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Observation of a finite-energy phase 
transition in a one-dimensional quantum 
simulator
 

Alexander Schuckert    1,3 , Or Katz    2,3 , Lei Feng2, Eleanor Crane    1, 
Arinjoy De    1, Mohammad Hafezi    1, Alexey V. Gorshkov    1 & 
Christopher Monroe2

Equilibrium phase transitions in many-body systems have been predicted 
and observed in two and three spatial dimensions but have long been 
thought not to exist in one-dimensional systems. It was suggested 
that a phase transition in one dimension can occur in the presence of 
long-range interactions. However, an experimental realization has so far 
not been achieved due to the requirement to both realize interactions 
over sufficiently long distances and to prepare equilibrium states. Here 
we demonstrate a finite-energy phase transition in one dimension by 
implementing a long-range interacting model in a trapped-ion quantum 
simulator. We show that finite-energy states can be generated by 
time-evolving initial product states and letting them thermalize under 
the dynamics of a many-body Hamiltonian. By preparing initial states with 
different energies, we study the finite-energy phase diagram of a long-range 
interacting quantum system. We observe a ferromagnetic equilibrium phase 
transition as well as a crossover from a low-energy polarized paramagnet 
to a high-energy unpolarized paramagnet, in agreement with numerical 
simulations. Our work presents a scheme for preparing finite-energy  
states in quantum simulation platforms, enabling access to phases at finite 
energy density.

Equilibrium phase transitions underlie many quantum phenomena 
in nature, from the creation of primordial fluctuations in the early 
universe1,2 to the melting of confined hadrons into the quark–gluon 
plasma3 and the emergence of a superconducting state at high tem-
peratures in the cuprates4. Equilibrium phase transitions require the 
presence of both ordered and disordered phases5, which have been 
observed in two and three spatial dimensions. In one-dimensional 
(1D) systems, disordered phases often have a lower free energy than 
ordered ones, leading to the absence of phase transitions. This is 
because the entropy gained by destroying the order is larger than 

the energy cost6,7. More than half a century ago, Dyson and Thou-
less argued that this energy cost can outweigh the entropy gain if 
the interactions are suffi ciently long-ranged8,9. However, despite 
the extensive theoretical work on phase transitions in 1D long-range 
systems since these seminal works10, an experimental realization of 
this prediction has so far not been achieved. Recently, the advent 
of quantum simulators has enabled the study of highly controlled 
long-range interacting systems. This has led to the discovery of 
many exotic quantum phenomena, including non-local spreading 
of quasiparticles11, dynamical quantum phase transitions12,13, time 
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Realizing a long-range interacting many-body 
system
In our experiment, we encode a pseudo-spin 1/2 in the electronic  
ground-state levels | ↑⟩ = |F = 1,M = 0⟩ and | ↓⟩ = |F = 0,M = 0⟩ of  
171Yb+ ions confined in a linear Paul trap on a chip38, as illustrated in 
Fig. 1a. We apply a tightly focused individual addressing beam on each 
ion and a globally addressing wide beam on all ions to drive the transi-
tion between the spin levels via a stimulated Raman process. These 
transitions couple off-resonantly to the phonon modes of the ion chain, 
driving simultaneously and nearly symmetrically the red and blue side-
band transitions, resulting in effective Ising interactions between the 
spins. We realize interactions that decay exponentially with ion separa-
tion distance by choosing a Raman beat-note frequency that has a detun-
ing from the carrier frequency that is close to the lowest radial 
phonon-mode frequency. In our experiment, this leads to a longer 
coherence time than the one obtained by choosing a detuning close to 
the highest radial mode frequency. We then remove the alternating sign 
of the interactions by spatially staggering the phases of the Raman 
beams (Methods). Control over the optical frequencies of the individual 
beams sets an effective magnetic field in the transverse direction39,40. 
In total, this approximately realizes the many-body spin Hamiltonian

̂H = − 1
2𝒩𝒩 ∑

i<j
Jijσ̂ x

i σ̂
x
j − g∑

i
σ̂zi , (1)

where σ̂ α
i  are the Pauli matrices, g is the transverse-field strength  

and i and j run over integers from 1 to L for an ion chain of length L.  
Due to the Raman beat-note frequency being tuned close to the  
lowest frequency mode, the interactions decay exponentially with the 
distance between ions. Although finite-temperature phase transitions 
are possible in fully connected systems and in systems with interactions 
that decay as a power law, such transitions do not occur in systems with 

crystals14,15, continuous symmetry breaking16,17, supersolidity18,19 and 
superdiffusive spin transport20. Among the experimental platforms 
used in those studies, only trapped ions have interactions that are 
in principle long-range enough to observe an equilibrium phase 
transition in one dimension. However, preparing equilibrium states 
in spin-system quantum simulators such as trapped ions and even 
digital quantum computers has been challenging21–30. This is because 
it is extremely challenging to bring these systems in contact with an 
external bath with a well-defined finite temperature; instead, the 
coupling with baths naturally present in the experimental environ-
ment either projects the system into an infinite temperature state or 
onto a trivial product state.

Here, we overcome this challenge by using the intrinsic many- 
body equilibration within subsystems of isolated quantum systems  
to prepare equilibrium states in a long-range interacting quantum  
system realized by trapped ions. Our method relies on the foun-
dational understanding of quantum thermalization offered by 
the eigenstate thermalization hypothesis (ETH)31,32, whose valid-
ity and limitations have been studied both numerically32 and 
experimentally33,34. We first prepare non-equilibrium states at a range 
of different energies and let these states thermalize under the dynam-
ics of a 1D many-body Hamiltonian with programmable long-range 
interactions. We then use these thermalized states to measure the 
order parameters of ferro magnetic and paramagnetic phases as a 
function of energy density. Compared with other schemes21–30,35,36, 
this method is relatively simple and does not require two-qubit gates. 
Thus, it can be implemented in an entirely analogue setting. Moreover, 
it is widely believed that thermalization times are independent of 
system size for most observa bles37, rendering this method scalable. 
This enables us to study the existence of a possible equilibrium phase 
transition in a 1D spin system realized by a trapped-ion analogue 
quantum simulator.
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Fig. 1 | Observing an equilibrium phase transition in a 1D chain of ions. a, Ions 
are confined in a chain using a chip trap (yellow). Individual Raman laser beams 
(blue) couple an internal spin-1/2 degree of freedom of the ions to the lowest-
energy motional mode of the ion crystal (grey), mediating exponentially 
decaying interactions between the spins (red). b, The averaged interactions  

