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Quantum spin liquids are exotic phases of matter whose low-energy physics is described as the
deconfined phase of an emergent gauge theory. With recent theory proposals and an experiment showing
preliminary signs of Z2 topological order [G. Semeghini et al., Science 374, 1242 (2021)], Rydberg atom
arrays have emerged as a promising platform to realize a quantum spin liquid. In this work, we propose a
way to realize a U(1) quantum spin liquid in three spatial dimensions, described by the deconfined phase of
U(1) gauge theory in a pyrochlore lattice Rydberg atom array. We study the ground state phase diagram of
the proposed Rydberg system as a function of experimentally relevant parameters. Within our calculation,
we find that by tuning the Rabi frequency, one can access both the confinement-deconfinement transition
driven by a proliferation of “magnetic” monopoles and the Higgs transition driven by a proliferation of
“electric” charges of the emergent gauge theory. We suggest experimental probes for distinguishing the
deconfined phase from ordered phases. This work serves as a proposal to access a confinement-
deconfinement transition in three spatial dimensions on a Rydberg-based quantum simulator.
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I. INTRODUCTION

When the classical part of a many-body Hamiltonian is
frustrated, quantum fluctuations can break the degeneracy
in interesting ways. An exotic form of such breaking was
pointed out by Anderson [1], where the ground state is a
superposition of several almost-degenerate states, and the
excitations are “fractional” [2]. Broadly, a common feature
tying together such systems called quantum spin liquids
(QSLs) is that, at low energies, they can be described as
lying in a deconfined phase of an emergent gauge theory.
The fractional excitations are the “chargelike” and “flux-
like” or “monopolelike” excitations of this gauge theory.
When these fractional excitations get confined, they cease
to be important for the low-energy physics, and the system
becomes ordered. From this point of view, transitions from
a spin liquid to conventional ordered phases are understood
as a confinement-deconfinement transition, driven by a
proliferation of fluxlike or monopolelike excitations, or a
Higgs transition, driven by a proliferation of chargelike

excitations [3–8]. Gauge theories and their phase transi-
tions are of fundamental importance in physics [9–12]. The
prospect of this physics emerging in many-body systems
provides an important motivation for studying quantum
spin liquids. They are also interesting due to their possible
role in the physics of strongly correlated materials [13] and
possible application in quantum computing [14,15].
Traditionally, the main search space for spin liquids has

been composed of solid-state systems. While consistent
progress has been made [2,16], conclusive evidence for
spin liquids is still lacking in these systems. One reason is
that the same feature that makes spin liquids interesting—
being characterized by nonlocal order parameters—also
makes them hard to detect. Meanwhile, over the past
decade, Rydberg atom arrays have emerged as a promising
platform for engineering interacting Hamiltonians [17–38].
Rydberg states have large principal quantum number n
ð∼20–100Þ, and the van der Waals interaction between them
scales as n11. The strong tunable interactions, along with the
ability to customize the lattice of atoms, locally control
qubits, and take wave function snapshots, make Rydberg
atom arrays a competitive platform to explore quantum
many-body physics. Furthermore, the energy scales in
Rydberg atom arrays are orders of magnitude larger than
in optical lattices, enabling observation of quantum effects at
much higher temperatures in Rydberg atom arrays than in
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optical lattices. Following theory proposals [39,40], prom-
ising signs of Z2 topological order have been observed
experimentally on this platform [28]. This has sparked a lot of
activity over the past few years in the general direction of
proposing ways to realize exotic states on quantum devices
using analog quantum simulation [41–48], digital quantum
simulation [49], and projective measurements [50,51].
However, all of these proposals have been for two-dimen-
sional Rydberg atom arrays.
Our work is a proposal for realizing a U(1) quantum spin

liquid, described by the deconfined phase of a compact
U(1) gauge theory on three-dimensional Rydberg atom
arrays, with an eye toward accessing the confinement-
deconfinement transition. With our proposal, we intend to
push the search for a U(1) quantum spin liquid, which has
traditionally remained limited to solid-state systems, in the
direction of three-dimensional Rydberg atom arrays. The
connection between Rydberg atom arrays and Abelian
gauge theories in one dimension and two dimensions
has been studied in depth in the literature before [52–
55]; however, this connection in three dimensions has
remained unexplored. It is known that gauge theories in
three dimensions can have a significantly different behavior
than those in two dimensions. This is illustrated by the
compact U(1) gauge theory. It was shown by Polyakov
[56,57] that compact U(1) gauge theory in 2þ 1 dimen-
sions is always in the confined phase in the thermodynamic
limit due to a proliferation of monopole events. Therefore
we turn to 3þ 1 dimensions, where Polyakov argued [57]
for the existence of both deconfined and confined phases
separated by a transition driven by monopole excitations.
The deconfined phase consists of gapless “photons,”
gapped “monopoles,” and gapped “charge” excitations.

In the early 2000s, lattice models of spins [58] and dimers
[59] on corner-sharing polyhedra were constructed that
were strongly argued to realize this phase—a U(1) spin
liquid, using perturbation theory, solvable limits [58], and
later quantum Monte Carlo simulations [60,61]. Our work
is based on a spin model with easy-axis antiferromagnetic
interactions introduced by Hermele et al. [58] on the
pyrochlore lattice consisting of corner-sharing tetrahedra
(see Fig. 1).
The classical Ising limit of this model is the widely

studied classical spin ice [62–66], which has a large
residual entropy at low temperatures similar to water ice
[67]. This is because the ground states form an exponen-
tially degenerate set of states obeying the “ice rule” (see
Sec. II). The quantum model in Ref. [58] has also been a
subject of intense study in the context of pyrochlore
materials like Yb2Ti2O7 and Er2Ti2O7 as potential quan-
tum spin ice [another name for the U(1) spin liquid]
candidates [68].
It was observed in Ref. [69] that the Hamiltonian in

Ref. [58] can be viewed as that of hard-core bosons
hopping on an optical lattice with nearest-neighbor repul-
sion, thus extending its relevance to the cold atom setting.
Reference [70] studied a similar model of hard-core bosons
hopping on a two-dimensional checkerboard lattice. In
Ref. [70], the atom’s internal state was largely the ground
state, but a dressing with Rydberg states was used to
engineer interactions between atoms. Later, Ref. [71]
showed that dimer models in two dimensions can be
implemented on configurable Rydberg arrays—where the
atoms themselves are stationary but can internally be either
in a ground state or in a Rydberg state. In this setting, the
atoms are driven with a laser (or a pair of lasers making a

FIG. 1. (a) The pyrochlore lattice. White circles denote atoms in the ground state, while black circles denote atoms in the Rydberg
state. The configuration shown satisfies on each tetrahedron. The label x is used to denote the sites of the pyrochlore lattice.
(b) The diamond lattice. It is the bipartite lattice formed by the centers of the tetrahedra marked by green (A sublattice) and blue (B
sublattice) dots. eμ for μ∈ f0; 1; 2; 3g label the vectors joining an A site to its neighboring B sites. The label r is used to denote the sites
of the diamond lattice. (c) The red links are the edges of the lattice dual to the diamond lattice shown in (b). This lattice is also a diamond
lattice, and we refer to it as the “dual diamond lattice” in this paper to distinguish it from the “diamond lattice” in (b). The sites of the
dual diamond lattice are centers of the “polyhedra” formed by four puckered hexagons of the diamond lattice. uμ for μ∈ f0; 1; 2; 3g
label the vectors joining an A site to its neighboring B sites on the dual diamond lattice. The label r [notice the difference in the font as
compared to r in (b)] is used to denote the sites of the dual diamond lattice.
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two-photon transition) that is detuned from the ground to
Rydberg transition. The Rydberg interactions and the
detuning define a (frustrated) “classical” energy landscape.
The laser driving induces quantum fluctuations controlled
by the Rabi frequency, leading (perturbatively) to dimer
moves or ring-exchange terms that are required to decon-
fine a gauge theory. The proposal [39] and experiment [28]
mentioned above worked in the same setting. Our work is
also based on this setting in which the atom array is
configured in a 3D pyrochlore lattice. While Ref. [69]
proposes to realize a U(1) quantum spin liquid in a 3D
optical lattice, our proposal focuses on Rydberg atom
arrays where the energy scales involved are several orders
of magnitude larger than those in optical lattices. Typical
van der Waals interaction strengths in Rydberg atom arrays
are on the order of gigahertz [28], while the on-site
interaction strengths in optical lattices are on the order
of kilohertz [72–74]. For an observation of the U(1)
quantum spin liquid, the temperature of the system must
be much smaller than the spinon and the monopole gaps.
The large energy scales of Rydberg atom arrays make them
more favorable than optical lattices to realize a quantum
spin liquid. Furthermore, our focus on experimentally
measurable correlators goes beyond previous proposals
to realize a U(1) quantum spin liquid in atomic, molecular,
and optical systems.
In Sec. II, we explain our proposal. We show that within

a window of laser detunings, the classical landscape is
identical to the set of ice rule obeying states. Our
Hamiltonian, when restricted to nearest-neighbor inter-
actions, is equivalent to the transverse-field Ising model
on the pyrochlore lattice. In the limit of small Rabi
frequencies, it is perturbatively equivalent to the model
in Ref. [58], which was argued to have a spin liquid ground
state. Away from the perturbative limit, there is numerical
evidence for a spin liquid phase [75]. However, once we
include the long-range 1=r6 interactions beyond nearest
neighbor, the classical landscape is no longer degenerate,
and it is a priori unclear if the spin liquid survives as the
ground state. We attempt to answer this in Sec. III by first
identifying the classical ground state in the presence of
long-range interactions, which we find to be a “chain state”
[76]. Then we compare its energy to the energy of an ansatz
wave function for the spin liquid. Within our approxima-
tion, we find a window of Rabi frequencies for which the
system is in the quantum spin liquid phase. By dialing up
the Rabi frequency, for fixed detuning and interaction
strength, one goes through a confinement-deconfinement
transition from an ice rule obeying ferromagnetic state into
a deconfined spin liquid phase. Then, by further increasing
the Rabi frequency, one goes through a Higgs transition
from the spin liquid to a transverse-field-polarized (TFP)
state (see Sec. III B). Thus both the deconfinement-confine-
ment and the Higgs transitions of the compact U(1) gauge
theory can be accessed by changing the Rabi frequency
in our model. They have also considered effective gauge

theories without Lorentz invariance and shown that the
real-space version can be used to diagnose deconfinement.
While the analysis till this point focuses on the ground
state, in Sec. III C, we comment on the role played by
dynamical state preparation in deciding the nature of the
state prepared in experiment. In Sec. IV, we present
correlation functions that distinguish the spin liquid from
the confined phases, and provide experimental protocols
for measuring them. We explain the behavior of the
correlation functions in each phase of the phase diagram,
and provide protocols to measure them, which we expect to
be useful for experiments. Some of these correlators are
nonlocal in nature and are qualitatively different from the
typically considered pinch-point singularities in local
correlators. Finally, in Sec. V, we present general discus-
sions and conclusions.

II. PROPOSAL TO REALIZE A U(1) QUANTUM
SPIN LIQUID USING RYDBERG ATOMS

In this section, we describe our proposal to realize a U(1)
QSL in Rydberg atom arrays. Consider a 3D Rydberg array
in which the atoms are positioned on the sites of the
pyrochlore lattice [see Fig. 1(a)]. Each of the atoms can be
either in the ground state jgi or in the Rydberg state jri. In
the rotating wave approximation and in a rotating frame,
the Hamiltonian is

ĤRyd ¼ −δ
X
i

n̂i þ
V
2

X
i≠j

�
a

jxi − xjj
�

6

n̂in̂j

þΩ
2

X
i

ðb̂i þ b̂†i Þ; ð1Þ

where b̂i ¼ jgiihrij, n̂i ¼ b̂†i b̂i,Ω is the Rabi frequency, δ is
the laser detuning, V is the nearest-neighbor van der Waals
interaction strength, and a is the distance between two
neighboring atoms. The summation

P
i≠j is over distinct

sites i and j of the pyrochlore lattice (each pair is being
counted twice), and

P
i is over sites i. Below, we briefly

describe the pyrochlore lattice.
The pyrochlore lattice is a face-centered-cubic (fcc)

lattice with a four-site basis formed by the four vertices
of an up-pointing tetrahedron. (Since each lattice site
belongs to one up-pointing tetrahedron and one down-
pointing tetrahedron, the down-pointing tetrahedra are
formed automatically once we create the up-pointing
tetrahedra.) In Cartesian coordinates, the primitive vectors
of the fcc lattice are

a1 ¼
ffiffiffi
2

p
að0; 1; 1Þ;

a2 ¼
ffiffiffi
2

p
að1; 0; 1Þ;

a3 ¼
ffiffiffi
2

p
að1; 1; 0Þ: ð2Þ
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The pyrochlore lattice sites are physically located at
r þ eμ=2 [and labeled ðr; μÞ], where r is an fcc lattice
vector, and the vectors eμ for μ∈ f0; 1; 2; 3g are defined as
[see Fig. 1(b)]

e0 ¼
affiffiffi
2

p ð1; 1; 1Þ ¼ 1

4
ða1 þ a2 þ a3Þ;

e1 ¼
affiffiffi
2

p ð1;−1;−1Þ;

e2 ¼
affiffiffi
2

p ð−1; 1;−1Þ;

e3 ¼
affiffiffi
2

p ð−1;−1; 1Þ: ð3Þ

We map the two levels of the atoms to spin 1=2’s:
jgi → j↓i, jri → j↑i, n̂i → Ŝzi þ 1=2, and b̂i þ b̂†i → 2Ŝxi .
The term n̂in̂j therefore maps to an Ŝzi Ŝ

z
j interaction in

addition to a Zeeman term Ŝzi . Written in terms of spins, the
Hamiltonian, up to an additive constant, is

ĤRyd ¼ −h
X
i

Ŝzi þ
V
2

X
i≠j

�
a

jxi − xjj
�

6

Ŝzi Ŝ
z
j þ Ω

X
i

Ŝxi ;

ð4Þ

where

h ¼ δ −
V
2

X
i≠0

�
a

jxi − x0j
�

6

; ð5Þ

and is independent of the choice of x0 for an infinite lattice.
Evaluating this sum numerically for the pyrochlore lattice,
we obtain h ¼ δ − 3.46V. It is useful to separate the total
Hamiltonian, Eq. (4), into three parts, ĤRyd ¼ Ĥ0 þ
ĤΩ þ ĤLR, where

Ĥ0 ¼
V
2

X
hi;ji

Ŝzi Ŝ
z
j − h

X
i

Ŝzi ;

ĤΩ ¼ Ω
X
i

Ŝxi ; and ĤLR ¼ V
2

X0

i≠j

�
a

jxi − xjj
�

6

Ŝzi Ŝ
z
j;

ð6Þ

where
P

hi;ji is over nearest-neighbor pairs and
P0

i≠j in

ĤLR is over the remaining pairs that are not nearest
neighbor (in both

P
and

P0
, each pair is counted twice).

Since the interaction drops very rapidly with distance, we
will drop ĤLR for the rest of this section because doing so
allows us to connect to some previously known results
[58,61,77]. We will study the effect of the long-range van
der Waals interaction ĤLR in Sec. III.

Since the pyrochlore lattice is made of corner-sharing
tetrahedra, we see that Ĥ0 can be written up to an additive
constant as (for convenience, in the expression below, we
switch back to the hard-core boson notation)

ð7Þ

where the sum is over all tetrahedra, ρ ¼ 1
2
½4þ ðh=VÞ� ¼

1
2
½0.54þ ðδ=VÞ�, and denotes the total

number of atoms in the excited state on a given tetrahedron
. Minimizing Ĥ0 to obtain the classical ground state

imposes a constraint on for each tetrahedron depending
on the value of ρ:

ð8Þ

The classical ground state is unique for and
, while it is exponentially degenerate (in system

size) for . The number of states satisfying the
constraint , is approximately ð3=2ÞNtetrahedra (where
Ntetrahedra is the number of tetrahedra) [78]. This is based on
an argument similar to the one given by Pauling to explain
the residual entropy of water ice at zero temperature [67].
From now on, we will refer to the condition as the
“ice rule.” An ice rule obeying configuration is shown in
Fig. 1(a). In these nontrivial cases, the configurations with
fixed can be mapped to configurations of dimers on the
bipartite diamond lattice formed by the centers of tetrahedra
of the pyrochlore lattice [Fig. 1(b)], with exactly many
dimers touching each diamond site (see Fig. 2). The A and
B sites of the diamond lattice are located at n and nþ e0,
respectively, where n is an fcc lattice vector. For later use
in this paper, we also show the lattice dual to this diamond
lattice in Fig. 1(c) (also a diamond lattice, which we call

FIG. 2. Mapping between Rydberg array configurations and
dimer configurations. A Rydberg atom (black dot) is mapped to
the presence of a dimer (orange bar), while a ground state atom
(white dot) is mapped to the absence of a dimer. (a)–(c) Example
dimer configurations corresponding to , and 3, re-
spectively. In each case, many dimers touch the center
of each tetrahedron (the centers of the tetrahedra form the
diamond lattice).
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the “dual diamond lattice”). An atom in the Rydberg
state on site i is mapped to a dimer on the corresponding
link of the diamond lattice, while an atom in the ground
state is mapped to no dimer. Such dimer models
have been studied extensively in both two and three
dimensions [58,79–81].
In the limit Ω ≪ V, ĤΩ leads to quantum fluctuations

that break the exponential degeneracy of the low-energy
manifold. We will study this effect perturbatively in the
following section (Sec. II A). Classically, the energy gap
between the degenerate ground state space and the lowest
excited states corresponding to two tetrahedra violating
Eq. (8) by either þ1 or −1 is 2Vmin ðfρþ 1=2g;
1 − fρþ 1=2gÞ. Here, fxg≡ x − floorðxÞ is the fractional
part of x. It should be noted that, in the borderline cases
when ρ ¼ mþ 1=2 with m∈ f0; 1; 2; 3g, the energy gap
closes and our perturbative analysis cannot be used.
We assume going forward that ρ is away from these
borderline values.

