccos(

√
j

m − 1)
]2α+1

π(2α+ 1)2α
+O(m3−αj−2+α

2 ). (38)

We can show that the right-hand side of Eq. (38) is again asymptotically upper bounded by a number smaller than

1. Specifically, setting arccos(
√
j

m − 1) = ζ, we can rewrite the first two terms in Eq. (38) as

ζ

π
(1 + cos ζ)

α
+

(π − ζ)
2α+1

π(2α+ 1)2α
, ζ ∈

(
0,
π

2

)
. (39)

For α ∈ (0, 1), the function in Eq. (39) monotonically decreases as ζ increases, so that

ζ ∈ (0,
π

2
) :

ζ

π
(1 + cos ζ)

α
+

(π − ζ)
2α+1

π(2α+ 1)2α
≤ π2α

(2α+ 1)2α
. (40)

From our upper bound on Eq. (34), this is at most 1 for α ∈ (0, 0.1), so we obtain

√
j ≥ m >

√
j/2 :

arccos(
√
j

m − 1)

π

(√
j

m

)α

+

[
π − arccos(

√
j

m − 1)
]2α+1

π(2α+ 1)2α
< 1 ∀α ∈ (0, 0.1). (41)

Further, noting that m ≤ √
j, we see that in the asymptotic j → ∞ limit, the last term in Eq. (38), O(m3−αj−2+α

2 ),
becomes o(1), as

m3−αj−2+α
2 =

(
m√
j

)3−α

j−
1
2 ≤ j−

1
2 . (42)

Thus, we have shown that, in the asymptotic limit j → ∞, the following inequality holds for every m satisfying
m = ω(1) and m = O(

√
j): ∑

m′

P(m→ m′)
m′α

mα
< 1, ∀α ∈ (0, 0.1). (43)

Choosing any particular α ∈ (0, 0.1) gives the result.

Proof of Theorem 1. At time 0, we have m = j with probability 1, so ⟨[M(0)]α⟩ = (
√
j + 1)α, where we define M(t)

as a function of m at time step t as per Eq. (26). By Lemma 3, we have ⟨[M(t+1)]α⟩
⟨[M(t)]α⟩ < c for each t with M(t) = ω(1),

so

⟨[M(t)]α⟩ < ct⟨[M(0)]α⟩ = ct(
√
j + 1)α, (44)
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unless there exists a t′ ≤ t such that M(t′) = O(1). Making use of the above inequality, for any desired ε > 0, we can
attain either ⟨[M(t)]α⟩ < ε or M(t) = O(1) in time

tε =
α log(

√
j + 1) + log(1/ε)

log(1/c)
= O(log j). (45)

In the former case, we have

t ≥ tε : ε > ⟨[M(t)]α⟩ ≥ Pr[M(t) = 0] · 0 + Pr[M(t) ≥ 1] · 1 = Pr[M(t) ≥ 1] = 1− Pr[M(t) = 0], (46)

so that Pr[M(t) = 0] > 1−ε. In the latter case, i.e., if we haveM(t) = O(1), from Eq. (25) we conclude that any such
state has a Θ(1) transition probability to reach the m = 0 state. Thus in expectation repeating this O(log j)-step
procedure a constant number of times will yield the m = 0 state.
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