̄J(l) = 1
L−l

∑i Ji,i+l/(2J𝒩𝒩) evaluated with the experimental Jij (dots), compared  

with the target Jij = J exp(− 10.8
L
|i− j|) (dashed lines). The experimental Jij are  

slightly inhomogeneous (Methods and Extended Data Fig. 1). c, Equilibrium 
phase boundary of the model in equation (1) (solid line), as well as the squared 

magnetization (blue shading) and transverse magnetization (red shading; 
dashed line indicates where transverse magnetization is equal to 0.75). We 
extrapolated to the infinite-system-size limit from finite-size MPS simulations. 
The grey area indicates energies with no states. The gold frame is the regime 
experimentally probed in this work. d, The time-averaged expectation value of a 
time-evolved local observable at late times gives an estimate for the equilibrium 
expectation value at the energy of the initial state. Repeating this experiment for 
initial states with different energy results in an estimate for the value of the 
observable in equilibrium as a function of energy.
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exponential interaction decay8,9. To engineer a phase transition in our 
system, we decrease the decay rate of the interactions with increasing  
system size by choosing Jij ≈ J exp(− γ

L
|i − j|) (Fig. 1b). This effectively  

gives our system the characteristics of a long-range interacting  
model. To render the energy extensive, we use the Kac normalization 
procedure41 by rescaling the overall prefactor of the Hamiltonian by  
𝒩𝒩 = 1

L−1
∑i<j( Jij/J ). Our choice of γ = 10.8 results from the need to be  

sufficiently detuned from the lowest energy mode for the largest sys-
tem size (giving a lower limit on γ) while still having a strong enough 
coupling to the modes for the smallest system size so that the dynam-
ics are faster than decoherence (resulting in an upper limit on γ).

To confirm that the Hamiltonian in equation (1) exhibits an equi-
librium phase transition, we use matrix product state simulations 
(Methods). Indeed, for g ≤ J, we find a low-energy ferromagnetic phase,  
characterized by a non-zero squared magnetization ⟨ ̂S2x⟩ ≡ ∑ij⟨σ̂

x
i σ̂

x
j ⟩/L

2  

(Fig. 1c). The paramagnet outside this ordered phase consists of two  
regions that are connected by a crossover: at low energies, the system 
is polarized along the transverse field, while at high energies both the  
transverse magnetization ⟨ ̂Sz⟩ ≡ ∑i⟨σ̂

z
i ⟩/L and the squared magneti-

za tion vanish, and the system is effectively in an unpolarized mixed 
state. While we expect the universality class to be given by the all-to-all 
connected model γ = 0, we numerically found that the critical tempera-
ture depends on γ (Extended Data Fig. 4).

Probing finite-energy states in a quantum 
simulator of spins
Our goal is to study the equilibrium phase diagram in Fig. 1c in a 
trapped-ion simulator. However, the preparation of equilibrium states 
by thermalization with an external bath is challenging in spin-system 
simulators such as trapped ions. This is due to the existence of noise 
sources whose effect can be modelled as a coupling to an infinite tem-
perature bath, which leads to a trivial non-equilibrium steady state. 
Instead, we use the fact that subsystems of a many-body quantum  
system thermalize under the system’s own dynamics due to the ETH31:  
the expectation values of local observables ⟨n|Ô|n⟩  with respect to 
eigenstates ∣n〉 of chaotic many-body Hamiltonians coincide with  
their value in the microcanonical ensemble 𝒪𝒪(En), evaluated at the 
corres ponding eigenenergy En. When starting from an initial state ∣ψ〉 
with an average energy E = ⟨ψ| ̂H|ψ⟩ , the time-averaged observable  
until time T

⟨ψ| ̂O(t)|ψ⟩ ≡ 1
T ∫

T

0
dt⟨ψ| ̂O(t)|ψ⟩

T→∞
→ ∑

n
|⟨n|ψ⟩|2⟨n|Ô|n⟩ (2)

therefore coincides with the microcanonical ensemble 𝒪𝒪(E)  if the  
energy-density variance of the initial state (⟨ψ| ̂H

2
|ψ⟩ − ⟨ψ| ̂H|ψ⟩

2
)/L2   

vanishes as L → ∞, that is if it fulfils the condition for a proper thermo-
dynamic ensemble. This condition is fulfilled for most physical initial 
states32 and, in these cases, ∣〈n∣ψ〉∣2 is called the diagonal ensemble. The 
ETH therefore motivates the following simple prescription to evaluat-
ing equilibrium observables (Fig. 1d): we prepare initial states with 
different energies E and evolve them to sufficiently late times while 
measuring the observable Ô. Finally, we record the time-averaged 
late-time observables on the left-hand side of equation (2) as a function 
of E as the resulting estimate for 𝒪𝒪(E).

The energy range that can be probed in this scheme depends on 
the initial states ∣ψ〉. We use product states in the σ̂x  basis. They are  
the eigenstates of the Hamiltonian for vanishing transverse field g = 0. 
The lowest-energy state is the maximally polarized state, and the 
energy density is mainly controlled by the number of spin flips. These 
product states cover a large range of energies even for non-vanishing 
g/J, indicated by the horizontal edges of the gold frame in Fig. 1c. The 
energy-density variance of these product states is given by g2/L, there-
fore also fulfilling the requirement on ∣〈n∣ψ〉∣2 imposed by the ETH.

