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We characterize the dynamical state of many-body bosonic and fermionic many-body models with
inter-site Gaussian couplings, on-site non-Gaussian interactions and local dissipation comprising in-
coherent particle loss, particle gain, and dephasing. We first establish that, for fermionic systems,
if the dephasing noise is larger than the non-Gaussian interactions, irrespective of the Gaussian
coupling strength, the system state is a convex combination of Gaussian states at all times. Fur-
thermore, for bosonic systems, we show that if the particle loss and particle gain rates are larger
than the Gaussian inter-site couplings, the system remains in a separable state at all times. Building
on this characterization, we establish that at noise rates above a threshold, there exists a classical
algorithm that can efficiently sample from the system state of both the fermionic and bosonic mod-
els. Finally, we show that, unlike fermionic systems, bosonic systems can evolve into states that are
not convex-Gaussian even when the dissipation is much higher than the on-site non-Gaussianity.
Similarly, unlike bosonic systems, fermionic systems can generate entanglement even with noise rates
much larger than the inter-site couplings.

Introduction. Whether many-body quantum systems
evolve into classically non-trivial states in the presence
of a decohering environment is not only of fundamen-
tal interest to the theory of open quantum systems, but
also has implications for the quantum advantage achiev-
able by quantum computers and simulators [1–6]. Tradi-
tionally, this question is often theoretically analyzed for
many-body spin models which describe some experimen-
tally accessible many-body systems very well. Here, there
has been extensive recent activity in both the discrete-
time setting (i.e. quantum circuits interspersed with noise
events) and in the continuous-time setting (modeled by
a many-body Lindblad master equation [7, 8]). For the
discrete-time models, early results showed that a suffi-
ciently high rate of noise prevents a buildup of entan-
glement in the quantum circuit and renders it classically
simulable [9]. Recently, more refined results have been
obtained showing classical simulability, in the presence of
even a small amount of depolarizing noise, for either sam-
pling or computing local observables in both random [10–
19] and non-random models [20–22]. Some of these re-
sults have also been generalized to the geometrically-local
continuous-time setting, which more accurately models
analog quantum simulators, and it has been established
that the system remains classically simulable when the
noise rate is higher than a threshold determined by the
strength of the interaction terms in the Hamiltonian [8].

Quantum simulators based on platforms such as ultra-
cold atoms in optical lattices [23–27], superconducting
circuits [28, 29] or nonlinear photonics [30–32], are of-
ten described by a family of Hamiltonians that, only in
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certain parameter regimes, reduce to quantum spin sys-
tems. The underlying physical model often comprises a
lattice of fermionic or bosonic modes with two kinds of
terms: (i) Gaussian coupling terms which are linear or
quadratic in creation and annihilation operators and de-
scribe, for instance, particle hopping or pair production;
(ii) Non-Gaussian interacting terms that typically act on
particles only on one site. Consequently, there are two
frequency scales in these Hamiltonians: the strength of
the Gaussian coupling terms, J , and that of the on-site
(non-Gaussian) interactions, U . When either J = 0 or
U = 0, this model can be simulated classically. Specif-
ically, when J = 0, the model is a sum of single-site
terms which map an initial product state to a product
state from which we can both sample and compute local
observables classically. When U = 0, while time evolu-
tion can generate entangled states from an initial product
state, these states remain Gaussian as long as the initial
state is Gaussian. It is well-known that local observables
can be efficiently computed in such states, and in the
case of fermions, even sampling on the Fock state ba-
sis can also be efficiently performed [33–36]. However,
when both J, U ̸= 0 and the system is noiseless, then it
is well known that this model is universal for quantum
computation [37, 38] and thus worst-case hard to simu-
late classically. While it is expected that the presence
of dissipation should make the model classically easy to
simulate, the amount and type of local dissipation needed
remains less well understood.
For fermionic systems, the impact of noise on the non-

Gaussianity in the state was studied in a circuit model
comprising only Gaussian gates and ancillas in a non-
Gaussian resource state, and it was established that, in-
dependent of the gates and above a noise threshold, the
state of the fermions is a convex combination of Gaus-
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sian states [39–41]. Studies analyzing continuous-time
dynamics have been focused on problems with Gaus-
sian Hamiltonians and the non-Gaussianity introduced
via two-body dissipation [7]. For bosonic systems, pre-
vious studies have either focused on understanding their
complexity classification as a function of evolution time
in the absence of noise [42–44], or for the specific task
of boson sampling in the presence of noise [45–49]. To
the best of our knowledge, understanding classical sim-
ulability of noisy bosonic and fermionic continuous-time
dynamics remains open.

In this Letter, we rigorously address this question—
we consider fermionic and bosonic systems with n sites,
each containing locally L modes (Fig. 1). The annihi-
lation operators corresponding to the σth mode at the
ith site, where σ ∈ {1, 2 . . . L} and i ∈ {1, 2 . . . n}, is
given by ai,σ. It will be convenient to use the Hermi-
tian operators cαi,σ, with α ∈ {1, 2}, defined as c1i,σ =

(ai,σ + a†i,σ)/
√
2, c2i,σ = −i(ai,σ − a†i,σ)/

√
2, which repre-

sent either Majorana operators (for fermions) or position
and momentum quadrature operators (for bosons). The
noisy dynamics under consideration is described by the
Lindblad master equation

dρ(t)

dt
= −i[H(t), ρ(t)] + κ

∑

i,σ

Li,σρ(t), (1)

were H(t) is a (possibly time-dependent) Hamiltonian
that represents the unitary evolution of the system, and
Li,σ captures the noise, which is assumed to act locally
on every mode (i, σ) at a rate κ. We model the noise
Lindbladian Li,σ by

Li,σ(·) =
3∑

l=1

ξ(l)
(
L
(l)
i,σ(·)L

(l)†
i,σ − 1

2
{L(l)†

i,σ L
(l)
i,σ, (·)}

)
, (2)

where we assume a physically-motivated and generic

noise model with jump operators L
(1)
i,σ = ai,σ, L

(2)
i,σ =

a†i,σ, L
(3)
i,σ = a†i,σai,σ with relative decay rates

ξ(1), ξ(2), ξ(3) respectively. The jump operator ai,σ mod-

els particle loss, a†i,σ models incoherent particle gain,

and a†i,σai,σ models dephasing. All of these noise pro-
cesses occur in experiments, and it is often the case
that ξ(1), ξ(2), ξ(3) > 0. While we choose this dissipa-
tion model for concreteness, our conclusions will continue
to hold for other physically relevant dissipators such as

L
(1)
i,σ = c1i,σ, L

(2)
i,σ = c2i,σ which in the bosonic case would

correspond to white noise fluctuations in the quadratures.
We use the same noise Lindbladian for both bosons and
fermions—for the bosonic case, we will additionally as-
sume that the particle loss occurs at a rate strictly higher
than (both coherent and incoherent) particle gain (see
Supplemental Material [50] for the exact assumption) so
as to avoid an unbounded growth of the number of par-
ticles with t which would be unphysical in an actual ex-
periment.

FIG. 1. Sketch of the system that we study, with n sites on
a lattice, where each site contains L modes. We represent a
case with L = 5 for simplicity. There are Gaussian couplings
(in red) between the different sites, while the non-Gaussian
interactions (in blue) are only onsite. Nonlocal couplings are
allowed. The noise acting on each mode is represented by
arrows. In the bosonic case, interactions of the form n2

i,σ are
also allowed.

We will assume that the Hamiltonian can be written
as H(t) = Hg(t)+Hng(t), where Hg(t) contains Gaussian
general intersite terms:

Hg(t) =
∑

i,j

∑

α,α′

σ,σ′

Jα,α′

i,σ;j,σ′(t)c
α
i,σc

α′
j,σ′ +

∑

i,α,σ

Ωα
i;σ(t)c

α
i,σ,

(3a)

and Hng(t) contains on-site non-Gaussian terms which
account for particle-particle repulsion and attraction be-
tween different fermionic or bosonic modes at the same
site:

Hng(t) =
∑

i,σ,σ′

Ui,σ;i,σ′(t)ni,σni,σ′ . (3b)

Note that in the fermionic case Ωα
i;σ(t) = 0, since physical

Hamiltonians must preserve fermionic parity, while in the
bosonic case Ωα

i;σ(t) can be a non-zero real scalar. For

fermions, we can always assume that Jα,α′

i,σ;j,σ′(t) is purely
imaginary and anti-symmetric i.e.

Jα,α′

i,σ;j,σ′(t) =
(
Jα,α′

i,σ;j,σ′(t)
)∗

= −Jα′,α
j,σ′;i,σ(t), (4)

while for bosons it can be assumed to be purely real and
symmetric:

Jα,α′

i,σ;j,σ′(t) = Jα′,α
j,σ′;i,σ(t). (5)

The non-Gaussian onsite interactions Ui,σ;i,σ′(t) can be
assumed to be real and symmetric for both fermions and
bosons.

We also define the parameters J,Ω, U as the smallest
constants such that for every mode (i, σ) and all times t

∑

j ̸=i,σ′

∑

α,α′

|Jα,α′

i,σ;j,σ′(t)| ≤ J,
∑

α

|Ωα
i;σ(t)| ≤ Ω and

∑

σ′

|Ui,σ;i,σ′(t)| ≤ U. (6)
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The parameter J captures the Gaussian coupling
strength between a mode and the modes at all other sites,
U captures the on-site non-Gaussian interaction strength,
and Ω captures the coherent drive at each site. We will
also assume that J , U , and Ω are O(1) constants, which is
true in most physical models. Finally, we remark that we
do not need to assume geometrical locality of the model—
our results will apply to geometrically local and non-local
models.

We assume that the initial state ρ(0) is either a prod-
uct state (when analyzing the entanglement), a Gaus-
sian state (when analyzing the non-Gaussianity), or both
(such as the vacuum state). In the bosonic case, addi-
tionally, ρ(0) will be assumed to satisfy Tr(nki,σρ(0)) ≤
Ck

0 k
α0k+β0 ,∀(i, σ), for k ∈ {1, 2, 3...}, and for some

C0, α0, β0 > 0: this condition guarantees that the proba-
bility of finding ≥ k particles in a mode decreases super-
polynomially with k, as would be expected in a physically
relevant bosonic state [51].

In the remainder of this paper, we analyze the dynam-
ics of both bosonic and fermionic models and show that
dissipation could make it easy to simulate this system
when both U, J ̸= 0 [Fig. 2]. First, we find that in the
fermionic case, for a dephasing rate larger than the non-
Gaussian interaction strength (κξ(3) ≥ 2U), the state
remains convex-Gaussian at all times, irrespective of the
value of J or ξ(1), ξ(2). Furthermore, we show that this
convex-Gaussian state can be efficiently classically sam-
pled from (in the Fock state basis). Furthermore, we also
find that in the bosonic case, for particle loss and parti-
cle gain rates larger than the Gaussian coupling strength
(κ ≥ 2J/min(ξ(1), ξ(2))), the state remains separable at
all times regardless of the value of U or ξ(3). Further-
more, there is an efficient classical algorithm that can
allow us to sample (again, in the Fock state basis) from
this separable state. We remark that our analysis pro-
vides a sufficient condition for simulability that applies
to any instance: it thus constitutes a worst-case analysis.

Our analysis also reveals fundamental differences be-
tween the high-noise behavior of bosonic and fermionic
models. First, we show that unlike in the bosonic model,
the fermionic model can evolve into entangled states at
short-times even when the dissipation is much larger than
the Gaussian couplings κmin(ξ(1), ξ(2), ξ(3)) ≫ J . Sec-
ond, unlike the fermionic model, we provide evidence that
the bosonic model can evolve into states that are not
convex-Gaussian even with noise rates much larger than
the non-Gaussian interactions κmin(ξ(1), ξ(2), ξ(3)) ≫ U ,
provided that the Gaussian couplings can be made suffi-
ciently high.

Results: Our results analyze the simulability of the
fermionic and bosonic models in relation to the strength
of the Gaussian couplings, non-Gaussian interactions,
and noise rate. We first establish that when the noise
rate is larger than the on-site non-Gaussian interac-
tion strength U , the fermionic model remains convex-
Gaussian at all times, and can therefore be classically
efficiently sampled from.

FIG. 2. Phase diagram for both bosonic and fermionic sys-
tems in the presence of generic noise. (a) For fermionic system
the state remains convex Gaussian at all times for error rates
κξ(3) ≥ 2U . (b) In bosonic systems the state remains separa-

ble at all times for error rates κ ≥ 2J/min(ξ(1), ξ(2)).

Theorem 1. For an initial Gaussian state, if κ ≥
2U/ξ(3), then the state of the fermionic model at time
t, ρ(t), is a convex combination of Gaussian states for
all t ≥ 0. Furthermore, ρ(t) can be classically sampled
in the Fock state basis to an ϵ total variation error in
poly(n, t, 1/ε) time.

Physically Theorem 1 suggests that if the noise rate is
larger than the non-Gaussian interaction strength U , the
non-Gaussianity is destroyed faster than it is created,
and hence the classical simulation remains tractable.
Since Gaussian terms in the Hamiltonian, no matter
how strong, cannot make a convex-Gaussian state non-
Gaussian, the noise threshold in Theorem 1 is indepen-
dent of J (the inter-site Gaussian interaction strength).
Perhaps surprisingly, it is dephasing that results in con-
vex Gaussianity at all times: at short times, incoherent
particle loss and gain cannot preserve convex-Gaussianity
in the presence of Hng(t) irrespective of κ. This is due to
the fact that for the dynamics to be convex-Gaussianity
preserving, it has to be convex-Gaussianity preserving
separately in the even and odd parity subspaces [40].
However, while Hng(t) is parity conserving and acts indi-
vidually in the two parity subspaces, the particle loss or
gain dissipators are not parity number conserving and in-
stead of acting individually in the two parity subspaces,
couple the two parity subspaces. Consequently, these
noise processes are unable to counter the non-convex-
Gaussianity created by Hng(t) within the two parity sub-
spaces at least at short times.
We provide a complete proof of Theorem 1 in the sup-

plement and only sketch the key ideas here. The starting
point of showing Theorem 1 is a Trotterization of the
Lindbladian in Eq. 1 — in each Trotter step, we express
the evolution as (a) a Gaussian unitary corresponding to
Hg(t) as well as the particle loss and gain dissipators fol-
lowed by (b) the single-site channels generated by Hng(t)
together with the dephasing noise (Fig. 3). A close anal-
ysis of the single-site channel allows us to show that for κ
above the threshold in Theorem 1, this channel maps an
input convex-Gaussian state to a convex-Gaussian state.
Furthermore, we explicitly construct an approximation
to this convex-Gaussian state, which allows us to use it
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Trotterization

Trotter step

FIG. 3. Schematic depiction of the Trotterization schemes in the proof of Theorem 1 (fermionic systems with weak non-
Gaussianity). For simplicity, we only depict a 1D setting, with each site containing 2 modes (L = 2). A single Trotter step
consists of a Gaussian channel (red rectangles), followed by non-Gaussian gates (blue rectangles) interspersed with noise (gray
circles). Crucially, a non-Gaussian gate followed by sufficiently strong noise can be written as a convex combination of Gaussian
channels.

to sample the state [35, 52].
Next, we consider the bosonic model and establish that

when the noise rate is larger than the inter-site Gaus-
sian coupling, the bosonic model remains separable at all
times, and can therefore be classically efficiently sampled
from in the Fock state basis.

Theorem 2. Suppose ρ(t) is the state obtained after
evolving the bosonic model for time t with an initial prod-
uct state, then for κ ≥ 2J/min(ξ(1), ξ(2)) the state ρ(t)
is separable for all t ≥ 0. Furthermore, there is a ran-
domized classical algorithm that can sample ρ(t) in the
Fock state basis to ϵ total variation error in poly(n, t, 1/ϵ)
time.

Physically, our result makes precise the intuitive expec-
tation that when the noise rate exceeds the inter-site in-
teraction strength, the build up of entanglement is pro-
hibited by the noise and thus, in this regime, a classically
non-trivial entangled state is not generated. Notably, de-
phasing noise does not appear in the theorem. In fact,
starting with a state which is diagonal in the Fock basis,
one can easily check that entanglement can be generated
for short times in the presence of depahsing noise, since
dephasing noise leaves diagonal states invariant. Hence,
dephasing alone cannot prevent entanglement buildup at
all times. In the Supplemental Material, we also extend
Theorem 2 to other experimentally relevant settings, such
as for quantum spin models with single spin noise or
for bosonic models with possible inter-site non-Gaussian
couplings [50]. In contrast to previous results for spin
systems which rely on percolation arguments and show
that, at large noise rates, only O(log n) clusters of qubits
can be entangled [8, 9], we instead show that the state
is entirely separable i.e. can be written as a convex com-
bination of product states at all sites. Furthermore, by
providing an explicit construction of this separable state,
we also show that this separable state can be efficiently
sampled from.

A detailed proof of Theorem 2 is provided in the Sup-
plemental Material [50]. Similar to Theorem 1, we begin

by a first-order Trotterization of the model but with a
different decomposition of the Lindbladian: We express
it as a product of (a) single site gates, which contain the
unitary generated by the Hng(t) and the single-site terms
in Hg(t) and (b) two-site channels which contain the uni-
tary generated by the inter-site couplings in Hg(t) paired
together with the noise [Fig. 4]. We denote the channel
acting between modes (i, σ) and (j, σ′) at the Trotter

time-step τ as Φi,σ;j,σ′

τδ,(τ−1)δ, where δ is the size of the Trot-

ter step. Importantly, the Trotterization is performed in

such a way that the channel Φi,σ;j,σ′

τδ,(τ−1)δ can be understood

as a time evolution of the inter-site Gaussian couplings
between modes (i, σ) and (j, σ′), followed by noise on
both modes. This choice of ordering the Trotterized evo-
lution effectively redistributes the single-site noise into
“gate-based” noise on the inter-site gates. Then, we ex-

plicitly analyze the two-site channel Φi,σ;j,σ′

τδ,(τ−1)δ and es-

tablish that for κ above the threshold in Theorem 2, it
maps a separable state into a separable state. Intuitively,
a two-site gate followed by sufficiently strong noise loses
its ability to generate entanglement. This allows us to
show that the Trotterized state remains separable at all
times for noise rates above a threshold.
Furthermore, in addition to certifying that the state

is separable at all times, our analysis also allows us to
explicitly construct an O(δ2) approximation to the sepa-
rable state after each time step thus yielding an explicit
algorithm to sample from the full quantum state. We
remark that this separability does not come from the
Trotterized noise channel becoming entanglement break-
ing above this threshold: since δ = Θ(1/poly(n)) for the

Trotterization to be accurate, consequently Φi,σ;j,σ′

τδ,(τ−1)δ →
id in the limit of large system-size (here id stands for
identity). Our analysis thus has to explicitly capture the
competition between the entanglement generated by the
inter-site unitary and the simultaneous disentangling ac-
tion of the noise.
Tightness of Theorems 1 and 2. We can now ask if
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Trotterization

Trotter step

FIG. 4. Schematic depiction of the Trotterization schemes in the proof of Theorem 2 (bosonic systems with weak inter-site
couplings). For simplicity, we only depict a 1D setting, with each site containing 2 modes (L = 2). A single Trotter step
consists of a layer of single-mode channels, followed by 2-site gates interspersed with noise (in gray circles). Crucially, a 2-site
gate followed by sufficiently strong noise can be written as a convex combination of single-site channels

a version of Theorem 1 holds for bosonic systems i.e.,
is there a noise threshold κth(U) dependent only on the
non-Gaussian strength U and uniform in J,Ω, such that
the state of the system becomes convex-Gaussian at all
times? In the presence of dephasing noise ξ(3) ≥ 0,
we provide numerical evidence to the contrary: with
dephasing noise rates larger than the non-Gaussianity
(κξ(3) ≥ U), even a single bosonic mode can reach states
which have negative Wigner functions and are thus not
convex Gaussian [50, 53]. Therefore, as opposed to the
fermionic case, dephasing noise in bosonic systems alone
is not sufficient to remove the non-Gaussianity that is
being introduced. While we cannot rule out the exis-
tence of a classical algorithm to simulate the system in
this setting, in general, Wigner negativity is understood
as a necessary resource for non-classicality and quantum
advantage [53, 54], which suggests that classical simula-
tion might be hard. In the absence of dephasing noise
(ξ(3) = 0), an even stronger argument can be made: in
the Supplemental Material we argue that for any fixed
U no matter how small relative to κ, even the task of
computing expectation values of local particle numbers
is BQP-hard if we allow J,Ω to be arbitrarily large but
O(1) [50]. This builds upon Refs. [55, 56] which used
large displacements to perform a universal set of gates
on a single bosonic mode, such that the effective rate of
noise on the implemented gate could be made arbitrar-
ily small by increasing the displacement and carefully
choosing a squeezed drive on the mode. We extend this
technique to also implement an entangling gate between
two oscillators, hence allowing for the implementation of
fast, high-fidelity arbitrary gates. Together with results
from Ref. [57], this suggests that when the noise is non-
unital (i.e. κξ(1) ̸= κξ(2)), by using sufficiently large J
and Ω, a universal gate-set with effective gate noise less
than the fault-tolerance threshold can be encoded into
the Hamiltonian H(t) [58–60]. This would imply that it
is unlikely to be able to classically compute even local
observables in the bosonic model unless BQP = BPP.

