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Supplementary Text

Modeling a TMD monolayer as a Lorentz oscillator

The strong modulation of the refractive index of a TMD monolayer upon driving the excitonic

resonance can be well described by a Lorentz oscillator model. By fitting the reflectance spectrum

of each monolayer-hBN heterostructure (before stacking) to such a model, using a Transfer Matrix

Method (TMM) formalism (as described in the Methods section), we extract the real and imaginary

parts of the refractive indices of the top and bottom monolayers. We also use the decay parameters

of the TMD mirror reported by Scuri et al. (26) to estimate the performance of a device made with

two such monolayers. We use their parameters as they reported a monolayer with the best optical

quality and highest reflectance. This anticipates what one can expect from a TMD cavity made of

monolayers of superior optical quality. In this theoretical formalism, the susceptibility of the TMD

monolayer is given by

𝜒(𝜔) = −
𝑐

𝜔0𝑑

Γ𝑟
(𝜔 − 𝜔0) + 𝑖Γ𝑛𝑟/2

, (S1)

where 𝜔0 is the excitonic resonance frequency, 𝑑 (= 0.7 nm) is the thickness of a TMD monolayer,

and Γ𝑟 and Γ𝑛𝑟 are the radiative and non-radiative decay rates, respectively. Γ𝑟 is the rate at which

an exciton in the monolayer recombines by emitting a photon, whereas, Γ𝑛𝑟 is the non-radiative

recombination rate via processes such as phonon scattering. The frequency-dependent complex

refractive index of the TMD monolayer is then

𝑛TMD(𝜔) =

√
𝑛2

bulk
(𝜔) −

𝑐

𝜔0𝑑

Γ𝑟
(𝜔 − 𝜔0) + 𝑖Γ𝑛𝑟/2

, (S2)

where 𝑛bulk is the refractive index of the bulk TMD material (and hence without the excitonic

resonance).

From the fittings (as shown in Fig. 1 in the main text) we obtain the following values:

Top monolayer: Γ𝑟 = 2.45 meV, Γ𝑛𝑟 = 0.5 meV, 𝜆0 = 756.2 nm.

Bottom monolayer: Γ𝑟 = 2.15 meV, Γ𝑛𝑟 = 1 meV, 𝜆0 = 756.2 nm.

For comparison, the decay rates of the monolayer reported in Scuri et al. (26): Γ𝑟 = 4.38 meV,

Γ𝑛𝑟 = 0.2 meV.

Although the resonant wavelength of the monolayer TMD mirror demonstrated in Scuri et

al. (26) differs from our two monolayers, for theoretical comparison purposes, we assume it has



the same resonance wavelength, i.e., 𝜆0 = 756.2 nm. In the following sections, we use the obtained

refractive indices of the aforementioned three monolayers to study different cavity geometries. For

the TMM and FDTD simulations, we use the refractive indices obtained from Ref. (71), which at

the exciton resonance wavelength correspond to nhBN(756.2 nm) ≈ 2.1, nSiO2
(756.2 nm) ≈ 1.5,

nSi(756.2 nm) ≈ 3.7.

A 𝜆0/2 cavity

In the most simplistic scenario, one can imagine a cavity formed by two TMD monolayers separated

by air. From the physics of Fabry-Perot cavities, we intuitively expect to have the best optical con-

finement when the spacing between the TMD monolayers is an integer factor of half of the exciton

resonance wavelength 𝜆0 because at this energy the reflectivity from the TMD is maximized. In Fig.

S1A, we simulate the spectral reflectance 𝑅 for different cavity thicknesses. For our simulations,

we consider the excitonic resonance measured for the individual monolayers (𝜆0 = 756.2 nm), and

decay constants Γr = 4.38 meV, and Γnr = 0.2 meV. The figure shows an intriguing dependence

of the confined mode for variable cavity thickness: the linewidth reduces as one approaches the

condition of 𝜆0/2 ≈ 378.1 nm (marked with a white dashed line). Generally, the energy of the

mode is set by the TMD separation, while its quality factor is determined by Γnr and the reflectivity

(which is maximum at the exciton resonance). Interestingly, as one approaches the 𝑛𝜆/2 condition

(with 𝑛 ∈ N), the mode becomes optically inaccessible. This can be understood in terms of the

mode’s radiative lifetime: for a TMD cavity with mirrors separated by 𝑛𝜆/2, the radiative lifetime

is maximum and hence, a small Γnr is enough to completely dampen the confined light. Therefore,

this dark cavity mode is completely decoupled from the external electromagnetic fields, making it

impossible to probe with an external source (58).