To test the practical operation of our scheme, we measure the 
squared magnetization as a function of time for several product  
initial states for a chain of L = 13 spins (Fig. 2a, dots). We find excellent 
agreement with the numerical solution (dashed lines), which does  
not include experimental imperfections except the inhomogeneity 
of the interactions. In Extended Data Fig. 2, we also measure the time 
evolution of the energy, showing that it is approximately constant as 
expected in a closed system. Evaluating the time average in equation 
(2), we find an approximate convergence with the averaging time T 
for JT ≳ 8. Finally, we show the latest-time values of the time-averaged 
squared magnetization in Fig. 2c, along with the numerical results 
from time evolving to the same time as the experiment (crosses) and 
to infinite time (diagonal ensemble, stars). The canonical ensemble is 
shown as a solid line. We find good agreement between the equilibrium 
diagonal ensemble (which itself is in good agreement with the canonical 
ensemble) and the experimental data with at most 0.04 absolute error 
between the experiment and the diagonal ensemble. We attribute the 
deviations mainly to the finite experimental evolution time (Extended 
Data Figs. 7–9), with further imperfections studied in Extended Data 
Fig. 3. We note that, for large g/J, the thermalization time increases 
radically due to the presence of a dynamical quantum phase transi-
tion13 (Methods). In our studied range of small-to-moderate g/J, the 
good agreement of time-evolved observables with equilibrium ensem-
bles confirms that our scheme enables the evaluation of equilibrium 
observables on timescales accessible to the experiment.
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Fig. 2 | Verification of equilibration. a, Time-evolved squared magnetization in 
the experiment (dots) and numerical simulations (dashed lines). A total of 250 
repetitions were taken per data point. The initial states are listed in Extended 
Data Table 1. b, The time average (up to time T) of the time-evolved squared 
magnetization using the data from a (dots) and the corresponding numerical 
data (dashed lines), evaluated according to equation (2). The colour bar 
indicates the energy density of the initial states. c, A comparison of the latest-
time experimental data points from b (dots) and the numerical data evolved 

until the experimental time (crosses) and to infinite time, that is, the diagonal 
ensemble (stars, evaluated according to the right-hand side in equation (2)). The 
expectation from the canonical ensemble is shown as a solid line. The numerics 
use the experimentally realized interactions (Methods). L = 13, g = 0.31J. The error 
bars for the experimental data in a and b are from a jackknife binning analysis 
(see, for example, ref. 50). We do not show error bars in c as systematic errors due 
to finite evolution time dominate.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-024-02751-2

Observing a finite-energy phase transition
Having validated our scheme to prepare equilibrium states, we now use 
it as a tool to probe the phase diagram in Fig. 1c by repeating the proce-
dure for many values of the magnetic field g/J. We display the result for 
the squared magnetization in Fig. 3a along with the numerical result, 
which was obtained by time evolving the initial states to the same time 
as the experiment. We find good agreement between the two. At low 
energy densities and small transverse fields, a large squared magnetiza-
tion is observed. Conversely, at high energy densities and large trans-
verse fields, the squared magnetization is small. This is consistent with 
a phase transition between a ferromagnet and an paramagnetic state. 
In particular, we find a good qualitative match between our finite-size 
experiment and the infinite-system-size extrapolation displayed  
in the gold frame in Fig. 1c, including in particular the phase transi-
tion line (Fig. 3b, black line). This indicates weak finite-size effects.  

More specifically, we also measured the squared magnetization  
for varying system sizes, indeed finding a qualitative match between 
them, with some residual finite-size dependence due to the slightly dif-
fering transverse field g/J and the inhomogeneity of the experimentally 
realized interactions (Methods and Extended Data Fig. 5).

To probe this transition further, we also measure the transverse 
magnetization, shown in Fig. 3c,d, again finding reasonable agreement 
between numerics and experiment. Importantly, we find a large trans-
verse magnetization for large transverse fields and low energies, indi-
cating a polarized state along the transverse field. This polarization is 
destroyed as we move to higher energy densities, which is indicative 
of a finite-energy crossover from a polarized paramagnet in the ground 
state at large transverse fields to an unpolarized state at high energies. 
The presence of this crossover results from the fact that, for large 
transverse field g/J, the energy density is proportional to the transverse 
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The initial states are listed in Extended Data Table 1.
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magnetization such that ⟨ ̂Sz⟩ → 0  for (ϵ/J) → 0. In other words, the 
single-site reduced density matrix crosses over from a pure product 
state at low energies to an effective completely mixed state at high 
energies.

Counterintuitively, for intermediate energy scales around 
ϵ/J ≈ −0.3, the transverse magnetization displays a maximum as the  
field is increased and then decreases again as the field is increased  
further. This is due to the fact that our initial states have energy 
densi ties ϵ/J ≲ 1/2 (Fig. 1c, gold frame) while the ground-state energy 
decreases with g. This means that, as the transverse field is increased, 
we probe higher energy densities relative to the ground-state energy, 
explaining the decrease of the transverse magnetization.

Ordered phases are accompanied by long-range correlations  
throughout the system. We measured ⟨σ̂ x

i σ̂
x
j ⟩ for three different system  

sizes at the lowest and highest energy densities (Fig. 4). We again find 
good agreement with numerical simulations (Extended Data Fig. 6). 
We find large positive correlations in the bulk of the system for low 
energies, confirming the presence of a ferromagnetically ordered state. 
At high energies, the correlations approximately vanish throughout 
the system, showing that the high-energy state is disordered. The fact 
that we find no substantial decay of the long-range correlations as  
we increase the system size is consistent with an existence of a ferro-
magnetic phase in the infinite system-size limit (Methods and Extended 
Data Fig. 6).

Discussion and outlook
In this work, we have for the first time studied a finite-energy phase tran-
sition in one spatial dimension. To do so, we introduced a simple, yet 
powerful, scheme to prepare equilibrium states in a trapped-ion quantum 
simulator. This scheme uses product state preparation as well as time 
evolution under a many-body Hamiltonian, which are among the simplest 
tasks in quantum simulators. Even though, in principle, our algorithm 
could be used as a quantum-inspired classical algorithm by replacing the 
quantum simulator with a classical algorithm simulating time evolution, 
this would be challenging in practice for large systems due to the reli-
ance on non-equilibrium time evolution whose evaluation with classical 
methods is inefficient for the timescales necessary for thermalization.

We verified thermal state preparation by comparison with classi-
cal numerics. Outside of the regime of classical simulability verifica-
tion could by achieved by using the fact that late-time expectation 
value of observables between different initial states with the same 
energy should agree in equilibrium. Fluctuation–dissipation relations 
measured by two-time correlation functions42,43 could be used as a 
more rigorous indicator of thermalization, which would also yield the 
effective temperature. Finally, thermalization times could be reduced 
by weakly coupling engineered baths to the closed system evolution; 
this would also be accompanied by performance guarantees due to 
rigorous proofs of fast thermalization44.