Finally, we consider if a version of Theorem 2 holds
for fermions as well i.e., if noise rates larger than the
Gaussian inter-site couplings result in separability at all

times, as might be intuitively expected. However, we an-
swer this question in the negative: in the Supplemental
Material we show that for fermionic systems, in stark
contrast with bosons, no matter how high the rate of
particle loss (κξ(1)) and incoherent particle gain (κξ(2))
is, the system does not remain separable at all times and
can exhibit entanglement at short times. In fact, we show
that this short-time non-separability, irrespective of the
decay rate κ, holds not only if we consider separability
with respect to all observables [61], but also if we con-
sider a weaker notion of separability with respect to only
parity-conserving observables [62]. However, this result
does not rule out separability at longer times, or exclude
an efficient classical simulation of the fermionic model
that does not rely on its separability.
Conclusion. We have characterized the classical com-

plexity of simulating the continuous-time evolution of
fermionic and bosonic systems as a function of the noise,
Gaussian and non-Gaussian interaction strengths. Fur-
thermore, in the Supplemental material we present a
slightly more general model, where non-Gaussian inter-
site interaction terms are also allowed [50]. Future direc-
tions include the study of other experimentally relevant
models, such as non-Markovian quantum systems. We
leave for future works the question of whether fermionic
systems without dephasing noise can encode universal
computations with noise rates much larger than the non-
Gaussianity.
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This Supplemental Material is organized as follows: First, in section I, we provide the necessary notation and
background for the rest of the Supplemental Material. In section II, we provide the proof of Theorem 1, showing
convex-Gaussianity and simulability for the fermionic model for sufficiently high noise rates. Then, in section III, we
prove Theorem 2 for the bosonic model, which implies separability and simulability for sufficiently high noise rates. In
section IV, we extend this result to a class of spin models: for 2-local Hamiltonians and sufficiently high noise rates,
the system can be shown to be separable at all times. Finally, in section V, we show that an analogue of Theorem 1
cannot exist for bosonic systems, and that an analogue of Theorem 2 cannot exist for fermionic systems.

I. NOTATION AND PRELIMINARIES

In this section, we provide the necessary notation and background for the rest of the Supplemental Material. This
includes the notation regarding operators and norms (subsection IA), a brief summary on several properties of bosonic
and fermionic systems (subsection IB), the Trotter formula that will be used throughout the proofs (subsection IC),
the asymptotic notation that we will employ (subsection ID), and a detailed presentation of the bosonic and fermionic
models that we will analyze (subsection I E).

A. Operators, superoperators and their norms

For a quantum state |ψ⟩, ∥|ψ⟩∥ will denote its usual norm ∥|ψ⟩∥2 = ⟨ψ|ψ⟩. For an operator A, we will use ∥A∥p to
denote its Schatten-p norm:

∥A∥p =

(∑

i

σp
i (A)

)1/p

, where σ1(A) ≥ σ2(A) ≥ σ3(A) . . . are the singular values of A. (S1)

We will often use ∥A∥ = σ1(A) = ∥A∥∞ to denote its operator norm and ∥A∥F = ∥A∥2 = [Tr(A†A)]1/2 to denote its
Frobenius norm. We will often use the Holder’s inequality, which states that

∥AB∥1 ≤ ∥A∥p ∥B∥q where
1

p
+

1

q
= 1. (S2)

In particular, ∥AB∥1 ≤ ∥A∥ ∥B∥1. It is also convenient to note the Cauchy-Schwarz inequality for operators: Suppose
ω is a positive semi-definite operator, then

∣∣Tr(A†Bω)
∣∣2 ≤ Tr(A†Aω)Tr(B†Bω). (S3)

For super-operators A, we will use ∥A∥⋄ to denote its diamond norm. In our analysis, we will often encounter
super-operators of the form

A(ρ) =
∑

i

AiρBi, (S4)
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where Ai and Bi are some operators. For such super-operators, it is convenient to note that the Holder’s inequality
implies that

∥A∥⋄ ≤
∑

i

∥Ai∥ ∥Bi∥ . (S5)

For instance, given an operator L, we will often use DL to denote the following superoperator:

DL = LρL† − 1

2
{L†L, ρ}, (S6)

where { · , · } is the anti-commutator between two operators. DL will be called the “dissipator corresponding to L”.
From Eq. (S5), we then obtain that

∥DL∥⋄ ≤ ∥L∥2 +
∥∥L†L

∥∥ ≤ 2 ∥L∥2 . (S7)

A super-operator E is completely positive if and only if it can be expressed as

E(ρ) =
∑

i

KiρK
†
i (S8)

for some operators Ki. It will be called a channel if it is additionally trace preserving which requires
∑

iK
†
iKi = I.

For any completely-positive trace preserving map E , ∥E∥⋄ ≤ 1.

B. Fermions and Bosons

The Hilbert space of m fermionic modes is described by the vacuum state |vac⟩ and the standard creation (a†i )
and annihilation (ai) operators, with i ∈ {1, 2, · · ·m} labeling the fermionic mode. These satisfy the canonical
anticommutation relations:

{ai, aj} = 0 and {ai, a†j} = δi,j . (S9)

The Hilbert space of the fermionic model is the finite-dimensional vector space given by span{∏m
k=1(a

†
k)

µk |vac⟩ : µk ∈
{0, 1}}. It will be convenient to work with the 2m Majorana fermion operators defined by

c1i =
1√
2

(
a†i + ai

)
and c2i =

i√
2

(
a†i − ai

)
. (S10)

The Majorana operators are each Hermitian, traceless and satisfy {cαi , cα
′

i′ } = δi,i′δσ,σ′ . We define C2m as the algebra
generated by the 2mMajorana operators: An operatorX ∈ C2m can be expressed as a linear combination of monomials
of the form

∏m
i=1

∏2
α=1(c

α
i )

µα
i , where µα

i ∈ {0, 1}. The operator X will be even if it is a linear combination of only
even degree monomials, and odd if it is a linear combination of odd degree monomials. Furthermore, any Hermitian
operator defined on the fermionic Hilbert space is also in C2m and, as usual, fermionic quantum states are positive
semi-definite Hermitian operators in C2m.

Given a fermionic state ρ, its correlation matrix elements are defined by Γα,α′

i,i′ = itr(ρ[cαi , c
α′
i′ ])/2. A fermionic

state ρ is called Gaussian if it can be expressed as exp(−βH)/Tr(exp(−βH)) for some Hermitian operator H that
is quadratic in the Majorana operators and β ∈ R ∪ {−∞,∞}. Thus, fermionic Gaussian states are either Gibb’s
states of Hamiltonians that are quadratic in the Majorana operators, or are projectors on their ground-state subspace.

Fermionic Gaussian states are fully characterized by their correlation matrix elements Γα,α′

i,i′ [S1, S2]. We will refer to
a fermionic state as convex-Gaussian if it can be expressed as a convex combination of Gaussian states.

Similar to fermions, the Hilbert space of m bosonic modes will be described by a vacuum state |vac⟩ and the

creation (a†i ) and annihilation (ai) operators, with i ∈ {1, 2 . . .m} labeling the bosonic mode. These satisfy the
canonical commutation relations:

[ai, ai′ ] = 0 and [ai, a
†
i′ ] = δi,i′ . (S11)

The Hilbert space of the bosonic model is the infinite-dimensional vector space given by span{∏i(a
†
i )

µi |vac⟩ : µi ∈
{0, 1, 2 . . . }}. It will be convenient to work with the 2m quadrature operators

c1i =
1√
2

(
a†i + ai

)
and c2i =

i√
2

(
a†i − ai

)
. (S12)
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The quadrature operators are Hermitian and satisfy [cαi , c
α′
i ] = −iδi,i′Ωα,α′ , where Ω is the 2× 2 symplectic matrix.

Similar to a fermionic state, a bosonic state ρ is Gaussian if it can be expressed as exp(−βH)/Tr(exp(−βH)) for some
Hermitian operator H which is quadratic or linear in the quadrature operators and for some β ∈ R ∪ {−∞,∞}. A
state will be called convex-Gaussian if it can be expressed as a convex combination of Gaussians. A useful property
of Gaussian states that we will use in our analysis is given in the lemma below.

Lemma 1. Suppose ρ is a (fermionic or bosonic) Gaussian state and A =
∑

i,i′ A
α,α′

i,i′ c
α
i c

α′
i′ is a quadratic operator,

then ρ′ = e−Aρe−A†
/Tr(e−Aρe−A†

) is also a Gaussian state.

Proof. This follows from the closure of quadratic and linear operators under commutation, i.e.

(1) For fermions, the commutator of any two operators of the form
∑

i,i′
∑

α,α′ x
α,α′

i,i′ c
α
i c

α′
i′ , where x

α,α′

i,i′ ∈ C, is again
of the same form.

(2) For bosons, the commutator of any two operators of the form
∑

i,i′
∑

α,α′ x
α,α′

i,i′ c
α
i c

α′
i′ +

∑
i,α y

α
i c

α
i , where

xα,α
′

i,i′ , y
α
i ∈ C, is again of the same form.

Since ρ is a Gaussian state, it is expressible as exp(−βH)/Tr(exp(−βH)), where H is a quadratic form in cαi with
a possible linear term in cαi for bosons. Consequently, using the Baker-Campbell-Hausdorff formula, we obtain that

e−Aρe−A†
can be written as a linear combination of A,A†, H and their nested commutators. Consequently, from 1

and 2 above, we obtain that e−Aρe−A† ∝ exp(−βH ′) for some β and H ′ that is also a quadratic form in cαi with a

possible linear term for bosons. Furthermore, note that since ρ is positive-semidefinite, so is e−Aρe−A†
and thus is a

valid quantum state.

C. Trotter formula

In our analysis below, we will often use first-order Trotterization for time-dependent models. Given a time-dependent
Lindbladian L(t) = L(1)(t)+L(2)(t)+. . .L(M)(t), its first-order Trotterization in the time-interval [0, t], with T Trotter
steps each of length δ = t/T , will be given by

Φ =
1∏

τ=T

Φ
(1)
τδ,(τ−1)δΦ

(2)
τδ,(τ−1)δ . . .Φ

(M)
τδ,(τ−1)δ where Φ

(j)
τδ,(τ−1)δ = T exp

(∫ τδ

(τ−1)δ

L(j)(s)ds

)
. (S13)

In Lemma 2 below, we provide an upper bound on the error between the exact evolution T exp(
∫ t

0
L(s)ds) and the

Trotter formula Φ that we will use repeatedly in the following sections.

Lemma 2 (Trotter error for bounded Lindbladians). Suppose for any s ≥ 0 and j ∈ {1, 2 . . .M}, ∥L(j)(s)∥⋄ ≤ ℓj,
then for any T > 0,

∥∥∥∥T exp

(∫ t

0

L(s)ds
)
− Φ

∥∥∥∥
⋄
≤ t2

T

( M∑

j=1

ℓj

)2

. (S14)

D. Asymptotic notation

Throughout the paper, we employ the following asymptotic notation commonly used in complexity theory [S3]:

Notation Formal definition Informal description
f(n) = Ω(g(n)) ∃k > 0, n0 : ∀n > n0, |f(n)| ≥ kg(n) f(n) grows at least as fast as g(n)
f(n) = O(g(n)) ∃k > 0, n0 : ∀n > n0, |f(n)| ≤ kg(n) f(n) grows no faster than g(n)
f(n) = Θ(g(n)) ∃k1 > 0, k2 > 0, n0 : ∀n > n0, k1g(n) ≤ f(n) ≤ k2g(n) f(n) and g(n) grow equally fast

TABLE SI. Table of asymptotic notation used in this paper.



4

E. Model

Here, we briefly recap the fermionic and bosonic models introduced in the main text and streamline the notation.
We will consider a more general setting than the one described in the main text: specifically, we will allow here for
inter-site non-Gaussian interactions. We recall that we consider systems with n sites, with each site containing L
bosonic or fermionic modes. We will use m = nL to denote the total number of modes in the system. With the σth

mode at the ith site, where σ ∈ {1, 2 . . . L} and i ∈ {1, 2 . . . n}, we will associate an annihilation operator ai,σ—it will
be notationally convenient for us to group i, σ into a single index v = (i, σ) and denote the corresponding annihilation
operator by av. Furthermore, corresponding to a mode index v, we will use iv to denote the site the mode is at and
σv to be the local index of the mode. Associated with the mode at v, we will also define the operators nv, c

1
v, c

2
v via

nv = a†vav, c
1
v =

av + a†v√
2

and c2v =
av − a†v√

2i
. (S15)

Here, nv is an operator measuring the number of particles in mode v, and c1v, c
2
v are the Majorana operators (for

fermions) or the quadrature operators (for bosons).
As in the main text, the Hamiltonian for the fermionic or bosonic problem will be decomposed as

H(t) = Hg(t) +Hng(t), (S16)

where Hg(t) is Gaussian given by

Hg(t) =
∑

v,v′

∑

α,α′

Jα,α′

v,v′ (t)c
α
v c

α′
v′ +

∑

v,α

Ωα
v (t)c

α
v , (S17)

with Ωα
v (t) = 0 for fermions, and Hng(t) is non-Gaussian given by

Hng(t) =
∑

v,v′

Uv,v′(t)nvnv′ . (S18)

Without loss of generality, we can assume that

For fermions, Jα,α′

v,v′ (t) is purely imaginary and Jα,α′

v,v′ (t) = −Jα′,α
v′,v (t),

For bosons, Jα,α′

v,v′ (t) is purely real and Jα,α′

v,v′ (t) = Jα′,α
v′,v (t),

For both fermions and bosons, Uv,v′(t) is purely real and Uv,v′(t) = Uv′,v(t).

As in the main text, we will also define constants JC , Jos, UC , Uos,Ω:

(1) JC is a measure of the strength of the Gaussian terms coupling modes at different sites: It is the smallest number
such that ∀t and v = (i, σ)

∑

i′:i′ ̸=i,σ′

∑

α,α′

|Jα,α′

i,σ;i′,σ′(t)| ≤ JC . (S19)

(2) Jos is a measure of the strength of the Gaussian terms coupling modes at the same site: It is the smallest number
such that ∀t and v = (i, σ)

∑

σ′

∑

α,α′

|Jα,α′

i,σ;i,σ′(t)| ≤ Jos. (S20)

(3) UC is a measure of the strength of the non-Gaussian terms coupling modes at different sites: It is the smallest
number such that ∀t and v = (i, σ)

∑

i′ ̸=i,σ′

|Ui,σ;i′,σ′(t)| ≤ UC . (S21)

(4) Uos is a measure of the strength of the non-Gaussian terms coupling modes at the same site: It is the smallest
number such that ∀t and v = (i, σ)

∑

iσ′

|Ui,σ;i,σ′(t)| ≤ Uos. (S22)
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(5) Ω is a measure of the on-site displacement: it is the smallest number such that ∀t and v = (i, σ)

∑

α

|Ωα
i,σ(t)| ≤ Ω. (S23)

Note that Ω ̸= 0 only for the bosonic model—we do not include a displacement term in the fermionic model.

Note that the inter-site non-Gaussian interactions were not included in the main text, and the results quoted in the
main text can be obtained by setting UC = 0. Finally, it will also be convenient to define the parameter Λ as

Λ = JC + UC + Jos + Uos + κ+Ω. (S24)

While analyzing the bosonic model, it will be more convenient to express Hg as a sum of particle number conserving
and non-conserving terms via

Hg(t) =
∑

v,v′

(
Jv,v′(t)a†vav′ + h.c.

)

︸ ︷︷ ︸
Hhop

g (t)

+
∑

v,v′

(
Gv,v′(t)avav′ + h.c.

)

︸ ︷︷ ︸
Hsq

g (t)

+
∑

v

(
Dv(t)av + h.c.

)

︸ ︷︷ ︸
Hdisp

g (t)

, (S25)

where, up to a possibly time-dependent energy shift in Hg(t), Jv,v′ = (J1,1
v,v′ − iJ1,2

v,v′ − iJ2,1
v,v′ + J2,2

v,v′)/2, Gv,v′(t) =

(J1,1
v,v′ + iJ1,2

v,v′ + iJ2,1
v,v′ − J2,2

v,v′)/2 and Dv = (Ω1
ν(t) − iΩ2

ν(t))/
√
2. Here, Hhop

g (t) is a particle hopping term between

different bosonic modes and conserves the total particle number N =
∑

v nv, H
sq
g (t) can be considered to be a

multi-mode squeezing term in the Hamiltonian and Hdisp
g (t) displaces the individual bosonic modes. Both Hsq

g (t)

and Hdisp
g (t) do not conserve the total particle number N . It will also be convenient to define the constant G as the

smallest number such that for all t and v
∑

v′

|Gv,v′(t)| ≤ G. (S26)

Furthermore, it can be noted that |Dv(t)| ≤ Ω/
√
2.

Finally, the noise in the dynamics of the bosonic and fermionic models will be modeled by the Lindbladian Ln given
by

Ln =
3∑

l=1

∑

i,σ

κξ(l)D
L

(l)
i,σ
, (S27)

where DLρ = LρL† − {L†L, ρ}/2, L(1)
i,σ = ai,σ, L

(2)
i,σ = a†i,σ, and L

(3)
i,σ = a†i,σai,σ = ni,σ. The parameter κ is the noise

rate, and ξ(l) > 0 account for the extent of the different noise channels (l = 1 for incoherent particle loss, l = 2 for
incoherent particle gain, and l = 3 for dephasing). Note also that we will implicitly assume that ξ(1) + ξ(2) + ξ(3) = 1.
We summarize all the parameters of the model in Table SII.