In this context, the disappearance of the cavity mode from the reflectance spectrum is expected

to be independent of Γnr when the thickness of the cavity is exactly 𝜆0/2, as observed in Fig. S1B.

This is similar to an uncommon Fabry-Perot cavity with non-zero absorption and zero transmission.

For our system, this particular behavior originates in the excitonic nature of the mirrors. For this

reason, regardless of the non-radiative losses in the material, the mode will be optically dark at the

𝜆0/2 separation. This analysis was used to engineer the cavity thickness, making it slightly different



from 𝜆0/2 to probe the cavity mode externally, as shown in the main text.

Role of the hBN thickness

The thickness of hBN plays a crucial role in the reflectance spectrum of both a TMD monolayer

and the cavity heterostructure due to the interference of light from TMD and the background. To

investigate the effect of hBN thickness on monolayer devices, we simulate three scenarios with

different thicknesses of the top (𝑑𝑡) and bottom (𝑑𝑏) hBN encapsulations in an hBN/TMD/hBN het-

erostructure stacked on a Si substrate with 285 nm SiO2, as used in experiments. In our simulations,

we consider an excitonic resonance at 756.2 nm, and decay constants Γr = 4.38 meV, and Γnr = 0.2

meV. As shown in Fig. S2(A-C), depending on the thickness of hBN, the sample reflectance spectra

can have different Fano-lineshapes or a reflectance peak. For the stacking of the cavity device, we

chose the hBN thickness such that the exciton resonance manifests as a simple reflectance peak

to avoid the complex lineshape and facilitate the identification and characterization of the optical

confined mode.

Next, we simulate the effect of hBN thickness on the reflectance spectrum of a cavity formed

by stacking two monolayers on a similar substrate. The results of the simulations are shown in Fig.

S2(D-F). Once again, we observe that different thicknesses of the top (𝑑𝑡), middle (𝑑𝑚), and bottom

(𝑑𝑏) hBN can drastically alter the reflectance spectrum of the cavity. The calculated reflectance

spectra of samples with our designed device structures have minimal reflectance from the hBN

around the cavity resonance frequency, as shown in panel F, making the cavity mode clearly

identifiable.

From Fig. S2 we can conclude that the total thickness of hBN in the heterostructure, i.e.,

𝑑𝑡 +𝑑𝑚 +𝑑𝑏, dictates the shape of the reflection spectrum. However, the distribution of the thickness

of hBN is also crucial for the observation of the cavity mode. To see that, we fix the total thickness

of hBN to 240 nm, and simulate different scenarios, as shown in Fig. S3. Interestingly, one can

always observe the cavity mode in reflectance except in the scenario when the spacing between

the two TMD monolayers is exactly half of the wavelength of the excitonic resonance in hBN,

i.e., 𝑑𝑚 = 𝜆0/2𝑛hBN ≈ 180 nm, where 𝑛hBN ≈ 2.1 is the refractive index of hBN at the resonance

wavelength. As discussed above, this happens because the electric field intensity of the cavity mode

is zero at the position of the TMDs when 𝑑𝑚 is exactly equal to 𝜆0/2𝑛.



Interplay between Γr and Γnr

The radiative (Γr) and non-radiative (Γnr) decay rates determine the peak reflectance of a monolayer,

critically affecting its spectrum. Fig. S4 shows how Γr and Γnr determine the absolute reflectance

of the monolayer, i.e., the quality of the mirror. In panel A, we use a fixed radiative decay rate

of Γr = 4.38 meV and vary the non-radiative decay rate. We observe that the monolayer acts as a

better mirror if it has lower values of Γnr. At high values of Γnr, we only observe the absorption

dip, and the reflectance peak almost disappears. Intuitively, with increasing non-radiative rates, the

amount of light lost via non-radiative processes increases, which decreases the sample reflectance.