A. Perturbation theory

We work in the limit Ω ≪ V and treat ĤΩ as a
perturbation over Ĥ0, ignoring for now ĤLR whose effects
will be considered later in Sec. III. We calculate the
effective Hamiltonian within the ground state manifold
of Ĥ0 using the Schrieffer-Wolff formulation of perturba-
tion theory. For simplicity, we present the calculation of the
effective Hamiltonian only for here. The only
difference between these three cases will be the Hilbert
space on which the Hamiltonian acts. Calculating, at kth
order in perturbation theory, the matrix element of the
effective Hamiltonian between two states jni and jmi lying
in the degenerate manifold involves starting from jmi,
applying the perturbation k times, and reaching the state
jni. Since ĤΩ changes the particle number by �1, the
corrections at all odd orders are zero.
Acting with Ω=2ðb̂i þ b̂†i Þ on an ice rule obeying state

creates two excited tetrahedra (whose common site is i),
which violate the constraint . Therefore, the only
second-order process that takes us back to the ice manifold
(the degenerate manifold of the ice rule obeying states) is
the one in which two excited tetrahedra are created and
annihilated, as illustrated in Figs. 3(a) and 3(b).
Since such processes are present for all the states of the

ice manifold, they contribute only a constant energy shift
and can be ignored. The same is true for the fourth-order
processes. Now, the pyrochlore lattice has hexagonal
plaquettes, some of which are shown in Fig. 4. This allows
for nontrivial processes to exist at sixth order. In fact,
nontrivial ring exchange over hexagonal plaquettes of the
pyrochlore lattice is obtained by the process shown in
Figs. 3(a)–3(g) (some sixth-order processes also result in a
constant energy shift which we neglect). A flippable
configuration—one in which atoms on a hexagonal pla-
quette are alternately in the ground and Rydberg states—is

mapped to the complementary flippable configuration by
the ring-exchange process as illustrated in Fig. 3(h). Thus,
the effective Hamiltonian consists of ring-exchange terms:

ð9Þ

where JringðρÞ ¼ γðρÞΩ6=V5, the sum is over all hexagonal
plaquettes of the pyrochlore lattice, and γðρÞ is a
dimensionless number obtained by summing over virtual
processes and is plotted as a function of ρ in Fig. 5. We
note that, when ρ is an integer, the value of γðρÞ is 63=16
and is the same as the one appearing in Refs. [82,83].
Although the effective Hamiltonian was derived here
assuming , the effective Hamiltonian we obtain
for , 3 is also given by Eq. (9).
In terms of dimers on the diamond lattice, the effective

Hamiltonian Eq. (9) corresponds to a kinetic energy of the
dimers. It is well known that dimer models can be made

FIG. 3. Panels (a) and (b) constitute a virtual process at second
order in perturbation theory in Ω=V. Starting from (a) which is a
configuration that satisfies on all sites, b̂1 þ b̂†1 is

applied giving (b). To complete the second-order process, b̂1 þ
b̂†1 is applied to (b) giving back (a). Tetrahedra for which

are shaded in red. Panels (a)–(g) constitute a sixth-
order process in the perturbation theory that contributes to the
ring-exchange term in the effective Hamiltonian, Eq. (9). Starting
from (a), the perturbation b̂i þ b̂†i is applied sequentially on sites
i ¼ 1; 2;…; 6. At the end of the six steps, a configuration with

is obtained as shown in (g). Note that the configuration
of the atoms on the hexagon is flipped in (g) as compared to (a),
thereby producing the effect of a ring exchange. Other sixth-order
processes where the perturbation is not applied sequentially also
contribute to Eq. (9), but are not shown here. (h) Ring-exchange
process which appears in the effective Hamiltonian Eq. (9). A
flippable configuration is mapped to the complimentary flippable
configuration.
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exactly solvable by adding a potential energy VRK for the
dimers and tuning to a special point VRK ¼ Jring called the
Rokhsar-Kivelson (RK) point [79]. The Hamiltonian with
such a potential energy term takes the form

ð10Þ

The Rydberg system we are interested in [Eq. (9)] is
obtained from Eq. (10) by setting VRK ¼ 0.

B. U(1) quantum spin liquid—Relation
to Hermele-Fisher-Balents [58]

The Hamiltonian in Eq. (10) was also derived by
Hermele et al. in Ref. [58] starting from the Heisenberg

model on the pyrochlore lattice and taking the easy-axis
limit where the Hamiltonian is

Ĥeasy-axis ¼
1

2

X
hi;ji

½JzŜzi Ŝzj þ J⊥ðŜxi Ŝxj þ Ŝyi Ŝ
y
jÞ�; ð11Þ

where Jz ≫ J⊥ > 0. When J⊥ ¼ 0, the ground state is
exponentially degenerate with on each tetrahe-
dron, which is equivalent to . The J⊥ term was
treated as a perturbation over the Jz term, and at third order,
a ring-exchange term identical to Eq. (9) was obtained.
Written in terms of the spins, the ring-exchange term is

Ĥeff ¼ −Jring
X
⎔

Ŝþ1 Ŝ
−
2 Ŝ

þ
3 Ŝ

−
4 Ŝ

þ
5 Ŝ

−
6 þ H:c:; ð12Þ

where the sum is over hexagonal plaquettes of the pyro-
chlore lattice. The RK potential term was added by hand in
Ref. [58] giving Eq. (10).
Hermele et al. then go to the quantum rotor variables

nrr0 ∈Z and θrr0 ∈ ½−π; πÞ, which live on the links rr0 of
the diamond lattice (equivalently, sites of the pyrochlore
lattice) and satisfy the canonical commutation relations
½n̂rr0 ; θ̂rr0 � ¼ i:

Ŝz → n̂ −
1

2
; Ŝ� → e�iθ̂: ð13Þ

The constraint n ¼ 0 or 1 is imposed by adding a term to
the Hamiltonian that energetically penalizes states violating
this constraint:

Ĥeff ¼
U
2

X
hrr0i

�
n̂rr’ −

1

2

�
2

ð14Þ

−2Jring
X
⎔p

cos ðθ̂r1r2 − θ̂r2r3 þ θ̂r3r4 − θ̂r4r5 þ θ̂r5r6 − θ̂r6r1Þ;

ð15Þ

where the first sum is over all the links hrr0i of the diamond
lattice. The second sum is over the puckered hexagonal
plaquettes of the diamond lattice ⎔p whose vertices are
r1; r2;…; r6. In the limit U → ∞, Eq. (14) reduces to the
effective Hamiltonian Eq. (12).
The local constraint, for each tetrahedron,

gives a gauge structure to the effective Hamiltonian

where the gauge transformations are generated by .

The presence of this local symmetry motivated Hermele
et al. to write Eq. (14) as a lattice U(1) gauge theory. The
electric field and the vector potential were defined as

êrr0 ¼ �
�
n̂rr0 −

1

2

�
; ârr0 ¼ �θ̂rr0 : ð16Þ

FIG. 4. Shaded in red are the four nonequivalent hexagonal
plaquettes of the pyrochlore lattice.

FIG. 5. Plot showing the variation of γðρÞ [which is the
proportionality constant in JringðρÞ ¼ γðρÞΩ6=V5] as a function
of ρ. For ρ ¼ 0.5, 1.5, 2.5, and 3.5, the energy gap between the
low-energy and the high-energy sectors closes and γðρÞ diverges.
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The positive (negative) sign is chosen if r belongs to
A (B) sublattice of the diamond lattice. The Hamiltonian
written in terms of the electric field and the vector
potential takes the form of a compact U(1) lattice gauge
theory [56,84]:

Ĥeff ¼
U
2

X
hr;r0i

ê2rr0 − 2Jring
X
⎔

cos ½ðcurl âÞ⎔�; ð17Þ

where the second summation is over hexagonal plaquettes
of the diamond lattice and

ð18Þ

where is a sum along the directed bonds of a
hexagonal plaquette of the diamond lattice. Such a pla-
quette can be uniquely defined by ðr; μÞ, where r belongs to
the dual lattice and uμ for μ∈ f1; 2; 3; 4g gives the
plaquette orientation [as defined in Fig. 1(c)], and B̂r;μ is
the magnetic field operator at that plaquette. The adjective
“compact” refers to the vector potential ârr0 being an
angular variable. There is an important difference between
the above gauge theory and the compact U(1) gauge theory
studied by Polyakov [56,57,85]—the gauge theory
obtained by Hermele et al. is an odd gauge theory, i.e.,
electric fields are half-integers, err0 ∈Zþ 1=2, while the
gauge theory studied by Polyakov was an even gauge
theory, i.e., the electric fields were integers, err0 ∈Z.
Because of this difference, the phases of the two theories
differ. For readers familiar with the Schwinger model, we
point out that the even and odd compact U(1) gauge
theories are reminiscent of gauge theories with a θ term
in 1þ 1 dimensions at θ ¼ 0 and θ ¼ π, respectively.
The phases of a gauge theory can be characterized by the

interaction between two externally added opposite electric
charges separated by a distance R. If the potential between
charges goes to zero (or increases as at most logR in
2þ 1D) as R → ∞, then the gauge theory is in the
deconfined phase. On the other hand, if the potential
increases linearly with R or faster, then these opposite
charges cannot be separated, and the gauge theory is in the
confined phase. In the limit U → ∞, the even gauge theory
was shown to be in the confined phase in Refs. [56,84],
while the odd gauge theory can be in either the confined
phase or the deconfined phase [58]. This can be understood
intuitively as follows.
In the even gauge theory, in the limitU → ∞, the electric

fields are forced to be 0, err0 ¼ 0, to minimize the energy in
the absence of any external charges. However, in the
presence of two opposite external charges, the Gauss’s
law requires that the electric field can no longer be zero
everywhere. The spreading of the electric field is, however,
penalized by the term ðU=2ÞPhr;r’i ê2rr0 . This forces the

electric field to be nonzero only in a narrow tube joining the
two charges, leading to a linearly rising potential between
the two charges. Thus, in the limit U → ∞, the even gauge
theory is in a confined phase, and there is no deconfined
phase in this limit. This confinement of charges has been
shown in Refs. [56,57,84,86].
On the other hand, in an odd gauge theory, in the limit

U → ∞, the electric field can take two values, err0 ¼ �1=2.
This results in frustration, i.e., allows for many configu-
rations of the electric field, so that the ground state in this
limit is nontrivial. When two external charges are intro-
duced, the electric field is not necessarily confined in a
string between the charges, but can spread in space similar
to the familiar Coulomb-law field lines of a noncompact
U(1) gauge theory. This suggests that it is possible for the
odd gauge theory to be in the deconfined phase even in
the U → ∞ limit. In fact, the odd gauge theory on the
pyrochlore lattice Eq. (14) is indeed in the deconfined
phase in the U → ∞ limit [60,61,77].
Hermele et al. have shown that the dimer model with the

Hamiltonian Eq. (10) is described by the deconfined phase
of the underlying compact U(1) gauge theory close to the
RK point (for VRK smaller than Jring but close to Jring). This
phase is the U(1) quantum spin liquid. It has three types of
emergent excitations—gapless photons, gapped magnetic
monopoles, and gapped fractionalized electric charges, also
called as spinons. The spinons are the tetrahedra which
violate the constraint on , Eq. (8).

C. Previous numerical work

In this section, we summarize some of the known work
on the dimer model with the Hamiltonian Eq. (10) and on
the nearest-neighbor transverse-field Ising model on the
pyrochlore lattice.
Using quantum Monte Carlo simulations, Refs. [61,77]

studied the range of VRK [see Eq. (10)] over which the U(1)
spin liquid exists. They found that the spin liquid is present
in the range −0.5Jring < VRK < Jring for the dimer model
with and in the range 0.77Jring < VRK < Jring for
the dimer model with . The dimer model with

is equivalent to the dimer model with by a
particle-hole transformation. These numerical results are
summarized in Fig. 6.
While a theory proposal to realize the RK potential exists

[71], the RK potential is a six-body term for the pyrochlore
lattice and is difficult to engineer experimentally. Thus, we
focus on the case where VRK ¼ 0. From Fig. 6, we see that
to obtain a spin liquid phase for VRK ¼ 0, one must have

, which corresponds to 3=2 < ρ < 5=2. In the cases
and 3, the system is in an ordered state when

VRK ¼ 0. Hence, in conclusion, assuming the long-range
interactions ĤLR can be ignored, we expect that, in the limit
Ω ≪ V, the Rydberg system will be in a U(1) quantum spin
liquid phase for 3=2 < ρ < 5=2.
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When ρ ¼ 2, or equivalently h ¼ 0, and the long-range
interactions ĤLR are ignored, the Hamiltonian of the system
Ĥ0 þ ĤΩ in Eq. (6) is the transverse-field Ising model on
the pyrochlore lattice. For Ω ≪ V, we know from the
perturbative analysis of Sec. II A and Ref. [77] that the
system is in the U(1) quantum spin liquid phase. For large
Ω=V, where perturbation theory cannot be applied,
Ref. [75] found using quantum Monte Carlo calculations
that the U(1) spin liquid exists in the region Ω < 0.55ð5ÞV,
while for Ω > 0.55ð5ÞV, the system is in a TFP phase,
which extends to Ω=V → ∞ where the ground state is
polarized in the x direction. This transition was also studied
in Ref. [87] using perturbation theory, where a transition
was found at Ω ≈ 0.6V.
The effects of adding a third nearest-neighbor interaction

V3NN to the dimer model were considered in Ref. [88]. It
was found that the quantum spin liquid transitioned into an
ordered state (antiferromagnet [89]) at V3NN ≈ Jring. Thus
non-nearest-neighbor interactions can destabilize the quan-
tum spin liquid. In fact, in a 2D model with neutral atoms
located on the bonds of a kagome lattice (same as the sites
of a ruby lattice), a spin liquid ground state was found if the
interactions were short-ranged using density matrix
renormalization group on cylinders [28,39]. However, with
the full long-range van der Waals interactions, the spin
liquid ceased to be the ground state [28,39]. While these
works suggest that long-range interactions could destabi-
lize the quantum spin liquid and favor an ordered state, it is
not always the case as was discovered in Ref. [90], where
the degeneracy of the ice manifold was preserved despite
the introduction of a dipolarlike long-range interaction. We
note that, despite the faster decay of van der Waals inter-
actions compared to dipolarlike interactions of Ref. [90], the
former splits the degeneracy of the ice manifold (see Sec. III
A 2). Thus, in our work, it is important to study the effects of
the van der Waals interaction more closely. In the following
section, we will study the phase diagram of Hamiltonian

Eq. (6) in the presence of long-range interactions, using
approximate methods.

III. PHASE DIAGRAM—APPROXIMATE
METHODS

The goal of this section is to study the ground state
phase diagram of Hamiltonian Eq. (4) for δ ¼ 3.46V
(which corresponds to ρ ¼ 2) including long-range inter-
actions ĤLR.

A. Confinement-deconfinement transition—
Monte Carlo assisted perturbation theory

Consider the full Hamiltonian Ĥ ¼ Ĥ0 þ ĤΩ þ ĤLR
from Eq. (6) in the case ρ ¼ 2 [see Eq. (7)]:

ð19Þ

The long-range interaction ĤLR splits the exponential
degeneracy of the ice manifold, and selects one configu-
ration diagonal in the Ŝz basis as the ground state of
Ĥ0 þ ĤLR, which we call the “ordered state.” On the other
hand, ĤΩ prefers superpositions of ice rule obeying states,
the U(1) QSL being one such superposition. Further, we
also note that quantum fluctuations around the ordered state
due to ĤΩ may also lead to a change in its energy relative to
the QSL. It is this competition between kinetic energy and
long-range interactions that we will study in this section.
We first show that the ground state in the classical limit

Ω ¼ 0 is the zero-momentum state satisfying the ice rule
which we call the “ice ferromagnet.”We assume that, as one
increasesΩ, there is no phase transition to a different ordered
state before the putative transition to a QSL. In order to
determine whether a QSL phase exists and, if yes, at whatΩ
the transition to the QSL occurs, one needs to compare the
energies of ansatzwave functions of theQSL and the ordered
state. When Ω ≠ 0, such wave functions would necessarily
involve configurations that violate the ice rule. We incorpo-
rate the effect of nonzero Ω on the wave function using
perturbation theory. Our strategy is as follows. We treat
Ĥ1 ≡ ĤΩ þ ĤLR, i.e., both the laser driving term and the
long-range interactions, as a perturbation to Ĥ0 (unlike
Sec. II A, where we dropped ĤLR). We perturbatively find
an effective Hamiltonian Ĥeff acting on the low-energy ice
manifold. We then compare the expectation value of Ĥeff in
candidatewave functions that live entirely in this low-energy
space. Since aQSLwave function is a linear superposition of
exponentially (in system size) many ice rule obeying states,

FIG. 6. For ρ∈ ð3=2; 5=2Þ, corresponding to , the
system is in the U(1) spin liquid phase at VRK ¼ 0 [61]. On
the other hand, for ρ∈ ð1=2; 3=2Þ and ρ∈ ð5=2; 7=2Þ, corre-
sponding to and 3, respectively, the system is in an
ordered phase at VRK ¼ 0 [77]. Note that for ρ ¼ 1=2, 3=2, and
5=2, the perturbation theory described in Sec. II A does not apply,
and we cannot comment on the phase of the system.
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we calculate hĤeffi numerically using classical Monte Carlo
sampling [91].