II. HIGH NOISE SIMULABILITY OF THE FERMIONIC MODEL (THEOREM 1)

In this section, we will present the proof of Theorem 1, which establishes the high-noise simulability of the fermionic
model. We will first analyze the Trotterization of the continuous-time model, followed by analyzing each Trotter time-
step to establish its convex Gaussianity for high noise and to obtain an explicit algorithm for classically simulating
either sampling from or computing local observables in the fermionic state. We begin with a first-order Trotter approx-
imation to ρ(t) with the following splitting of the Lindbladian L(t) into a Gaussian and non-Gaussian Lindbladian:

L(t) = −i[Hg(t), · ] + κ
∑

l∈{1,2}

∑

i,σ

ξ(l)D
L

(l)
i,σ

︸ ︷︷ ︸
Lg(t)

−i[Hng(t), · ] + κξ(3)
∑

i,σ

D
L

(3)
i,σ

︸ ︷︷ ︸
Lng(t)

, (S28)

We next Trotterize the state ρ(t) into T Trotter steps: The Trotterized state σT will be given by

σT =

( 1∏

τ=T

Φng
τδ,(τ−1)δΦ

g
τδ,(τ−1)δ

)
ρ(0), (S29a)
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Parameter Defined in Informal description

Jα,α′
v,v′ (t) or J

α,α′
i,σ;i′,σ′(t) Eq. (S17)

Gaussian coupling between two fermionic or bosonic
modes

JC Eq. (S19)
Maximum total strength of Gaussian coupling between a
mode and all other modes at different sites

Jos Eq. (S20)
Maximum total strength of Gaussian coupling between a
mode and all other modes at the same site

Uv,v′(t) or Ui,σ;i′,σ′(t) Eq. (S18)
Non-Gaussian interaction between two fermionic or
bosonic modes

UC Eq. (S21)
Maximum total strength of non-Gaussian interaction be-
tween a mode and all other modes at different sites

Uos Eq. (S22)
Maximum total strength of non-Gaussian interaction be-
tween a mode and all other modes at the same site

Λ Eq. (S24) Total coupling strength
Ωv(t) or Ωi,σ(t) Eq. (S17) On-site displacement acting on bosonic modes
Jv,u(t) Eq. (S25) Gaussian hopping between two bosonic modes
Gv,u(t) Eq. (S25) Multi-mode squeezing term between two bosonic modes

G Eq. (S26)
Maximum strength of multi-mode squeezing between one
bosonic mode with all other modes

Dv(t) Eq. (S25) Single-mode displacement acting on bosonic modes
κ Eq. (S27) Noise rate

ξ(1) Eq. (S27) Decay rate for particle loss

ξ(2) Eq. (S27) Decay rate for incoherent particle gain

ξ(3) Eq. (S27) Decay rate for dephasing noise

γ Assumption 2 Defined as γ = κ(ξ(1) − ξ(2))− 2G
n — Number of sites
L — Number of modes per site
m — Total number of modes m = nL

TABLE SII. Table of all the coefficients and parameters relevant to the bosonic and fermionic models.

where δ = t/T and

Φng
t,t′ = T exp

(∫ t

t′
Lng(s)ds

)
and Φg

t,t′ = T exp

(∫ t

t′
Lg(s)ds

)
. (S29b)

We first provide a bound on ∥σT − ρ(t)∥1.
Lemma 3 (Trotterization: Fermionic model). For all T > 0,

∥σT − ρ(t)∥1 ≤ 4t2m2

T
Λ2.

Proof. Noting that ∥Lng(s)∥⋄ ≤ 2m(UC + Uos + κξ(3)) and ∥Lg(s)∥⋄ ≤ 2m(JC + Jos + κ(ξ(1) + ξ(2))), we obtain that
the parameter ℓ in Lemma 2 can be chosen to be 2mΛ. The lemma statement then follows directly from Lemma
2.

Lemma 4 (Convex-gaussianity condition for 2-fermionic modes). Consider a Lindbladian on two fermionic modes
given by

L(t) = −i[h(t), ·] +
∑

i∈{1,2}
κi(t)Dni ,

where h(t) = u(t)n1n2 and ni is the number operator for the ith mode. If κi(t) ≥ |u(t)|, then the channel

T exp(
∫ t+τ

t
L(s)ds) generated by the Lindbladian in the time interval (t, t + τ) maps a convex Gaussian state to

another convex Gaussian state.

Proof. It will be convenient to define the scalars

U =

∫ t+τ

t

u(s)ds, Ki =

∫ t+τ

t

κi(s)ds, and K = K1 +K2. (S30)
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We also note that, since both the Hamiltonian and the jump operators are expressible as polynomials of the fermionic
number operators n1, n2, they commute with each other. Therefore,

T exp

(∫ t+τ

t

L(s)ds
)

= exp
(
− iU [n1n2, · ]

)
exp

(
K1Dn1

)
exp

(
K2Dn2

)
. (S31)

We define the channel Rt+τ,t via

Rt+τ,t(ρ) = Ez

(
R(z)ρR†(z)

)
where R(z) = exp

(√
Ue−iπ/4(zn1 + z∗n2)

)
, (S32)

where z = (a+ ib)/
√
2 with a, b being independent standard normal random variables. Note that, due to Lemma 1,

Rt+τ,t maps an input Gaussian state to a (possibly unnormalized) convex-Gaussian state.
We now explicitly compute Rt+τ,t(ρ). define Ni,l as the superoperator which left multiplies by ni (i.e. Ni,l(ρ) = niρ)

and Ni,r as the superoperator which right multiplies by ni (i.e. Ni,r(ρ) = ρni). Then

Rt+τ,t = Ez

(
exp

(√
Ue−iπ/4(zN1,l + z∗N2,l) +

√
U

∗
eiπ/4(z∗N1,r + zN2,r)

))

= Ea

(
exp

(
a√
2

(√
Ue−iπ/4(N1,l +N2,l

)
+

√
U

∗
eiπ/4(N1,r +N2,r

))))
×

Eb

(
exp

(
ib√
2

(√
Ue−iπ/4(N1,l −N2,l

)
−
√
U

∗
eiπ/4(N1,r −N2,r

))))

(1)
= exp

(
− i

U

4
(N1,l +N2,l)

2 + i
U

4
(N1,r +N2,r)

2 +
|U |
2

(N1,l +N2,l)(N1,r +N2,r)

)
×

exp

(
i
U

4
(N1,l −N2,l)

2 − i
U

4

(
N1,l −N2,r

)2
+

|U |
2

(N1,l −N2,l)(N1,r −N2,r

))

= exp
(
− iU(N1,lN2,l −N1,rN2,r) + |U | (N1,lN1,r +N2,lN2,r)

)
, (S33)

where, in (1), we have used the fact that, for any operatorO, Ex∈N (0,1)(e
xO) = eO

2/2. IdentifyingN1,lN2,l−N1,rN2,r =
[n1n2, · ], we obtain that

exp(−iU [n1n2, · ]) = exp(− |U | (N1,lN1,r +N2,lN2,r))Rt+τ,t. (S34)

Using Eq. (S34) and Eq. (S31) together with the fact that Dni
= Ni,lNi,r − (N 2

i,l +N 2
i,r)/2, we obtain that

T exp

(∫ t+τ

t

L(s)ds
)

=

( ∏

i∈{1,2}
exp((Ki − |U |)Ni,lNi,r)︸ ︷︷ ︸

Ei

exp(−(N 2
i,l +N 2

i,r)/2)︸ ︷︷ ︸
Fi

)
Rt+τ,t. (S35)

We note that Rt+τ,t and Fi are completely positive maps that map convex Gaussian states to possibly unnormalized
Gaussian states. Furthermore, if Ki ≥ |U |, which is implied by κi(t) ≥ |u(t)| quoted in the lemma statement, then

Ei also have this property. Consequently, since T exp(
∫ t+τ

t
L(s)ds) is a channel, as long as Ki ≥ |U |, it maps convex

Gaussian states to (normalized) convex Gaussian states.

Theorem 1 (High-noise convex Gaussianity and classical simulation of the fermionic model, reproduced from the
main text). For an initial Gaussian state, if κ ≥ 2U/ξ(3), then the state of the fermionic model at time t, ρ(t), is
convex Gaussian for all t ≥ 0. Furthermore, ρ(t) can be classically sampled in the Fock state basis to an ϵ total
variation error in O(m7Λ2t2/ϵ) time.

Proof. Consider the Trotterized state σT [Eq. (S29)]—note that Φg
τδ,(τ−1)δ is a Gaussian channel and hence trivially

preserves convex Gaussianity. We now obtain the condition under which Φng
τδ,(τ−1)δ also preserves convex Gaussianity

using Lemma 4. We first perform the decomposition

Φng
τδ,(τ−1)δ =

∏

v,u

T exp

(∫ τδ

(τ−1)δ

Lv,u(s)ds

)
where Lv,u = −i[Uv,u(t)nvnu, · ] + κξ(3)

(
pv,u(t)Dnv

+ qv,u(t)Dnu

)
,

(S36)

where we choose

pv,u(t) =
1

2

|Uv,u(t)|∑
u |Uv,u(t)|

and qv,u(t) =
1

2

|Uv,u(t)|∑
v |Uv,u(t)|

. (S37)
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Next, we apply Lemma 4: For Lv,u(t) to generate a channel that is convex-Gaussianity preserving, a sufficient
condition is that

κξ(3)pv,u(t), κξ
(3)qv,u(t) ≥ |Uv,u(t)| or equivalently κξ(3) ≥ 2

∑

k′

|Uk,k′(t)| for k ∈ {v, u}. (S38)

Since
∑

k′ |Uk,k′(t)| ≤ UC + Uos, this condition is satisfied if κξ(3) ≥ 2(UC + Uos). Assuming this to be true, it then
follows from Lemma 4 that Φng

τδ,(τ−1)δ maps an input Gaussian state to a convex-Gaussian state—consequently, the

Trotterized state σT is a convex-Gaussian state such that ∥ρ(t)− σT ∥1 ≤ ϵ when T = Θ(t2m2Λ2/ϵ).
Time-complexity of sampling in the Fock state basis. Since σT is convex-Gaussian by construction, it can be

expressed as σT =
∫
ραdµ(α), where ρα is a Gaussian state and µ is a probability measure. To sample from σT ,

we can then first sample from µ to obtain a Gaussian state and then use the standard algorithm for sampling
from fermionic Gaussian states. Consider sampling from µ(α): Suppose the initial state ρ(0) is a Gaussian state.
Lemma 4 provides an explicit characterization of the convex combination of Gaussian states that result when applying

T exp(
∫ τδ

(τ−1)δ
Lv,u(s)ds) on an input Gaussian state. Furthermore, since the covariance matrix of the Gaussian state

is a 2m × 2m matrix, the probabilities of each Gaussian state in the convex combination being computable from
the result for covariance matrices of products of Gaussian states [S2, S4] in O(m3) time—sampling from this convex
combination thus requires O(m3) time. At every time-step, this has to be done for every pair of fermionic modes
to apply Φng

τδ,(τ−1)δ, thus yielding a total time-complexity of O(m5). The application of the Gaussian evolution in

each time-step can also be done at the level of covariance matrices in O(m3) time. Thus, the total time of sampling
from µ is given by O(m5 × T ) = O(m7Λ2t2/ϵ). Finally, having sampled a Gaussian state ρα from σT , we can draw a
sample in the Fock state basis in O(m3) time [S5, S6]—the total time complexity of the sampling algorithm thus is
dominated by the cost of sampling from µ and is given by O(m7Λ2t2/ϵ).

III. HIGH-NOISE SEPARABILITY OF THE BOSONIC MODEL (THEOREM 2)

In this section, we will present proof of Theorem 2, which considers the high-noise regime of the bosonic model.
Since the bosonic model is infinite-dimensional with unbounded terms in the Hamiltonian, its analysis first requires an
analysis of the particle number (as well as its moments) in the model. We do so in the first subsection—then, in the
proof of Theorem 2, we first approximate the infinite-dimensional bosonic modes with finite-dimensional qudits and
quantify the approximation error. Finally, we analyze the resulting finite-dimensional model and establish high-noise
separability in the model.

A. Analyzing particle number moments

We begin by introducing a physically motivated assumption on the initial state of the model—the initial state will
be assumed to be a product state with a “uniform particle moment density” assumption, similar to that used in
Ref. [S7].

Assumption 1 (Uniform particle moment density). The initial state ρ(0) is a product state and ∃C0, α0, β0 > 0 such
that ∀v and k ∈ {1, 2, 3 . . . }

Tr(nkvρ(0)) ≤ Ck
0 k

α0k+β0 .

As shown in Ref. [S7], this assumption is satisfied for a wide variety of physically relevant initial states of the bosonic
model, notably for the vacuum state, thermal states, as well as coherent states. Furthermore, it implies a bound on
the moments of the total particle number N =

∑
v nv since

Tr(Nkρ(0)) =
∑

v1,v2...vk

Tr(nv1nv2 . . . nvkρ(0)) ≤
∑

v1,v2...vk

k∏

i=1

Tr(nkviρ(0))
1/k ≤ (C0m)kkα0k+β0 , (S39)

where we remind the reader that m = nL is the total number of bosonic modes in the model. This particle number
moment bound, in turn, implies that the probability of high-particle-number states being occupied is exponentially
suppressed, which we make precise in the following lemma.
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Lemma 5 (Probability of high-particle-number states (Ref. [S7])). Suppose ρ is a state which satisfies Tr(Nkρ) ≤
(Cm)kkαk+β and Π≥d is a projector on the subspace with ≥ d particles, then

Tr(Π≥dρ) ≤
(
deα/β

Cme

)β/α

e−(d/Cme)1/α .

Proof. Note that, for any k > 0,

dkTr(Π≥dρ) ≤ Tr(NkΠ≥dρ) ≤ Tr(Nkρ) ≤ (Cm)kkαk+β =⇒ Tr(Π≥dρ) ≤ kβ
(
Cmkα

d

)k

. (S40)

We can now pick k to be the greatest integer smaller than (d/Cme)1/α—we then have that (d/Cme)1/α − 1 ≤ k ≤
(d/Cme)1/α and therefore

Tr(Π≥dρ) ≤
(

d

Cme

)β/α

e−k ≤
(
deα/β

Cme

)β/α

e−(d/Cme)1/α , (S41)

which proves the lemma statement.

While we will assume that the uniform particle moment density condition holds for the initial state, the subsequent
dynamics of the bosonic model could possibly violate this condition. In the remainder of this section, we show that
under the condition that the total rate of particle loss is higher than the total rate of particle gain (which we make
precise below in assumption 2), the moments of the total particle number Tr(Nkρ(t)) satisfy an inequality similar
to Eq. (S39), which by Lemma 5 implies that the probability of higher particle number states being occupied is
super-polynomially small in the particle number.

Assumption 2. The parameters κ, ξ(1), ξ(2) and G are such that 2γ = κ(ξ(1) − ξ(2))− 2G > 0.

Physically, this assumption restricts the rate of 3 processes in the bosonic model that can change its particle number:
In the noise terms, incoherent particle loss can decrease the particle number at a rate ∼ κξ(1) and incoherent particle
gain can increase the particle number at a rate ∼ κξ(2). Furthermore, in the Hamiltonian, the squeezing term (Hsq

g (t)
in Eq. (S25)) can also increase the number of particles in the system at a rate ∼ G. Assumption 2 constrains the model
to have particle loss higher than particle gain, without which the number of particles can increase arbitrarily with
time. We remark that we do not need any assumption on the strength of displacement term (Hdisp

g (t) in Eq. (S25))—
we will show in Lemma 8 that, as long as assumption 2 is satisfied, no matter how large the displacement term is, the
particle number (and its moments) do not grow arbitrarily with time.
We begin with a two technical lemmas that will be useful in our analysis.

Lemma 6. Suppose xk(t), for k ∈ {0, 1, 2 . . . }, are non-negative functions of time which satisfy the differential
inequalities

d

dt
xk(t) ≤ −γkxk(t) + λmk

k∑

q=1

2q
(
k

q

)
xk−q(t),

where γ, λ,m > 0. Furthermore, suppose x0(t) = 1 ∀t ≥ 0 and ∃C0, α0, β0 > 0 : xk(0) ≤ (C0m)kkα0k+β0 for all
k ∈ {1, 2, 3 . . . }. Then

xk(t) ≤ (Cm)eαk+β , where C = eλ/γ(C0 + 2), α = max(α0, 1) and β = β0.

Proof. The differential inequality can be written as an integral inequality:

xk(t) ≤ xk(0)e
−γkt + λmk

k∑

q=1

2q
(
k

q

)∫ t

0

xk−q(s)e
−γk(t−s)ds. (S42)

Recursing Eq. (S42), we obtain

xk(t) ≤ xk(0)e
−γkt +

k∑

p=1

k∑

q1=1

k−q1∑

q2=1

· · ·
k−∑p−1

i=1 qi∑

qp=1

2
∑p

i=1 qiλpk!

q1!q2! . . . qp!(k −
∑p

i=1 qi)!

( p∏

i=1

(
k −

i−1∑

j=1

qj

))
xk−∑p

i=1 qi(0)I
(k)
q1,q2...qp(t),

(S43)
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where

I(k)q1,q2...qp(t) =

∫ t

0

∫ s1

0

· · ·
∫ sp−1

0

e−γk(t−s1)e−γ(k−q1)(s1−s2)e−γ(k−q1−q2)(s2−s3) . . . e−γ(k−q1−q2···−qp)spds1ds2 . . . dsp

= e−kγt

∫ t

0

∫ s1

0

∫ s2

0

· · ·
∫ sp−1

0

eγ(q1s1+q2s2+...qpsp)ds1ds2 . . . dsp. (S44)

We note that I
(k)
q1,q2...qp(t) can be upper bounded:

I(k)q1,q2...qp(t) ≤ e−kγt

∫ t

−∞

∫ t

−∞
· · ·

∫ t

−∞
eγ(q1s1+q2s2+...qpsp)ds1ds2 . . . dsp

≤ 1

γpq1q2 . . . qp
e−(k−q1−q2−...qp)γt

≤ 1

γp
e−γ(t−q1−q2−...qp). (S45)

In the calculation done below, it will be useful to note that, given any f(n) where n ∈ {0, 1, 2 . . . },

k∑

q1=1

k−q1∑

q2=1

· · ·
k−∑p−1

i=1 qi∑

qp=1

1

q1!q2! . . . qp!
f

( p∑

i=1

qi

)
(1)
=

k∑

q=p

q∑

q1=1

q−q1∑

q2=1

· · ·
q−∑p−q

i=1 qi∑

qp=1

1

q1!q2! . . . qp!
f(q)

(2)
=

k∑

q=p

f(q)
∑

q1,q2...qp≥1
q1+q2+...qp=q

1

q1!q2! . . . qp!

(3)

≤
k∑

q=p

pqf(q)

q!
, (S46)

where in (1) we have introduced the index q = q1+q2+. . . qp, which ranges from p to k, and re-expressed the summation
over q1, q2 . . . qp as first a sum over q, and then a sum over q1, q2 . . . qp subject to the contraint q1 + q2 + . . . qp = q.
In (2), we have simply noted the fact that the summation over q1 ∈ {1, 2 . . . q}, q2 ∈ {1, 2 . . . q − q1} . . . qp−1 ∈
{1, 2 . . . q − (q1 + q2 + qp−1)} is identical to summation over q1, q2 . . . qp ∈ {1, 2 . . . q} with the additional constraint
that q1 + q2 + . . . qp ≤ q. Finally, (3) is obtained by identifying the summation as a multinomial sum.

Returning to Eq. (S43), we obtain that

xk(t)
(1)

≤ xk(0)e
−γkt +

k∑

p=1

k∑

q1=1

k∑

q2=1

· · ·
k∑

qp=1

k!2q1+q2...qp

q1!q2! . . . qp!(k −
∑p

i=1 qi)!p!