This leads to the disappearance of the reflectance peak at higher values of Γnr.

Panel B shows the case where the value of Γnr is fixed to 0.2 eV and Γr varies. Once again, we

observe that with increasing Γr the peak reflectance increases and broadens. This can be understood

as a reduction of the exciton lifetime (but the recombination is always radiative).

Finally in panel C, both Γr and Γnr are varied, but the ratio Γr/Γnr is kept constant. In this case,

the maximum and minimum value of reflectance of the TMD monolayer is constant and only the

linewidth of the reflectance peak is modified.

From all three scenarios in Fig. S4, we also observe that increasing either of the decay rates

also increases the linewidth of the reflectance spectrum as the linewidth of an emitter scales

proportionally with the total decay rate. In summary, the higher Γr is and the lower Γnr is, the more

similar the ML mirror is to an ideal perfect mirror.

Simulation of different cavity configurations

We use TMM and FDTD techniques to simulate different cavity configurations. We start by

simulating the reflectance spectrum and the spatial intensity profile when a TMD monolayer mirror

is illuminated by a plane wave excitation (Fig. S5). We then simulate the case where two TMD

monolayer mirrors are separated by air (Fig. S6). We also calculate the Q-factor and effective mode

length for the resulting cavity. After that, we simulate the case of an hBN-TMD heterostructure

consisting of two TMD monolayers separated by hBN in the middle and encapsulated by hBN on

the top and bottom (Fig. S7). Finally, we simulate the realistic scenario when such a heterostructure

is placed on a Si substrate with a 285 nm thick layer of SiO2 on top (Fig. S8).



The reflectance spectra of the devices are calculated by TMM and the 1D FDTD method, by

illuminating the device with a broadband plane wave source and monitoring the reflected light.

The cavity field profile, effective mode length, and Q-factor are simulated when exciting the cavity

mode with a broadband dipole through FDTD simulations. For effective mode length calculations,

we used the definition

𝐿eff =

(∫
|𝐸 |2𝑑𝑥

)2∫
|𝐸 |4𝑑𝑥

, (S3)

where the integration is performed over the hBN/TMD/hBN/TMD/hBN heterostructure. This quan-

tity is then a measure of the distribution of the electric field intensity in the nano-cavity. It is equal

to the physical thickness of the device for non-resonant wavelengths (constant intensity along the

full structure) and becomes reduced if there is a localization of the electromagnetic field.

Comparing panel B of figures S6 to S8, one can notice the important role of the substrate in

determining the enhancement of the electric field inside the cavity volume. In the three cases, the

simulated MoSe2 monolayers have the same Γr and Γnr, but as it can be observed, the enhancement

of the electric field is very different. Although we used the typical SiO2 on Si substrate for this work,

perspective future devices should consider a preliminary engineering of the substrate to maximize

the enhancement of the electric field in the cavity.

Quality factor and effective mode length

The quality factor and mode length of the cavity are important parameters, as they control the

coupling efficiency (𝑔) of an emitter inside the cavity as directly given by

𝑔 = −𝑒 · �𝑑

√
𝜔

2ℏ𝜖0𝑉mode
∼

√
1

𝑉mode
, (S4)

where 𝑒 is the polarization unit vector of the cavity mode at the position of the emitter, �𝑑 is the

dipole moment of the emitter, 𝑉mode = 𝐿eff𝐴 is the mode volume for a spot of area 𝐴. For our

experiments with a diffraction-limited spot, the mode volume is simply 𝑉mode = 𝐿eff ×
(
𝜋𝜇m2

)
.

Importantly, this tells us that a smaller mode volume, i.e., a smaller effective cavity length 𝐿eff

would result in stronger coupling to the emitter. Moreover, the cavity can also modify the emission

characteristics of the coupled emitter by enhancing the radiative decay rate by the Purcell factor 𝐹𝑃



which is given by

𝐹𝑃 =
3

4𝜋2

(
𝜆

𝑛

)3
𝑄

𝑉mode
∼

𝑄

𝑉mode
, (S5)

which tells us that not only a smaller mode length, but a high Q-factor are desirable qualities for

any cavity. The Q-factor of the cavity is given by the resonance frequency of the cavity, divided

by the linewidth of the resonance, i.e., 𝑄 = 𝑓0/Δ 𝑓 . Through FDTD simulations we get a quality

factor of 𝑄 ∼ 1060 (which closely matches our reflectance data), and a mode length of 𝐿eff ∼ 120

nm. The 𝑄 values can be improved further with better sample design and fabrication capabilities.