1. Expression for Ĥeff

We perform a Schrieffer-Wolff transformation,

ˆ̃H ¼ ÛSĤÛ†
S ¼ ÛSðĤ0 þ ĤΩ þ ĤLRÞÛ†

S; ð20Þ

for a unitary ÛS ¼ eŜ, where Ŝ is an anti-Hermitian

operator chosen to make ˆ̃H block diagonal in the (degen-
erate) eigenbasis of Ĥ0, i.e.,

ˆ̃H ¼ P̂ ˆ̃H P̂þð1 − P̂Þ ˆ̃Hð1 − P̂Þ; ð21Þ
where P̂ projects onto the ice manifold. In the remainder of
this paper, we will restrict ourselves to the low-energy

sector and therefore consider only the Ĥeff ≡ P̂ ˆ̃H P̂ term
above. We calculate Ĥeff perturbatively in Ĥ1 ¼ ĤΩ þ
ĤLR (see Appendix B of Ref. [92] for general expressions
of Ĥeff ). As we saw in Sec. II A, if we consider only ĤΩ as
the perturbation, then the first nontrivial term appearing in
Ĥeff is , where

Jring ¼
63

16

Ω6

V5
þ Θ

�
Ω8

V7

�
: ð22Þ

Since we are performing perturbation theory in two
operators ĤΩ and ĤLR, each of them comes with its
own small parameter. Since the perturbative expansion
will involve polynomials in these two small parameters,
there is some arbitrariness in deciding how to compare the
two parameters relative to each other and thus in how to
truncate the expansion. In our calculation, we follow an
operational scheme of keeping all the terms up to sixth
order in ĤΩ þ ĤLR. Following this truncation scheme, we
get (up to additive constants)

ð23Þ

where

Ŵð2Þ
LR ≡ 1

4

X
j

X
k1≠j
k2≠j

vj;k1vj;k2 Ŝ
z
k1
Ŝzk2 ; ð24Þ

L̂ð2Þ
LR ≡ 109

432

X
j1≠k1
j2≠k2

δhj1;j2ivj1;k1vj2;k2 Ŝ
z
k1
Ŝzk2 ; ð25Þ

M̂ð2Þ
LR ≡ 20

27

X
j1≠k1
j2≠k2

δhj1;j2ivj1;k1vj2;k2 Ŝ
z
j1 Ŝ

z
k1
Ŝzj2 Ŝ

z
k2
; ð26Þ

Ŵð3Þ
LR ≡ 1

2

X
j

X
k1≠j
k2≠j
k3≠j

vj;k1vj;k2vj;k3 Ŝ
z
k1
Ŝzk2 Ŝ

z
k3
Ŝzj; ð27Þ

Ŵð4Þ
LR ≡ 1

4

X
j

X
k1≠j
k2≠j
k3≠j
k4≠j

vj;k1vj;k2vj;k3vj;k4 Ŝ
z
k1
Ŝzk2 Ŝ

z
k3
Ŝzk4 ; ð28Þ

vi;j ≡
� a6

jxi−xjj6 if xi; xj are not nearest neighbors

0 otherwise:
ð29Þ

In the above equations, δhi;ji enforces i and j to be nearest
neighbors.
The expectation value of the Hamiltonian Eq. (6) in a

given state jΨi is

hΨjĤjΨi ¼ ðhΨjÛ†
SÞðÛSĤÛ†

SÞðÛSjΨiÞ: ð30Þ

Suppose ÛSjΨi (i.e., jΨi transformed by the Schrieffer-
Wolff transformation) lies entirely in the ice manifold, then
using Eq. (20), we get

hΨjĤjΨi ¼ ðhΨjÛ†
SÞĤeffðÛSjΨiÞ: ð31Þ

For the ground state, jΨgi of the full Hamiltonian Ĥ,
ÛSjΨgi lies entirely in the ice manifold. Thus, we pick an
ansatz wave function for ÛSjΨi that also lies entirely in the
ice manifold and compute the expectation value of Ĥeff
in our ansatz state to get the energy. Before describing
our ansatz states in Sec. III A 3, we first consider the limit
Ω ¼ 0 in the next section.

2. Classical ground state of the
long-range Hamiltonian

Here, wewill find the ground state selected by long-range
interactions in the limit Ω ¼ 0 where there are no quantum
fluctuations. The Hamiltonian is Ĥcl ¼ Ĥ0 þ ĤLR. We find
the ground state by going to the Fourier space. Since the
pyrochlore lattice is an fcc lattice with a four-site basis, we
use the notation Ŝzr;μ for spins where r is an fcc lattice vector
and μ∈ f0; 1; 2; 3g labels the sites within the basis. The spin
Ŝzr;μ is physically located at rþ eμ=2, where eμ are the
vectors joining a diamondA site to a neighboring diamondB
site. [See Fig. 1(b) for the precise definition.] Using the
Luttinger-Tisza method [93–95], we are able to determine
the exact ground state of the classical Hamiltonian atΩ ¼ 0.
We explain this calculation below. As we are considering the
classical limit in this section, we drop hats on quantities
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which would otherwise be operators. The Fourier transform
of Szr;μ is

Szr;μ ¼
1ffiffiffiffiffiffiffiffiffi
Nu:c:

p
X
k

eik·rSzk;μ; ð32Þ

whereNu:c: is the number of fcc unit cells. Substituting this in
Hcl, we get

Hcl ¼
X
μ;ν;k

Vμν;kS
z
k;μS

z
−k;ν; ð33Þ

wherek is a vector in the Brillouin zone of the fcc lattice and
Vμν;k is the Fourier transform of the van derWaals potential:

Vμν;k ¼ V
2

X
r

eik·r
�

a
jrþ ðeμ − eνÞ=2j

�
6

: ð34Þ

Diagonalizing the matrix Vμν;k for each k gives

Hcl ¼
X
μ;k

εk;μjS0zk;μj2; ð35Þ

where S0zk;μ is related to Szk;ν through a multiplication by a
unitary matrix Uμν;k which diagonalizes Vμν;k: S0zk;μ ¼P

ν Uμν;kS
z
k;ν. Recall that Szr;μ is either þ1=2 or −1=2.

This imposes the following constraint:

X
k;μ

jS0zk;μj2 ¼
X
k;μ

jSzk;μj2 ¼
X
r;μ

ðSzr;μÞ2 ¼ Nu:c:: ð36Þ

From Eq. (35), the energy can be interpreted as a weighted
sum of εk;μ with the corresponding weights being jS0zk;μj2.
Because of the constraint inEq. (36), the energy isminimized
by having the full weight on the smallest εk;μ and no weight
on the rest of the εk;μ. This holds provided that such a
configuration of S0zk;μ in the momentum space corresponds to
some configuration in the real space where Szr;μ are �1=2.
Calculating the Fourier transform of the long-range

potential, Eq. (34), and its eigenvalues εk;μ, we find that
the minimum of εk;μ occurs for k ¼ 0 and is triply
degenerate. In particular,

Vμν;k¼0 ¼

0
BBB@

v1 v2 v2 v2
v2 v1 v2 v2
v2 v2 v1 v2
v2 v2 v2 v1

1
CCCA; ð37Þ

where v1 ¼ 0.113V and v2 ¼ 1.12V. Its eigenvalues are
ε0;0 ¼ 3.46V and ε0;1 ¼ ε0;2 ¼ ε0;3 ¼ −1.004V. The uni-
tary that diagonalizes the above matrix also relates S0z0;μ to
Sz0;ν as

0
BBBBB@

S0z0;0
S0z0;1
S0z0;2
S0z0;3

1
CCCCCA ¼ 1

2

0
BBB@

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1
CCCA

0
BBBBB@

Sz0;0
Sz0;1
Sz0;2
Sz0;3

1
CCCCCA: ð38Þ

Since ε0;1, ε0;2, and ε0;3 are the minimum eigenvalues, the
energy is minimized by having all the weight distributed
between S0z0;1, S

0z
0;2, and S

0z
0;3 and no weight on the remaining

S0zk;μ; that is, S
0z
k≠0;μ ¼ 0 and S0z0;0 ¼ 0. There indeed exist

states satisfying these two conditions. The first condition,
S0zk≠0;μ ¼ 0, implies that the ground state is a k ¼ 0 state,
while the second condition, S0z0;0 ¼ 0, implies that the
ground state satisfies the ice rule (so that the total spin,
which is S0z0;0, is 0); see Eq. (38). There are six such states,
and we refer to them as the “ice ferromagnet” or “ice FM”
states. One of these is shown in Fig. 7. We note that ice
ferromagnet is one of the chain states that were described in
Ref. [76]. We here point out an interesting question: If we
add a next-nearest-neighbor ŜzŜz interaction to Ĥcl, do the
ground states of this new Hamiltonian satisfy the ice rule
and are they also chain states as described in Ref. [76]? We
leave it for future work to answer this question.

3. Ansatz wave functions for the ordered state
and for the quantum spin liquid

We now assume that, as one increases Ω starting from
Ω ¼ 0, the ground state remains adiabatically connected to
the ice ferromagnet derived in the previous section till the
point where it undergoes the putative phase transition to the
QSL. Therefore, our ansatz for the ordered state is

jΨordi ¼ Û†
SjΨIFMi; ð39Þ

FIG. 7. An ice ferromagnet state. It is an ice rule obeying state
(i.e., on every tetrahedron) with k ¼ 0. All the up-
pointing tetrahedra are copies of each other. The same is true for
the down-pointing tetrahedra. There are six (4C2) such states, and
together they make up the ground subspace of Ĥcl.
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where jΨIFMi, a product state in the Ŝz basis, is the
k ¼ 0 ice ferromagnet defined Sec. III A 2. This configu-
ration is given by Szr;μ ¼ 1

2
εμ (independent of r), where

ðε0; ε1; ε2; ε3Þ≡ ð1; 1;−1;−1Þ. We note that there are six
such choices for εμ that satisfy the ice rule. We pick one
such choice, but our calculations are not sensitive to which
one we pick. jΨIFMi lives entirely in the ice manifold. Left-
multiplication by Û†

S takes it back to the original Hilbert
space with ice rule violations.
Our ansatz wave function for the spin liquid state is

jΨQSLi ¼ Û†
SjΨRKi; ð40Þ

where jΨRKi is a uniform superposition of all dimer
coverings [79] of the diamond lattice (with ).
jΨRKi lives in the ice manifold. Like before, we left-
multiply it by Û†

S to take it back to the original Hilbert
space. The justification for our choice is the following.
jΨRKi is the ground state of the dimer model at the RK
point [see Eq. (10)]. When the RK potential is zero, jΨRKi
has an energy expectation value of −4Nu:c:Jringn̄flip, where
n̄flip is the average fraction of flippable hexagons in the RK
wave function. We find numerically that n̄flip ¼ 0.1757
(also calculated in Ref. [58]). Therefore, the energy of
jΨRKi is −0.7028JringNu:c:, which is not too far from the
ground state energy of the dimer model Eq. (12) found in
Ref. [61] to be −0.756JringNu:c: Even though jΨRKi has
slightly higher energy, it has the advantage of being simpler
to sample by classical Monte Carlo method. This explains
our choice.
For comparison, we will also calculate the energy of a

different ordered state jΨ0
ordi ¼ Û†

SjΨIAFMi that we call an
ice antiferromagnet. Here jΨIAFMi is an ice rule obeying state
with ordering wave vector k ¼ πðb1 þ b2Þ, where b1, b2,
andb3 are primitive reciprocal lattice vectors of the fcc lattice
satisfying ai · bj ¼ δij. This state is known elsewhere in
literature as the 2πð001Þ state (this nomenclature uses an
enlarged cubic unit cell of the fcc lattice) [89,96,97].

4. Numerical results—Energy expectation values
and phase diagram

We now describe our computation of the expectation
value of Ĥeff [see Eq. (23)] in jΨRKi, jΨIFMi, and in
jΨIAFMi. While the expectation value in jΨIFMi and jΨIAFMi
can be computed straightforwardly, the expectation value in
jΨRKi requires classical Monte Carlo sampling. We use a
system with 8 × 8 × 8 unit cells (i.e., containing 2048
pyrochlore sites) with periodic boundary conditions in the
a1, a2, and a3 directions. We restrict our sampling to
sectors in which the total electric flux piercing through
any 2D torus cross section (as defined in Sec. IV B of
Ref. [58]) is 0. Our sampling is done using loop moves as
described in Refs. [58,96,97]—in each Monte Carlo run,
we perform 512 × 500 000 loop moves. We calculate n̄flip,

HLR, W
ð2Þ
LR, and Lð2Þ

LR after every 512 loop moves; i.e., we

take 500 000 data points. We calculate Mð2Þ
LR, W

ð3Þ
LR, and

Wð4Þ
LR after every 512 × 10 000 loop moves; i.e., we take 50

data points. We repeat this procedure for 9 independent
runs in order to calculate the uncertainties. Our results are
summarized in Table I. With these values at hand, we
calculate the expectation value of Ĥeff using Eq. (23) in
jΨRKi, jΨIFMi, and jΨIAFMi, and the result is plotted in
Fig. 8. As we turn on Ω, the transition point ΩC can be
determined within our approximation as the Ω for which
the energy of the ice ferromagnet becomes higher than
that of the RK wave function, as calculated using Eq. (23).
We find

ΩC ¼ 0.43927ð1ÞV: ð41Þ

We note that there are three sources of uncertainty:
(1) truncation of the perturbation series in Eq. (23),
(2) evaluating energies in ansatz state jΨRKi instead
of the true eigenstate of Ĥeff , and (3) the uncertainty in
the Monte Carlo calculation. The uncertainty reported in
Eq. (41) is only the uncertainty arising from theMonte Carlo
calculation.

TABLE I. The expectation values of the operators in the left-hand column in ansatz wave functions jΨRKi, jΨIFMi,
and jΨIAFMi, respectively. The operator R̂ is defined as In the RK wave function,

hΨRKjR̂jΨRKi ¼ 4n̄flipNu:c:. To calculate expectation values in jΨRKi, we have used classical Monte Carlo sampling.

Operator jΨRKi jΨIFMi jΨIAFMi
R̂ 0.70288ð4ÞNu:c: 0 0

ĤLR 2.6037ð1Þ × 10−2Nu:c: −0.4002 × 10−2Nu:c: 3.8722 × 10−2Nu:c:

Ŵð2Þ
LR

1.11778ð1Þ × 10−3Nu:c: 0.01642 × 10−3Nu:c: 1.4994 × 10−3Nu:c:

L̂ð2Þ
LR

−2.7467ð3Þ × 10−4Nu:c: −0.0829 × 10−4Nu:c: −7.5662 × 10−4Nu:c:

M̂ð2Þ
LR

2.96ð3Þ × 10−3Nu:c: 0.073 × 10−3Nu:c: 6.66 × 10−3Nu:c:

Ŵð3Þ
LR

5.25ð4Þ × 10−5Nu:c: −0.00665 × 10−5Nu:c: 5.81 × 10−5Nu:c:

Ŵð4Þ
LR

−3.57ð2Þ × 10−6Nu:c: −0.0309 × 10−6Nu:c: −5.35 × 10−6Nu:c:
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There is an important question on whether our use of
perturbation theory is justified. First, we argue that treating

ĤLR perturbatively is justified. fĤLRg, fŴð2Þ
LR; L̂

ð2Þ
LR; M̂

ð2Þ
LRg,

fŴð3Þ
LRg, and fŴð4Þ

LRg are sets of operators that are first,
second, third, and fourth order, respectively, in ĤLR. As we
can see from Table I, the expectation values of these
operators in jΨiRK drop by an order of magnitude each
time one goes one order higher in ĤLR. Next, is perturba-
tion theory in ĤΩ justified, given that our calculated ΩC is
outside the Ω ≪ V regime? We observe that the leading
contribution to Jring that we dropped, 33833

2592
½ðΩCÞ8=V7� ¼

0.018V [87], is smaller than the one we kept,
63
16
½ðΩCÞ6=V5� ¼ 0.028V. If we had kept higher-order con-

tributions to Jring, it would only decrease the energy of the
QSL relative to the ice ferromagnet and ice antiferromag-
net. Further, the energy of the QSL that we present is a
conservative estimate since we used the RK wave function
which has higher energy than the true ground state of
Hamiltonian Eq. (9). This gives us hope that our result
obtained using perturbation theory is qualitatively correct.
In Appendix A, we further address the issue of convergence
of the perturbation theory by calculating the Borel-Padé
approximants of the perturbative energies of the three
ansatz states. We find that using the Borel-Padé approx-
imants for the ice FM and the ice antiferromagnet does not
change the phase diagram qualitatively, while the Borel-
Padé approximant for the RK wave function does not
capture the energy reduction coming from quantum fluc-
tuations. However, rigorously ascertaining the convergence
of our perturbative expansion is beyond the scope of
this work.
Within our approximation, for Ω < ΩC, the ground state

is an ice ferromagnet, an ordered state satisfying the ice
rule. ForΩ > ΩC but also close toΩC, the ground state is in
the QSL phase, i.e., the deconfined phase of a U(1) gauge
theory. From the point of view of the QSL, the ordered ice
ferromagnet state is obtained when monopole excitations of

the spin liquid proliferate and the monopole-antimonopole
string operator, to be defined in Sec. IV B, Eq. (74),
acquires an expectation value. As a consequence of this,
the fractional “electric charges,” or spinons, get confined
[56,57]. The monopole creation operator (see Sec. IV B and
Ref. [58]) is diagonal in the Ŝz basis, and acts in the sector
that obeys the ice rule. It is thus plausible that the confined
phase is indeed the ice ferromagnet. While our calculation
provides microscopic intuition for this transition, we
emphasize that, to prove the existence of, locate, and
characterize this transition accurately, one needs to do a
more careful quantum Monte Carlo calculation.