Our scheme can be immediately applied in a variety of analogue 
and digital spin-simulator platforms including Rydberg atoms, quan-
tum dots and ultracold polar molecules to probe equilibrium states. For 
instance, equilibrium phases with continuous symmetry breaking16,17,45 
and other phases of various spin models10,46 could be studied. In the 
future, the capability of quantum simulators to prepare different 
system sizes could be used for a finite-size scaling analysis to study 
finite-energy phase transitions more quantitatively. Furthermore, 
long-standing questions in condensed matter physics such as the 
nature of the excitations above spin-liquid ground states47,48 could 
be studied in quantum simulators with our technique. In particular, 
dynamical correlation functions can be straightforwardly measured 
by using Ramsey interferometry49,50.
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Methods
Experimental details
In this section, we introduce the trapped-ion experiment in more detail, 
specifically emphasizing how we prepare the interactions in equation 
(1) of the main text and how we choose the initial states.

Generating spin–spin interactions between ions. We induce spin–
spin interactions among trapped ions through Raman transitions that 
virtually excite the collective motion of the ions. These Raman transi-
tions are generated using pairs of beams: one that globally addresses 
the ion chain and another that individually targets each ion. The global 
addressing beam passes through an acousto-optical modulator (AOM) 
concurrently driven by two radio-frequency (RF) signals. This process 
splits the optical beam into two components, each with a distinct tone 
and nearly equal power, which are then projected onto the ion crystal. 
Simultaneously, a perpendicular array of tightly focused beams is 
directed toward the ion positions. Precise control of the trapping 
potential ensures a high degree of overlap between each ion and these 
beams. We achieve simultaneous and independent control over the 
amplitudes and frequencies of these beams using a multi-channel 
AOM. This configuration drives both the first red- and blue-sideband 
transitions within the dispersive regime. The beatnote frequencies for 
these transitions are detuned by ±(ωN + Δ±) from the carrier transition, 
where ωN is the lowest frequency of the phonon mode along the radial 
direction. The detunings are nearly symmetric ∣Δ+ − Δ−∣ ≪ ∣Δ±∣.

This configuration generates the Hamiltonian in equation (1) for 
a chain of N ions. The asymmetry in the detunings between the two 
tones leads to an effective transverse magnetic field with an amplitude 
g = (Δ+ − Δ−)/4 in the frame that rotates at the carrier frequency. The 
symmetric part, Δ = (Δ+ + Δ−)/2, corresponds to the average detuning  
of the effective spin-dependent force. This, in turn, generates the  
Ising Hamiltonian ̂H = − 1

2𝒩𝒩
∑i<j Jijσ̂

x
i σ̂

x
j  with 𝒩𝒩 = 1

L−1
∑i<j( Jij/J )  and an 

interaction matrix16,40

Jij = ∑
k

ηikηjkΩiΩj
2(Δ + ωN − ωk)

. (S1)

Here, ηik = 0.08bik are the Lamb–Dicke parameters, with bik as the 
mode participation matrix elements describing the coupling between 
spin i and motional mode k (ref. 38). Ωi denotes the equivalent res-
onant carrier Rabi frequency at ion 1 ≤ i ≤ N for each tone, and ωk  
represents the motional frequencies along one radial direction in 
the y–z plane (labelled in decreasing order with 1 ≤ k ≤ N). These fre-
quencies are determined by the trapping potential; we use a quad-
ratic trapping potential in the radial direction with centre-of-mass 
frequency of ω1 = 2π × 3.075 MHz and an axial electrostatic potential 
of V(x) = c4x4 + c2x2, where c2 = 0.11 eV mm−2 and c4 = 1.6 × 103 eV mm−4 
for a 15-ion chain and c2 = −0.1 eV mm−2 and c4 = 235 eV mm−4 for a 27-ion 
chain. Here, x is the coordinate along the chain axis. These potentials 
result in a nearly uniform spacing of the central ions in the crystal, 
except for the edges, with a spacing of 3.75 μm to match the centres 
of the uniformly spaced beams used for individual addressing. The 
motion of the ions in the y–z (radial) plane is described by two sets of 
N collective phonon modes, representing the ions’ motion along two 
orthogonal directions. The effective wave vector of the optical field is 
spatially aligned to selectively drive a single set of these radial phonon 
modes in the y–z plane. The effective wave vector of the optical field 
is aligned to selectively drive only one specific set of radial phonon 
modes.

To estimate the form of the Jij, we calculate the mode participation 
factors by solving the Laplace equation assuming harmonic radial 
potential with a strength measured from experiment and used the 
electrode voltages, from which we find the positions of the ions, from 
which we determine the mode participation matrix elements and the 
eigenfrequencies. This then enables us to calculate the ̃Jij  from the 

measured individual Rabi frequencies and the detunings from the 
modes using equation (S1); see ref. 16 for more details on our setup.

We detune Δ to the red side of the mode spectrum (Δ < 0) to 
prima rily couple to phonon modes characterized by rapidly varying 
mode participation factors (that is, near the zig-zag phonon mode 
and far from the centre-of-mass phonon mode). For a uniform-spaced 
ion chain, this choice results in an interaction matrix ̃Jij  consisting  
of two terms primarily dependent on the ion separation distance  
∣i − j∣: an inverse cubic (power-law) term and an exponentially decreas-
ing term that alternates with the spin distance, appended by a  
factor (−1)∣i−j∣. As we reduce ∣Δ∣, the exponential term becomes domi-
nant over the power-law term, particularly at short distances. To 
generate a non-alternating ̃Jij matrix, we shift the optical phase of the 
individual beam array in a staggered way, shifting the phase of all odd 
beams by π.

Individual control over the beam amplitudes provides additional 
flexibility in manipulating the interaction matrix. Specifically, by 
turning off the beam targeting ion q, we effectively eliminate Jqi for all 
1 ≤ i ≤ N, rendering its participation in the phonon modes independ-
ent of its spin. This capability allows us to simulate the evolution of 
L ≤ N spins in an N-ion chain. Utilizing this technique, we realize the 
interaction of L = 7, 13 and 23 spins in chains of N = 15, 15 and 27 ions, 
respectively, with the beams symmetrically turned off near the crystal’s 
edges. Not including the edge ions’ spins allows us to achieve chains 
with more uniform spacing through the presence of their charge.