(
λmk

γ

)p

xk−∑p
i=1 qi(0)e

−γt(k−∑p
i=1 qi)

(2)

≤ xk(0)e
−γkt +

k∑

p=1

k∑

q=p

(2p)q
(
k

q

)(
λmk

γ

)p

xk−q(0)e
−γt(k−q)

≤ (C0m)kkα0k+β0e−γkt +
k∑

q=1

q∑

p=1

(2k)q
(
k

q

)(
λmk

γ

)p

(C0m)k−q(k − q)α0(k−q)+β0e−γt(k−q)

≤ (C0m)kkα0k+β0e−γkt +mkekλ/γ
k∑

q=1

(
k

q

)
(2k)qCk−q

0 kα0(k−q)+β0e−γt(k−q)

≤ (eλ/γm)kkβ0

k∑

q=1

(
k

q

)
(C0k

α0e−γt)k−q(2k)q = (eλ/γm)kkβ0(C0k
α0e−γt + 2k)k, (S47)

where, in (1), we have used Eq. (S45) and in (2) we have used Eq. (S46). Finally, using C0k
α0e−γt + 2k ≤

kmax(α0,1)(C0 + 2), the lemma statement follows.

Lemma 7. For any k > 0, v,

[av, N
k] = av(N

k − (N − I)k) and [av, N
k] = ((N + I)k −Nk)av.
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Furthermore, for any k > 0, v,

a†vN
kav ⪯ nvN

k.

Proof. We begin by noting that, for any z, it follows from ezNave
−zN = e−zav that

[av, e
zN ] = ave

zN − ezNav = av(e
zN − ez(N−I)) = (ez(N+I) − ezN )av. (S48)

We thus obtain that

[av, N
k] =

dk

dzk
[av, e

zN ]

∣∣∣∣
z=0

= av
(
Nk − (N − I)k

)
=

(
(N + I)k −Nk)av. (S49)

Furthermore, for any state |ψ⟩ = ∑
n⃗ ψn⃗ |n⃗⟩, where ψn⃗ is the amplitude of |ψ⟩ on the basis state |n⃗⟩ = |n1, n2 . . . nm⟩,

⟨ψ| a†vNkav |ψ⟩ =
∑

n⃗

|ψn⃗|2 nv(∥n⃗∥1 − 1)k ≤
∑

n⃗

|ψn⃗|2 nv ∥n⃗∥k1 = ⟨ψ|nvNk |ψ⟩ , (S50)

from which it follows that a†vN
kav ⪯ nvN

k.

In the next lemma, we derive an upper bound on Tr(Nkρ(t)), which will be central to analyzing the Hilbert space
truncation and Trotter bounds in the subsequent subsections.

Lemma 8 (Upper bounding particle number moments). Consider a bosonic model satisfying assumption 2 with the
bosonic modes in an initial state ρ(0) satisfying assumption 1, then, ∀t ≥ 0,

Tr(Nkρ(t)) ≤ (Cm)kkαk+β ,

where C = e1+Ω2/γ2+G/γ+2(ξ(1)+ξ(2))κ/γ(C0 + 2), α = max(α0, 1) and β = β0.

Proof. We will use the Heisenberg equations of motion for the operator Nk. Note that [Nk, Hng(t)] =
0, [Nk, Hhop

g (t)] = 0 and D†
nv
(Nk) = 0 (where Hhop

g (t) is defined in Eq. (S25)). Using notation ⟨O⟩t = Tr(Oρ(t)), we
then have that

d

dt
⟨Nk⟩t = κ

∑

v

(
ξ(1)⟨D†

av
(Nk)⟩t + ξ(2)⟨D†

a†
v
(Nk)⟩t

)

︸ ︷︷ ︸
⟨L†

n(Nk)⟩t

−i⟨[Nk, Hsq
g (t)]⟩t − i⟨[Nk, Hdisp

g (t)]⟩t. (S51)

Consider first D†
av
(Nk),D†

a†
v
(Nk)—using Lemma 7, we obtain that

∑

v

D†
av
(Nk) = −

∑

v

a†v[av, N
k] = −N

(
Nk − (N − I)k

)
= −kNk +

∑

l≥1

(−1)l
(

k

l + 1

)
Nk−l,

∑

v

D†
a†
v
(Nk) =

∑

v

[av, N
k]a†v =

(
(N + I)k −Nk

)
(N + I) = kNk +

∑

l≥1

(
k + 1

l + 1

)
Nk−l. (S52)

Therefore,

⟨L†
n(N

k)⟩t = −κ(ξ(1) − ξ(2))k⟨Nk⟩t +
k∑

l=1

(
κξ(1)(−1)l

(
k

l + 1

)
+ κξ(2)

(
k + 1

l + 1

))
⟨Nk−l⟩t

(1)

≤ −(ξ(1) − ξ(2))κk⟨Nk⟩t +
k∑

l=1

(
κξ(1)k + κξ(2)(k + 1)

)(k
l

)
⟨Nk−l⟩t

≤ −(ξ(1) − ξ(2))κk⟨Nk⟩t + 2κ(ξ(1) + ξ(2))km
k∑

l=1

2l
(
k

l

)
⟨Nk−l⟩t, (S53)

where we implicitly set
(
k
l

)
= 0 if l < 0 or l > k and in (1) we have used the fact that

(
k

l+1

)
≤ k

(
k
l

)
,
(
k+1
l+1

)
≤ (k+1)

(
k
l

)
.
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Next, consider [Nk, Hsq
g (t)] =

∑
v,u Gv,u(t)[N

k, avau]− h.c. — we begin by noting that from Lemma 7

[Nk, avau] = −[av, N
k]au − av[au, N

k] = −2
∑

l≥0

(
k

2l + 1

)
avN

k−2l−1au, (S54)

and therefore

∣∣⟨[Nk, Hsq
g (t)]⟩t

∣∣ ≤ 2
∑

v,u

|Gv,u(t)||⟨[Nk, avau]⟩t|

(1)

≤ 2
∑

v,u

∑

l≥0

|Gv,u(t)|
(

k

2l + 1

)
|⟨avNk−2l−1au⟩t|

(2)

≤
∑

v,u

∑

l≥0

|Gv,u(t)|
(

k

2l + 1

)(
|⟨avNk−2l−1a†v⟩t|+ |⟨Tr(a†uNk−2l−1au⟩t|

)

≤ G
∑

u

∑

l≥0

(
k

2l + 1

)(
⟨auNk−2l−1a†u⟩t + ⟨a†uNk−2l−1au⟩t

)

(3)

≤ G
∑

u

∑

l≥0

(
k

2l + 1

)(
⟨(N + I)k−2l−1aua

†
u⟩t + ⟨(N − I)k−2l−1a†uau⟩t

)

≤ 2G
∑

l,p≥0

(
k

2l + 1

)(
k − 2l − 1

2p

)
⟨Nk−2l−2p⟩t + 2Gm

∑

l,p≥0

(
k

2l + 1

)(
k − 2l − 1

p

)
⟨Nk−2l−p−1⟩t.

(S55)

where, in (1), we have used Eq. (S54), in (2) we have used the fact that, for any two operators A,B, ⟨AB⟩ ≤√
⟨AA†⟩⟨B†B⟩ ≤ (⟨AA†⟩+ ⟨B†B⟩)/2 and in (3) we have used Lemma 7. We can thus conclude that

∣∣⟨[Nk, Hsq
g (t)]⟩t

∣∣ ≤ 2Gk⟨Nk⟩t + 2G
∑

q≥1

f (k)q ⟨Nk−q⟩t, (S56)

where

f (k)q =

{
m

∑
l≥0

(
k

2l+1

)(
k−(2l+1)
q−(2l+1)

)
if q ∈ {1, 3, 5 . . . },

m
∑

l≥0

(
k

2l+1

)(
k−(2l+1)
q−(2l+1)

)
+

∑
l≥0

(
k

2l+1

)(
k−(2l+1)

q−2l

)
if q ∈ {2, 4, 6 . . . }. (S57)

The expression for f
(k)
q can be further simplified by noting that

∑

l≥0

(
k

2l + 1

)(
k − (2l + 1)

q − (2l + 1)

)
=

∑

l≥0

k!

(2l + 1)!(k − q)!(q − (2l + 1))!
=

(
k

q

)∑

l≥0

(
q

2l + 1

)
= 2q−1

(
k

q

)
, (S58)

and

∑

l≥0

(
k

2l + 1

)(
k − (2l + 1)

q − 2l

)
=

∑

l≥0

k!

(2l + 1)!(k − q − 1)!(q − 2l)!
=

(
k

q + 1

)∑

l≥0

(
q + 1

2l + 1

)
= 2q

(
k

q + 1

)
. (S59)

We then obtain that

f (k)q =

{
2q−1m

(
k
q

)
if q ∈ {1, 3, 5 . . . },

2q−1m
(
k
q

)
+ 2q

(
k

q+1

)
if q ∈ {2, 4, 6 . . . }. (S60)

Again, we note that, since
(

k
q+1

)
≤ k

(
k
q

)
, it follows that f

(k)
q ≤ 2q−1(m+ 2k)

(
k
q

)
≤ mk2q

(
k
q

)
, and thus we obtain that

∣∣⟨[Nk, Hsq
g (t)]⟩t

∣∣ ≤ 2Gk⟨Nk⟩t +mkG
∑

q≥1

(
k

q

)
2q⟨Nk−q⟩t. (S61)
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Finally, we consider [Nk, Hdisp
g (t)] =

∑
v Dv(t)[N

k, av]− h.c.—we begin by noting that, from Lemma 7,

[Nk, av] = ((N + I)k −Nk) =
∑

q≥1

(
k

q

)
Nk−qav, (S62)

and therefore

∣∣⟨[Nk, H2(t)]⟩t
∣∣ ≤ 2Ω

∑

v

∑

q≥1

(
k

q

) ∣∣⟨Nk−qav⟩t
∣∣

(1)

≤
∑

v

∑

q≥1

(
k

q

)√
2γ⟨a†vNk−qav⟩t ×

2Ω2

γ
⟨Nk−q⟩t

≤
∑

v

∑

q≥1

(
k

q

)(
γ⟨a†vNk−qav⟩t +

Ω2

γ
⟨Nk−q⟩t

)

(2)

≤
∑

v

∑

q≥1

(
k

q

)(
γ⟨Nk−qnv⟩t +

Ω2

γ
⟨Nk−q⟩t

)

≤ γk⟨Nk⟩t +
∑

q≥1

(
γ

(
k

q + 1

)
+
mΩ2

γ

(
k

q

))
⟨Nk−q⟩t

(3)

≤ γk⟨Nk⟩t +
∑

q≥1

(
kγ +

mΩ2

γ

)(
k

q

)
⟨Nk−q⟩t, (S63)

where, in (1), we have again used that ⟨AB⟩ ≤
√
⟨AA†⟩⟨B†B⟩ and introduced the parameter γ = κ(ξ(1) − ξ(2))− 2G

from assumption 2, in (2) we have used Lemma 7 to obtain that ⟨a†vNk−qav⟩ ≤ ⟨Nk−qnv⟩, and in (3) we have used

the fact that
(

k
q+1

)
≤ k

(
k
q

)
. Setting k,m ≤ km, we obtain that

∣∣⟨[Nk, Hdisp
g (t)]⟩t

∣∣ ≤ γk⟨Nk⟩t +mk

(
γ +

Ω2

γ

)∑

q≥1

(
k

q

)
⟨Nk−q⟩t. (S64)

Combining Eq. (S51) with Eqs. (S53, S61, S64), we obtain that

d

dt
⟨Nk⟩t ≤ −γk⟨Nk⟩t + λkm

∑

q≥1

(
k

q

)
⟨Nk−q⟩t, (S65)

where λ = γ + Ω2/γ + G + 2κ(ξ(1) + ξ(2)). Then, solving this inequality using Lemma 6, we obtain the lemma
statement.

Combining this lemma with Lemma 5, we straightforwardly obtain the following lemma upper bounding the probability
of large number of excitations at any time in the bosonic model.

Lemma 9. Suppose Π≥d is a projector on the subspace with ≥ d particles and the bosonic model satisfies assumptions
1 and 2, then for any t ≥ 0,

Tr(Π≥dρ(t)) ≤ e

(
d

d0m

)k0

exp

(
−

(
d

d0m

)1/α)
,

where d0 = eC, k0 = β/α with C,α, β being defined in Lemma 8.

B. Proof of Theorem 2 (bosons)

The proof of Theorem 2 has three main parts:

(1) Truncation of the Hilbert space of the bosonic model to a finite-dimensional space and an analysis of the
truncation error (Lemma 11).
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(2) First-order Trotterization of the truncated finite-dimensional model (Lemma 12).

(3) Analysis of each Trotter step to establish high-noise separability (Lemma 13).

Truncation of the bosonic model. Suppose we want to truncate the local Hilbert space of each bosonic mode to d
levels—we will denote by H≤d the Hilbert space of the bosonic model with each bosonic mode truncated to at most
d particles. For the vth bosonic mode, we will define the projectors Πv,d,Πv,≤d, and Πv,>d via

Πv,d = |d⟩⟨d| ,Πv,≤d =

d∑

j=0

Πv,j , and Πv,>d =

∞∑

j=d+1

Πv,j . (S66)

We will define the projector Π≤d = ⊗vΠv,≤d, which will be the projector onto H≤d. The truncated model will be
described by a Lindbladian L≤d(t) while

L≤d = −i[H≤d, · ] + κ

3∑

l=1

∑

v

ξ(l)D
L

(l)
v,≤d

, (S67a)

where

H≤d(t) = Π≤dH(t)Π≤d,

L
(1)
v,≤d = av,≤d = Πv,≤davΠv,≤d,

L
(2)
v,≤d = a†v,≤d = Πv,≤da

†
vΠv,≤d,

L
(3)
v,≤d = nv,≤d = Πv,≤dnvΠv,≤d. (S67b)

It will be convenient to define super-operators P≤d and Q≤d via

P≤d(ρ) = Π≤dρΠ≤d and Q≤d = id− P≤d. (S68)

The super-operator P≤d projects an input density matrix onto H≤d. We first present a lemma that quanti-
fies the error between the state ρ(t) at time t and the state obtained from the truncated evolution: ρ≤d(t) =

T exp(
∫ t

0
L≤d(τ)dτ)(P≤dρ(0)).

Lemma 10. For any d > 0, it follows that

∥∥∥∥ρ(t)− T exp

(∫ t

0

L≤d(τ)dτ

)
(P≤dρ(0))

∥∥∥∥
1

≤ ∥Q≤dρ(t)∥1 + (d+ 1)
∑

v

∫ t

0

∥Πv,dρ(s)∥1 ds+
∫ t

0

∥P≤dL(s)Q≤d∥⋄ ∥Q≤dρ(s)∥1 ds.

Proof. Using P≤d +Q≤d = id together with the master equation (dρ(t)/dt = L(t)ρ(t)), we obtain that

d

dt
P≤dρ(t) = P≤dL(t)P≤dρ(t) + P≤dL(t)Q≤dρ(t), (S69a)

d

dt
Q≤dρ(t) = Q≤dL(t)P≤dρ(t) +Q≤dL(t)Q≤dρ(t). (S69b)

Furthermore, we note that, for any operator X that is supported on the truncated subspace Hd (i.e. X = Π≤dXΠ≤d),
and defining H≤d(t) = Π≤dH(t)Π≤d, we have

P≤dLP≤d(X) = −i[H≤d(t), X] + Π≤dLnΠ≤d(X), (S70)
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P≤dDavP≤d(X) = Πv,≤davΠv,≤dXΠv,≤da
†
vΠv,≤d −

1

2

(
Πv,≤dnvΠv,≤dX +XΠv,≤dnvΠv,≤d

)

= av,≤dXa
†
v,≤d −

1

2

(
a†v,≤dav,≤dX +Xa†v,≤dav,≤d

)

= Dav,≤d
(X), (S71a)

P≤dDa†
v
P≤d(X) = Πv,≤da

†
vΠv,≤dXΠv,≤davΠv,≤d −

1

2

(
Πv,≤dava

†
vΠv,≤dX +XΠv,≤dava

†
vΠv,≤d

)

= a†v,≤dXav,≤d −
1

2

(
av,≤da

†
v,≤dX +Xav,≤da

†
v,≤d

)
− d+ 1

2

(
Πv,dX +XΠv,d

)

= Da†
v,≤d

(X)− d+ 1

2

(
Πv,dX +XΠv,d

)
, (S71b)

P≤dDnv
P≤d(X) = Πv,≤dnvΠv,≤dXΠv,≤dn

2
vΠv,≤d −

1

2

(
Πv,≤dn

2
vΠv,≤dX +XΠv,≤dn

2
vΠv,≤d

)

= nv,≤dXnv,≤d −
1

2

(
n2v,≤dX +Xn2

v,≤d

)

= Dnv,≤d
(X). (S71c)

Defining Ln,≤d =
∑

v

(
κ1Dav,≤d

+ κ2Da†
v,≤d

+ κ3Dnv,≤d

)
, we then obtain that, ∀X ∈ H≤d,

P≤dL(t)P≤d(X) = L≤d(t)(X)− d+ 1

2

∑

v

(
Πv,dX +XΠv,d

)
. (S72)

Consequently, from Eq. (S69a), we obtain that

d

dt
P≤dρ(t) = L≤d(t)P≤dρ(t) + P≤dL(t)Q≤dρ(t)−

d+ 1

2

∑

v

(
Πv,dP≤dρ(t) + (P≤dρ(t))Πv,d

)
, (S73)

which can be integrated to obtain

P≤dρ(t) = E≤d(t, 0)P≤dρ(0) +

∫ t

0

E≤d(t, s)

(
P≤dL(s)Q≤dρ(s)−

d+ 1

2

∑

v

(
Πv,dP≤dρ(s) + (P≤dρ(s))Πv,d

))
ds,

(S74)

where E≤d(t, s) = T exp(
∫ t

s
L≤d(τ)dτ). From here, it immediately follows that

∥E≤d(t, 0)P≤dρ(0)− ρ(t)∥1 (S75)

≤ ∥ρ≤d(t)− P≤dρ(t)∥1 + ∥Q≤dρ(t)∥1

≤ (d+ 1)
∑

v

∫ t

0

∥Πv,dP≤dρ(s)∥1 ds+
∫ t

0

∥P≤dL(s)Q≤dρ(s)∥1 ds+ ∥Q≤dρ(t)∥1

(1)

≤ (d+ 1)
∑

v

∫ t

0

∥Πv,dρ(s)∥1 ds+
∫ t

0

∥P≤dL(s)Q≤dρ(s)∥1 ds+ ∥Q≤dρ(t)∥1 . (S76)

where, in (1), we have used the fact that Πv,dΠ≤d = Π≤dΠv,d to set ∥Πv,dP≤dρ(s)∥1 = ∥Π≤dΠv,dρ(s)Π≤d∥1 ≤
∥Π≤d∥ ∥Πv,dρ(s)∥1 ∥Π≤d∥ = ∥Πv,dρ(s)∥1,

Finally, combining Lemma 10 with Lemmas 5 and 8, we obtain the next lemma quantifying the truncation error as a
function of d.