B. Large Ω—Higgs transition

From the Hamiltonian in Eq. (6), it is clear that, in the
limit Ω ≫ V, the ground state is a TFP state, i.e., a product
state of ðjgi − jriÞi at each site i. Thus, as Ω is increased
away from ΩC, the system should eventually go through a
phase transition from the putative QSL phase into the TFP
phase. From the point of view of the QSL, this is a Higgs
transition because the operator Ŝx that acquires expectation
value in the TFP phase creates a pair of “electric-charge”
excitations in the spin liquid. The perturbation theory in
Ω=V that we performed in Sec. III A relies on the ability to
go to a basis where the Hilbert space decouples into ice rule
obeying and ice rule disobeying sectors separated by an
energy gap of V. But the ground state in the Ω ≫ V limit
(TFP) straddles both of these sectors. So we do not expect
perturbation theory in Ω=V to capture the phase transition
into the TFP phase that contains the Ω → ∞ ground state.
Hence, we will present an indirect reasoning below. In the
Ω ≪ V limit, ĤLR was important, since it was the dominant
term splitting the degeneracy in the ice manifold. On the
other hand, in the vicinity of the putative Higgs transition,
ĤLR may not be as important since the largest term in ĤLR
has magnitude V=27, and as justified above using Table I,
the effect of ĤLR is indeed perturbative. Therefore, we drop
ĤLR as a zeroth-order approximation for calculating the
Higgs transition point. The resulting Hamiltonian is the
transverse-field Ising model on the pyrochlore lattice.
References [75,87] studied this model and found the
transition point ΩH to be at ΩH ¼ 0.55ð5ÞV and 0.6V,
respectively. This leads us to expect that, in the window
0.44 < Ω < 0.55, the ground state may be a QSL, leading
us to sketch the phase diagram shown in Fig. 9. Within our
approximation, ΩC < ΩH and there is a window where the
QSL is the ground state. However, the introduction of ĤLR
may result in a lowering of the energy of the TFP state
relative to the QSL. Calculating this effect and verifying
that this does not bring down ΩH far enough to destroy the
QSL phase requires a more careful calculation which is
beyond the scope of this work. We note that, to be certain
about the existence of all the phases we found and about not
missing any additional phases, a more detailed quantum

FIG. 8. hĤeffi in jΨRKi, jΨIFMi, and jΨIAFMi calculated by
inserting the values in Table I in Eq. (23).
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Monte Carlo study is required, and we leave it for
future work.
In the remainder of this section, we provide some

intuition for the Higgs transition by performing a
gauge mean-field theory (GMFT) calculation introduced
in Ref. [98].

1. Gauge mean-field theory—Higgs transition

The main idea of this approach is to first recast the
microscopic Hamiltonian as an exact gauge theory by
introducing ancillary degrees of freedom followed by a
mean-field decoupling of the interactions. This theory
involves bosonic charges hopping in the presence of a
fluctuating gauge field whose mean-field value is chosen
self-consistently. If this mean-field gauge-field configura-
tion is such that the hopping amplitudes of the bosonic
charges is 0, then the theory is in a confined phase. If not,
the theory is in the deconfined phase as long as the bosons
do not condense. If the bosonic charges condense, then the
theory is in a Higgs phase, which is adiabatically connected
to the TFP state.
Concretely, the construction is as follows. For r∈A,

where A is a sublattice of the diamond lattice,

Ŝþr→rþeμ ¼ Φ̂†
r ŝ

þ
r→rþeμΦ̂rþeμ ; ð42Þ

where Ŝþr→rþeμ ≡ Ŝþrþeμ=2
¼ Ŝþr;μ (and similarly ŝþr→rþeμ≡

ŝþrþeμ=2
¼ ŝþr;μ) lives on a bond of the diamond lattice

connecting sites r and rþ eμ (recall that centers of the
bonds of the diamond lattice are sites of the pyrochlore
lattice). ŝz is also a spin-1=2 operator and has eigen-
values �1=2. Here, Φ̂†

r serves as a raising operator for
, where ηr ¼ 1 for r∈A and ηr ¼ −1

for r∈B. For convenience, we drop the symbol from
now on. Q̂r and Φ̂†

r satisfy the commutation relation:

½Q̂r; Φ̂†
r � ¼ Φ̂†

r . Note that Φ̂r is not a canonical boson
but a rotor satisfying

Φ̂†
rΦ̂r ¼ 1: ð43Þ

To recover the original spin Hilbert space, one imposes the
constraint that the total gauge charge at r is

Q̂r ¼ ηr
X
μ

ŝzrþηeμ=2
: ð44Þ

Rewriting the Hamiltonian Eq. (6) in terms of the fictitious
variables, Q̂r; Φ̂r, and ŝr;μ, we get

Ĥ ¼ V
2

X
r∈A;B

Q̂2
r −

Ω
2

X
ðr∈AÞ;μ

ðΦ̂†
r ŝ

þ
r→rþeμΦ̂rþeμ þ H:c:Þ

þ 1

2

X
r;r0 ∈A

X
μ;ν

Vμνðr − r0Þŝzrμŝzr0;ν; ð45Þ

where Vμνðr − r0Þ ¼ V½a=ðr − r0 þ eμ=2 − eν=2Þ�6 when-
ever ðr; μÞ and ðr0; νÞ are distinct and are not nearest
neighbors. Vμνðr − r0Þ is 0 otherwise.
Following Ref. [98], we perform the zeroth-order mean-

field decoupling: Φ̂†Φ̂ ŝ→ Φ̂†Φ̂hŝi þ hΦ̂†Φ̂iŝ− hΦ̂†Φ̂ihŝi
and ŝ ŝ → ŝhŝi þ hŝiŝ − hŝihŝi (where ŝ could be either
ŝþ, ŝ−, or ŝz). Upon doing so, the Hamiltonian decouples
into a Hamiltonian of bosons hopping on the diamond
lattice and a Hamiltonian of spins in an external field,
which itself is set self-consistently by the Green’s function
of the bosons. Before solving the resulting theory, one
needs to enforce the constraints Eqs. (43) and (44) using
Lagrange multipliers λr and vr, respectively. Within the
mean-field theory, it is assumed that these Lagrange
multipliers take a spatially homogeneous value at the
saddle point. We then find the minimum value of
ΩMF

H such that, for any Ω > ΩMF
H , it is possible to self-

consistently choose λ only by macroscopically occupying
a boson mode. This ΩMF

H marks the location of the Bose-
Einstein condensation transition (or Higgs transition
within the mean-field theory). We find ΩMF

H ≈ 0.7V. In
Appendix B, we present more details of this calculation. An
artifact of this technique is that, although we include long-
range interactions in our calculation, they do not play any
role at the saddle point near the Higgs transition. Therefore,
the final steps and result of our calculation are identical to
the ones carried out in Ref. [82].
In Appendix B, we also point out a major limitation

of this technique in the small-Ω limit that may not have
been appreciated in previous literature on gauge mean-field
theory.

C. Comments on dynamical state preparation

So far, we have focused on the nature of the ground
state of Hamiltonian Eq. (6) as a function of Ω=V.

FIG. 9. Approximate ground state phase diagram of the
Hamiltonian in Eq. (6). The ground state for Ω ¼ 0 was
calculated exactly to be an ice ferromagnet (ice FM) in Sec. III-
A 2. We assume that, as Ω is increased, no phase transition
occurs to a different ordered state. The transition point from the
ice ferromagnet (confined phase) to the QSL (deconfined phase)
at ΩC ≈ 0.44V is obtained by comparing energies of ansatz wave
functions in the effective Hamiltonian obtained using perturba-
tion theory in ĤΩ and ĤLR. For the Higgs transition to the TFP
phase, we make an approximation by dropping ĤLR, in which
case ΩH was calculated in Ref. [75] to be 0.55(5).
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However, what is often experimentally relevant is the
nature of the state prepared by a ramping of parameters
in a finite amount of time. In the context of the experiment
in Ref. [28], it was shown in Refs. [99,100] that a state in
the same phase as the Z2 gauge theory can be prepared by a
nonequilibrium time evolution starting from a trivial state.
In the context of the experiment in Ref. [28], it was shown
numerically in Ref. [99] that a state with a large overlap
with the resonating valence bond (RVB) state can be
prepared by a nonequilibrium time evolution. The question
of dynamical state preparation was also studied in
Ref. [100]. Here, we will present an adaptation of the
conclusions of Ref. [100] to our setting.
The excitations of a U(1) QSL are gapless photons,

magnetic monopoles, and electric charges (spinons). The
transition of a QSL to an ice ferromagnet is driven by the
condensation of monopoles, while the transition to the TFP
phase is driven by the condensation of spinons. The gapless
photons are not directly involved in these transitions. Also,
a state with photon modes excited on top of a QSL state is
still in the deconfined phase of the U(1) gauge theory. This
allows us to ignore photons in this section. Since the
confined phase, ice ferromagnet has an extensive number of
monopoles, we use the difference per unit cell between the
energies of the QSL and ice ferromagnet states as a proxy
for the monopole energy scale. At Ω ¼ 0, this difference is
ðhĤLRiQSL − hĤLRiIFMÞ=Nu:c: ≈ 0.03V (see Table I), which
is much smaller than the spinon energy scale (see Fig. 10
for a sketch). Suppose one starts with an initial state (for a
small ϵ ∼ Ω=V),

jΨðt¼0Þi ¼⊗i ðjgii þ ϵjriiÞ; ð46Þ

which is the ground state in the limit of large negative δ=V
and small Ω=V. As shown in Sec. II, the classical ground
state lies in the ice manifold when δ∈ ð2.46V; 4.46VÞ. Now
suppose that δ is ramped up from its initial large negative
value to a value in this range such that the ramp is adiabatic
with respect to the spinon gap V, but is sudden with respect
to the monopole scale ∼0.03V, while keeping Ω=V ≪ 1.
Using arguments in Ref. [100], this protocol will not
prepare the ground state, which, from Fig. 9, is an ice
ferromagnet. Instead, it will (approximately) project out
violations of the ice rule (due to adiabaticity with respect to
the spinon scale) from the initial state jΨðt¼0Þi. The
resulting final state is

jΨfinali ≈ P̂f⊗i ðjgii þ ϵjriiÞg ¼ jΨRKi; ð47Þ

where P̂ is the projector onto the ice manifold. The
projected wave function is an equal-weight superposition
of all coverings, which is simply the RK wave function and
which lies in the QSL phase [58]. There is one catch to the
above argument—the spinon gap closes during the above
ramp. So it is impossible to be sudden with respect to the
monopole scale and yet be strictly adiabatic with respect to
the spinon gap throughout the ramp. For a short duration
(while the ramp is going through the spinon gap closing),
adiabaticity with respect to the spinon gap will be violated.
By the Kibble-Zurek mechanism, the resulting state is
composed of finite-size puddles of QSL-like regions with a
nonzero density of spinons interspersed [100–103]. Thus,
in summary, there are two different ways in which one can
prepare a U(1) QSL-like state in experiment and study a
confinement-deconfinement transition [104].
(1) Ω=V ≪ 1:Perform a ramp of δ starting from a

large negative value and ending in the range
ð2.46V; 4.46VÞ for a fixed Ω=V ≪ 1 such that the
ramp is adiabatic with respect to V (spinon gap) but
sudden with respect to the monopole scale
(∼0.03V). Even though the ground state is not a
QSL for these parameters, this procedure would
create puddles of QSL-like regions by the argument
in Ref. [100]. To see a deconfinement-confinement
transition, the ramp of δ should be slowed down and,
once it is adiabatic with respect to the monopole gap,
an ordered, i.e., confined, state will be prepared.

(2) Adiabatic:Perform a ramp of δ starting from a
large negative value and ending in the range
ð2.46V; 4.46VÞ and a ramp in Ω starting from
Ω=V ≪ 1 and ending in a final value Ωf, such that
both ramps are adiabatic with respect to the monop-
ole scale always. The two ramps can be performed
simultaneously, or such that the ramp in δ precedes
the ramp in Ω. This would approximately create the
ground state of Hamiltonian Eq. (6). As the final
value Ωf goes through ΩC (ΩH), the nature of the

FIG. 10. A qualitative sketch of the energy scales (per unit cell)
in our problem. For Ω > ΩC, the ground state is a U(1) QSL. Ice
ferromagnet is the ordered state obtained when monopoles
proliferate; i.e., the ice ferromagnet has an extensive number
of monopoles. We therefore use the energy difference per unit cell
between the QSL and the ice ferromagnet at Ω ¼ 0, obtained in
Table I, as a proxy for the monopole energy scale. This scale
∼0.03V is much smaller than the spinon energy scale (electric
charge), which is ∼ V.
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final state prepared this way goes through a confine-
ment-deconfinement (Higgs) transition.

We note that the first method above can prepare a state with
a large overlap with the RK wave function even if the true
ground state of the system is not in the QSL phase. Once a
state is prepared by either of the above schemes, one needs
to devise measurements that can tell whether the state is in
the confined phase or in the deconfined phase. We address
this in the following section.

IV. DIAGNOSIS OF THE QUANTUM SPIN LIQUID

Access to wave function snapshots in the Ŝz basis,
combined with access to unitary evolution, allows one to
use the Rydberg atom platform to measure nonlocal
observables, a feature generally unavailable in traditional
condensed matter systems. In this section, we describe
some measurable correlators which can be used to
observe the signatures of a quantum spin liquid state.
In this section, we assume that the detuning is chosen
such that ρ ¼ 2.

A. Plaquette-plaquette correlators

The plaquette operators are off diagonal in the Ŝz basis.
Thus they can distinguishing a coherent quantum super-
position from a classical admixture of states. We define two
plaquette operators X̂P and ŶP for a hexagonal plaquette P
of the pyrochlore lattice as

X̂P ¼
Y6
i¼1

ð2Ŝxi Þ;

ŶP ¼
Y3
i¼1

ð2Ŝx2i−1Þð2Ŝy2iÞ; ð48Þ

where 1; 2;…; 6 denote the sites around a plaquette P. We
are interested in the following two connected correlators of
the plaquette operators:

hX̂PX̂P0 ic ¼ hX̂PX̂P0 i − hX̂PihX̂P0 i;
hŶPŶP0 ic ¼ hŶPŶP0 i − hŶPihŶP0 i; ð49Þ

where P and P0 denote two plaquettes of the pyrochlore
lattice (see Fig. 11).
Either of the two correlators, hX̂PX̂P0 ic and hŶPŶP0 ic,

can distinguish a QSL phase from other phases including a
classical spin ice (see Table II).
We compare the two correlators and provide protocols to

measure them. We assume throughout that the two pla-
quettes P and P0 do not have any sites in common. We now
explain the behavior of these plaquette correlators in the ice
FM, QSL, and TFP phases.

1. Plaquette correlators in the ice FM phase

We will determine the behavior of the correlators deep
inside the ice FM phase, that is, forΩ ≪ V. In this limit, the
ice FM phase is a product state in the Ŝz basis with
perturbative corrections on top of it produced by ĤΩ. Our
ansatz for the ice FM state is given by jΨordi ¼ Û†

SjΨIFMi,
where Û†

S is the unitary that performs the Schrieffer-Wolff
transformation [see Eq. (20)], and jΨIFMi is a product state
in the Ŝz basis described in Sec. III A 2 and shown in Fig. 7.
At zeroth order in Ω=V, ÛS ¼ 1̂ implies hX̂PX̂P0 ic ¼ 0

because the diagonal components of X̂P in the Ŝz basis are
zero. Similarly, hŶPŶP0 ic ¼ 0 at zeroth order. A nonzero
contribution to the connected correlators is obtained only
by terms in perturbation theory that are of an order
proportional to R=a. Thus, the plaquette correlators decay
exponentially with distance in the ice FM phase.