For the L = 7 and 13 configurations, we use uniform beam  
amplitudes. In the case of the L = 23 configuration, the relative Rabi 
frequencies of the 23 beams are chosen as follows: [1, 1, 0.72, 0.76, 0.6, 
0.72, 0.63, 0.81, 0.72, 0.91, 0.78, 0.94, 0.78, 0.9, 0.72, 0.8, 0.62, 0.71, 
0.59, 0.75, 0.71, 0.99, 1], alleviating the variation of the interaction 
strength across the chain due to the spatial dependence of the rapidly 
varying mode participation factors. We define J = 2maxij( Jij)  and  
had J ≈ 2 × 2π kHz in all experiments. The detunings are set at  
Δ = − 2π × 100 kHz for L = 7, Δ = −2π × 35 kHz for L = 13 and Δ = −2π × 9 kHz 
for L = 23.

To account for the light shift induced by the beams on the ions 
in each configuration, we perform calibration and compensation by 
applying an opposite shift to the optical frequencies of the individual 
beams. For the L = 13 configuration, we additionally use a variation of 
a dynamical decoupling technique51 that we have found effective in 
mitigating σz noise (such as light-shift noise). In particular, we break 
the Hamiltonian evolution into two periods, separated by a short π 
pulse that is applied to all spins, rotating around the x axis. Inverting 
the sign of g for the second evolution period yields the same evolution 
as the original Hamiltonian.

Initial-state preparation. The initial states are chosen by selecting 
target energies Etarget equally spaced in a window [Emin, Emax], where Emin 
is the energy of the totally polarized state (that is, the ground state for 
g = 0) and Emax is some high-energy limit close to zero. We then find the 
x-product state ∣ψ〉 which minimizes |⟨ψ| ̂H|ψ⟩ − Etarget| for all Etarget, using 
the experimental Jij. In practice, we do this by calculating ⟨ψ| ̂H|ψ⟩ for  
all 2L states ∣ψ〉, which is numerically cheap even for L = 23. For much 
larger systems, finding states closest to a particular energy could be 
done by using an optimization algorithm. We show the thus selected 
initial states in Extended Data Table 1. Note that states with the same 
number of spin flips can have different energies due to the lack  
of translational invariance and the inhomogeneities present in the 
experimentally realized Jij (Extended Data Fig. 1).

The preparation of product states begins with optical pumping, 
initially aligning all spins to the ↓z state by coupling the spin states in the 
F = 1 manifold of the ground state to the 2P1/2 levels. A repump at 935 nm 
is used to depopulate any leakage to the 2D3/2 state. Subsequently, 
spins are rotated by simultaneously applying short (~1 μs) single-qubit 
rotation pulses to all spins in the chain. This operation rotates the ith 
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spin by polar angle θi and azimuthal angle ϕi via the rotation operator  
R(θi, ϕi). We achieve this operation using Raman beams to drive the 
carrier transition and set θi = π/2 for all ions by adjusting the power of 
the individual beams, which are independently calibrated to account 
for any inhomogeneity in the ions’ positions and non-uniformity of 
the global beam. To set the spin orientation of the initial spin state 
in the x basis, we set the optical phase of the ith beam in the array 
as ϕi = π/2 (ϕi = 3π/2) if the initial state corresponds to ↑ (↓), with 
the quanti zation axis along x. The ability to simultaneously shift the  
phase of each optical beam in the array is enabled by local parallel RF 
control on our multi-channel AOM.

To test the experimental preparation of these initial states,  
we evaluate the energy from measurements of ⟨σ̂ x

i σ̂
x
j ⟩, ⟨σ̂zi ⟩ as well as  

the calculated Jij in equation (S1) and the experimentally calibrated 
value of g/J. We show the results of these measurements for L = 13 in 
Extended Data Fig. 2 for different g/J. These measurements are in good 
agreement with the theoretical calculation, which confirms that the  
Jij are as we expect them to be and that initial-state preparation is  
good. In particular, the energy does not strongly depend on g/J, which 
confirms that there is no substantial component of the initial state in 
the direction of the transverse field. We also find reasonable conserva-
tion of the energy as a function of time, providing a measure for the 
strength of decoherence processes in our simulator. We further study 
the influence of decoherence on the dynamics in the next section.

As visible in Fig. 3 of the main text, we found less good agreement 
between theory and experiment for the transverse magnetization 
than for the squared magnetization. We attribute at least some of this 
additional error to over-underrotation errors in the state prepara-
tion. Indeed, we observed that the initial transverse magnetization is 
not exactly vanishing (Extended Data Fig. 3a). To test this hypothesis 
further, we used numerical simulations in which we slightly rotated the 
initial product state around the y axis to reproduce the experimentally 
measured transverse magnetization (Extended Data Fig. 3b), finding 
better agreement with the experiment than with initial states purely 
along the x direction.

Influence of errors on the dynamics. Unitary spin evolution is  
accompanied by noise, which we associate with three dominant pro-
cesses. One noise process stems from a noisy spin-dependent shift, 
associated with σ̂zi  as the jump operator, originating primarily from 
fluctuations in the a.c. light shift associated with the Raman drive. 
Therefore, for a nearly uniform beam drive, the noise is approximately 
common mode and the jump operator is ∑N

i=1 σ̂
z
i . The second noise 

process is related to spin-flip errors associated with the jump operator 
σ̂xi , which originates from off-resonant spin excitation correlated with 
phonon transitions. However, owing to the detuning of the drive from 
the phonon mode spectrum, this coupling oscillates at a timescale 
much faster than the spin–spin dynamics, so the error manifests itself 
as a time-constant error, which, to lowest order, affects only state 
preparation. The third process pertains to shot-to-shot variations in 
the strength of the Jij coefficients owing to effective noise in the drive 
strength Ωi that is prominent for long chains of ions52. To show that all 
of these noise processes do not have a substantial influence on the 
dynamics, we estimate their strength experimentally using independ-
ent calibration experiments and then classically simulate the full 
many-body dynamics in the presence of the noise, to further validate 
the agreement of the experiment with the noiseless numerics pre-
sented in the main text.

We estimate the strength of the dephasing process due to the a.c. 
Stark shift by initializing the system in state |↑ ⋯ ↑⟩ and applying the 
g = 0 Hamiltonian. We fit the measured magnetization as a function  
of time to an exponential fit function 1

L
∑i⟨σ̂

x
i (t)⟩ = exp(−γt)  using  

the dephasing rate γ ≈ 4 × 10−3J as a single fitting parameter. We simulate 
the dephasing process in our numerics by applying on g a white  
noise whose variance yields the same measured decay53.