Lemma 11. For any d ≥ 1, it follows that

∥∥∥∥ρ(t)− T exp

(∫ t

0

L≤d(s)ds

)
P≤dρ(0)

∥∥∥∥
1

≤ O
(
m1−k0/2d2+k0/2t(JC + Jos + UC + Uos + κ)e−

1
2 (d/d0m)1/α

)
,

where d0, k0, α are the constants in Lemma 9.
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Proof. We bound each term in Lemma 10. We first note that

∥Q≤dρ(t)∥1 = ∥Π>dρ(t) + Π≤dρ(t)Π>d∥1
≤ ∥Π>dρ(t)∥1 + ∥Π≤dρ(t)Π>d∥1
(1)

≤
√
Tr(Π>dρ(t)) +

√
Tr(Π≤dρ(t))Tr(Π>dρ(t))

≤ 2
√

Tr(Π≥dρ(t)) ≤ 2
√
e

(
d

d0m

)k0/2

exp

(
− 1

2

(
d

d0m

)1/α)
, (S77)

where, in (1), we have used the Holder’s inequality to conclude that ∥Aρ(t)B∥1 ≤
√

Tr(A†Aρ(t))Tr(B†Bρ(t)). Fur-
thermore,

∥Πv,dρ(t)∥ ≤
√
Tr(Πv,dρ(t)) ≤

√
Tr(Π≥dρ(t)) ≤

√
e

(
d

d0m

)k0/2

exp

(
− 1

2

(
d

d0m

)1/α)
. (S78)

Finally, we consider upper-bounding ∥P≤dL(s)Q≤d∥1 ≤ ∥P≤dL(s)P≤d∥⋄ + ∥P≤dL(s)∥⋄ ≤ 2 ∥P≤dL(s)∥⋄, where we
have used the fact that ∥P≤d∥⋄ ≤ 1. Next, we note that, for a Hamiltonian H and jump operator L,

∥P≤d[H, ·]∥⋄ ≤ 2∥Π≤dH∥ and ∥P≤dDL∥⋄ ≤ ∥Π≤dL∥2 + ∥Π≤dL
†L∥. (S79)

Furthermore, since

∥Π≤dav∥, ∥Π≤da
†
v∥ ≤

√
d+ 1, ∥Π≤da

†
vau∥ ≤ d and ∥Π≤davau∥, ∥Π≤da

†
va

†
u∥ ≤ d+ 2, (S80)

we obtain

∥P≤d[ · , H(t)]∥⋄ ≤ 2∥Π≤dH
hop
g (t)∥⋄ + 2∥Π≤dH

sq
g (t)∥⋄ + 2∥Π≤dH

disp
g (t)∥⋄ + 2∥Π≤dH

ng
g (t)∥

≤ 4d
∑

v,u

|Jv,u|+ 4(d+ 2)
∑

v,u

|Gv,u|+ 4
√
d+ 1

∑

v

|Dv,u(t)|+ 4d2
∑

v,u

|Uv,u|

≤ 4(d+ 1)m(Jos + JC) + 2
√

2(d+ 1)Ω + 4d2(UC + Uos)

≤ 8m
(
d(Jos + JC) +

√
d |Ω|+ d2(UC + Uos

)
. (S81)

where we have used the decomposition of Hg(t) in Eq. (S25). Furthermore,

∥P≤dLn∥ ≤ κ
∑

v

(
ξ(1)∥P≤dDav

∥⋄ + ξ(2)∥P≤dDa†
v
∥⋄ + ξ(3)∥P≤dDa†

vav
∥⋄
)

≤ κm
(
ξ(1)(2d+ 1) + ξ(2)(2d+ 2) + ξ(3)d2

)

≤ 8κm
(
(ξ(1) + ξ(2))d+ ξ(3)d2

)
. (S82)

Combining Eqs. (S81) and (S82), we obtain that

∥P≤dL(s)Q≤d∥⋄ ≤ 2∥P≤dL(s)∥⋄ ≤ 16m
(
(Jos + JC + κ(ξ(1) + ξ(2)))d+Ω

√
d+ (UC + Uos + κξ(3))d2

)

≤ 16md2
(
Jos + JC +Ω+ Uos + UC + κ

)
. (S83)

Finally, combining Eqs. (S77, S78, S83) together with Lemmas 10 and 9, we obtain the lemma.

Trotterization of the truncated model. We will perform a first-order Trotterization of the state ρ≤d(t) =

T exp(
∫ t

0
L≤d(s)ds)P≤d(ρ(0)). We will split the Hamiltonian H≤d(t) into a sum of inter-site terms HC

≤d(t) and a

sum of on-site terms Hos
≤d(t):

H≤d(t) =
∑

i<j

∑

σ,σ′

hCi,σ;j,σ′(t)

︸ ︷︷ ︸
HC

≤d
(t)

+
∑

i

∑

σ,σ′

hosi;σ,σ′(t)

︸ ︷︷ ︸
Hos

≤d
(t)

, (S84)
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where, in hCi,σ;j,σ′(t) we include all the terms that mediate an interaction between (i, σ) and (j, σ′):

hCi,σ;j,σ′(t) = Π≤d

(
Ui,σ;j,σ′(t)ni,σnj,σ′ +

∑

α,α′

Jα,α′

i,σ;j,σ′(t)c
α
i,σc

α′
j,σ′

)
Π≤d + (i, σ) ↔ (j, σ′)

= 2Ui,σ;j,σ′(t)ni,σ;≤dnj,σ′;≤d + 2
∑

α,α′

Ji,σ;j′,σ′(t)cαi,σ;≤dc
α′
j,σ′;≤d, (S85)

where c1i,σ;≤d = (ai,σ;≤d+a
†
i,σ;≤d)/

√
2, c2i,σ;≤d = (ai,σ;≤d−a†i,σ;≤d)/

√
2i. In hosi;σ,σ′(t), we include all the terms (Gaussian

or non-Gaussian) that act between modes (i, σ) and (i, σ′):

hosi;σ,σ′(t) = Π≤d

(
Ui,σ;i,σ′(t)ni,σni,σ′ +

∑

α,α′

Jα,α′

i,σ;i,σ′(t)c
α
i,σc

α′
i,σ′

)
Π≤d

= Ui,σ;i,σ′(t)ni,σ;≤dni,σ′;≤d +
∑

α,α′

Jα,α′

i,σ;i′,σ′(t)Πi,σ;≤dΠi,σ′;≤dc
α
i,σc

α′
i′,σ′Πi,σ;≤dΠi,σ′;≤d. (S86)

Furthermore, we will also decompose the dissipation Ln,≤d:

Ln,≤d =
∑

i<j

∑

σ,σ′

Ln
i,σ;j,σ′(t) where Ln

i,σ;j,σ′(t) = κ
3∑

l=1

ξ(l)
(
p
(l)
i,σ;j,σ′(t)DL

(l)
i,σ,≤d

+ q
(l)
i,σ;j,σ′(t)DL

(l)

j,σ′,≤d

)
, (S87)

where we will choose p
(l)
i,σ;i′,σ′(t), q

(l)
i,σ;i′,σ′(t) ≥ 0 later. For this decomposition of Ln,≤d to be consistent, we must also

have

∀k, σ :
∑

k′>k

∑

σ′

p
(l)
k,σ;k′,σ′(t) +

∑

k′<k

∑

σ′

q
(l)
k′,σ′;k,σ(t) = 1. (S88)

Now, the state of the truncated model at time t, ρ≤d(t), will be approximated by the state σT,≤d, where T is the
number of Trotter steps and

σT,≤d =
1∏

τ=T

(∏

i<j

∏

σ,σ′

Φi,σ;j,σ′

τδ,(τ−1)δ

)
Uos
τδ,(τ−1)δρ≤d(0), (S89a)

where δ = t/T ,

Φi,σ;j,σ′

t,t′ = T exp

(∫ t

t′
LC
i,σ;j,σ′(s)ds

)
where LC

i,σ;j,σ′(s) = −i[hCi,σ;j,σ′(s), · ] + Ln
i,σ;j,σ′(s), (S89b)

and

Uos
τδ,(τ−1)δ = Uos

τδ,(τ−1)δ(·)Uos†
τδ,(τ−1)δ where Uos

τδ,(τ−1)δ = T exp

(
− i

∫ τδ

(τ−1)δ

Hos(s)ds

)
. (S89c)

The next lemma provides an upper bound on the Trotter error ∥ρ≤d(t)− σT,≤d∥1.
Lemma 12. For any T > 0 and d ≥ 1:

∥σT,≤d − ρ≤d(t)∥1 ≤ 16t2m2d4Λ2

T
.

Proof. This lemma follows from an application of Lemma 2: We note that

∥LC
i,σ;j,σ′(s)∥⋄ ≤ 2∥hCi,σ;j,σ′(s)∥+ 2κ

3∑

l=1

ξ(l)
(
p
(l)
i,σ;j,σ′(s)∥L(l)

i,σ,≤d∥2 + q
(l)
i,σ;j,σ′(s)∥L(l)

j,σ′,≤d∥2
)

(1)

≤
(
4|Ui,σ;j,σ′(s)|+ 8

∑

α,α′

|Jα,α′

i,σ;j,σ′(s)|+ 2κ
3∑

l=1

ξ(l)(p
(l)
i,σ;j,σ′(s) + q

(l)
i,σ;j,σ′(s))

)
d2, (S90)

∥[ · , Hos(t)]∥⋄ ≤ 2
∑

i,σ,σ′

∥hosi;σ,σ′(t)∥

(2)

≤
(
2
∑

i,σ,σ′

|Ui,σ;i,σ′(s)|+ 4
∑

i,σ,σ′

∑

α,α′

|Jα,α′

i,σ;i,σ′(s)|
)
d2, (S91)
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where, in (1) and (2), we have used the fact that, for the truncated bosonic model, ∥cαi,σ,≤d∥ ≤
√
2d ≤

√
2d, ∥ni,σ,≤d∥ ≤

d, ∥L(1)
i,σ,≤d∥, ∥L

(2)
i,σ,≤d∥ ≤

√
d ≤ d and ∥L(3)

i,σ,≤d∥ ≤ d. We can now estimate the parameter ℓ from Lemma 2: ℓ would
be an upper bound on

∥[ · , Hos(s)]∥⋄ +
∑

j,i<j

∑

σ,σ′

∥LC
i,σ;j,σ′(s)∥⋄

≤
(
4
∑

i,j

∑

σ,σ′

(
|Ui,σ;j,σ′(s)|+

∑

α,α′

|Jα,α′

i,σ;j,σ′ |
)
+ 2κ

∑

i,j:i<j

∑

σ,σ′

3∑

l=1

ξ(l)(p
(l)
i,σ;j,σ′(s) + q

(l)
i,σ;j,σ′(s))

)
d2

≤ 4(UC + Uos + JC + Jos + κ)md4︸ ︷︷ ︸
ℓ

. (S92)

Thus, from Lemma 2, we obtain that ∥σT,≤d − ρ≤d(t)∥1 ≤ 16t2m2d2(UC + Uos + JC + Jos + κ)2/T .

Lemma 13 (Separability condition for the bosonic model). Consider the following Lindbladian L≤d(t) on two bosonic
modes truncated to d ≥ 1 particles each:

L≤d(t) = −i[hg,≤d(t) + hng,≤d(t), ·] +
∑

i∈{1,2}

3∑

l=1

κ
(l)
i (t)D

L
(l)
i,≤d

,

where

hg,≤d(t) =
∑

α,β∈{1,2}
gα,β(t)c

α
1,≤dc

β
2,≤d, hng,≤d(t) = u(t)n1,≤dn2,≤d, L

(1)
i = ai,≤d, L

(2)
i = a†i,≤d and L

(3)
i = ni,≤d,

where c1i,≤d = (a≤d + a†≤d)/
√
2, c2i,≤d = (a≤d − a†≤d)/

√
2i and gα,β(t), u(t) are real and κ

(l)
i (t) ≥ 0. If

(C1) κ
(1)
i (t), κ

(2)
i (t) ≥ ∑

α,β |gα,β(t)| and

(C2) κ
(3)
i (t) ≥ |u(t)|,

then there is a completely-positive map Mt+τ,t which maps separable states to separable states and

∥∥∥∥Mt+τ,t − T exp

(∫ t+τ

t

L≤d(s)ds

)∥∥∥∥
⋄
≤ 8d4

(∑

α,β

∫ t+τ

t

|gα,β(s)| ds+
∫ t+τ

t

|u(s)| ds+
3∑

l=1

∑

i∈{1,2}

∫ t+τ

t

κ
(l)
i (s)ds

)2

.

Proof. It will be notationally convenient to define the scalars

Gα,β =

∫ t+τ

t

gα,β(s)ds,K
(l)
i =

∫ t+τ

t

κ
(l)
i (s)ds, U =

∫ t+τ

t

u(s)ds and

G0 =
∑

α,β

∫ t+τ

t

|gα,β(s)| ds, U0 =

∫ t+τ

t

|u(s)| ds,Ki =
3∑

l=1

K
(l)
i ,K(l) =

∑

i∈{1,2}
K

(l)
i ,K =

3∑

l=1

K(l). (S93)

We will define the completely positive map Rt+τ,t via

Rt+τ,t(ρ) = Ez

[
R1(z)R2(z)ρR

†
2(z)R

†
1(z)

]
, (S94a)

with

R1(z) = Q1 + e−iπ/4
∑

α,β

zα,β
√
Gα,βc

α
1,≤d, R2(z) = Q2 + e−iπ/4

∑

α,β

z∗α,β
√
Gα,βc

β
2,≤d, (S94b)

where zα,β are drawn independently and uniformly at random from the set {±1,±i} and Qi = exp(−(K
(1)
i a†i,≤dai,≤d+

K
(2)
i ai,≤da

†
i,≤d)/2). It can be noted that, by construction, Rt+τ,t maps a separable input state to a separable (but



19

possibly unnormalized) output state. Explicitly evaluating the expectation value in Eq. (S94), we obtain that

Rt+τ,t(ρ) = Q1Q2ρQ
†
2Q

†
1 − i

∑

α,β

Gα,β

(
cα1,≤dc

β
2,≤dρQ

†
2Q

†
1 −Q1Q2ρc

α
1,≤dc

β
2,≤d

)
+

∑

α,β

|Gα,β |
(
cα1,≤dQ2ρQ

†
2c

α
1,≤d +Q1c

β
2,≤dρc

β
2,≤dQ

†
1

)
+

∑

α,α′,β,β′

(
Gα,βGα′,β′cα1,≤dc

β
2,≤dρc

β′

2,≤dc
α′
1,≤d + |Gα,β | |Gα′,β′ | cα1,≤dc

β′

2,≤dρc
β
2,≤dc

α′
1,≤d

)

= ρ− i

[ ∫ t+δ

t

hg,≤d(s)ds, ρ

]
+
∑

α,β

|Gα,β |
(
cα1,≤dρc

α
1,≤d + cβ2,≤dρc

β
2,≤d

)
−

1

2

∑

i∈{1,2}
{K(1)

i a†i,≤dai,≤d +K
(2)
i ai,≤da

†
i,≤d, ρ}+∆t+τ,t(ρ), (S95)

where, using the fact that

∥Qi∥ ≤ 1,

∥Qi − I∥ ≤ 1

2
(K

(1)
i ∥a1,≤d∥2 +K

(2)
i ∥a2,≤d∥2) ≤

d

2
(K

(1)
i +K

(2)
i ),

∥∥∥∥Qi −
(
I − 1

2
(K

(1)
i a†i,≤dai,≤d +K

(2)
i ai,≤da

†
i,≤d)

)∥∥∥∥ ≤ 1

8
(K

(1)
i ∥ai,≤d∥2 +K

(2)
i ∥ai,≤d∥2)2 ≤ d2

8
(K

(1)
i +K

(2)
i )2,

∥∥cαi,≤d

∥∥ ≤
√
2 ∥ai,≤d∥ ≤

√
2d, (S96)

it follows that

∥∆t+τ,t∥⋄ ≤ d2

2
(K(1) +K(2))2 + 4d2G(K(1) +K(2)) + 8d2G2. (S97)

Similarly, we also define the completely positive map R̃t+τ,t:

R̃t+τ,t(ρ) = Ey

[
R̃1(y)R̃2(y)ρR̃

†
2(y)R̃

†
1(y)

]
, (S98a)

with

R̃1(y) = Q̃1 + ye−iπ/4
√
Un1,≤d and R̃2(y) = Q̃2 + y∗e−iπ/4

√
Un2,≤d, (S98b)

where y is drawn randomly from {−1, 1, i,−i} and Q̃i = exp(−K
(3)
i

2 n2i,≤d). Similar to Rt+τ,t, R̃t+τ,t also maps a
separable input state to a separable but possibly unnormalized output state. By explicitly evaluating the expectation
in Eq. (S98), we find that

R̃t+τ,t(ρ) = Q̃1Q̃2ρQ̃
†
2Q̃

†
1 − iU(n1,≤dn2,≤dρQ̃

†
1Q̃

†
2 − Q̃1Q̃2ρn1,≤dn2,≤d)+

|U |
(
n1,≤dQ̃2ρQ̃

†
2n1,≤d + Q̃1n2,≤dρn2,≤dQ̃

†
1

)
+ |U |2 n1,≤dn2,≤dρn2,≤dn1,≤d

= ρ− i

[ ∫ t+δ

t

hng,≤d(s)ds, ρ

]
+ |U |

(
n1,≤dρn1,≤d + n2,≤dρn2,≤d

)
− 1

2
K3{n1,≤d + n2,≤d, ρ}+ ∆̃t+τ,t(ρ),

(S99)

where, using the fact that ∥Q̃i∥ ≤ 1, ∥Q̃i − I∥ ≤ K
(3)
i ∥ni,≤d∥2 /2 ≤ K

(3)
i d2/2, ∥Q̃i − (I − K

(3)
i

2 n2i )∥ ≤
(K

(3)
i ∥ni,≤d∥2)2/8 ≤ (K

(3)
i )2d4/8 and ∥ni,≤d∥ ≤ d, it follows that

∥∆̃t+τ,t∥⋄ ≤ 1

2
(K(3))2d4 + U2

0 d
4 + 2U0K

(3)d4. (S100)

Finally, we consider the channel generated by the fermionic Lindbladian in the time interval (t, t+ τ): Performing a
first-order Taylor expansion, we obtain that

T exp

(∫ t+τ

t

L(s)ds
)
ρ = ρ+

∫ t+τ

t

L(s)ρds+∆E
t+τ,t(ρ), (S101)
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where ∥∆E
t+τ,t∥⋄ ≤ 8d4(G+ U +K)2. From Eqs. (S95, S99, S101), we then obtain that

T exp

(∫ t+τ

t

L(s)ds
)

= Mt+τ,t + Et+τ,t, (S102)

where

Mt+τ,t = Rt+τ,t + R̃t+τ,t+∑

i∈{1,2}

(
K

(1)
i ai,≤d · a†i,≤d +K

(2)
i a†i,≤d · ai,≤d

)
−

∑

α,β

|Gα,β |
(
cα1,≤d · cα1,≤d + cβ2,≤d · c

β
2,≤d

)

︸ ︷︷ ︸
Vt+τ,t

+

∑

i∈{1,2}
(K

(3)
i − |U |)ni,≤dρni,≤d

︸ ︷︷ ︸
Ṽt+τ,t

, (S103)

Et+τ,t = ∆E
t+τ,t −∆t+τ,t − ∆̃t+τ,t. (S104)

We note that Mt+τ,t is a channel that preserves separability as long as Vt+τ,t and Ṽt+τ,t are completely positive. The

complete positivity of Ṽt+τ,t is ensured by requiring K
(3)
i ≥ |U | which is implied by the condition C2 quoted in the

lemma statement. To ensure that Vt+τ,t is completely positive, we note that it can be re-written as

Vt+τ,t =
∑

i∈{1,2}

(
F

(i)
0,0ai,≤d · a†i,≤d + F

(i)
0,1ai,≤d · ai,≤d + F

(i)
1,0a

†
i,≤d · ai,≤d + F

(i)
1,1a

†
i,≤d · a

†
i,≤d

)
, (S105)

where

F (1) =

[
K

(1)
1 − 1

2G
1
2

∑
β

(
|G2,β | − |G1,β |

)
1
2

∑
β

(
|G2,β | − |G1,β |

)
K

(2)
1 − 1

2G

]
, F (2) =

[
K

(1)
2 − 1

2G
1
2

∑
α

(
|Gα,2| − |Gα,1|

)
1
2

∑
β

(
|Gα,2| − |Gα,1|

)
K

(2)
2 − 1

2G

]
.