2. Plaquette correlators in the QSL phase

Here we provide alternative plaquette correlators which
agree with the plaquette correlators defined in Eq. (49) up
to sixth order in Ω=V. We then interpret them in terms of
the gauge theory to understand their behavior in the
QSL phase.
Let jΨgi be the ground state of the system and let

ÛS ¼ eŜ be the operator that implements the Schrieffer-
Wolff transformation so that ÛSĤÛ†

S is the effective
Hamiltonian in the ice manifold. We use the same notation
as Sec. III A 1 here. Thus, jΨ0i ¼ ÛSjΨgi is the ground
state of the effective Hamiltonian and lies in the ice
manifold. Consider two new plaquette X and Y operators
defined as

ˆ̃XP ¼ ðŜþ1 Ŝ−2 Ŝþ3 Ŝ−4 Ŝþ5 Ŝ−6 þ H:c:Þ;
ˆ̃YP ¼ −iŜþ1 Ŝ

−
2 Ŝ

þ
3 Ŝ

−
4 Ŝ

þ
5 Ŝ

−
6 þ H:c: ð50Þ

First, note that

FIG. 11. Notation for the plaquette correlators. P and P0 are two
hexagonal plaquettes of the pyrochlore lattice. r; r0, rþ uμ, and
r0 þ uν are the sites of the dual diamond lattice. uμ and uν are
vectors perpendicular to P and P0.
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hΨ0jX̂PX̂P0 jΨ0i ¼ hΨ0j ˆ̃XP
ˆ̃XP0 jΨ0i: ð51Þ

This can be seen by writing 2Ŝxi ¼ Ŝþi þ Ŝ−i and noticing
that the only terms that preserve the ice rule are ring
exchanges over P and P0. When the remaining terms act on
a state in the ice manifold, they either take it outside of the
ice manifold or annihilate it. Thus the expectation value of
these remaining operators in jΨ0i is zero. For example,
Ŝþ1 Ŝ

þ
2 Ŝ

þ
3 Ŝ

−
4 Ŝ

−
5 Ŝ

−
6 Ŝ

þ
7 Ŝ

−
8 Ŝ

þ
9 Ŝ

−
10Ŝ

þ
11Ŝ

−
12 acting on a state in the

ice manifold would either annihilate this state or give a state
that violates the ice rule on four of the tetrahedra surround-
ing P. An identity similar to Eq. (51) also holds for the
expectation value for a single plaquette X operator:

hΨ0jX̂PjΨ0i ¼ hΨ0j ˆ̃XPjΨ0i: ð52Þ

Equations analogous to Eqs. (51) and (52) also hold true for
the plaquette Y operator. Now, jΨgi ¼ jΨ0i þOðΩ=VÞ,
where the corrections of order Ω=V come from the

perturbation ĤΩ. Thus, one would expect hX̂PX̂P0 ic;jΨgi ¼
h ˆ̃XP

ˆ̃XP0 ic;jΨgi up to first order in Ω=V (The expectation
values are calculated in jΨgi here). However, in
Appendix C, we show that this is true up to sixth order:

hX̂PX̂P0 ic ¼ h ˆ̃XP
ˆ̃XP0 ic þ ΘððΩ=VÞ6Þ; ð53Þ

hŶPŶP0 ic ¼ h ˆ̃YP
ˆ̃YP0 ic þ ΘððΩ=VÞ6Þ; ð54Þ

where the expectation values are again calculated in jΨgi.
We will ignore these sixth-order corrections and now move

on to understanding the behavior of h ˆ̃XP
ˆ̃XP0 ic and h ˆ̃YP

ˆ̃YP0 ic
in the QSL phase by mapping the operators ˆ̃XP and ˆ̃XP0 to
gauge fields.
Using the mapping between the spins and the effective U

(1) gauge theory from Eq. (13), we see that the operators
ˆ̃XP and ˆ̃YP are equal to (twice) the cosine and the sine of the
magnetic field operator B̂r;μ, respectively:

ˆ̃XP ¼ 2 cosðθ̂1 − θ̂2 þ θ̂3 − θ̂4 þ θ̂5 − θ̂6Þ ¼ 2 cosðB̂r;μÞ;
ˆ̃YP ¼ 2 sinðθ̂1 − θ̂2 þ θ̂3 − θ̂4 þ θ̂5 − θ̂6Þ ¼ 2 sinðB̂r;μÞ;

ð55Þ

where r belongs to the dual diamond lattice [see Fig. 1(c)],
and μ∈ f0; 1; 2; 3g labels the direction of magnetic field.
B̂r;μ is along uμ, which are vectors joining an A site of the
dual diamond lattice to its neighboring B sites. These
vectors are perpendicular to the plaquettes of the pyro-
chlore lattice; see Fig. 11. The effective theory in the
deconfined phase (QSL) is Maxwell electromagnetism.
Thus the distance dependence of the plaquette correlators
can be determined from the magnetic field correlator in the
3þ 1D continuum Maxwell electromagnetism.
Note that, for the plaquette correlators, we need the

correlator of the magnetic field along the normal to the
plaquettes, uμ and uν (see Fig. 11). This can be calculated
by first calculating the correlators of the Cartesian compo-
nents of the magnetic field B̂r;i for i∈ fx; y; zg and
appropriately projecting them on uμ and uν. In the 3þ
1D continuumMaxwell electromagnetism, the correlator of
the Cartesian components of the magnetic field can be
evaluated analytically [58] and we explain it here for
completeness.
We first express the magnetic field in terms of the gauge

field ÂμðrÞ:

B̂r;iðtÞ ¼
X

j;k∈ fx;y;zg
ϵijkð∂jÂkðr; tÞ − ∂kÂjðr; tÞÞ; ð56Þ

where i∈ fx; y; zg. Then we express the magnetic field in
momentum space:

B̂k;iðk0Þ ¼ i
X

j;k∈ fx;y;zg
ϵijkðkjÂkðk; k0Þ − kkÂjðk; k0ÞÞ: ð57Þ

Now the photon propagator in the Maxwell electrodynam-
ics is given by

TABLE II. Behavior of various correlators. X̂P and ŶP are plaquette operators defined in Eq. (48). M̂†M̂ðr1 → r2Þ is a monopole
string operator defined in Eq. (74). χEC and χMC are Fredenhagen-Marcu order parameters defined in Eqs. (82) and (87), respectively. We
have omitted the form factors multiplying 1=R4, 1=R4, and 1=R8 that are provided in Eqs. (66) and (93).

Correlator Confined (ice FM) Deconfined (QSL) Higgs (TFP) Classical spin ice

hX̂PX̂P0 ic Exponential or faster decay 1=R8 1=R12 Exponential or faster decay

hŶPŶP0 ic Exponential or faster decay 1=R4 1=R6 Exponential or faster decay

hM̂†M̂ðr1 → r2Þi Nonzero constant Exponential decay Exponential decay Exponential or faster decay
χEC Nonzero constant a Exponential or faster decay Nonzero constant Exponential or faster decay
χMC Nonzero constant Exponential or faster decay Nonzero constant a Exponential or faster decay

hŜzriŜzr0ji Nonzero constant 1=R4 1=R6 1=R4

aDistinguishing this nonzero constant from zero for χEC in the confined phase (ice FM) and for χMC in the Higgs phase (TFP) may be
practically challenging.
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hÂiðk;k0ÞÂjð−k;−k0Þi0 ¼
1

k2 þ k20

�
δi;j −

kikj
k2 þ k20

�
; ð58Þ

where h·i0 is the expectation value with respect to the
Gaussian Maxwell action. Using Eqs. (57) and (58), the
correlator of the magnetic fields in frequency-momentum
space is

hB̂k;iðk0ÞB̂−k;ið−k0Þi0 ¼
k2δi;j − kikj
k2 þ k20

: ð59Þ

Finally, the correlator in real space is obtained by perform-
ing a Fourier transform of the above momentum space
correlator. The equal-time real-space magnetic-field corre-
lator is given by [58]

hB̂0;iB̂R;ji0 ∝
1

R4

�
2
RiRj

R2
− δij

�
≡ CBijðRÞ: ð60Þ

Having obtained the correlator of the Cartesian compo-
nents of the magnetic field, we now project the magnetic
fields along the normals uμ and uν to obtain the correlator
of the magnetic fields along the plaquette normals. Thus the
correlator of the magnetic field operators B̂r;μ for
μ∈ f0; 1; 2; 3g on the pyrochlore plaquettes is

hB̂0;μB̂R;νi0 ∝
1

R4

X
k;l∈ fx;y;zg

ðuμÞkðuνÞl
�
2
RlRk

R2
− δk;l

�
;

ð61Þ

where B̂0;μ is the magnetic field along the normal vector uμ.
Now we return to the plaquette correlators and determine

their behaviors in the QSL phase:

h ˆ̃XP
ˆ̃XP0 i ¼ hcosðB̂r;μÞ cosðB̂r0;νÞi0

¼ e−hB̂
2i0 coshhB̂r;μB̂r0;νi0: ð62Þ

Similarly,

h ˆ̃YP
ˆ̃YP0 i ¼ hsinðB̂r;μÞ sinðB̂r0;νÞi0

¼ e−hB̂
2i0 sinhhB̂r;μB̂r0;νi0: ð63Þ

The connected correlators thus become

h ˆ̃XP
ˆ̃XP0 ic ¼ e−hB̂

2i0ðcoshhB̂r;μB̂r0;νi0 − 1Þ

≈
e−hB̂

2i0

2
hB̂r;μB̂r0;νi20 ð64Þ

and

h ˆ̃YP
ˆ̃YP0 ic ≈

e−hB̂
2i0

2
hB̂r;μB̂r0;νi0: ð65Þ

Thus the connected plaquette correlators in the QSL
phase vary as

h ˆ̃XP
ˆ̃XP0 ic ∝

1

R8

�X
k;l
ðuμÞkðuνÞl

�
2
RlRk

R2
− δk;l

��
2

;

h ˆ̃YP
ˆ̃YP0 ic ∝

1

R4

�X
k;l

ðuμÞkðuνÞl
�
2
RlRk

R2
− δk;l

��
; ð66Þ

where the summation is over k; l∈ fx; y; zg, R ¼ r − r0,
and R is assumed to be large compared to the monopole
correlation length. The factors inside the square brackets
are geometric factors, which depend on the direction of the
vectors uμ, uν, andR, but are independent of the distanceR
between the two plaquettes. Reference [58] also separately
studied the correlators precisely at the RK point (which sits
at the phase boundary between deconfined and confined
phases) where the effective field theory differs from the
regular Maxwell theory. In the RK wave function, while the
behavior of the plaquette correlators differs from Eq. (66), it
is still a power law with a slower decay [58]. We note that,
if the experimentally prepared state is close to an RK wave
function (see discussion in Sec. III C), then this distinction
will be important.

3. Plaquette correlators in the TFP phase

Now we calculate the dependence of the two-plaquette
correlators deep inside the TFP phase, that is, for Ω ≫ V.
Our strategy is to treat the van derWaals interactions, which
we denote in this section as ĤV ¼ Ĥ0 þ ĤLR, as a
perturbation over ĤΩ using perturbation theory. Recall
that ĤV is given by

ĤV ¼ V
2

X
i≠j

Ŝzi Ŝ
z
j

jxi − xjj6
: ð67Þ

The unperturbed ground state is simply the product state:

j−i ¼ ⊗
i
jŜxi ¼ −1=2i: ð68Þ

ĤV flips two spins at xi and xj with an amplitude propor-
tional to Vða=jxi − xjjÞ6. The first-order correction from
perturbation theory is

jχ1i ¼ −
V
8Ω

X
pairs i;j

�
a

jxi − xjj
�

6

ji; ji; ð69Þ

where the summation is over all distinct pairs of sites i, j
and
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ji; ji≡ jŜxi ¼ 1=2ijŜxj ¼ 1=2i ⊗
k≠i;j

jŜxk ¼ −1=2i: ð70Þ

We find that the first-order terms in hX̂PX̂P0 ic are 0 and, up
to second order in perturbation theory (see Appendix D for
derivation),

hX̂PX̂P0 ic ∝
V2a12

Ω2

X
i≠j

hi; jjðX̂P − 1ÞðX̂P0 − 1Þji; ji
jxi − xjj12

: ð71Þ

The matrix element in Eq. (71) is nonzero only if i∈P and
j∈P0 or i∈P0 and j∈P. If the distance between the
plaquettes R is large, then we find

hX̂PX̂P0 ic ∝
V2

Ω2

�
a
R

�
12

: ð72Þ

Now consider the connected plaquette Y correlator. Note
that the Hamiltonian Eq. (6) has a global Z2 symmetry:
Ŝz → −Ŝz, Ŝx → Ŝx, and Ŝy → −Ŝy for h ¼ 0. Under this
symmetry, ŶP → −ŶP, implying hŶPi ¼ 0. However, the
product ŶPŶP0 is Z2 symmetric, and its expectation value
need not be zero.
Note that ŶPŶP0 flips three spins of P and three spins of

P0, where the spins are assumed to be in the eigenbasis of
Ŝx. On the other hand, the perturbation ĤV flips two spins
in Ŝx basis. Thus the first nonzero contribution in the
perturbation series for hŶPŶP0 ic can only be obtained at
third order or higher in perturbation theory. For a large
distance between the plaquettes, the dominant contribution
to the plaquette Y correlator will come from the process
where two spins of P are flipped by one application of ĤV ,
two spins of P0 are flipped by another application of ĤV ,
and one spin of P and another of P0 are flipped by the third
application of ĤV . Such a process will give a contribution
that will fall off with distance as ða=RÞ6. Overall, in the
TFP phase,

hŶPŶP0 ic ∝
V3

Ω3

�
a
R

�
6

: ð73Þ

Since the plaquette correlators involve off-diagonal
operators, they cannot be read out directly from the
snapshots of a Rydberg atom array. However, we show
that they can be measured by evolving the system under a
modified Hamiltonian for a specific time duration followed
by measurement of a diagonal operator [28,39]. We
describe the protocols to measure both plaquette X and
plaquette Y correlators in the sections below.

4. Measurement of the plaquette correlators

To measure the plaquette X correlator, one simply needs
to change the basis from Ŝx to Ŝz on every site. This can

be accomplished by abruptly changing the phase
and the amplitude of the Rabi frequency, so that the new
Hamiltonian is ĤY ≈ ΩY

P
i Ŝ

y
i , with ΩY ≫ V. (Achieving

ΩY ≫ V may require working with atom spacings that are
sufficiently large and/or with Rydberg principal quantum
numbers that are sufficiently low, but not low enough to
make Rydberg lifetime a problem.) It is assumed that this
change of the Hamiltonian is done sufficiently rapidly so
that the sudden approximation is valid and the state of the
system does not change. Then evolve the system under ĤY
for a time tY ¼ π=ð2ΩYÞ, which amounts to a π=2 pulse
about the y axis, transforming Ŝxi into Ŝzi . Finally, measure
all the atoms in the fjgi; jrig basis and get hŜzi i in the final
state, which is the same as the hŜxi i of the state right before
the sudden change of the Hamiltonian. The connected
plaquette X correlator can be calculated using these values
of hŜxi i.
The procedure to measure the connected plaquette Y

correlator is similar to the procedure for measuring the
plaquetteXcorrelator, except that now theπ=2pulses on sites
2i for i ¼ 1; 2;…; 6 are about the x-axis on the Bloch sphere
while the π=2 pulses on sites 2i − 1 for i ¼ 1; 2;…; 6 are
around the y-axis, where the sites 1 to 6 are on P and those
from 7 to 12 are onP0. These pulses transform Ŝx2i → Ŝz2i and
Ŝy2i−1 → Ŝz2i−1. After applying these π=2 pulses, hŜzi i is
measured by taking snapshots of the array and the connected
plaquette Y correlator is calculated from it.
We note that the power-law decays of the plaquette

correlators in the QSL and the TFP phases are very rapid,
and it might be difficult practically to distinguish them from
an exponential decay. This connected plaquette Y correlator
has an advantage over the connected plaquette X correlator
with regards to this issue because the power-law decays of
the plaquette Y correlator are slower. The disadvantage of
the of the plaquette Y correlator is that measuring it requires
control over individual sites.