The strength of the spin-flip state-preparation errors is estimated 
by preparing pairs of neighbouring spins in state |↓↑⟩z  and applying a 
single pair of Raman beams that drives their Ising coupling, that is the 
Hamiltonian J

2
σ̂ x
i σ̂

x
i+1  with no transverse field. We then measure the 

parity-related observable ⟨σ̂zi σ̂
z
i+1⟩, which should be −1 in the absence  

of errors. We find this observable to be approximately independent  
of time, confirming the time-constant nature of the error. Modelling 
this error as a single-spin bit-flip process, we extract its probability p 
per ion via p = 1

2
(1 −√−⟨σ̂zi σ̂

z
i+1⟩), assuming p < 0.5 and, therefore, 

⟨σ̂zi σ̂
z
i+1⟩ < 0. From these calibration measurements, we find pi = [0.08, 

0.1, 0.13, 0.16, 0.16, 0.15, 0.14, 0.15, 0.16, 0.17, 0.17, 0.13, 0.1] for our 
13-ion chain. In our numerical simulations, we include this error by 
flipping the spin i with probability pi before we start the dynamics.

Finally, we estimate the shot-to-shot variation of the Jij using  
the same experimental procedure as the spin-flip state preparation 
errors by extracting (⟨σ̂zi+1⟩ − ⟨σ̂zi ⟩)/(⟨σ̂

z
i+1⟩ + ⟨σ̂zi ⟩)  and fitting a function 

exp(–(Jt)2/(2σ2)) cos(Jt). The denominator divides out single-qubit 
errors, which are primarily caused by dephasing between the two 
opposite spin states spanning the −1 parity. The fitting function is 
obtained by assuming shot-to-shot fluctuations of the form J → J(1 + δ), 
where δ are Gaussian distributed with mean zero and variance 1/σ2, 
which is a good model at short times52. We find σ between 0.07 and 0.14 
over the 12 bonds in the chain. In our numerics, we assume that the 
shot-to-shot variations are perfectly spatially correlated, that is, 
Jij → Jij(1 + δ) and take σ = 0.14, providing an upper bound on the experi-
mentally measured noise.

We show the result of the simulations including all three sources 
of noise in Extended Data Fig. 3c,d. In general, we find that the  
noise does not alter the dynamics substantially. The largest visible  
difference between the noisy results and the noiseless results is in the  
dynamics of ⟨( ̂S

x
)
2
⟩  for the totally polarized state at the smallest  

magnetic field, where the a.c. Stark shift dephasing leads to a small  
but visible decay of the signal.

We also estimated the accuracy with which we set the transverse 
field g in a dedicated calibration experiment. We measure g by evolving 
a spin state, initially prepared in |↑ ⋅ ↑⟩, under the Ising Hamiltonian for 
various values of g near zero. We measured magnetization ⟨σ̂ x

i ⟩( g) and 
found a quadratic dependence on g, with the value of g that resulted in 
the average (over i) smallest magnetization indicating the actual zero 
transverse field, for which the spins do not evolve. Using this technique 
to estimate g, we can characterize how well we correct for slow errors, 
probably due to slow variations or drift in the light shift associated with 
the beams driving the Ising interaction. These drift errors are independ-
ent of the target value of g in the experiment because the latter depends 
on the frequency shift of the beams, which can be determined with 
high precision. To compensate for light-shift variations, we run two 
routine rapid calibrations: one adjusts the d.c. trapping potential 
minima to optimally align the ions with the Raman beams array, and 
the second adjusts the laser amplitude to maintain accurate reference 
single-qubit rotations. We typically run these calibrations every 20 min. 
Measuring the value of g after one such cycle shows that these calibra-
tions maintain the g value relatively well; the measured value between 
two calibration cycles varied by 26 Hz, corresponding to an accuracy 
error of approximately 1% in units of J.

Equilibrium phase diagram
In this section, we determine the finite-temperature phase diagram of 
the model in equation (1) of the main text and discuss how to probe it 
in the finite-energy setting of the experiment.

Finite-temperature phase diagram. To extract the equilibrium proper-
ties of the model presented in the main text, we use matrix-product-state 
(MPS) simulations in the canonical ensemble using the purifica-
tion algorithm54,55 and the WII matrix-product-operator time evo-
lution method56 implemented in the TeNPy library57. We choose 
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double-floating-point precision, a timestep of Δt = 0.02 and a bond 
dimension of 16, and checked that the absolute error in the observables 
was less than 1% compared with simulations with half the timestep  
and double the bond dimension. The error due to floating point  
precision is inconsequential in our simulation.

We use the standard procedure (see, for example, ref. 50) of using 
the Binder cumulant58–60

U4 = 1 −
⟨( ̂S

x
)
4
⟩

3⟨( ̂S
x
)
2
⟩
2 (S2)

to detect the ferromagnetic phase transition. In this expression, 
⟨ ̂S2x⟩ ≡ ∑ij⟨σ̂

x
i σ̂

x
j ⟩/L

2 , ⟨ ̂S4x ⟩ ≡ ∑ijkl⟨σ̂
x
i σ̂

x
j σ

x
k σ

x
l ⟩/L

4 . The Binder cumulant is  
equal to 2/3 (0) deep in the ferromagnetic (paramagnetic) phase, and 
the leading finite-size corrections cancel at the phase transition. Hence, 
calculating the Binder cumulant for consecutive system sizes, extract-
ing their crossing points and extrapolating those to infinite system  
size leads to a precise estimate for the critical temperature. We show 
one such procedure in Extended Data Fig. 4a,b and a comparison of 
our MPS simulations with a classical Monte Carlo simulation for g = 0 
in Extended Data Fig. 4c. We estimate an error of our extrapolation by 
comparing the critical temperature Tc obtained from system sizes 16, 
32, 64 and 16, 32, 64, 128, finding an error of 0.01–0.03J.

We show the thus-extracted phase diagram in Extended Data 
Fig. 4d. For γ = 0 (infinite-range interactions), we find excellent agree-
ment with the mean-field solution Tc/J = (g/J)/arctanh(g/J). Interestingly, 
we find that Tc /J increases as γ/J is increased. This indicates that the 
model shows a phase transition even for large γ/J. For large γ, however, 
increasingly large system sizes are needed to capture the phase transi-
tion, which limits the range of our simulations. For g/J = 1, we find Binder 
cumulant crossing points that move towards higher temperature as the 
system size is increased. This indicates that the model is paramagnetic 
for g/J > 1 for all γ studied here.