(S106)

As long as F (1), F (2) are positive-semidefinite, it would follow that Vt+τ,t is completely positive. Now, it is easy to

see that a sufficient condition for F (i) ⪰ 0 is that K
(1)
i ,K

(2)
i ≥ G, which is implied by the condition C1 quoted in the

lemma statement. Finally, the error term Et+τ,t can be bounded by

∥Et+τ,t∥⋄ ≤ ∥∆E
t+τ,t∥⋄ + ∥∆t+τ,t∥⋄ + ∥∆̃t+τ,t∥⋄ ≤ 8d4(G+ U0 +K)2, (S107)

which establishes the error bound in the lemma statement.

Theorem 2 (High-noise seperability and classical simulation of bosonic model; reproduced from the main text).
Suppose ρ(t) is the state obtained after evolving the bosonic system for time t with an initial product state, then for
κ ≥ 2J/min(ξ(1), ξ(2)) the state ρ(t) is separable. Furthermore, there is a randomized classical algorithm that can
sample within ϵ total variation error of ρ(t) in O(Λ2t2m4L+8ϵ−1polylog

(
mΛt/ϵ)) time.

Proof. To prove Theorem 2, we will start with truncated first-order Trotter approximation of ρ(t), i.e. with σT,≤d

given in Eq. (S89). From Lemmas 11 and 12, we obtain that

∥ρ(t)− σT,≤d∥1 ≤ O

(
Λ2t2m2d2

T

)
+O

(
Λtm1−k0/2d2+k0/2e−

1
2 (d/d0m)1/α

)
, (S108)

where Λ = UC + Uos + JC + Jos + κ. Next, we use Lemma 13 to further approximate σT,≤d with a separable state
ϕT . However, the noise rates at each step in the Trotterization need to be sufficiently high to meet the necessary
conditions for separability [(C1) and (C2) provided in Lemma 13]—to ensure this, we make a choice of the parameters

p
(l)
i,σ;j,σ′(t), q

(l)
i,σ;j,σ′(t) in Eq. (S87) that we so far left unspecified:

p
(1)
i,σ;j,σ′(t) = p

(2)
i,σ;j,σ′(t) =

∑
α,α′ |Jα,α′

i,σ;j,σ′(t)|
∑

k ̸=i

∑
ν

∑
α,α′ |Jα,α′

i,σ;k,ν(t)|
, p

(3)
i,σ;j,σ′(t) =

|Ui,σ;j,σ′(t)|∑
k ̸=i

∑
ν |Ui,σ;k,ν(t)|

,

q
(1)
i,σ;j,σ′(t) = q

(2)
i,σ;j,σ′(t) =

∑
α,α′ |Jα,α′

i,σ;j,σ′(t)|
∑

k ̸=i

∑
ν

∑
α,α′ |Jα,α′

j,σ′;k,ν(t)|
, q

(3)
i,σ;j,σ′(t) =

|Ui,σ;j,σ′(t)|∑
k ̸=i

∑
ν |Uj,σ′;k,ν(t)|

, (S109a)
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and it can be checked that they satisfy the normalization condition in Eq. (S88). Considering now the channels

Φi,σ;j,σ′

τδ,(τ−1)δ from Eq. (S89) in Trotterized state σT,≤d—to apply Lemma 13 to these channels, we need

(1) Imposing condition C1: For l ∈ {1, 2}

κξ(l)p
(l)
i,σ;j,σ′(t), κξ

(l)q
(l)
i,σ;j,σ′(t) ≥ 2

∑

α,α′

|Jα,α′

i,σ;j,σ′(t)| or equivalently (S109b)

κξ(l) ≥ 2
∑

k′ ̸=k

∑

ν′

∑

α,α′

|Jα,α′

k,ν;k′,ν′(t)| for (k, ν) ∈ {(i, σ), (j, σ′)}. (S109c)

This condition can clearly be satisfied if κξ(1), κξ(2) ≥ 2JC since
∑

k′ ̸=k

∑
ν′
∑

α,α′ |Jα,α′

k,ν;k′,ν′(t)| ≤ JC .

(2) Imposing condition C2:

κξ(3)p
(3)
i,σ;j,σ′(t), κξ

(l)q
(3)
i,σ;j,σ′(t) ≥ 2|Ui,σ;j,σ′(t)| or equivalently (S109d)

κξ(3) ≥ 2
∑

k′ ̸=k

∑

ν′

|Uk,ν;k′,ν′(t)| for (k, ν) ∈ {(i, σ), (j, σ′)}. (S109e)

This condition can clearly be satisfied if κξ(3) ≥ 2UC since
∑

k′ ̸=k

∑
ν′ |Uk,ν;k′,ν′(t)| ≤ UC .

Now, assuming κξ(1), κξ(2) ≥ 2JC and κξ(3) ≥ 2UC , we can then approximate σT,≤d by ϕT given by

ϕT =
1∏

τ=N

(∏

i<j

∏

σ,σ′

Mi,σ;j,σ′

τδ,(τ−1)δ

)
Uos
τδ,(τ−1)δρ(0), (S109f)

where Mi,σ;j,σ′

τδ,(τ−1)δ is the separability preserving completely-positive map corresponding to Φi,σ;j,σ′

τδ,(τ−1)δ from Lemma 13,

which also satisfies

∥Φi,σ;j,σ′

τδ,(τ−1)δ −Mi,σ;j,σ′

τδ,(τ−1)δ∥⋄ ≤ εi,σ;j,σ
′

τ , (S109g)

where

εi,σ;j,σ
′

τ = 8d4
(∫ τδ

(τ−1)δ

(∑

α,α′

|Jα,α′

i,σ;j,σ′(s)|ds+ |Ui,σ;j,σ′(s)|ds+ κ
3∑

l=1

ξ(l)
(
p
(l)
i,σ;j,σ′(s) + q

(l)
i,σ;j,σ′(s)

))
ds

)2

. (S109h)

We note that ε is defined by

ε =
T∑

τ=1

∑

i,j:i<j

∑

σ,σ′

εi,σ;j,σ
′

τ

≤ 8d4
T∑

τ=1

(∫ τδ

(τ−1)δ

∑

i,j;i<j

(∑

α,α′

|Jα,α′

i,σ;j,σ′(s)|ds+ |Ui,σ;j,σ′(s)|ds+ κ

3∑

l=1

ξ(l)
(
p
(l)
i,σ;j,σ′(s) + q

(l)
i,σ;j,σ′(s)

))
ds

)2

≤ 8d4
(
JC + UC + 2κ

)2 t2m2

T
≤ 32d4

Λ2t2m2

T
. (S110)

Furthermore, we also note from the triangle inequality that

∥Mi,σ;j,σ′

τδ,(τ−1)δ∥⋄ ≤ ∥Φi,σ;j,σ′

τδ,(τ−1)δ∥⋄ + ∥Mi,σ;j,σ′

τδ,(τ−1)δ − Φi,σ;j,σ′

τδ,(τ−1)δ∥⋄ ≤ 1 + εi,σ;j,σ
′

τ ≤ exp(εi,σ;j,σ
′

τ ). (S111)

We can now bound the error between ϕT and σT,≤d using telescoping to obtain

∥ϕT − σT,≤d∥1 ≤ eεε ≤ eO(Λ2t2m2d4/T 2)O

(
Λ2t2m2d4

T

)
. (S112)

Finally, using Eq. (S108), we obtain that

∥ρ(t)− ϕT ∥1 ≤ eO(Λ2t2m2d4/T )O

(
Λ2t2m2d4

T

)
+O

(
Λ2t2m2d4

T

)
+O

(
Λtm1−k0/2d2+k0/2e−

1
2 (d/d0m)1/α

)
. (S113)
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Thus, choosing

d = Θ

(
m polylog

(
mΛt

ϵ

))
, T = Θ

(
Λ2t2m6

ϵ
polylog

(
mΛt

ϵ

))
(S114)

ensures that ∥ρ(t)− ϕT ∥1 ≤ ϵ. Finally, we note that ϕN by itself is guaranteed to be positive semi-definite but not

normalized. We will instead consider ϕ̃T = ϕT /Tr(ϕT )—note that, if ∥ϕT − ρ(t)∥1 ≤ ϵ < 1,

∥ϕ̃T − ρ(t)∥1 ≤ 1

Tr(ϕN )
∥ϕT − ρ(t)∥1 +

∣∣∣∣
Tr(ϕT )− 1

Tr(ϕT )

∣∣∣∣ ∥ρ(t)∥1
(1)

≤ 2ϵ

1− ϵ
≤ O(ϵ), (S115)

where in (1) we have used that |Tr(ϕT )− 1| = |Tr(ϕT )− Tr(ρ(t))| ≤ ∥ϕT − ρ(t)∥1 ≤ ϵ.

Time-complexity of sampling in the Fock state basis. We now consider the cost of sampling from the state ϕ̃T . By
construction, ϕ̃T is a separable state and hence can be expressed as

ϕ̃T =
∑

α

pα

(⊗

i

ρ
(α)
i

)
, (S116)

where pα is a probability distribution over α and ρ
(α)
i is a state supported on the modes at the ith site. To either

sample from or compute a local observable in ϕ̃T , we first sample from pα and obtain a product state ⊗iρ
(α)
i from

the mixed state ensemble ϕ̃T . Given the initial state ρ≤d(0) as a product state, we sequentially apply Mi,σ;j,σ′

τδ,(τ−1)δ,

normalize the result and sample from the resulting separable state to obtain another product state—since the input

state is a product state, each application of Mi,σ;j,σ′

τδ,(τ−1)δ, normalization and the subsequent sampling involves only the

2L truncated bosonic modes at sites i and j and can be classically done in O(d4L) ≤ O(m4Lpolylog(mΛt/ε)) time.
Additionally, the application of the on-site unitaries (Uos

τδ,(τ−1)δ) will map a product state between the different sites

to another product state, and it can be applied classically in O(md3L) ≤ O(m3L+1polylog(mΛt/ε)) time. Counting

the time needed to apply, in this manner, all Mi,σ;j,σ′

τδ,(τ−1)δ and Uos
τδ,(τ−1)δ, the total classical run-time for drawing one

product state from ϕ̃T is thus O(Tm2 ×m4Lpolylog(mΛt/ε)) ≤ O(Λ2t2m4L+8ϵ−1polylog(mΛt/ε)). Having drawn a

product state ⊗iρ
(α)
i from the separable state ϕ̃T , we can now consider the task of drawing a sample in the Fock

state basis: Given each ρ
(α)
i as a dL × dL matrix, drawing a sample from ⊗iρ

(α)
i on the Fock state basis requires

computational time O(ndL) ≤ O(mL+1polylog(mΛt/ϵ)). Thus, the total time complexity of drawing a single sample

from ϕ̃T is dominated by the cost of sampling from pα and is O(Λ2t2m4L+8ϵ−1polylog
(
mΛt/ϵ)).

IV. HIGH-NOISE SEPARABILITY IN SPIN MODELS

In this section, we analyze a spin model evolving under a 2-local Hamiltonian in the presence of noise, which closely
follows the analysis of the bosonic model in the previous section. We only provide a derivation of the counterpart
of Lemma 13 for the spin model, which outlines a sufficient condition for separability preservation for two qudits.
Combining this lemma with standard first-order Trotterization can allow us to show that even in the many-body
regime, a sufficiently high noise maps a separable state to another separable state.

Lemma 14 (Separability condition for spin models). Consider a Lindbladian on two d−level qudits given by

L(t) = −i[h(t), ·] + κ(t)
∑

i∈{1,2}

∑

k

DLi,k
,

where κ(t) ≥ 0. Here h(t) is a two-qudit Hamiltonian which we express as

h(t) =
∑

α

sα(t)O1,α ⊗O2,α,

where we can assume sα(t) ≥ 0, Oi,α are Hermitian operators on the ith qudit with ∥Oi,α∥F ≤ 1. Furthermore, for

each i ∈ {1, 2}, the jump operators Li,k satisfy
∑

k ∥Li,k∥2 ≤ 1 and have a full Kraus rank and ∃λ0 > 0 such that for
any single qudit operator A

∑

k

|Tr(L†
i,kA)|2 ≥ λ0 ∥A∥2F .
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Then if κ(t) ≥ ∑
α sα(t)/λ0, there is a completely positive map Mt+τ,t which maps separable states to separable states

and
∥∥∥∥Mt+τ,t − T exp

(∫ t+τ

t

L(s)ds
)∥∥∥∥

⋄
≤ 4

(∫ t+τ

t

κ(t′)dt′ +
∑

α

∫ t+τ

t

sα(t
′)dt′

)2

.

Proof. It will be convenient to introduce the scalars

Sα =

∫ t+τ

t

sα(t
′)dt′, S =

∑

α

Sα and K =

∫ t+τ

t

κ(t′)dt′. (S117)

We will also define

qeffi (t) =
κ(t)

2

∑

k

L†
i,kLi,k, q

eff = qeff1 (t)⊗ I + I ⊗ qeff2 (t) and Qi = exp

(
−

∫ t+τ

t

qeffi (t′)dt′
)
. (S118)

Consider the following completely positive map

Rt+τ,tρ = Ez

(
(R1(z)⊗R2(z))ρ(R

†
1(z)⊗R†

2(z))
)
, (S119a)

where

R1(z) = Q1 + e−iπ/4
∑

α

zα
√
SαO1,α and R2(z) = Q2 + e−iπ/4

∑

α

z∗α
√
SαO2,α, (S119b)

where zα are drawn uniformly and independently from the set {±1,±i}. We note that Rt+τ,t is separability preserving
i.e. maps a separable state to another separable state. Explicitly evaluating the expectation value in Eq. (S119), we
obtain

Rt+τ,t(ρ) = (Q1 ⊗Q2)ρ(Q
†
1 ⊗Q†

2)− i
∑

α

Sα

(
(O1,α ⊗O2,α)ρ(Q

†
1 ⊗Q†

2)− (Q1 ⊗Q2)ρ(O1,α ⊗O2,α)
)
+

∑

α

Sα

(
(O1,α ⊗Q2)ρ(O1,α ⊗Q†

2) + (Q1 ⊗O2,α)ρ(Q
†
1 ⊗O2,α)

)
+

∑

α,α′

SαSα′
(
(O1,α ⊗O2,α)ρ(O1,α′ ⊗O2,α′) + (O1,α ⊗O2,α′)ρ(O1,α ⊗O2,α′)

)
, (S120)

where using ∥Qi∥ ≤ 1, ∥Qi − I∥ ≤ K/2, ∥Qi − (I − qeffi )∥ ≤ K2/8, we obtain that

Rt+τ,t(ρ) = ρ− i

∫ t+τ

t

[h(t′), ρ]dt′ −
∫ t+τ

t

{qeff(t′), ρ}dt′+
∑

α

Sα(O1,α ⊗ I)ρ(O1,α ⊗ I) + (I ⊗O2,α)ρ(I ⊗O2,α)) + ∆t+τ,t(ρ)

= ρ+

∫ t+τ

t

L(t′)ρdt′ − Gt+τ,tρ+∆
(R)
t+τ,t(ρ), (S121)

where Gt+τ,t is a superoperator given by

Gt+τ,t = G(1)
t+τ,t ⊗ id + id⊗ G(2)

t+τ,t, where

G(i)
t+τ,t(ρ) = K

∑

k

Li,kρL
†
i,k −

∑

α

SαOi,αρOi,α, (S122)

and ∆t+τ,t is a super-operator with

∥∆(R)
t+τ,t∥⋄ ≤ 2K2 + 4SK + 2S2 = 2(S +K)2. (S123)

Furthermore, the channel generated by the Lindbladian can be expanded to the first order to obtain

T exp

(∫ t+τ

t

L(s)ds
)

= ρ+

∫ t+τ

t

L(t′)ρdt′ +∆
(L)
t+τ,t, (S124)



24

where, since ∥L(t)∥⋄ ≤ 2(
∑

α sα(t) + κ(t)), ∆
(L)
t+τ,t is a superoperator with

∥∆(L)
t+τ,t∥⋄ ≤ 2

(
S +K

)2
. (S125)

Consequently, we have that

∥∥∥∥T exp

(∫ t

0

L(s)ds
)
−

(
Rt+τ,t + Gt+τ,t

)∥∥∥∥
⋄
≤ 4(S +K)2. (S126)

We note that Rt+τ,t is separability preserving by construction. Furthermore, Gt+τ,t is a sum of super-operators acting
individually on the two qudits—consequently, Gt+τ,t will be separability preserving as long as it is completely positive.

To find a sufficient condition for complete positivity of G(i)
t+τ,t, we will impose that its Choi state, ΦG(i) , is positive

semi-definite. From Eq. (S122), we obtain that

ΦG(i) =
d∑

j,j′=1

(
K

∑

k

Li,k |j⟩⟨j′|L†
i,k −

∑

α

SαOi,α |j⟩⟨j′|Oi,α

)
⊗ |j⟩⟨j′| . (S127)

Now, suppose |ψ⟩ =
∑

j,j′ ψj,j′ |j, j′⟩ ∈ Cd ⊗ Cd is a two-qudit state and Ψ =
∑

j,j′ ψj,j′ |j⟩⟨j′| is its corresponding
matrix, then

⟨ψ|ΦG(i) |ψ⟩ = K
∑

k

|Tr(L†
i,kΨ)|2 −

∑

α

Sα|Tr(Oi,αΨ)|2

(1)

≥ Kλ0 ∥Ψ∥2F −
∑

α

Sα ∥Oi,α∥2F ∥Ψ∥2F

= (Kλ0 − S) ∥|ψ⟩∥2 , (S128)

where in (1) we have used the fact that Tr(A†B)2 ≤ Tr(A†A)Tr(B†B) and also the condition
∑

k |Tr(L
†
i,kΨ)|2 ≥

λ0 ∥Ψ∥2F from the lemma statement. Therefore, if K ≥ S/λ0, which is implied by the condition κ(t) ≥ ∑
α sα(t)/λ0,

then G(i) are completely positive. This in turn implies that the super-operator Mt+τ,t = Rt+τ,t + Gt+τ,t is both
completely positive and separability preserving, which proves the lemma.

Similar to the case of the fermionic and bosonic models, this lemma can be combined with first-order Trotterization
in the many-body setting to show high-noise separability for a broad class of noise models. In particular, we could
consider noisy dynamics described by the master equation

d

dt
ρ(t) = −i[H, ρ(t)] + κ

∑

i,k

DLi,k
(S129)

with Li,k satisfying the conditions in Lemma 14 and

H(t) =
∑

i

hi(t) +
∑

i<j

∑

α

si,jα (t)(Oi,α ⊗Oj,α), (S130)

where Oi,α would be a Hermitian operator acting on the ith qudit chosen to be normalized such that ∥Oi,α∥F = 1.
Introducing the “inter-site interaction-strength” parameter J as the smallest number satisfying

∑

j>i

|si,jα (t)|+
∑

j<i

|sj,iα (t)| ≤ J for all i, t ≥ 0, (S131)

we can then establish using Lemma 14 that if κ ≥ J/λ0, then an initial separable state of the spins always evolves
into a separable state.