Table S1 provides a comparison with planar distributed Bragg reflector (DBR) and metallic mirror

cavities reported in the literature.

Optical mode’s angular dependence

In typical planar cavities, the photonic mode dispersion has a characteristic parabolic dependence.

It originates in the different phase shifts that the light acquires as it propagates at different angles

inside the cavity. Since the phase shift upon a reflection in a DBR or metallic mirror does not have

any wavelength dependence, the acquired phase upon a cavity round-trip depends exclusively on the

angle of incidence. A notable difference of the architecture that we present in this work, comes from

the fact that the phase has a strong dependence on the light’s wavelength near the resonance of a

Lorentz oscillator. A variation in the propagation phase is compensated by a phase shift induced by

a small change in the wavelength. An immediate consequence is the weak dispersion of the cavity

mode, as shown in Fig. S9. This can also be understood in terms of the heavy mass of the excitons

when compared with the photons’ effective mass. The formation of the optical mode relies on the

excitation of electron-hole pairs; this implies that the photon should be resonant with the excitonic

line for all the momenta of the cavity dispersion. Therefore, the cavity inherits its dispersion from

the excitonic momentum distribution, which within the light cone, is flat.

Identification of cavity mode vs non-interacting oscillators

In some spots of the sample, the identification of the cavity mode is not straightforward, because

it might be confused with the reflection from two decoupled Lorentz oscillators. To confirm that

the observed spectrum corresponds to a TMD cavity, we fit the spectrum using a model with two



independent excitonic resonances, and we compare the result with the obtained reflectance from

the full structure. As observed in Fig. S10, the independent oscillators model cannot properly fit the

experimental data, in contrast to the TMM fitting that properly accounts for the measured spectrum.

This spectrum corresponds to the sample spot where the magnetic field dependence was collected

(Fig. 3 of the main text). In panel B of the same figure, we show additional evidence of the formation

of genuine optical modes in the structure. Upon the quenching of the exciton resonance in one of

the monolayers via an electrical control, the spectrum corresponds to the one of a MoSe2 mirror.

When both excitons are available, the spectrum does not correspond to the trivial addition of them,

but the interference and hence the cavity mode is observed.

Additional data: magnetic field-induced chirality

Due to high spatial inhomogeneity in exfoliated TMDs, the excitonic resonance frequency, Γr and

Γnr can vary notably across different spots on the sample. However, we observe the formation of a

cavity, albeit with slightly different resonant energies and Γr/Γnr ratios, across a substantial portion

of the sample.

We performed additional magnetically induced reflective circular dichroism (CD) measurements

over a larger range of magnetic fields in another spot on the sample for comparison of different

cavity spots. The magnetic field varies from -10 T to 10 T. Fig. S11B shows the reflective CD

measurement results. For the highest applied magnetic field, we obtain a contrast of > 1 in the CD,

which is larger than our measurement in the original sample spot. From the magnetically induced

energy splitting of the chiral modes Δ𝐸 of the cavity we extract a g-factor of 𝑔=−4.40±0.12 (panel

C), using the relationship Δ𝐸 = 𝑔𝜇𝐵𝐵, where 𝜇𝐵 is the Bohr magneton and 𝐵 is the magnetic field

strength. The obtained value is in good agreement with the reported value in the main text (and in

the literature).