Scaling. We also extract one of the critical exponents from the  
Binder cumulant by using the method described for example in ref. 61: 
we fit Tc(L) = Tc(1 + aL−ω−θt ) to the crossing temperatures and U4,c(L) =  
b + cL−ω to the values of the Binder cumulant at the crossing tempera-
tures, where b and c are real fitting constants. From this, we can  
extract θt, which is connected to the critical exponent ν and find θt ≈ 0.5, 
0.52, 0.54 and 0.69 for g = 0.0, 0.25, 0.5 and 0.75. Surprisingly, this 
indicates a dependence of θt on the transverse field. However, we 
emphasize that our estimates are rather low-confidence because of 
the comparatively small system sizes used here. Moreover, we cannot 
give error estimates for yt because we use three data points to fit three 
parameters. Nevertheless, we show that the thus-found θt leads to a 
good scaling collapse of the Binder cumulant (see Extended Data Fig. 4e 
and compare with Extended Data Fig. 4a for the uncollapsed data). The 
exponent θt = 0.5 corresponds to the mean-field exponent, which is 
exact in the all-to-all connected model γ = 0. We also extract a slightly 
different Tc from this procedure but generally find agreement with the 
procedure shown in Extended Data Fig. 4a,b within about 3%.

Energy phase diagram from canonical simulations. We extract the 
finite-energy/microcanonical properties of the model by using the 
equivalence of ensembles in the infinite-system-size limit. To do so, 
we extrapolate the energy as a function of temperature E(T) to infinite 
system size (Extended Data Fig. 4f). Doing the same for observables 
(Extended Data Fig. 4g) enables us to convert all observables to be as 
a function of energy instead of temperature by similarly extrapolat-
ing the value of the observables to infinite system size. In particular, 
we obtain the critical energy line shown in Fig. 1c of the main text by 
using the extrapolated numerically obtained E(T) to obtain the critical 

energy Ec /J from the critical temperature Tc /J, which was obtained by 
the procedure discussed in ‘Equilibrium phase diagram’ section.

Finite-size effects in energy-dependent observables. The finite-size 
dependence of temperature-dependent observables in the vicinity 
of the critical temperature of a second-order phase transition can 
be captured by considering the growth of the correlation length as 
the system size increases, leading to the theory of finite-size scaling. 
However, much less is known about finite-size scaling in the micro-
canonical ensemble62 and even less in the diagonal ensemble, which 
is the one experimentally realized in this work. To get a rough idea for 
how strong finite-size effects are on energy-dependent observables, 
we display the squared magnetization for different system sizes as a 
function of energy, evaluated with MPS simulations in the canonical 
ensemble in Extended Data Fig. 4h. We find that the finite-size correc-
tions for L ≳ 32 are almost invisible for this observable and much weaker 
than, for instance, the finite-size corrections in the Binder cumulant 
as a function of temperature shown in Extended Data Fig. 4a. This is in 
tune with the observation that the measured squared magnetization for 
L = 13 shown in Fig. 3 of the main text is close to the infinite-system-size 
extrapolation shown in Fig. 1c. We found that finite-size effects become 
stronger as g/J is increased. Moreover, we find in Extended Data Fig. 4h 
that the squared magnetization extrapolated to infinite system size 
does not exactly vanish at the critical energy extracted from evaluat-
ing the infinite-system-size extrapolated energy at the critical tem-
perature. We attribute this to the fact that the infinite-system-size 
extrapolation has not fully converged yet for both the critical energy 
(c.f. the grey error bar lines in Extended Data Fig. 4h) and also the 
squared magnetization in the vicinity of the critical energy (c.f. the 
uncertainty for both the energy density and the squared magnetiza-
tion in Extended Data Fig. 4f,g). We note that this is to be expected for 
finite-size extrapolation of the order parameter in an Ising-like transi-
tion as in a finite-size system the order parameter rounds off, leading 
to a small but non-vanishing magnetization even for ϵ/J > ϵc /J in finite 
systems, where ϵc is the critical energy density.

To test how experimental imperfections in the interactions due 
to inhomogeneities affect this result, we compare the canonical result 
using the calculated experimentally realized interactions (c.f. Extended 
Data Fig. 1) with the corresponding result using the ideal, homogene-
ous interactions. We find that the inhomogeneities in the interactions 
lead to deviations from the homogeneous result, which hampers a sys-
tematic finite-size extrapolation. Nevertheless, as shown in Extended 
Data Fig. 5, the experimental data, which are data obtained from time 
evolution, show little finite-size effects as expected from our numerical 
calculations for homogeneous interactions. Moreover, we note that, 
in principle, the interactions could be made homogeneous by further 
engineering the addressing beams63. We attribute the main source of 
the deviation of the experimental data from the noiseless numerics 
to the systematic error coming from the fact that we evolved only to 
finite times.

Correlation functions. In Extended Data Fig. 6, we show numerically 
calculated correlation functions at high and low energy with the same 
parameters as in Fig. 4. We evolved to the same time as in the experi-
ment and used the calculated experimentally realized interactions 
shown in Extended Data Fig. 1. We find, in general, good agreement. In 
particular, the remnant of ferromagnetic correlations in the top right 
corner of Extended Data Fig. 6b, L = 13 and L = 23, is also visible in the 
experimental result, showcasing that the measured patterns are indeed 
physical. Moreover, the slight reduction in correlations in the centre 
of Extended Data Fig. 6a, L = 23, is also visible in the experiment, albeit 
is less pronounced.

To show the crucial role of normalizing the exponent of the  
exponential decay of the interactions by 1/L, we show in Extended  
Data Fig. 6c,d the correlation function ⟨σ̂ x

i σ
x
j ⟩ for the definition of the 
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Hamiltonian in the main text (that is, with perfectly homogeneous 
interactions) as well as without the normalization, that is,

Junnormalized
ij = exp (− γ

13 |i − j|) , (S3)

with γ = 10.8, where we chose the denominator to match the definitions 
for the relatively small system size L = 13. We find that, while the  
correlations become longer ranged as the system size increases for  
the definition in the main text, the correlations decay to zero  
quickly as the system size increases when using Junnormalized

ij , showing 
the absence of a long-range-ordered phase at this temperature. This  
is in agreement with the expectation that purely exponentially  
decaying interactions are in the universality class of the model with 
nearest-neighbour interactions.

Time-evolution method to evaluating equilibrium observables
In this section, we introduce our method in greater detail and check 
several underlying assumptions for our specific case.