V. COUNTER-EXAMPLES

In this section, we consider the question of whether a counterpart of Theorem 1 can be obtained for the bosonic
model, and if a counterpart for Theorem 2 can be established for the fermionic model.
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A. High-noise regime for the bosonic model is not convex-Gaussian at all times

We will first provide evidence that there is no counterpart of Theorem 1 for bosonic systems. That is, even with
noise rates larger than the non-Gaussianity (κ ≫ U), one can still obtain states which are not convex-Gaussian. In
section VA1, we provide numerical evidence that, with a single bosonic mode and dephasing noise greater than the
non-Gaussianity (κξ(3) ≥ U), states with negative Wigner function can be reached, which automatically implies lack
of convex Gaussianity. In section VA2, we provide a stronger argument in the absence of dephasing noise: for noise
models containing only incoherent particle loss and gain (ξ(3) = 0), one can perform high-fidelity arbitrary gates even
if the non-Gaussianity is much smaller than the noise rate, U ≪ κ, provided that the Gaussian couplings J,Ω can
be made sufficiently large, enabling the implementation of gates with effective error rates below the fault tolerance
threshold [S8–S10]. As a consequence, not only is the state not guaranteed to remain convex-Gaussian, but the
classical simulation of local observables is provably BQP-hard.

1. High dephasing noise regime

Here, we provide a simple example with a single bosonic mode, where dephasing noise, no-matter how high, is
unable to make the state convex Gaussian. Our analysis is centered on the Wigner function, which, for a single
bosonic mode state ρ, is defined as

W (x, p) =
1

π

∫ ∞

−∞
⟨x− y| ρ |x+ y⟩ e2ipydy. (S132)

Since quantum states with positive Wigner functions can be efficiently simulated [S11], the negativity of the Wigner
function is regarded as a necessary resource for quantum advantage. Furthermore, a negative Wigner function rules out
convex-Gaussianity, since all pure Gaussian states have nonnegative Wigner functions [S12, S13], and as a consequence
convex Gaussian states do as well.

Specifically, we consider an initial state ρ(0) = |α⟩ ⟨α|, where |α⟩ represents the single-mode coherent state |α⟩ =
eα(a

†−a) |vac⟩, with α a real number. Then, the state is evolved under the Hamiltonian H = Un2 and dephasing noise
of rate κ, which yields the master equation

d

dt
ρ(t) = Lρ(t) = −iU [n2, ρ(t)] + κ

(
nρ(t)n− 1

2
{n2, ρ(t)}

)
. (S133)

In this setting, we numerically compute the minimum value of the Wigner function, Wmin = minx,pW (x, p), and
represent it in Fig. S1. One can appreciate that, even when κ ≥ U , using a sufficiently large α results in a state
with a negative Wigner function. Consequently, we do not expect an analogue of Theorem 1 to hold for bosons:
even for a high dephasing noise rate, increasing the value of the Gaussian couplings can yield states that are not
convex-Gaussian. We remark that this does not necessarily imply simulation hardness: the question of whether there
is a threshold error κth(U) depending on U but not on J,Ω above which the classical simulation becomes tractable
remains open.

2. High incoherent particle loss and gain regime

Here we analyze the complexity of classically simulating the bosonic system in the absence of dephasing noise
(ξ3 = 0) and find that the problem does not become easy above a noise threshold depending exclusively on the non-
Gaussian interaction strength, thus showing that no counterpart of Theorem 1 can exist for bosons in the absence of
dephasing noise. Specifically, we show that, even when the non-Gaussian interaction strength is much smaller than
the noise strength, U ≪ κ, one can perform arbitrarily fast gates. Due to the threshold theorem, this allows for
the implementation of fault-tolerant schemes [S8, S10]. To show this, it is enough to consider systems with only one
bosonic mode per site (L = 1) and only onsite non-Gaussianity (UC = 0).

We will start with a technical lemma: we will show that, for a system with m modes evolving under the noise model
in Eq. (S27), the error induced by the noise can be upper bounded by O(mκt).

Lemma 15 (Error bound between noisy and noiseless evolution). Consider a bosonic system with m modes evolving
under the master equation

d

dt
ρ(t) = Lρ(t) = −i[H(t), ρ(t)] +

2∑

l=1

m∑

v=1

κξ(l)D
L

(l)
v
,
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FIG. S1. Representation of the Wigner function for the state ρ(t) obtained by evolving Eq. (S133) with initial state ρ(0) =
|α⟩ ⟨α|, with parameters U = 0.05 and t = 0.5. (a) The Wigner function W (x, p) is represented in phase space for κ = 0.1U
(left) and κ = 2U (right). (b) Representation of the minimum value of the Wigner function Wmin = minx,p W (x, p). One can
clearly observe that, for a fixed value of κ/U , the Wigner function becomes more negative by increasing α, which suggest that
the Gaussian resources can effectively boost the non-Gaussianity of the system. Hence, even for large values of κ, a negative
Wigner state might be reached, by increasing α.

where DLρ = LρL† − {L†L, ρ}/2, L(1)
v = av, L

(2)
v = a†v, and ξ(1) + ξ(2) = 1. Assume that, for some integer d,

ρ(0) lies in the subspace H≤d of the Hilbert space spanned by the first d + 1 levels {|0⟩ , . . . , |d⟩}, and that the
Hamiltonian H(t) contains no couplings between the state |d⟩ and any state |k⟩ with k > d. Then, denoting by

U(·) = T exp
(
−i

∫ t

0
[H(s), ·]ds

)
the time-evolution in the noiseless case (κ = 0), the error induced by the dissipation

can be bounded as
∥∥∥∥T exp

(∫ t

0

L(s)ds
)
ρ(0)− Uρ(0)

∥∥∥∥
1

≤ 2mκt(d+ 1).

Proof. Let us consider the following effective Hamiltonian:

Heff = H − i
κ

2

m∑

v=1

(
ξ(1)a†vav + ξ(2)ava

†
v

)
. (S134)

Then, the time evolution may be written as

ρ(t) = T exp

(∫ t

0

L(s)ds
)
ρ(0) = T exp

(
−i

∫ t

0

[Heff(s), ·]ds
)
ρ(0)

︸ ︷︷ ︸
σ

+N (ρ(0)) = σ +N (ρ(0)), (S135)

where σ is the (unnormalized) state obtained by evolving under the effective Hamiltonian, and N (ρ) is a completely
positive channel that is not trace preserving. Naturally, tr(σ) + tr(N (ρ)) = 1. The state σ can be understood as the
output when no errors occur, while N (ρ) captures the output with one or more errors.

For the vth bosonic mode, we define the projector that truncates to at most d particles as Πv,≤d =
∑d

j=0 |j⟩ ⟨j|.
Then, Π≤d = ⊗vΠv,≤d is the projector onto H≤d. Note that, since H does not contain couplings to higher levels,
neither does Heff . As a consequence, the dynamics of σ are constrained to the first d+1 levels, and can be truncated.

Let us denote the truncated Hamiltonians by H̃ = ΠdHΠd,H̃dis = ΠdHdisΠd. Using the definition of H̃dis in
Eq. (S134), the operator norm of the truncated effective Hamiltonian H̃dis can then be bounded as

∥H̃dis∥ ≤ mκ

2

(
ξ(1)d+ ξ(2)(d+ 1)

)
≤ mκ

2

(
ξ(1) + ξ(2)

)
d ≤ mκ

2
(d+ 1). (S136)

Let us now write σ in a more convenient form as σ = limN→∞(ONρ(0)O
†
N ), where

ON =

N∏

k=1

(
e−iH̃(kt/N)t/Ne−iH̃dist/N

)
. (S137)

This expression can be derived, for example, from standard Trotterization techniques. We would now like to bound
tr(σ), which can be understood as the probability of no errors occurring during the computation. Naturally, the
unitary parts of the evolution in Eq. (S137) are trace preserving, and we only need to bound the imaginary time
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evolution induced by the Hamiltonian H̃dis. Note also that, using Eq. (S136), the minimum singular value in each
step can be bounded as

σmin(e
−H̃dist/N ) ≥ exp

(
−mκ

2

t

N

(
ξ(1)(d+ 1) + ξ(2)(d+ 1)

))
≥ exp

(
−mκ

2

t

N
(d+ 1)

)
. (S138)

As a consequence, using Eq. (S137) and Eq. (S138), it can be easily checked that

σmin(O
†
NON ) ≥

[
σmin(e

−H̃dist/N )
]2N

≥ exp [−mκt(d+ 1)] . (S139)

This allows us to bound the trace as

tr(σ) = lim
N→∞

tr(O†
NONρ(0)) ≥ lim

N→∞
σmin(O

†
NON )tr(ρ(0)) ≥ exp [−mκt(d+ 1)] . (S140)

As a consequence, since the total evolution of the system must be trace preserving, it immediately follows that

tr(N (ρ(0)) ≤ 1− e−mκtd2

.
Now, let us bound the distance between σ and the state obtained under ideal (noiseless) evolution, ∥σ − Uρ(0)∥1.

We use the fact that

∂

∂κ
e−H̃dis

t
N = − t

N

H̃dis

κ
e−H̃dis

t
N and ∥e−H̃dis

t
N ∥, ∥e−iH̃(κt/N) t

N ∥ ≤ 1. (S141)

Using Eq. (S136), one can bound

∥∥∥∥
∂

∂κ
e−H̃dis

t
N

∥∥∥∥ =

∥∥∥∥∥
t

N

H̃dis

κ
e−H̃dis

t
N

∥∥∥∥∥ ≤ t

Nκ
∥H̃dis∥ ≤ mt(d+ 1)

2N
. (S142)

Furthermore, using the definition of ON in Eq. (S137), the norm bound in Eq. (S142), and the fact that

∥e−H̃dis
t
N ∥, ∥e−iH̃(κt/N) t

N ∥ ≤ 1, one can bound

∥∥∥∥
∂

∂κ
σ

∥∥∥∥ ≤ 2

∥∥∥∥
∂

∂κ
ON

∥∥∥∥ ≤ 2t

κ
∥H̃dis∥ ≤ mt(d+ 1). (S143)

This directly yields a bound on the desired distance:

∥σ − Uρ(0)∥1 =

∥∥∥∥
∫ κ

0

∂

∂κ
σdκ

∥∥∥∥
1

≤
∫ k

0

∥∥∥∥
∂

∂κ
σ

∥∥∥∥
1

dκ ≤ mκt(d+ 1). (S144)

Finally, this, together with Eqs. (S135, S144), implies that

∥∥∥∥T exp

(∫ t

0

L(s)ds
)
ρ(0)− Uρ(0)

∥∥∥∥
1

≤ ∥ρ(t)− σ∥1 + ∥N (ρ(0))∥1 ≤ mκt(d+ 1) + 1− e−mκt(d+1) ≤ 2mκt(d+ 1),

(S145)

which proves the lemma.

We will now show how one can use a single bosonic mode Hamiltonian to apply arbitrary single qubit gates with
high fidelity, even when the nonlinearity is much smaller than the noise strength. We note that a similar result is
already shown in Refs. [S14, S15]. To do this, we will consider a single bosonic mode with κ ≫ U , where both the
error rate and non-Gaussianity U are fixed, and study the effective error rate in the asymptotic limit of large Gaussian
strength.

Lemma 16 (Single-qubit gates, from Ref. [S14]). Consider a single bosonic mode under the master equation

d

dt
ρ = Lρ = −i[H(t), ρ] + κ

2∑

l=1

DL(l)ρ,
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with Hamiltonian

H(t) = U(t)a†2a2 +
(
Λ1(t)a

† + Λ2(t)a
†2 + h.c.

)
+∆(t)a†a,

where DLρ = LρL† − {L†L, ρ}/2, L(1) = a, L(2) = a† and L(3) = a†a = n, and ξ(1) + ξ(2) = 1, and the strength of the
Gaussian terms is bounded by P , |Λ1(t)|, |Λ2(t)|, |∆(t)| ≤ P . Then, for any single-qubit quantum unitary operation U
(i.e. U(·) = U(·)U† for some single-qubit gate U), the Lindbladian L(t) can approximate U , ∥(T e

∫ t
0
L(s)ds −U)ρ0∥1 ≤

Õ(κ(U2P )−1/3), in time t = O((U2P )−1/3), with ρ0 a single-qubit state.

Proof. We will show that, by tuning the parameters in the Hamiltonian H(t), one can generate T , S, and
√
X gates,

which is sufficient for arbitrary single-qubit rotations. For implementing a T gate or an S gate, one simply has to set
Ω(t) = 0 and ∆(t) = P . This yields the Hamiltonian H = U(a†2a2)/2 + Pa†a. Since there are no couplings between
the states |0⟩ , |1⟩ and the rest, we can restrict ourselves to the subspace spanned by {|0⟩ , |1⟩}. Denoting the projector
onto this subspace Π1 = |0⟩ ⟨0| + |1⟩ ⟨1|, the projection of Hα on the blockaded subspace yields Π1HΠ1 = P |1⟩ ⟨1|.
Then, evolving under the Hamiltonian for time t = 3π/(2P ) yields an S gate, while evolving for time t = 3π/(4P )
yields a T gate. Therefore, applying the error bound in Lemma 15, T gates and S gates can be implemented with
precision O(κ/P ) in time t = O(1/P ).

Now, let us consider the problem of applying a
√
X gate. This can be done by using the construction from

Refs. [S14, S16], by going to a displaced frame. We will first show that, considering the Hamiltonian in a displaced

frame, one can implement a fast
√
X gate. Then, we will show that one can go to the displaced frame by applying

fast pulses at the beginning and end of the computation, hence enabling the application of a high-fidelity fast
√
X

gate in the laboratory frame, even in the presence of errors.
First, let us consider the Hamiltonian in a frame displaced by α(t), a→ a+α(t). We write the Hamiltonian in the

displaced frame as Hα(t) and the noise as DL(l);α(t). Note that the noise in the displaced frame can be written as

2∑

l=1

DL(l),α(t)(·) =
2∑

l=1

DL(l) +
iκ

2
(ξ1 − ξ2)

[
i(α(t)a† − α∗(t)a), (·)

]
. (S146)

Furthermore, the displaced Hamiltonian Hα(t) may be written as

Hα(t) = U(t)a†2a2 + ∆̃(t)a†a+ (Λ̃1(t)a
† + Λ̃2(t)a

†2 + Λ̃3(t)a
†2a+ h.c.), (S147)

where

∆̃(t) = ∆(t) + 4U(t)|α(t)|2,
Λ̃2(t) = Λ2(t) + 2U(t)α(t)2,

Λ̃1(t) = Λ1(t) + α∆(t) + 2α(t)∗Λ2(t) + 2U(t)|α(t)|2α(t)− 1

2
iκα(t)(ξ1 − ξ2),

Λ̃3(t) = 2U(t)α(t). (S148)

where the noise term from Eq (S146) has already been absorbed into the Hamiltonian. The master equation in the
displaced frame is then

d

dt
ρα(t) = Lα(t)ρα(t) = −i[Hα(t), ρα(t)] + κ

2∑

l=1

DL(l) . (S149)

By suitably choosing the parameters so that ∆̃(t) = Λ̃1(t) = Λ̃2(t) = 0, the Hamiltonian becomes Hα(t) =

2U(t)α(t)a†(n− 1) + h.c..
Crucially, one can notice that the Hamiltonian Hα(t) is blockaded, since it does not contain couplings to state |2⟩.

Therefore, in the noiseless case, the dynamics will be restricted to the qubit subspace spanned by {|0⟩ , |1⟩}. Denoting
the projector onto this subspace by Π1 = |0⟩ ⟨0|+ |1⟩ ⟨1|, the projection of Hα(t) onto the blockaded subspace yields
Π1Hα(t)Π1 = −2Uα(t)X. Let us pick a constant α(t) = αF . It is then clear that evolving under the Hamiltonian

HαF
for a time t = π/(8UαF ) produces a

√
X gate.

We will pick the displacement to be αF = Θ((P/U)1/3), since it is the largest displacement that can simultaneously
fulfill Eq. (S148) and the restriction that |Λ1(t)|, |Λ2(t)|, |∆(t)| ≤ P .

Naturally, one is interested in performing operations in the laboratory frame, which means that at the beginning
(t = 0) and end (t = tF ) of the computation the displacement is α(0) = α(tF ) = 0. This can be achieved by simply
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applying a displacement term in the beginning and end of the computation. Hence, the computation can be performed
in three steps. First, a displacement term is applied for a time tdis to go from α(0) = 0 to α(tdis) = αF . Then, the
gate is performed in the frame displaced by αF , which takes time tgate = π/(8UαF ). Finally, the displacement is

taken to 0 again, which takes time tdis. Therefore, the total computation time for a
√
X gate is t√X = 2tdis + tgate.

In order to achieve the desired displacement αF , one can apply the Hamiltonian

H(t) = i(P − αFκ/2)(a
† − a) +

iκ

2
(P − αF )t(ξ1 − ξ2)(a

† − a), (S150)

where the first term takes the system to the frame displaced by α(t) = (P −αFκ/2), and the second term corrects the
contributions of the noise. The choice of parameters ensures that |Λ1| ≤ P at all times. Specifically, in the displaced
frame, the system evolves under the master equation

d

dt
ρα(t) = κ

3∑

l=1

DL(l) for t ≤ tdis, (S151)

with α(0) = 0 and α(tdis) = αF , and tdis = αF /(P − αF ) = O(αF /P ) = O((P 2U)−1/3). Let us denote the total
evolution time by t√X = 2tdis + tgate. Note that tgate = O((UαF )

−1) = O((PU2)−1/3), while tdis = O(αF /P ) =

O((P 2U)−1/3). In the large P limit, it is clear that tdis ≪ tgate, and the total time scales as t√X = tgate +

2tdis = O(tgate) = O((PU2)−1/3). From the Solovay-Kitaev theorem, it follows that any single-qubit rotation can
be approximated to precision ε in time t = O(t√X logc(1/ε)) for some constant c < 2. We can now bound the total

contribution of the error: straightforward application of Lemma 15 shows that the error after time t = Õ(t√X) =

Õ((U2P )−1/3) is

∥(T e
∫ t
0
L(s)ds − U)ρ0∥1 ≤ Õ

(
κ

(U2P )1/3

)
, (S152)

where Õ hides polylogarithmic factors. This proves the lemma.

So far we have shown that one can make arbitrary single-qubit gates with high fidelity even if the noise is much
larger than the non-Gaussianity, κ≫ U , as long as one can increment the strength of the Gaussian terms, P ≫ κ3/U2.
We will now show how to implement entangling gates, which is enough to obtain a universal gate-set.

Lemma 17 (Two-qubit gates). Consider two bosonic modes evolving under the master equation

d

dt
ρ(t) = −i[H(t), ρ(t)] +

2∑

l=1

2∑

v=1

κξ(l)D
L

(l)
v
, (S153)

where H(t) is the Hamiltonian H(t) = H1(t) +H2(t) + ig(t)[a1a
†
2 − a†1a2], with

Hi(t) = Ui(t)a
†2
i a

2
i +

(
Λi,1(t)a

†
i + Λi,2(t)a

†2
i + h.c.

)
+∆i(t)a

†
iai, (S154)

and DLρ = LρL† − {L†L, ρ}/2, L(1)
v = av, L

(2)
v = a†v, and ξ

(1) + ξ(2) = 1. Assume that the strength of the Gaussian
interactions is bounded by P (|Λi,1(t)|, |Λi,2(t)|, |∆i(t)|, |g(t)| ≤ P ).

Then, for any two-qubit quantum unitary operation U (i.e. U(·) = U(·)U† for some single-qubit gate U), the

Lindbladian L(t) can implement a time evolution that approximates U , ∥(T e
∫ t
0
L(s)ds −U)ρ0∥1 ≤ Õ(κ(U2P )−1/3), for

a time t = O((U2P )−1/3), with ρ0 a two-qubit state.