While the requirement for a high magnetic field would not be a restriction for any of the envisaged

perspectives, it is important to relax this constraint to enlarge the list of possible applications of

this architecture. One option is to harness the demonstrated valley optical Stark effect to induce

a chiral behavior without the need for a magnetic field (63, 72). Another possibility to reduce the

required magnetic field is to interface the device with magnetic materials. The magnetic exchange

field (73) and the magnetic proximity effect (74) are reportedly effective in substantially enhancing



the magnetic response of the excitons in TMD materials.
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Figure S1: Reflectance of the cavity as a function of cavity thickness and non-radiative decay

rate. (A) Reflectance of the cavity formed by two TMD monolayers (𝜆0 = 756.2 nm, Γr = 4.38

meV, Γnr = 0.2 meV) in air for different cavity thickness. The mode is not visible in the reflectance

spectrum when the thickness of the cavity is exactly 𝜆0/2, as marked by the white dashed line. (B)

Reflectance of the cavity for varying Γnr and a cavity thickness of 350 nm (∼ 0.46𝜆0).
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dt=40nmdb=120nm dt=130nmdb=20nm dt=30nmdb=30nm

dt=30nmdm=60nmdb=30nm dt=50nmdm=100nmdb=50nm dt=60nmdm=120nmdb=60nm

Figure S2: Effect of the thickness of the encapsulating hBN on the reflectance of a TMD

monolayer and the cavity heterostructure. (A-C): Effect of the thickness of the encapsulating

hBN on the reflectance of a TMD monolayer. The thicknesses of the (top, bottom) layer of hBN

encapsulations are (A) (40 nm, 120 nm), (B) (130 nm, 20 nm), and (C) (30 nm, 30 nm). Different

thicknesses of hBN lead to different reflectance spectra for the same monolayer. (D-F): Effect of the

thickness of hBN on the reflectance of the cavity heterostructure. The thickness of the (top, middle,

bottom) layers of hBN used for the simulations are (D) (30 nm, 60 nm, 30 nm), (E) (50 nm, 100

nm, 50 nm), and (F) (60 nm, 120 nm, 60 nm). The best cavity mode is obtained for the parameters

of panel F, which are the nominal thicknesses of the final fabricated device.



dt=60nmdm=120nmdb=60nm dt=30nmdm=180nmdb=30nm dt=10nmdm=220nmdb=10nm(A) (B) (C)

Figure S3: Effect of the distribution of thickness of hBN on the detection of the cavity mode in

reflection. The thicknesses of the (top, middle, and bottom) layers of hBN used for the simulations

are (A) (60 nm, 120 nm, 60 nm), (B) (30 nm, 180 nm, 30 nm), and (C) (10 nm, 220 nm, 10 nm)

such that the total thickness of hBN is always 240 nm. When the MLs are separated a distance

𝑑𝑚 =𝜆/2𝑛hBN≈180 nm, the cavity mode is decoupled from the external field, making its detection

impossible.

(A)(B) (C)nr=0.02meVnr=0.2meVnr=5meV

nr=0.2meV

r=0.4meVr=4.38meVrr=40meV

r=4.38meV

r=0.438meV
rr=4.38meV
r=43.8meV

nr=0.02meV
nr=0.2meV=
nr=2meV

Figure S4: Interplay between Γr and Γnr. (A) Reflectance of a monolayer with constant Γr=4.38

meV, and Γnr=0.02 meV (black), 0.2 meV (blue), and 5 meV (red). (B) Reflectance of a monolayer

with constant Γnr = 0.2 meV, and Γr = 0.4 meV (black), 4.38 meV (blue), and 40 meV (red). (C)

Reflectance of a monolayer with constant ratio Γr/Γnr. (Γr, Γnr) = (0.438 meV, 0.02 meV) (black),

(4.38 meV, 0.2 meV) (blue), (43.8 meV, 2 meV) (red). Both the top and bottom hBN encapsulations

are chosen to be 60 nm thick for these simulations.
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Case A: A TMD monolayer mirror in free space.

Figure S5: A TMD monolayer mirror in free space. (A) Simulated reflectance spectrum of the

top (blue), bottom (red), and Scuri et al. (26) (black) TMD monolayer (ML) mirror in free space.