B. Monopole-monopole correlator

In the deconfined phase, monopoles are gapped.
Therefore, the expectation value of an (equal-time) operator
that creates a string with a monopole and antimonopole at
its end points should decay exponentially with the length
of the string. On the other hand, in the confined phase,
monopoles are condensed, and hence the expectation value
should approach a nonzero constant as the length of the
string increases. In the continuum, the following operator
inserts a string that creates a monopole at r1 and an
antimonopole at r2 [58]:

M̂†M̂ðr1 → r2Þ ∼ ei
R

d3r0Aðr0Þ·êðr0Þ: ð74Þ

Here Aðr0Þ is a classical (non-single-valued) vector poten-
tial such that the flux ϕΣ of B ¼ ∇ ×A through a closed
surface Σ is
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ϕΣ ≡
I
Σ
B · dS ¼ 2πqQΣ; ð75Þ

where QΣ ¼ 1 when Σ encloses r1 and not r2, QΣ ¼ −1
when Σ encloses r2 and not r1, and QΣ ¼ 0 otherwise. q is
an integer and denotes the charge of the monopole string.
For simplicity, we will set q ¼ 1 in this section. We clarify
that B and ϕΣ are classical numbers and are different from b̂
and Φ̂Σ which are operators. b̂≡ ∇ × â, for gauge-field
(operator) â, and Φ̂Σ is defined as

Φ̂Σ ≡
I
Σ
b̂ · dS ¼ 2πm̂; ð76Þ

where m̂ takes integer eigenvalues. The form of the
monopole string operator is chosen so that it increases
the flux through Σ by 2πQΣ; i.e.,

½Φ̂Σ;M̂
†M̂ðr1 → r2Þ� ¼ 2πQΣM̂

†M̂ðr1 → r2Þ: ð77Þ

We now adapt this operator to the Rydberg setting.
Consider the diamond lattice formed by the centers of
tetrahedra of the pyrochlore lattice, Fig. 1(b). Unlike the
continuum, it is now important to specify that the end
points of the monopole string r1 and r2 belong to the dual
diamond lattice [see Fig. 1(c)], whose sites are centers of
“polyhedra”made of four puckered-hexagonal “plaquettes”
of the diamond lattice [106]; see Fig. 12(a). Let x≡ rþ
eμ=2 be a site on the pyrochlore lattice, where r is an A site
of the diamond lattice. Ax ≡Ar;rþeμ is the discrete version
of A integrated [Fig. 1(b) shows the vectors eμ] along the
line pointing from the center of an A tetrahedron (centered
at r) to the B tetrahedron (centered at rþ eμ) such that the
two tetrahedra touch at x.
Ax is required to satisfy the discrete version of Eq. (75),

and hence depends on r1, r2, the “magnetic field” con-
figuration B and the gauge choice for Ax. For the pyro-
chlore lattice, we have

M̂†M̂ðr1 → r2Þ ¼ ei
P

x∈ pyrochlore
Axðn̂x−1=2Þ: ð78Þ

This operator is purely diagonal in the n̂x basis (i.e., in the
Ŝz basis). So, experimentally, one can calculate this phase
for each snapshot and average over shots.
Theoretically, one expects

jhM̂†M̂ðr1 → r2Þij ∼
�
e−jr2−r1j=λ deconfined phase

const confined phase;

ð79Þ
where λ is a correlation length that depends on the
monopole gap and the photon velocity. In Fig. 13, we
provide an example of one configuration of the classical
numbers Ax that defines a monopole string operator.
Below, we comment on the freedom in choosing Ax.

1. Choice of A

The classical numbers Ax should of course obey
the constraint that the flux of ∇ ×A through a closed
surface Σ is 2πQΣ, as mentioned above. However, one still
has a freedom in the choice of A in the following two
respects:

(i) Freedom in the arrangement of the field lines of
∇ ×A. For example, they can be confined to a thin
tube connecting r1 and r2, or be spread out according
to Coulomb’s law, or be something in between.
Different such arrangements, due to their different
energy costs, would differ in subleading corrections
to the exponentially decaying behavior, but the
leading behavior would be unchanged. In Fig. 13,
we provide a choice of A, such that the monopole
string is localized to a thin tube.

(ii) For a fixed choice of field lines, we still have a
gauge choice for A. Consider a gauge transforma-
tion Ar;rþeμ → Ar;rþeμ þ λrþeμ − λr, where λr is an
r-dependent real number. It results in

ð80Þ
where ηr ¼ 1 for r∈A and ηr ¼ −1 for r∈B. In the
Ω=V ≪ 1 limit, we have , so the expectation value
is invariant under the gauge transformation. Away from this
limit, a gauge transformation on Ar;rþeμ generically results
in a physical transformation on the monopole string
operator. However, as long as the external field h ¼ 0 [h
is defined in Eq. (5)], by particle-hole symmetry, we have

. Since the variance is bounded,
we do not expect the gauge transformation on Ar;rþeμ to
qualitatively change the behavior of Eq. (79). But this
question needs to be studied more closely in future work.

2. Monopole correlator in the ice FM phase

When Ω ¼ 0, the ground state is a product state
in which each spin is in an eigenstate of Ŝz, as discussed

FIG. 12. (a) The polyhedron formed by four puckered hexagons
of the diamond lattice is shown in orange. The centers of these
polyhedra form the dual diamond lattice. (b) The center of the
polyhedron in (a) is also the center of a truncated tetrahedron
(shown in red) of the pyrochlore lattice.
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in Sec. III A 2, and the monopole correlator
hM̂†M̂ðr1 → r2Þi evaluates to a single phase (as opposed
to a sum of phases for a state that is a superposition of
the basis states). Thus, jhM̂†M̂ðr1 → r2Þij ¼ 1 and does
not decay with the length of the string. For Ω ≪ V,
jhM̂†M̂ðr1 → r2Þij will not be equal to 1, but we expect
it to saturate to a nonzero constant for large strings because
the monopoles are condensed in the ice FM phase.

3. Monopole correlator in the QSL phase

The monopole correlator at the RK point and away from
it in the QSL phase was calculated by Hermele et. al. in
Ref. [58] using perturbation theory and field theory
techniques. They showed that the correlator decays expo-
nentially with the distance between the monopole and the
antimonopole. They also verified the exponential decay
numerically at the RK point.

FIG. 13. An example of the monopole string operator M̂†M̂ðr1 → r2Þ for which we provideAx explicitly. In our example, the string
carries 2π flux through a tube with a width of 7 puckered hexagons of the diamond lattice. The tube runs along the z direction. (a) A
schematic of the tube running along the z direction. The diamond lattice (whose vertices are centers of tetrahedra of the pyrochlore
lattice) can be seen as ABC stacking of layers of “honeycomb” lattices made of chairlike puckered hexagons. The tube consists of three
types of layers shown in yellow, orange, and cyan. Each layer is made of 7 puckered hexagons. To convey a sketch, we depict such a
layer by a big hexagon with some thickness. (b) A side view of the stack showing three of its layers, where each layer is made of 7
puckered hexagons of the diamond lattice. The bonds within each of these layers are colored in yellow, orange, and cyan. The bonds (of
the diamond lattice) connecting sites of two different layers are shown in black. These layers are repeated in the z direction to get the
entire string. For bonds xwith (conical) arrows, the value ofAx is written next to the bond. For bonds xwithout arrows,Ax ¼ 0. The two
sublattices of the diamond lattice are represented by blue and green sites. (c) Top view of three of the layers of the stack. See also
Supplemental Material [107] for an animation showing other points of view [107]. It can be seen from all three panels (a)–(c) that the
flux through any closed surface Σ that completely encloses an integer number of layers, such that the bottom layer is included but not the
top, is 2π. However, if Σ partially encloses a layer, thenΦΣ is 0. This difficulty in defining arbitrary integer multiples of 2π flux through a
volume enclosed by a finite number of plaquettes has been observed before [58]. Therefore, in our construction, r1 and r2 have to be seen
as being smeared across 7 points of the dual diamond lattice below the bottom layer and above the top layer, respectively, in order to be
consistent with Eq. (75).
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4. Monopole correlator in the TFP phase

In this section, we show that the monopole correlator
decays exponentially with the length of the string deep
inside the TFP phase, that is, for Ω ≫ V. We start by
rewriting the monopole correlator from Eq. (78) as

M̂†M̂ðr1 → r2Þ ¼ ⊗
i∈ string

�
cos

�
Ai

2

�
þ 2i sin

�
Ai

2

�
Ŝzi

�
;

ð81Þ
where the tensor product is over the string between r1 and
r2, and one choice of Ai is shown in Fig. 13.
For V ¼ 0, the ground state is j−i [see Eq. (68) for

its definition], and it can be easily seen that each of
the factors of the tensor product in Eq. (81) has an
expectation value whose absolute value is less than 1.
Thus, jhM̂†M̂ðr1 → r2Þij decays exponentially with the
string length. For V ≪ Ω, at first order in perturbation
theory, only two spins are flipped (in the Ŝx basis). Since
the monopole correlator involves a product of a number of
terms proportional to the length of the string, only two of
which are altered by the perturbation, we expect that the
monopole correlator will decay exponentially even at first
order in perturbation theory. Thus the monopole correlator
decays exponentially in the TFP phase.

C. Fredenhagen-Marcu order parameters

It is known that the confined and deconfined phases of a
gauge theory without matter fields can be distinguished by

the scaling of the Wilson loops WL ¼ hei
H
L
Aμdxμi, where

Aμ is the gauge field and L is a closed loop. In the
deconfined phase, the Wilson loop follows the perimeter
law, WL ∝ e−perimeter of L, while in the confined phase, it
follows the area law, WL ∝ e−area of L. However, in the
presence of matter fields (which are generically always
present), the Wilson loop follows the perimeter law in the
confined phase as well [108,109] because of the screening
of the confining forces by matter field fluctuations. Thus
the Wilson loops cannot be used to distinguish the phases.
In such cases, the Fredenhagen-Marcu order parameters
can be used since it has a different behavior in the two
phases [28,39,110–115]. In its original formulation [110],
the Fredenhagen-Marcu order parameters involved expect-
ation values of operators in space-time. Later, Fredenhagen
and Marcu proposed that a real-space version of these order
parameters could also diagnose deconfinement [112]. In the
context of condensed matter physics, Ref. [115] (Secs. 5.1
and 8.2) demonstrated that these real-space Fredenhagen-
Marcu order parameters can be used to detect deconfine-
ment in Z2 and U(1) gauge theories with matter. They have
also considered effective gauge theories without Lorentz
invariance and shown that the real-space version can be
used to diagnose deconfinement. They further suggested
that these real-space correlators could help identify phases

in quantum dimer models with gapped spinons. More
recent works [39,116] have continued to use real-space
versions as diagnostics for deconfinement. Here, we adopt
the real-space Fredenhagen-Marcu order parameters because
they are simpler to measure experimentally than their space-
time counterparts. The Fredenhagen-Marcu order parameter,
denoted here by χEC , is defined as

χEC ¼ jhei
P

C
ârr0 þ H:c:ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jhei
P

L
ârr0 þ H:c:ij

q ; ð82Þ

where C is an open curve andL is the closed loop formed by
combining C with its mirror image about a plane that
intersects C only at its end points. This order parameter
detects long-range order in the electric-charge-creation
string. In the Higgs phase, electric charges are condensed,
and hence χEC approaches a nonzero constant. In the decon-
fined phase, the numerator in Eq. (82) (calculated on an open
curve) decays to zero faster than the denominator (calculated
on a closed loop, giving theWilson loop), as the length ofC is
increased. Therefore, in the deconfined phase, χEC goes to 0 as
the length of C is increased. In the confined phase, it was
argued in Ref. [111] that while both the numerator and the
denominator go to zero as the length of C is increased, the
limit of their ratio approaches a constant. Another way to
understand the Fredenhagen-Marcu order parameters is that
they determine if the perimeter law of the Wilson loop is
arising from matter fluctuations or gauge-field fluctuations.
If it is arising from matter fluctuations in the confined phase,
the numerator and the denominator decay at the same rate and
their ratio is a constant. If it is partially arising from gauge
fluctuations in the deconfined phase, then the denominator
decays slower than the numerator and the Fredenhagen-
Marcu order parameters go to zero [110]. This argument is
also applicable to real-spaceWilson loops [39,112,115,116].
Wepoint out that distinguishing a nonzero constant fromzero
in finite systems for finite length of Cmay be difficult. Below
we explain how to measure χEC .
Using the mapping from spin operators to gauge fields,

Eqs. (13) and (16), we see that

ei
P

C
ârr0 ≃ Ŝþ1 Ŝ

−
2 Ŝ

þ
3 � � � ; ð83Þ

where the product of Ŝþ and Ŝ− operators is over the sites
on the curve C. The denominator in χEC has a similar
expression in terms of spin operators. Thus, χEC is given by

χEC ¼ jhŜþ1 Ŝ−2 Ŝþ3 � � � þ H:c:ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhŜþ1 Ŝ−2 Ŝþ3 � � � þ H:c:ij

q ; ð84Þ

where the product in the numerator is along the open curve
C and the prodcut in the denominator is along the closed
loop L.
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From the point of view of measurement, it is more
convenient to consider another quantity, which has the
same behavior as χEC in the three phases, defined as

χ̃EC ≡ jhQi∈ CŜ
x
i ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jhQi∈LŜ
x
i ij

q ; ð85Þ

In the transverse-field-polarized (Higgs) phase, χ̃EC
approaches a nonzero constant, just like χEC . Now, we
argue that even in the QSL and confined phases, χ̃EC and χEC
have the same behavior. For a state jΨi that dominantly lies
in the ice manifold, with corrections from outside the ice
manifold being of order Ω=V (such as the ground state
jΨgi), we have

hΨjŜþ1 Ŝ−2 Ŝþ3 � � � þ H:c:jΨi ¼ hΨjð2Ŝx1Þð2Ŝx2Þð2Ŝx3Þ � � � jΨi
þ ΘððΩ=VÞLÞ; ð86Þ

where L is the number of sites on C. The correction is of
order ðΩ=VÞL by an argument similar to the one used to
show that the error is sixth order in the protocol to measure
the plaquette X correlator (see Appendix C). Thus, for
small Ω=V, χEC and χ̃EC are equal up to order ðΩ=VÞL.
The numerator and the denominator of χ̃EC can be

measured by applying π=2 pulses about the y axis and
measuring, from the snapshots, products of Ŝz along C and
L. This procedure is similar to the protocol to measure the
plaquette X correlator, described in Sec. IVA 4.

The operator ei
P

C
ârr0 creates two opposite electric

charges at the end points of C. So a magnetic analog of
χEC can also be defined, where the numerator is the
expectation value of the operator that creates a monopole
and an antimonopole at the end points of C. Such an order
parameter χMC detects long-range order in the monopole
string operator and is given by

χMC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM̂†M̂ðr1!Ca r2ÞihM̂†M̂ðr1!Cb r2Þi

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM̂†M̂ðr1!L r1Þi

q ; ð87Þ

where M̂†M̂ðr1!Ca r2Þ inserts a monopole-antimonopole
string along Ca and was defined in Eq. (78). The open
strings Ca, Cb and the closed loop L are chosen so that L is
obtained upon joining Ca and Cb. In this section, we use the
notation where the path of the monopole-antimonopole
string is explicitly written in the argument of M̂†M̂. Since
this operator is diagonal in the Ŝz basis, it can be measured
straightforwardly from the snapshots of the Rydberg
atom array.
In the confined phase, monopoles are condensed, so χMC

should be a nonzero constant. In the deconfined phase, by

the argument of Ref. [111], the numerator of Eq. (87)
decays to zero faster than the denominator as the length of C
increases. Therefore, in the deconfined phase, χMC goes to
zero as the length of C increases. In the Higgs phase, even
though there is no long-range order in the monopole string
and both the numerator and denominator go to zero, by the
argument in Ref. [111], the ratio (i.e., χMC ) approaches a
nonzero constant as the length of C increases. But distin-
guishing this nonzero constant from zero in finite-size
numerics and experiment may be challenging (similar to
the situation for χEC in the confined phase). The behavior of
the Fredenhagen-Marcu order parameters in various phases
is summarized in Table II.
Before proceeding, we note that our protocols to

measure the plaquette correlators and the Fredenhagen-
Marcu order parameter χEC work in the limit Ω=V ≪ 1,
which is outside the window in which the ground state of
Hamiltonian Eq. (6) is a QSL. However, we explained in
Sec. III C that it is possible to dynamically prepare finite
puddles of QSL regions even in the Ω=V ≪ 1 limit when
the ground state is not a QSL. Our protocols can then be
applicable.

1. Fredenhagen-Marcu order parameters
in the ice FM phase

We argued in Sec. IV B 2 that jhM̂†M̂ðr1!C r2Þij
approaches a nonzero constant for large open curves C
in the ice FM phase. By the same reasoning, we expect

jhM̂†M̂ðr1!L r2Þij to approach a nonzero constant for large
closed loops L, implying that χMC approaches a nonzero
constant for large loops.
Now we consider the behavior of χEC in the ice FM phase.

For Ω ≪ V, the ground state will be jΨIFMi plus perturba-
tive corrections in Ω=V on top of it coming from ĤΩ. The
ground state in the ice FM phase can be written as jΨordi ¼
Û†

SjΨIFMi [see Eq. (20)]. Also, call the operator in the
numerator of χEC as χ̂EC;num ≡ Ŝþ1 Ŝ

−
2 Ŝ

þ
3 � � � þ H:c:, where the

product is over the Ŝ� operators of sites on C. The factor in
the numerator of χEC in the ice FM phase can thus be written
as jhΨIFMjÛSχ̂

E
C;numÛ

†
SjΨIFMij. Let jCj be the length of C.

Now, acting on a basis state in which spins along C are
alternating, χ̂EC;num flips these jCj spins along C. To com-

pensate, the same number of flips must come from ÛS and
Û†

S combined. This happens at order jCj in perturbation
theory. Thus for a fixed and smallΩ (as compared to V), the
numerator of χEC will be proportional to ðΩ=VÞjCj. By a
similar argument, we conclude that the denominator of χEC
will beproportional to ðΩ=VÞjLj=2. Since the loopL is formed
by joining C and its mirror image, we have jLj ¼ 2jCj, and
the two exponential decays cancel out. Thus χEC approaches a
nonzero constant in the ice FM phase.
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2. Fredenhagen-Marcu order parameters
in the QSL phase

Our ansatz for the QSL phase is jΨQSLi ¼ Û†
SjΨRKi [see

Eq. (40)]. The numerator of χEC is jhΨRKjÛSχ̂
E
C;numÛ

†
SjΨRKij.