Proof. In Lemma 16 it is shown how to use H(t) to generate arbitrary single-qubit gates on either of the modes with
arbitrarily high fidelity. Hence, it is only necessary to show how to apply an entangling two-qubit gate in order to
have a universal gate-set.

To do this, let us consider the collective modes b1 = (a1 + a2)/
√
2 and b2 = (a1 − a2)/

√
2. We will denote by

|j, k⟩a1,a2
= (j! k!)−1/2(a†1)

j(a†2)
k |0, 0⟩ the Fock states in the original basis, and |j, k⟩n1,n2

= (j! k!)−1/2(b†1)
j(b†2)

k |0, 0⟩.
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One obtains that

|0, 0⟩a1,a2
= |0, 0⟩b1,b2 ,

|0, 1⟩a1,a2
=

1√
2

(
|1, 0⟩b1,b2 − |0, 1⟩b1,b2

)
,

|1, 0⟩a1,a2
=

1√
2

(
|1, 0⟩b1,b2 + |0, 1⟩b1,b2

)
,

|1, 1⟩a1,a2
=

1

2

(
|2, 0⟩b1,b2 − |0, 2⟩b1,b2

)
. (S155)

Let us now denote by U the single-mode unitary that maps U |0⟩b1 = |0⟩b1 , U |1⟩b1 = i |1⟩b1 , U |2⟩b1 = |2⟩b1 . Using
Eq. (S155), it can be seen that U will act in the a1, a2 basis as

U |0, 0⟩a1,a2
= |0, 0⟩a1,a2

,

U |0, 1⟩a1,a2
=

1

2

(
(1 + i) |0, 1⟩a1,a2

− (1− i) |1, 0⟩a1,a2

)
,

U |1, 0⟩a1,a2
=

1

2

(
−(1− i) |0, 1⟩a1,a2

+ (1 + i) |1, 0⟩a1,a2

)
,

U |1, 1⟩a1,a2
= |1, 1⟩a1,a2

. (S156)

Hence, U is clearly an entangling gate between modes a1 and a2. Furthermore, U can be implemented in a fast
manner using the same technique as in Lemma 16. Let us detail the procedure. First, one can evolve the system

under the term P (a†1a2 +h.c), which induces the mixing of the modes a1 → b1 and a2 → b2 in time t = O(1/P ). The
Hamiltonian in the new basis, Hb(t), may be written us

Hb(t) = U1b
†2
1 b

2
1 + (Λ1,1b

†
1 + Λ1,2b

†2
1 + h.c.) + ∆1b

†
1b1, (S157)

where we have chosen ∆2 = Λ2,1 = Λ2,2 = U2 = 0. One can note that the technique in Lemma 16 can be readily
applied to the Hamiltonian Hb in Eq. (S157). That is, one can go to a frame in which b1 is displaced by α(t),
b1 → b1 + α(t). As shown in the proof of Lemma 16, a suitable choice of the parameters leads to the displaced

Hamiltonian Hb,α(t) = U1(t)(b
†
1)

2b21 + 2U1[α(t)b
†
1(b

†
1b1 − 2) + h.c.]. Note that this Hamiltonian contains no couplings

between |2⟩b1 and |3⟩b1 , and hence the subspace spanned by {|0⟩b1 , |1⟩b1 , |2⟩b1} is blockaded. Furthermore, one can
rewrite

Hb,α(t) = U1(t)(b
†
1)

2b21 + 2U1(t)Re(α(t))Hα,R + 2U1(t)Im(α(t))Hα,I , (S158)

with Hα(t),R = b†1(b
†
1b1−2)+(b†1b1−2)b1 and Hα(t),I = i(b†1(b

†
1b1−2)−(b†1b1−2)b1). One can compute the commutator

[Hα(t),R, Hα(t),I ] = 2i(3b†21 b
2
1 − 6b†1b1 + 4), which is diagonal, and can clearly implement the gate U , which consists

only of a phase rotation of the state |1⟩b1 . In fact, the analysis in Ref. [S14] shows that one can generate arbitrary
unitaries in the subspace spanned by {|0⟩b1 , |1⟩b1 , |2⟩b1}.

Following the analysis in Lemma 16, the gate U can then be implemented in time tU = O((U2P )−1/3). This
is also the dominant source of error, since applying the displacement takes time tdis = O((P 2U)−1/3), and going
to the collective mode b1 takes time tb = O(1/P ), and therefore tU ≫ tdis, tb. Hence, the total error will be
O(κtU ) = O(κ(U2P )1/3).

Therefore, we have shown how to implement an entangling gate. Together with the implementation of arbitrary
single-qubit gates and the Solovay-Kitaev theorem (which introduces and additional polylogarithmic factor), this
proves that any 2-qubit gate U can be implemented by evolving the Lindbladian L(t) up to precision

∥(T e
∫ t
0
L(s)ds − U)ρ0∥1 ≤ Õ

(
κ

(U2P )1/3

)
, (S159)

where ρ0 is a two-qubit state, and the error bound follows directly from Lemma 15.

So far, we have shown how the bosonic Hamiltonian can be used to generate high-fidelity universal gates. Specifically,
we have seen that 2-qubit gates can be implemented in time t = Õ((PU2)−1/3), where U is the non-Gaussian strength,
and P refers to the maximum absolute value allowed for the Gaussian terms of the Hamiltonian. Let us now consider
a system with nL bosonic modes as described in section I E and study the asymptotic scaling with n. In this case,
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|Jα,α′

i,j (t)|, |Ωα
i (t)| ≤ P . Let us assume that J,Ω = Θ(P ) (this is the case, for example, for geometrically local

Hamiltonians). Then, provided that the Gaussian couplings J,Ω = O(1) can be arbitrarily large constants, it follows
from Lemma 17 that any gate can be implemented to an arbitrarily small (but independent of n) precision. Since
this allows for the implementation of gates with an effective gate error below that of the threshold theorem [S8–S10],
this implies that fault-tolerant circuits can be implemented. We remark that, in addition to high-fidelity gates, fault-
tolerant constructions usually require the ability to implement RESTART operations to provide fresh qubits [S9]. For
spin systems in the presence of non-unital noise, cooling algorithms [S17–S19] in conjunction with the noise channel
can be leveraged to implement such an operation [S20–S22]. In our case, a similar scheme would be needed; however,
we leave a careful analysis of the construction for future work.

B. High-noise regime of the fermionic model is not separable at all times

For the bosonic model, Theorem 2 establishes that, in the presence of a sufficiently incoherent high particle loss
or incoherent particle gain, the state of the bosonic model is separable at all times. In this subsection, we show
that such a result cannot be true for the fermionic model. We show this for two notions of separability for fermions
[S23, S24]—the first notion holds for all observables, and the second weaker notion holds for parity-conserving, or
even, observables.

Throughout this section, it will be enough for us to consider separability in the bi-partite setting. We will consider
m fermionic modes which are divided into two subgroups of modes, A with modes {1, 2, . . . ,mA} and B with modes
{mA+1,mA+2, . . . ,m}. Recall that an operator on the fermionic Hilbert space is an element of the algebra generated
by {c1v, c2v}v∈{1,2...m} or alternatively by {av, a†v}v∈{1,2...m}. An operator acting on sub-system A will be an element

of the algebra generated by {av, a†v}v∈{1,2...mA} and, similarly, an operator acting on the sub-system B will be an

element of the algebra generated by {av, a†v}v∈{mA+1,mA+2...mB}. The parity operator of a set S ⊆ {1, 2 . . .m} of

fermionic modes is PA = exp(iπ
∑

i∈S a
†
iai). Operators that conserve the parity operator are called even operators.

Physically relevant states of the fermionic modes are restricted to be even operators—note, however, that a physical
operator that is even on all the fermionic modes is not necessarily even on a subset of these fermionic modes.

Definition 1. A state ρ of m fermionic modes will be called a product state with respect to all observables on
the bi-partition A|B if there exist states ρA for the modes in A and ρB for the modes in B such that, for all operators
OA supported on A and OB supported on B,

Tr(OAOBρ) = Tr(OAρA)Tr(OBρB).

A state ρ of the m fermionic modes will be called a separable state with respect to all observables on the
bi-partition A|B if it can be expressed as a convex-combination of such product states.

We remark that it was shown in Ref. [S24] that if ρ is an even operator, which is also a product state as per definition
1, then ρA and ρB are also both even operators.

Definition 2. A state ρ of m fermionic modes will be called a product state with respect to even observables
on the bi-partition A|B if there exist states ρA for the modes in A and ρB forthe modes in B such that, for all even

operators O
(+)
A supported on A and O

(+)
B supported on B,

Tr(O
(+)
A O

(+)
B ρ) = Tr(O

(+)
A ρA)Tr(O

(+)
B ρB).

A state ρ of the m fermionic modes will be called a separable state with respect to even observables on the
bi-partition A|B if it can be expressed as a convex-combination of such product states.

As discussed in Ref. [S23] , while separability with respect to all observables implies separability with respect to even
observables, the converse is not necessarily true. This can be seen explicitly in a simple 2-mode example—consider

the state |ψ⟩ = (a†1+a
†
2) |vac⟩ /

√
2. This state is not separable as per definition 1—to see this, one can use the 2-mode

separability criteria from Refs. [S23, S24] , which we also provide in Lemma 18. However, this state is separable as

per definition 2—to see this, we note that, for any even observable O
(+)
1 on the first fermionic mode and O

(+)
2 on the

second fermionic mode,

⟨ψ|O(+)
1 O

(+)
2 |ψ⟩ = 1

2

(
⟨ϕ1|O(+)

1 |ϕ1⟩ ⟨ϕ2|O(+)
2 |ϕ2⟩+ ⟨θ1|O(+)

1 |θ1⟩ ⟨θ2|O(+)
2 |θ2⟩

)
, (S160)

where |ϕ1⟩ = a†1 |vac⟩ , |ϕ2⟩ = |vac⟩, |θ1⟩ = |vac⟩ and |θ2⟩ = a†2 |vac⟩.
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1. Non-separability for any observable

Here, we provide a simple 2-mode example which shows that, unlike the bosonic model, no matter how high the
rate of particle loss and incoherent particle gain is in the fermionic model, the dynamics of the fermionic model is
not separability preserving with respect to all observables (definition 1). To establish this result, we first review the
2-mode seperability criteria from Refs. [S23, S24].

Lemma 18 (2-mode separability, Refs. [S23, S24]). A 2-mode density matrix ρ is separable with respect to all observ-
ables (definition 1) if and only if it is diagonal in the computational basis.

Proposition 1. Consider a system with m = 2 fermionic modes, with the sub-system A with mode 1 and sub-system
B with mode 2 whose density matrix ρ(t) satisfies the Lindblad master equation

d

dt
ρ(t) = −i[a†1a2 + a†2a1, ρ(t)] + κ

4∑

j=1

(
ξ(1)Daj + ξ(2)Da†

j

)
ρ(t),

Then, ∀κ > 0, ∃ρ(0) which is separable with respect to even observables (Definition 2) such that ρ(t) cannot be
separable for all t ≥ 0.

Proof. Throughout this proof, “separability” refers to separability with respect to all observables (Definition 1).

Consider the initial state ρ(0) = a†1 |vac⟩⟨vac| a1. Note that ρ(0) is trivially separable—we now establish that, for a
small time t, there is no separable state σ(t) such that ρ(t) = eLt(ρ(0)) is not seperable to O(t2) for any κ, which is
enough to contradict separability of ρ(t) at all times t. Now,

ρ(t) = ρ(0) + tLρ(0) +O(ε2), (S161)

which, in the computational basis (i.e. |0, 0⟩ = |vac⟩ , |1, 0⟩ = a†1 |vac⟩ , |0, 1⟩ = a†2 |vac⟩ , |1, 1⟩ = a†1a
†
2 |vac⟩), satisfies

|⟨1, 0| ρ(ε) |0, 1⟩| = t + O(t2) From the separability criteria in Lemma 18, it then follows that there cannot exist a
separable state σ(t) such that ∥ρ(t)− σ(t)∥1 ≤ O(t2), no matter what the rate κ is.

2. Non-separability for even observables

We will use the following lemma, which reduces the problem of checking the non-separability of a 4-mode fermionic
state with respect to even observables to an effective problem with 2 qubits.

Lemma 19. Suppose ρ is a state of m = 4 fermionic modes, with sub-system A with modes 1 and 2 and sub-system

B with modes 3 and 4, and suppose the 2-qubit state σ = (QA,eQB,o)ρ(Q
†
A,eQ

†
B,o), where

QA,e = |0A⟩⟨vac|+ |1A⟩⟨vac| a1a2, QB,o = |0B⟩⟨vac| a3 + |1B⟩⟨vac| a4,
is entangled, then ρ is not separable with respect to even observables.

Proof. This lemma follows by contradiction—let us assume that ρ is separable with respect to even observables. Now,
for any two operators OA, OB ∈ C2×2, consider the even observables

O
(+)
A = Q†

A,eOAQA,e and O
(+)
B = Q†

B,oOBQB,o. (S162)

Note that O
(+)
A acts on the fermionic modes in A and O

(+)
B acts on the fermionic modes in B. We note also that

Tr(O
(+)
A O

(+)
B ρ) = Tr(OAOBσ). (S163)

Now, since ρ is separable with respect to even observables by assumption, it follows that ∃ρA,x, ρB,x and a probability
measure µ such that

Tr(O
(+)
A O

(+)
B ρ) =

∫
Tr(O

(+)
A ρA,x)Tr(O

(+)
B ρB,x)dµ(x), (S164)

and consequently, using Eq. (S162), we find that

Tr(OAOBσ) =

∫
Tr(OAσA,x)Tr(OBσB,x)dµ(x), (S165)

where σA,x = QA,eρA,xQ
†
A,e and σB,x = QB,oρB,xQ

†
B,o. This would imply that σ is separable and therefore, by

contradiction, we conclude that ρ cannot be separable even with respect to even observables.
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Proposition 2. Consider a system with m = 4 fermionic modes, with the sub-system A with modes 1 and 2 and
sub-system B with modes 3 and 4, whose density matrix ρ(t) satisfies the Lindblad master equation

d

dt
ρ(t) = −i[a2a3 + a†3a

†
2, ρ(t)] + κ

4∑

j=1

(
ξ(1)Daj

+ ξ(2)Da†
j

)
ρ(t).

Then, ∀κ > 0, ∃ρ(0) which is separable with respect to even observables (Definition 2) such that ρ(t) cannot be
separable for all t ≥ 0.

Proof. Throughout this proof, “separability” refers to separability with respect to even observables (Definition 2). We
choose ρ(0) = |ψ(0)⟩⟨ψ(0)|, where

|ψ(0)⟩ = 1√
2

(
a†1 |vac⟩+ a†4 |vac⟩

)
. (S166)

It can be noted that ρ(0) is separable with respect to even observables since, for any even observables O
(+)
A on A and

O
(+)
B on B,

Tr(ρ(0)O
(+)
A O

(+)
B ) =

1

2
⟨ψ(1)

A |O(+)
A |ψ(1)

A ⟩ ⟨ψ(1)
B |O(+)

B |ψ(1)
B ⟩+ 1

2
⟨ψ(2)

A |O(+)
A |ψ(2)

A ⟩ ⟨ψ(2)
B |O(+)

B |ψ(2)
B ⟩ , (S167)

where |ψ(1)
A ⟩ = a†1 |vac⟩ , |ψ

(1)
B ⟩ = |vac⟩ , |ψ(2)

A ⟩ = |vac⟩, and |ψ(2)
B ⟩ = a†4 |vac⟩. Again, to show that ρ(t) is not separable

for all t > 0, it is enough to show that there isn’t a separable state σ(t) such that ∥ρ(t)− σ(t)∥1 ≤ O(t2) as t → 0.
To show this, we consider a first-order expansion of ρ(t):

ρ(t) = ρ(0) + tLρ(0) +O(t2)

= |ψ(t)⟩⟨ψ(t)|+ κt

4∑

j=1

(
ξ(1)Daj (|ψ(0)⟩⟨ψ(0)|) + ξ(2)Da†

j
(|ψ(0)⟩⟨ψ(0)|)

)
+O(t2), (S168)

where |ψ(t)⟩ = (a†1 + a†4 − ita†3a
†
2a

†
1 − ita†3a

†
2a

†
4) |vac⟩ /

√
2. We can now compute the state σ(t) =

(QA,eQB,o)ρ(t)(Q
†
B,oQ

†
A,e) defined in Lemma 19, which effectively amounts to projecting ρ(t) on the sub-

space spanned by {a†3 |vac⟩ , a†4 |vac⟩ , a†3a†2a†1 |vac⟩ , a†4a†2a†1 |vac⟩} and identifying a†3 |vac⟩ → |0A, 0B⟩ , a†4 |vac⟩ →
|0A, 1B⟩ , a†3a†2a†1 |vac⟩ → |1A, 0B⟩ , a†4a†2a†1 |vac⟩ → |1A, 1B⟩:

σ = ((1− κt) |0A, 1B⟩ − it |1A, 0B⟩)((1− κt) ⟨0A, 1B |+ it ⟨1A, 0B |) +O(t2). (S169)

It is easy to see that ∀κ > 0, σ(t) (as a 2-qubit state), does not admit an O(t2) separable approximation for
sufficiently small t. Consequently, from Lemma 19, we find that ρ(t) (as a 4-mode fermionic state) does not admit an
O(t2) separable approximation, thus proving the lemma.

[S1] C. V. Kraus, A quantum information perspective of fermionic quantum many-body systems, Ph.D. thesis, Technische
Universität München (2009).

[S2] J. Surace and L. Tagliacozzo, SciPost Phys. Lect. Notes , 54 (2022).
[S3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms (MIT press, 2022).
[S4] M. Fagotti and P. Calabrese, J. Stat. Mech.-Theory E. 2010, P04016 (2010).
[S5] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325 (2002).
[S6] E. Knill, arXiv preprint quant-ph/0108033 (2001).
[S7] T. Kuwahara, T. V. Vu, and K. Saito, Nat. Commun. 15, 2520 (2024).
[S8] K. Noh and C. Chamberland, Phys. Rev. A 101, 012316 (2020).
[S9] D. Aharonov and M. Ben-Or, SIAM J. Comput. 38, 1207 (2008).

[S10] T. Matsuura, N. C. Menicucci, and H. Yamasaki, arXiv preprint arXiv:2410.12365 (2024).
[S11] A. Mari and J. Eisert, Phys. Rev. Lett. 109, 230503 (2012).
[S12] R. Hudson, Rep. Math. Phys 6, 249 (1974).
[S13] M. Walschaers, PRX Quantum 2, 030204 (2021).
[S14] M. Yuan, A. Seif, A. Lingenfelter, D. I. Schuster, A. A. Clerk, and L. Jiang, arXiv preprint arXiv:2312.15783 (2023).



34

[S15] A. Eickbusch, V. Sivak, A. Z. Ding, S. S. Elder, S. R. Jha, J. Venkatraman, B. Royer, S. M. Girvin, R. J. Schoelkopf,
and M. H. Devoret, Nat. Phys. 18, 1464 (2022).

[S16] A. Lingenfelter, D. Roberts, and A. A. Clerk, Sci. Adv. 7, eabj1916 (2021).
[S17] P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, Proceedings of the National Academy of Sciences 99,

3388 (2002).
[S18] L. J. Schulman and U. V. Vazirani, in Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing ,

STOC ’99 (Association for Computing Machinery, New York, NY, USA, 1999) p. 322–329.
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