As expected from a two-level emitter, the incident light is reflected back at the excitonic resonance

frequency. (B) Spatial electric field intensity profile |𝐸 |2 as a function of wavelength when the

TMD (top), located at 𝑥 = 0 nm as marked by a dashed vertical line, is illuminated with a plane

wave source from the left. (C) Spatial intensity profile at the excitonic resonance frequency. On

the left-hand side of the TMD (top), one can observe standing waves created by the incident and

reflected light. The intensity drops on the right-hand side as the TMD reflects the incident light at

the resonant frequency.
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Case B: Two TMD monolayer mirrors in free space separated by air

Air - TMD (Scuri et al.) - 350 nm Air -  TMD (Scuri et al.) - Air

Figure S6: Two TMD monolayer mirrors in free space separated by air. (A) Simulated re-

flectance spectrum when two TMDs (Scuri et al. (26)) are separated by 350 nm of air. The dip in the

reflectance spectrum at 𝜆 ∼ 756 nm indicates the formation of a cavity mode. (B) Spatial intensity

profile at the cavity resonance frequency. The TMDs positions are marked by vertical lines. (C)

Effective cavity mode length as a function of wavelength. Here the integration is performed over

the TMD-air-TMD region. The estimated Q-factor of the cavity is ∼ 2828.

Table S1: Q-factors of planar cavities reported in the literature.

Type of mirrors Q-factor Reference

DBRs 500 (75)

DBRs 400-700 (76)

DBRs 3700 (median) (77)

DBRs 100-500 (78)

DBRs 600 (79)

DBRs 440-620 (80)

DBRs 300 (81)

DBR + metallic 1000-3000 (82)

Metallic + grating mirrors 100-1000 (83)

Metallic 35 (84)
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Case C: An hBN-TMD heterostructure cavity in free space

Air - 35 nm hBN - TMD (Scuri et al.) - 100 nm hBN - TMD (Scuri et al.) - 35 nm hBN - Air

Figure S7: An hBN-TMD heterostructure cavity in free space. (A) Simulated reflectance spec-

trum for two TMDs (Scuri et al. (26)) separated by 100 nm of hBN, and encapsulated by 35 nm of

hBN on each side. (B) Spatial intensity profile at the cavity resonance frequency. The shaded region

represents the hBN-TMD heterostructure cavity. (C) Effective cavity mode length as a function of

wavelength. The estimated Q-factor of the cavity is ∼ 1219.
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Case D: An hBN-TMD heterostructure cavity on substrate

Air - 60 nm hBN - TMD (Scuri et al.) - 120 nm hBN - TMD (Scuri et al.) - 60 nm hBN - 285 nm SiO2 - Si

Figure S8: An hBN-TMD heterostructure cavity on substrate. (A) Simulated reflectance spec-

trum of the TMD-hBN heterostructure cavity on a SiO2-Si substrate. (B) Spatial intensity profile at

the cavity resonance frequency. The shaded region represents the hBN-TMD heterostructure cavity.

(C) Effective cavity mode length as a function of wavelength. The estimated Q-factor of the cavity

is ∼ 1308.
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Figure S9: Angular dependence of reflectance. Calculated reflectance for (A) P and (B) S

polarized light as a function of the angle of incidence for the configuration of Fig. S8. The white

arrows point out the mode for visual guidance. Unlike typical planar cavities, the energy of the

cavity mode in our device does not change substantially with the angle of incidence. This is a

consequence of the excitonic nature of the atomically-thin constituent mirrors.



Figure S10: Identification of cavity mode vs non-interacting oscillators. (A) Experimental data

at the spot where the magnetic field dependence was measured (red line) fitted with a model

where the two TMD layers are decoupled (green line). The impossibility of fitting the experimental

reflectance with this model in comparison with the TMM model that considers the full structure

(black line) confirms that the observed dip in the reflectivity corresponds to an optically confined

mode instead of two independent excitonic reflectors. (B) The electrical control permits quenching

the excitonic response of one of the monolayers (blue line). When both monolayers have excitonic

resonances, the spectrum does not correspond to the sum of two Lorentz oscillators, but the cavity

mode emerges instead (yellow line).
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Figure S11: Additional data: magnetic field-induced chirality. (A) Schematic showing the

Zeeman splitting in top and bottom monolayers. This gives rise to the two chiral modes of the

cavity with 𝜎+ and 𝜎− polarizations. (B) RCD of the heterostructure cavity for increasing 𝐵 at a

different spot. (C) Energy difference Δ𝐸 between the 𝜎+ and 𝜎− cavity modes as a function of 𝐵.

From a linear regression, we extract a magnetic factor 𝑔 = −4.40 ± 0.12