By an argument similar to the one in Sec. IV C 1, we expect
that the numerator is∝ ðΩ=VÞjCj. However, unlike the case of
Sec. IV C 1, the denominator of χEC for the QSL phase has a
nonzero contribution even at zeroth order in Ω=V. We can
estimate the size of the denominator of χEC in jΨRKi by a
simple argument.
Let us call the operator in the denominator of χEC as

χ̂EC;den ≡ Ŝþ1 Ŝ
−
2 Ŝ

þ
3 � � � þ H:c:, where the product is over the

Ŝ� operators of sites on L. Now we know that the number
of dimer configurations on a lattice with N lattice sites
grows exponentially with N. Say this number is κN . (We
know from Pauling’s estimate for the residual entropy of
water ice that κ ≈

ffiffiffiffiffiffiffiffi
3=2

p
[67]). Now χ̂EC;den has a nonzero

expectation value in a basis state only if the loop L is
flippable. If we fix the spins on the loop to be in a flippable
configuration, the number of dimer coverings with the
remainingN − jLj spins will be approximately κN−jLj. Thus
the expectation value of χ̂EC;den in the RK wave function will

be approximately proportional to κ−jLj. If we include the
perturbative corrections, then the denominator of χC will

be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðconstÞκ−jLj þOðΩ=VÞ

q
.

Combining the numerator and the denominator, we have

χEC ∝
ðΩ=VÞ−jCjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ−jLj þOðΩ=VÞ
q : ð88Þ

Since jLj ¼ 2jCj, for small enough Ω=V, χEC decays
exponentially with the length of C. Note that this is
consistent with our expectation from field theory—the
Fredenhagen-Marcu order parameter is supposed to go
to zero as the loop size is increased in the deconfined phase
of a gauge theory [110,112].
For the Fredenhagen-Marcu order parameter correspond-

ing to the monopoles, we do not have an argument based on
the microscopics of our model which shows that the order
parameter decays exponentially with loop length. However,
we expect this is the case based on the result that the
Fredenhagen-Marcu order parameter goes to zero in the
deconfined phase of a gauge theory [110–112]. Verifying
this within the field theory and numerically for the micro-
scopic model is an open problem.

3. Fredenhagen-Marcu order parameters
in the TFP phase

We first calculate the two Fredenhagen-Marcu order
parameters for the ground state when V ¼ 0, which is j−i

defined in Eq. (68), and later we will consider the per-
turbative corrections coming from a small, but nonzero, V.
Using the expression from Eq. (84), using

jhŜx ¼ −1=2jŜ�jŜx ¼ −1=2i ¼ 1=2, and calculating the
expectation value in the j−i state, we find

χEC ¼ 2 × ð1=2ÞjCjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × ð1=2ÞjLj

q ¼
ffiffiffi
2

p
; ð89Þ

where we have used the fact that jLj ¼ 2jCj. Similarly, for
the Fredenhagen-Marcu order parameter corresponding to
the monopole-antimonopole string χMC , we have

χMC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQi∈ Ca cos

�Ai
2

	jjQi∈ Cb cos
�Ai
2

	jq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQi∈L cos

�Ai
2

	jq ¼ 1; ð90Þ

i.e., the exponential decay of the numerator cancels
the exponential decay of the denominator to give 1. For
a small but nonzero value of V, the ground state up to first
order in perturbation theory is j−i þ jχ1i, where jχ1i
is given in Eq. (69). Using perturbation theory, the first-
order correction to the numerator of Eq. (84) is

h−jM̂†M̂ðr1!C r2Þjχ1i ∝ ð1=2ÞjCjOðV=ΩÞ. An analogous
expression is true for the denominator with C replaced by L.
Thus we have

χEC ¼ 2ð1=2ÞjCjð1þOðVΩÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1=2ÞjLjð1þOðVΩÞÞ

q ; ð91Þ

and χEC approaches a nonzero constant for large loops.
Similarly, for the χMC correlator for a nonzero but small V,
we have

χMC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

α¼a;bj
Q

i∈ Cα cosðAi
2
Þð1þOðVΩÞÞj

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQi∈L cosðAi

2
Þð1þOðVΩÞÞj

q ; ð92Þ

and χMC also remains a nonzero constant for large loops.
This completes our discussion of the Fredenhagen-Marcu
correlators in the TFP phase.

D. Two-point Ŝz correlator

Consider two spins Ŝzr;μ and Ŝzr0;ν located on the sites
rþ eμ=2 and r0 þ eν=2, where r and r0 are the centers of
two up-pointing tetrahedra and μ; ν∈ f0; 1; 2; 3g label the
sites of the tetrahedra (see Fig. 14). From the mapping of
spins to gauge theory, Eqs. (13) and (16), it can be seen that
the two-point correlator of these two spins hŜzr;μŜzr0;νi is the
same as the two-point correlator of the electric field. Since
Ŝzr;μŜ

z
r0;ν is a diagonal operator, its correlator can be

measured experimentally by capturing snapshots of the
Rydberg atom array and averaging over them.
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1. Two-point Ŝz correlator in the ice FM phase

For Ω ≪ V, the ground state of the system is Û†
SjΨIFMi,

and the two-point Ŝz correlator is hΨIFMjÛSŜ
z
r;μŜ

z
r0;ν×

Û†
SjΨIFMi. Up to zeroth order in Ω=V, ÛS ¼ 1̂.

Since jΨIFMi is a product state in the Ŝz basis,
jhΨIFMjŜzr;μŜzr0;νjΨIFMij ¼ ð1=2Þ2. After taking into account

corrections in Ω=V, we still expect that hŜzr;μŜzr0;νi will
approach a nonzero constant for large separation jr − r0j.

2. Two-point Ŝz correlator in the QSL phase

The effective theory in the deconfined phase is the
Maxwell electromagnetism. By a derivation analogous to
the derivation of Eq. (60), one can show that in 3þ 1D
continuumMaxwell electromagnetism, the correlator of the
Cartesian components of the electric field êr;i for
i∈ fx; y; zg is given by [58]

hê0;iêR;ji0 ∝
1

R4

�
2
RiRj

R2
− δij

�
; ð93Þ

where h·i0 denotes expectation value with respect to the
Maxwell action. Equation (93) is the electric analog of
Eq. (60). Now the correlator of the electric field operators
êr;μ for μ∈ f0; 1; 2; 3g along the links of the diamond
lattice are obtained from Eq. (93) by taking components of
the Cartesian electric field along the vectors eμ. Thus,

hŜzr;μŜzr0;νi ¼
X

k;l∈ fx;y;zg
ðeμÞkðeνÞlhêr;kêr0;li0: ð94Þ

3. Two-point Ŝz correlator in the TFP phase

For V ¼ 0, the ground state is j−i and
h−jŜzr;μŜzr0;νj−i ¼ 0. The first-order correction to the ground

state wave function from the perturbation ĤV is given by
jχ1i defined in Eq. (69). The first-order correction to the
two-point Ŝz correlator is

h−jŜzr;μŜzr0;νjχ1i þ H:c: ∝
V
Ω

�
a
R

�
6

: ð95Þ

Thus, in the TFP phase, the two-point Ŝz correlator is
proportional to V=Ωða=RÞ6.

V. DISCUSSION

In this work, we have presented a proposal to prepare and
detect the deconfined phase of the U(1) gauge theory in
3þ 1 dimensions on a Rydberg atom simulator. We first
showed that laser-driven neutral atoms trapped in a pyro-
chlore lattice using optical tweezer arrays naturally realize a
U(1) quantum spin liquid as the ground state when the laser
detuning lies in a specified window and the interactions
between Rydberg atoms are restricted to nearest neighbor.
We then studied the effect of van der Waals interactions
beyond nearest neighbor. In the classical limit obtained by
dropping the Rabi frequency term, we showed that long-
range interactions break the degeneracy to select an ice
ferromagnet as the ground state. We then studied the
competition between the long-ranged interactions that prefer
an ordered state and quantum fluctuations that prefer a QSL
state, by calculating the energies in ansatz wave functions
using perturbation theory. We found that, for Rabi frequen-
cies greater than ΩC ≈ 0.44V, the ground state is a QSL
within our approximation. When Ω is increased further, we
argued that the QSL goes into a transverse-field-polarized
state via a Higgs transition. While we have focused on the
ground state, we also commented on the effect of dynamical
state preparation in deciding the nature of the prepared state.
We then provided experimental protocols for measuring
the plaquette correlators, Bricmont-Frölich-Fredenhagen-
Marcu order parameters, themonopole-monopole correlator,
and the electric field correlator that can distinguish a QSL
phase from ordered phases.
Our ground state phase diagram is the result of an

approximate calculation. A quantum Monte Carlo calcu-
lation is required to firmly establish the phase diagram, and
we leave it to future work. While it is possible that the true
phase diagram differs from what we found, we note that
there are other knobs one can tune to get a desired phase
diagram. Dressed states created from multiple Rydberg and
possibly ground levels can be used to customize the
interactions away from the isotropic 1=r6 form we con-
sidered in this paper [117–122]. It is also possible to
engineer interactions that are strongly peaked in distance
[123,124] which could allow the nearest-neighbor inter-
actions to be much stronger than the interactions at other
distances, and potentially make the QSL more stable.
Designing a dressing scheme compatible with the sym-
metries of the pyrochlore lattice and exploring the resulting
phase diagrams is an interesting direction for future work. It
is known that dipolarlike interactions can preserve the
degeneracy of the ice manifold [90]. The QSL region can
potentially be extended to smaller Rabi frequencies by
making the Rydberg atoms interact via dipolar interactions
either by applying a dc electric field or microwave dressing

FIG. 14. Notation for the two-point Ŝz correlator. r and r0 are
the positions of the centers of the tetrahedra. eμ are the vectors
joining the center of an up-pointing tetrahedron to the centers of
its neighboring down-pointing tetrahedra.
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a Rydberg s state with one or more Rydberg p states [122].
We also note that our proposal requires two Rydberg
excitations per tetrahedron, meaning that it lies outside
of the Rydberg-blockade regime and is therefore sensitive
to imperfections and thermal fluctuations in nearest-neigh-
bor spacing. It will therefore be useful to extend our
proposal to the blockade regime of one excitation per
tetrahedron. While previous numerical work on dimer
models has required a nonzero RK potential (six-body
term) to achieve this, it will be worthwhile to study if one
can engineer long-range Rydberg interactions that stabilize
a spin liquid in the blockade regime.
One can also look for other lattices that could realize aU(1)

QSL ground state. One such possibility is a lattice of corner-
sharing tetrahedra where all up-pointing tetrahedra (and
separately all down-pointing tetrahedra) form a hexagonal
close-packed lattice shown in Fig. 15. If only nearest-
neighbor interactions are considered between atoms posi-
tioned on the sites of this lattice, then, by perturbation theory
in Ω=V for a particular range of detunings, one gets ring
exchange terms similar to the ones obtained in Sec. II A, and
the system maps onto a dimer model. It is not known if this
dimer model is in the QSL phase when the RK potential is
zero and long-range van derWaals interactions are included.
Another open problem is to construct lattices where a dimer
model can be realizedwithin the blockade regimewithout the
RK potential.
Next, we note that, formally, a distinction between the

confined and deconfined phases exists only in the thermo-
dynamic limit. Experimentally, there are two finiteness
effects that can be important. First, a realistic three-dimen-
sional Rydberg array will likely have a relatively small
linear dimension. Some of the correlators presented in
Sec. IV require asymptotic behavior in distance to distin-
guish different phases. Second, as found in Ref. [100] and
mentioned in Sec. III C, a finite-time state preparation
scheme would generically prepare puddles of spin liquid
regions as opposed to an entire spin liquid. It is therefore
necessary to quantitatively study how the behavior of the
correlators is modified under these conditions. One must
also estimate the size of the puddles of the QSL and
compare them to the length scale at which the asymptotic

behavior of the correlators is observed. We leave this for
future work.
We also note that, to translate field-theory observables

into microscopic variables, we relied on the perturbative
limit of small Ω=V. However in the phase diagram that we
found, the region where the spin liquid is a ground state
does not satisfy Ω=V ≪ 1. Understanding how the field-
theory operators (e.g., plaquette, monopole, and electric
field operators) get renormalized away from the perturba-
tive limit is important both from fundamental and practical
standpoints.
Our work is a proposal to prepare a gapless U(1) spin

liquid using unitary evolution. An interesting research
direction would be to come up with schemes that also
use projective measurements to expedite the state prepa-
ration along the lines of Refs. [50,125]. One can also
explore how other exotic phases of matter such as fractons
and 3þ 1D topological order can potentially be realized on
a Rydberg simulator.
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APPENDIX A: CONVERGENCE OF THE
PERTURBATION THEORY

In this appendix, we examine the issue of the conver-
gence of the Taylor expansion of the perturbational
energies of the ice FM, ice antiferromagnet, and the RK
ansatz wave functions. We find that the Padé approximants
for the perturbational energies of the ice FM, ice anti-
ferromagnet, and the RK ansatz wave functions have
spurious singularities in the range 0 < Ω=V < 0.6 because
of the vanishing of the denominators of the Padé approx-
imants. It is known that such singularities can appear in
Padé approximants and can be avoided by the Borel-Padé
analysis, and the Borel-Padé approximants obtained from it

FIG. 15. A lattice made of corner-sharing tetrahedra different
from the pyrochlore lattice. The lattice consists of ABAB…
stacking of the blue (A) and the orange (B) layers. A configu-
ration satisfying is shown here.
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do not have these spurious singularities. We determine the
½m=n� Borel-Padé approximant of a series fðxÞ by the
procedure described in Sec. 3 of Ref. [126] and we explain
it briefly here. First, we perform a Borel transform on the
series fðxÞ giving a new series BfðxÞ. Then, we calculate
the ½m=n� Padé approximant of BfðxÞ which we denote by
P½m=n�ðxÞ. Finally, we obtain the ½m=n� Borel-Padé approx-
imant by calculating the Laplace transform of P½m=n�ðxÞ.
Here, mþ n should be equal to the degree of the truncated
Taylor series.
From the perturbation theory calculation of Sec. III A 4,

we have the Taylor series up to sixth order in Ω=V for the
energies of the three ansatz states—ice ferromagnet, ice
antiferromagnet, and the RK wave function. Thus we have
mþ n ¼ 6. We have computed the various ½m=n� Borel-
Padé approximants and plotted them in Figs. 16(a)–16(c).
Based on these plots, we make the following comments.

(i) Regarding the ice ferromagnet [Fig. 16(a)]:We find
that the [6/0], [5/1], [4/2], and [3/3] Borel-Padé
approximants are equal to the Taylor series while the
[2/4] and [1/5] Borel-Padé approximants have a
lower energy than the Taylor series. At the transition
point, ΩC ¼ 0.43927, the [2/4] approximant differs

from the Taylor series by about 17%. If we use the
[2/4] approximant instead of the Taylor series for the
ice FM to determine the transition point between ice
FM and QSL, it shifts from ΩC ¼ 0.43927V to
0.44067V. This change in the location of the
transition point is very small, and using the Borel-
Padé approximants instead of the Taylor series does
not change the phase diagram qualitatively.

(ii) Regarding the ice antiferromagnet [Fig. 16(b)]:We
again find that the [2/4] and [1/5] approximants are
equal to each other and are different from the Taylor
series. The other Borel-Padé approximants, namely
the [6/0], [5/1], [4/2], and [3/3] approximants, are
equal to the Taylor series. The [2/4] Borel-Padé
approximant differs from the Taylor series at the
transition point,ΩC ¼ 0.43927V, by about 20%. This
is not a small amount, but even if we assume that the
true energy is lower than the perturbation theory
energy (Taylor series) by 20%, ice antiferromagnet
continues to remain an excited state and the phase
diagram does not change. This is under the assump-
tion that the energies of the ice ferromagnet and the
RK wave function are given by their Taylor series.

FIG. 16. Panels (a)–(c) show the various Borel-Padé approximants and the Taylor series for the three ansatz states: ice ferromagnet, ice
antiferromagnet, and the RK wave function. Panel (d) shows the Borel-Padé approximants and the Taylor series for the RK wave
function without the long-range interactions. The curves labeled “Taylor” are the energies of the ansatz states obtained from perturbation
theory. The curves labeled by “½m=n�” where m; n∈ f0; 1;…; 6g such that mþ n ¼ 6 are the ½m=n� Borel-Padé approximants.
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(iii) Regarding the RK wave function [Fig. 16(c)]:We
find that the [4/2], [3/3], [2/4], and [1/5] Borel-
Padé approximants are positive for all values of
Ω=V > 0, and the phase diagram would not have a
QSL if we used these approximants as the energy
of the RK wave function. However, we believe this
is an artifact of the Borel-Padé approximants and
is not representative of the underlying physics. To
understand our claim, consider the Hamiltonian
without ĤLR, i.e., the transverse-field Ising model.
We know from Ref. [75] that the ground state is a
QSL for Ω < 0.55ð5ÞV. For Ω ¼ 0, all states in the
ice manifold including the RK wave function are
the ground states. For a nonzero but small Ω=V,
the quantum fluctuations are present, and we
expect them to decrease the energy of the ground
state. In Fig. 16(d), we show the Taylor series
obtained from sixth-order perturbation theory and
its Borel-Padé approximants for the Hamiltonian
without ĤLR. We see that the Taylor series
decreases as Ω=V is increased and captures the
energy reduction from quantum fluctuations; how-
ever, the [2/4], [1/5], [4/2], and [3/3] Borel-Padé
approximants remain equal to 0. Thus, the [2/4],
[1/5], [4/2], and [3/3] Borel-Padé approximants do
not capture the physics. This could be because
of the structure of the Taylor series—the sixth-
order term has a large coefficient as compared
to the zeroth-, second-, and fourth-order terms.
[The Taylor series for the RK wave function with
ĤLR is 0.026 − 0.027ðΩ=VÞ2 − 0.098ðΩ=VÞ4−
2.77ðΩ=VÞ6.] However, we are not certain about
why the [2/4], [1/5], [4/2], and [3/3] approximants
do not capture the energy decrease. Thus the only
Borel-Padé approximants we may be able to
reliably use with the given data are [6/0] and
[5/1], which are the same as the Taylor series. We
would obtain the same phase diagram if we were
to use the [6/0] or [5/1] approximants.

In summary, we find that using the ½6=0� and ½5=1� Borel-
Padé approximants changes only the critical coupling
of the transition, but does not change the phase diagram
qualitatively.

APPENDIX B: GAUGE MEAN-FIELD THEORY

In this appendix, we first provide details of the gauge
mean-field theory calculation sketched in Sec. III B 1, with
a focus on capturing the Higgs transition. Then, we attempt
to use the same technique in the small-Ω limit to obtain the
confinement-deconfinement transition. We find that, in this
limit, the technique is fraught with a serious limitation
stemming from neglecting gauge fluctuations.
Starting from Eq. (45) of Sec. III B 1 and performing the

mean-field decoupling, we get

ĤMF ¼ ĤΦ þ Ĥs þ Ĥc; where

ĤΦ ¼ V
2

X
r∈A;B

Q̂2
r −

Ω
2

X
ðr∈AÞ;μ

ðΦ̂†
rΦ̂rþeμhŝþr;μi þ H:c:Þ;

Ĥs ¼ −
Ω
2

X
ðr∈AÞ;μ

ðhΦ̂†
rΦ̂rþeμiŝþr;μ þ H:c:Þ

þ
X

ðr∈AÞ;μ
ŝzr;μ

X
ðr0 ∈AÞ;ν

ðVμνðr − r0Þhŝzr0;νiÞ;

Ĥc ¼
Ω
2

X
ðr∈AÞ;μ

ðhΦ̂†
rΦ̂rþeμihŝþr;μi þ H:c:Þ

−
1

2

X
ðr∈AÞ;μ

ŝzr;μ
X

ðr0 ∈AÞ;ν
ðVμνðr − r0Þhŝzr0;νiÞ: ðB1Þ

Ĥc is a constant, and Vμνðr − r0Þwas defined in Sec. III B 1.
Ĥs above is of the form −

P
ðr∈AÞ;μ ðhxr;μŝxr;μ þ hzr;μŝzr;μÞ,

where

hxr;μ ¼ ΩhΦ̂†
rΦ̂rþeμi;

hzr;μ ¼ −
X

ðr0 ∈AÞ;ν
ðVμνðr − r0Þhŝzr0;νiÞ; ðB2Þ

and hΦ̂†
rΦ̂rþeμi is calculated in the ground state of ĤΦ,

which in turn depends on hŝþi. (We have implicitly assumed
here that hΦ̂†

rΦ̂rþeμi is real, which we will show can
be assumed self-consistently.) This implies that, in the
ground state,

hŝir;μi ¼
hir;μ

2jhr;μj
for i ¼ x; z: ðB3Þ

Our goal is to self-consistently minimize the ground state
energy of the mean-field Hamiltonian subject to the con-
straints in Eqs. (43) and (44). We showed in Sec. III A 2 that
the ordered ground state at Ω ¼ 0 has momentum k ¼ 0.
Also, the TFP state in the large-Ω limit is ak ¼ 0 state. Sowe
start with a mean-field ansatz with full translation symmetry
(similar to Ref. [98]):

hsþr;μi ¼
1

2
cos θ;

hszr;μi ¼
1

2
εμ sin θ; ðB4Þ

where εμ ¼ 1; 1;−1;−1 for μ ¼ 0, 1, 2, 3, respectively. To
solve the matter sector, it is convenient to deal with the
Lagrangian instead of the Hamiltonian. The imaginary-time
Lagrangian for the matter sector is
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L ¼ 1

2V

X
r∈A;B

jð∂τ − ivrÞΦrj2

−
Ω cos θ

4

X
ðr∈AÞ;μ

ðΦ�
rΦrþeμe

iar;μ þ c:c:Þ

− i
X
r∈A;B

�
ηrvr

�X
μ

szrþηreμ=2

�
þ λ̃rðjΦrj2 − 1Þ

�
; ðB5Þ

where the Lagrangemultiplier λ̃r (which gets integrated over)
enforces the constraint jΦrj2 ¼ 1. The Lagrangemultiplier vr
enforces the constraintEq. (44). Tozerothorder,we ignore the
gauge fluctuation ar;μ. The matter Lagrangian alone, despite
being quadratic in the rotor variables, is nevertheless inter-
acting because a quadratic term in rotor operators is nonlinear
in terms of canonical bosons (in other words, it is a cosine
term in the phase of the rotor.) In order to make progress,
Ref. [98] assumes that, at the saddle point, λ̃r takes on a
spatially uniform and purely imaginary value iλ, and also
implicitly assumes that vr is 0 at the saddle point. Here, we
will follow suit while acknowledging that these approxima-
tions are uncontrolled. Making these simplifications, we
obtain

L ¼ 1

2V

X
r

j∂τΦrj2 −
Ω cos θ

4

X
ðr∈AÞ;μ

ðΦ�
rΦrþeμ þ c:c:Þ

þ λ
X
r

ðjΦrj2 − 1Þ: ðB6Þ

The constraints now simplify to

hΦ†
rΦri ¼ 1; ðB7Þ

hx ¼ ΩhΦ†
rΦrþeμi: ðB8Þ

Now, we have a quadratic Lagrangian, which we solve by
Fourier transformation. Our Fourier transformation conven-
tion is (for α∈ fA;Bg)

Φr;αðτÞ ¼ T
X
ωn

X
k∈BZ

Φk;αðωnÞeiðk·r−ωnτÞ; ðB9Þ

where T is the temperature, ωn are Matsubara frequencies,
and we eventually take the limit T → 0. Equation (B6)
becomes

L¼ T
X
k;ωn

�
Φ�

k;AðωnÞ Φ�
k;BðωnÞ

�
G−1
k ðωnÞ

�Φk;AðωnÞ
Φk;BðωnÞ

�
;

ðB10Þ

where

G−1
k ðωnÞ ¼

 
ω2
n

2V þ λ − Ω cos θ
4

fk

− Ω cos θ
4

f�k
ω2
n

2V þ λ

!
: ðB11Þ

Here,

fk ¼ 1þ e−ik1 þ e−ik2 þ e−ik3 ; ðB12Þ

where k≡ k1b1 þ k2b2 þ k3b3, and b1, b2, and b3 are
reciprocal lattice vectors of the fcc lattice satisfy-
ing ai · bj ¼ δij.
Upon inverting the above matrix, we find that the

eigenvalues of GkðωnÞ are 2V=½ω2
n þ ðω�

k ðλ; θÞÞ2�, where
the dispersion of the two bosonic bands is

ω�
k ðλ; θÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V

�
λ� Ω cos θ

4
jfkj

�s
: ðB13Þ

As long as the spinon dispersion is gapped, spinons will not
condense. From the dispersion above, we see that the
dispersion becomes gapless when λ ¼ Ω cos θ. However, as
we will see below, for fixed θ and Ω, λ is determined by the
constraint in Eq. (B7). Therefore the condition λ ¼ Ω cos θ
is met for a specific Ω ¼ ΩMF

H , which we will calculate
below. Before that, we will go through a few intermediate
steps. First, the matrix form of GkðωnÞ is (assumingΩ > 0)

GkðωnÞ ¼ V

0
B@

1
ω2
nþðωþ

k Þ2
þ 1

ω2
nþðω−

kÞ2
gk



1
ω2
nþðωþ

k Þ2
− 1

ω2
nþðω−

kÞ2
�

g�k



1
ω2
nþðωþ

k Þ2
− 1

ω2
nþðω−

kÞ2
�

1
ω2
nþðωþ

k Þ2
þ 1

ω2
nþðω−

kÞ2

1
CA; ðB14Þ

where

gk ¼
�− fk

jfkj when 0 ≤ θ < π=2

0 when θ ¼ π=2:
ðB15Þ

With the Green’s function in hand, we are now ready to
impose the constraints, Eq. (B7) and Eq. (B3). First, we

calculate equal-time correlation functions of Φ (by per-
forming the Matsubara sum on the Green’s function). Using
these, the constraints in Eqs. (B7) and Eq. (B2) become,
respectively,

F1ðλ; θÞ≡ V
2Nu:c:

X
k

�
1

jωþ
k j

þ 1

jω−
kj
�

¼ 1; ðB16Þ
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ΩF2ðλ; θÞ≡Ω
V

2Nu:c:

X
k

gk

�
1

jω−
kj

−
1

jωþ
k j
�

¼ hx: ðB17Þ

Next, by imposing Eq. (B3) with the help of Eq. (B2),
we get

hz ¼ −
B sin θ

2
; where B ¼ sin θ

2

X
ðr0 ∈AÞ;ν

V0;νð−r0Þεν:

ðB18Þ

For a given θ, Eq. (B16) determines λ. We see that there are
three self-consistent solutions for θ:

θ ¼

8>><
>>:

0

π=2

cos−1


2ΩF2ðλ;θÞ

B

�
:

ðB19Þ

Within gauge mean-field theory, these three solutions
correspond to a QSL, a “Coulomb ferromagnet” (spin
liquid with nonzero ice ferromagnetic order parameter), and
an ice ferromagnet, respectively [98]. For a fixed parameter
Ω, the true solution depends on which of the three solutions
above has lower energy with respect to the mean-field
Hamiltonian Eq. (B1). Suppose that, for large enough Ω,
one is in the QSL phase, i.e., θ ¼ 0 and hΦ̂ri ¼ 0. Now, the
bosons will condense when their dispersion becomes
gapless, i.e., λ ¼ Ω. Using constraint Eq. (B16), we find
that this transition point is ΩH

MF ≈ 0.7V, as also found
in Ref. [82]. For Ω > ΩH

MF, the ground state is in the
TFP phase.
Having identified the Higgs transition point, we now

attempt to identify the confinement-deconfinement transi-
tion for low Ω, i.e., find Ω at which θ ¼ 0 becomes the
lowest-energy saddle point. Using Eq. (B1), we get the
following expression for the mean-field energy:

EMF ¼ K − Nu:c:

�
2ΩF2ðλ; θÞ cos θ þ

B
2
sin2 θ

�
; ðB20Þ

where K is the total kinetic energy of the bosons and can be
calculated to be

K ¼ 1

2

X
k

ðωþ
k þ ω−

kÞ: ðB21Þ

In Fig. 17, we plot the energy EMF for θ ¼ 0 (QSL) and
θ ¼ π=2 (ice ferromagnet), and find a transition at
Ω ≈ 0.13V. (The third solution for θ becomes the low-
est-energy solution only in a minuscule window around
Ω ≈ 0.13V, so we ignore it.) However, we will now argue
that this result is misleading.
In GMFT, the energy reduction in the QSL phase with

respect to the ordered phase (ice ferromagnet) arises

from the minimization of kinetic energy of the bosonic
charges Φ̂r that are allowed to hop. When θ ¼ 0, the
hopping coefficient is maximized, while for θ ¼ π=2, the
hopping coefficient is 0. However, microscopically, this
hopping corresponds to a single spin flip. A pair of spin
flips at the same site leads to a constant reduction of energy
coming from second-order perturbation theory, given by
−Ω2Nu:c:=V. It is constant in the sense that this reduction is
obtained for any state including the QSL and the ice
ferromagnet. The mean-field calculation, however, unfairly
assigns this reduction to the QSL but not to the ordered
state. In fact, in Fig. 17, we have also plotted −Ω2=ð4VÞ
(the factor of 1=4 can perhaps be attributed to using spin
1=2 and classical spins at the same time). As can be seen,
this plot almost completely overlaps with the energy of the
QSL calculated within GMFT. So it is clear that, within
GMFT, the difference between the energies of the QSL and
the confined phase is quadratic in Ω to leading order even
though we know from perturbation theory that the leading-
order term should be proportional to Ω6. Hence, GMFT
cannot be used in the vicinity of the confinement-decon-
finement transition unless gauge fluctuations are properly
taken into consideration.

APPENDIX C: DIFFERENCE BETWEEN hX̂PX̂P0 ic
AND h ˆ̃XP

ˆ̃XP0 ic
In this appendix, we show that the difference between

hX̂PX̂P0 ic and h ˆ̃XP
ˆ̃XP0 ic evaluated in the ground state is of

sixth order in Ω=V, that is, derive Eq. (53).
Let jΨgi be the ground state of the system. Thus jΨ0i ¼

ÛSjΨgi is in the ice manifold, where ÛS is the unitary
operator that implements the Schrieffer-Wolff transforma-
tion (see Sec. III A 1). We have

hΨgjX̂PjΨgi ¼ hΨ0jÛSX̂PÛ
†
SjΨ0i: ðC1Þ

FIG. 17. The energy per unit cell (in units of V) of saddle points
θ ¼ 0 (QSL) and θ ¼ π=2 (ice ferromagnet) given by Eq. (B20)
up to an overall additive constant that is the same for θ ¼ 0 and
θ ¼ π=2. We also plot −ðΩ2=4V2Þ arising from trivial spin-flip
pairs: This plot almost overlaps with the energy of the θ ¼ 0 state.
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At zeroth order in Ω=V, the right-hand side of the above
equation is hΨ0jX̂PjΨ0i, which we know is equal to

hΨ0j ˆ̃XPjΨ0i since jΨ0i is in the ice manifold [see
Eq. (52)]. Note that ÛS ¼ 1þ Ŝþ Ŝ2=2!þ � � �. The terms
that are of order ðΩ=VÞi flip i spins. When ÛS and Û†

S in
Eq. (C1) are expanded as a power series, the first term
whose expectation value is nonzero (other than the zeroth-
order term) appears at sixth order in Ω=V. This is because
X̂P flips six spins which need to be compensated from
another six spin flips coming from six powers of Ŝ. Thus,
we have

hΨ0jÛSX̂PÛ
†
SjΨ0i ¼ hΨ0jX̂PjΨ0i þ ΘððΩ=VÞ6Þ: ðC2Þ

A similar argument applied to h ˆ̃XPi shows that

hΨ0jÛS
ˆ̃XPÛ

†
SjΨ0i ¼ hΨ0j ˆ̃XPjΨ0i þ ΘððΩ=VÞ6Þ: ðC3Þ

Using Eq. (52), we find that h ˆ̃XPi ¼ hX̂Pi þ ΘððΩ=VÞ6Þ.
An analogous argument applies to show h ˆ̃XP

ˆ̃XP0 i ¼
hX̂PX̂P0 i þ ΘððΩ=VÞ12Þ. Finally, putting together all the
pieces, we obtain Eq. (53). By similar arguments, Eq. (54)
can also be derived.

APPENDIX D: PLAQUETTE CORRELATORS
IN TFP PHASE

In this Appendix, we derive the plaquette X correlator
deep inside the TFP phase at second order in perturbation
theory, treating the van der Waals interaction as the
perturbation. That is, we derive Eq. (71).
For Ω ≫ V, the ground state up to first order in V=Ω is

jξi ¼ j−i þ jχ1i [see Eqs. (68) and (69) for the definitions
of j−i and jχ1i, respectively]. Here j−i is of zeroth order,
and jχ1i is of first order in Ω=V. The connected plaquette X
correlator is

hξjX̂PX̂P0 jξi
hξjξi −

hξjX̂PjξihξjX̂P0 jξi
hξjξi2 : ðD1Þ

Since h−jχ1i ¼ 0 and X̂Pj−i ¼ j−i, the first-order term in
the plaquette X correlator above will be zero. Keeping only
terms up to the second order, the plaquette X correlator
becomes

ð1þ hχ1jX̂PX̂P0 jχ1iÞð1 − hχ1jχ1iÞ − ð1þ hχ1jX̂Pjχ1iÞ
× ð1þ hχ1jX̂P0 jχ1iÞð1 − 2hχ1jχ1iÞ: ðD2Þ

Simplifying this expression and keeping only terms that are
second order in Ω=V gives

hχ1jX̂PX̂P0 jχ1i − hχ1jX̂Pjχ1i − hχ1jX̂P0 jχ1i þ hχ1jχ1i
¼ hχ1jðX̂P − 1ÞðX̂P0 − 1Þjχ1i: ðD3Þ

Substituting the definition of jχ1i from Eq. (69), we obtain
the desired Eq. (71).
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