Overview of the method. Our method to experimentally prepare 
thermal states is using a measurement of time-averaged observables Ô

⟨ψ| ̂O(t)|ψ⟩ ≡ ∫
T

0
dt⟨ψ| ̂O(t)|ψ⟩

T→∞
→ ∑

n
|⟨n|ψ⟩|2⟨n|Ô|n⟩

(S4)

with respect to an initial state ∣ψ〉 of energy E = ⟨ψ| ̂H|ψ⟩. In the second 
step, we inserted the energy eigenbasis ̂H|n⟩ = En|n⟩ and assumed that 
the Hamiltonian has a non-extensive number of degenerate states. The 
ETH31 states that the expectation values of a local observable Ô  
with respect to eigenstates ∣n〉 of the Hamiltonian with eigenenergy En 
are given by

⟨n|Ô|n⟩ = 𝒪𝒪(En), (S5)

where 𝒪𝒪(En) is the value of the observable in the microcanonical ensem-
ble at energy En, which is a smooth function of energy. If the prob-
ability distribution ∣〈n∣ψ〉∣2 has a vanishing energy-density variance  
(⟨ψ| ̂H

2
|ψ⟩ − ⟨ψ| ̂H|ψ⟩

2
)/L2

L→∞
→ 0  in the thermodynamic limit, then we can  

directly follow from ETH that ∑n|⟨n|ψ⟩|2⟨n|Ô|n⟩ = 𝒪𝒪(E )∑n|⟨n|ψ⟩|2 = 𝒪𝒪(E ) 
and, therefore,

⟨ψ| ̂O(t)|ψ⟩ → 𝒪𝒪 (⟨ψ| ̂H|ψ⟩) . (S6)

This motivates the following protocol to evaluate expectation 
values of observables in the microcanonical ensemble, which we  
follow in the main text:

 (1) Prepare initial state ∣ψ〉, for example a product state, with 
energy Eψ = ⟨ψ| ̂H|ψ⟩.

 (2) Evolve under Hamiltonian ̂H  until time t.
 (3) Measure Ô at various times t ≤ T.
 (4) Evaluate the time average in equation (S4).
 (5) Converge with respect to T.

Finite-size effects of the diagonal ensemble. For the diagonal ensem-
ble expectation values (that is, the late-time expectation values of 
observables) to approach the microcanonical ensemble, the expecta-
tion values of the observables with respect to the eigenstates ⟨n|Ô|n⟩ 
should form a smooth function of the energy En over the width of the 
diagonal ensemble ∣〈n∣ψ〉∣2. In a finite system, both of these conditions 
can be and often are violated. This means that the long-time expectation 
value of an observable evolved from two initial states that are close in 

energy can be very different. We show this observation for our system 
in Extended Data Fig. 7, where we show the diagonal ensemble expecta-
tion values along with the time-averaged expectation value of the 
observable evolved to the latest time available in the experiment for all 
2L x-product states, as well as the canonical ensemble and the experi-
mental data. We find that, for small transverse fields, the scatter around 
the canonical ensemble is larger, which we attribute to the interplay 
between the weak breaking of integrability at g = 0 and finite-size effects. 
We also find that the time we evolved to in the experiment is largely  
long enough to reproduce the overall behaviour as a function of energy, 
with some finite-time differences visible for g/J = 0.21 and L = 13.

We also note that the states we chose in the experiment by the 
procedure described in ‘Initial-state preparation’ section are roughly 
representative of all states, that is, their scatter around the canonical 
ensemble is similar to the scatter of all product states.

Verification of thermalization. In Extended Data Fig. 8, we show the 
analogue of Fig. 2 in the main text across all transverse fields shown in 
Fig. 3 of the main text, with the same initial states for all fields, tabulated 
in Extended Data Table 1b. We find a similarly good match for all fields, 
with the agreement becoming better for larger fields. For the numerical 
calculations, we used the interactions shown in Extended Data Fig. 1b.

To test thermalization more rigorously, we perform MPS simula-
tions for larger systems, starting from the totally polarized initial state 
|↑ ⋯ ↑⟩, defined along the x axis (that is, the lowest-energy product 
initial state for g = 0). We show the relative deviation from the thermal 
expectation value (obtained from purification-MPS simulations, as 
introduced in ‘Finite-temperature phase diagram’ section, at the same 
system size) in Extended Data Fig. 9. We find that, for small fields, the 
relative error reaches a plateau as a function of time, with the value of 
the plateau decreasing for increasing system size, which is an indication 
that, in the infinite-time and infinite-system-size limit, the long-time 
value and the thermal value approach each other. In general, the relative 
error increases with transverse field. At around g/J ≈ 0.625, we find  
an approximately power-law decay of the relative error instead of a 
plateau, before erratic oscillations set in that depend heavily on the 
time step and bond dimension. For even larger fields, a plateau is again 
reached that, however, now tends to larger error as the system size is 
increased. This is to be expected as, for large transverse fields, this 
model shows prethermalization: instead of a thermalization to the 
transverse-field Ising model, the system thermalizes to the XY model 
owing to the quasi-conservation of the transverse field. Indeed, at large 
transverse field, the long-time value of the squared magnetization 
approaches 1/2 as expected from the XY model instead of 0 as expected 
from the transverse field Ising model. Moreover, at intermediately large 
field, this deviation from thermal behaviour has been associated to a 
dynamical quantum phase transition13,64,65, but the exact relation to 
prethermalization is unresolved. In any case, these effects constrain 
the applicability range of our method to small values of the transverse 
field.

Data availability
All data are available from the corresponding authors upon reason-
able request.

Code availability
All codes are available from the corresponding authors upon reason-
able request.
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Extended Data Fig. 1 | Interaction matrices. Normalised experimentally realized interaction matrices Jij/(2J𝒩𝒩) calculated from the mode spectrum and the beam 
parameters. a, L=7, b, L=13, c, L=23.
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Extended Data Fig. 2 | Measured energies. Time evolution of the measured 
energy for three different fields and all initial states prepared in Fig. 2 of the main 
text. a, g/J=0.04, b, g/J=0.21, c, g/J=0.41. Errors from quantum projection noise 
for the spin observables and Gaussian error propagation. Error bars increase for 

larger g/J because the error bar is dominated by the transverse field term and is 
hence proportional to g/J. Horizontal lines indicate the target energy shown in 
Extended Data Table 1.
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Extended Data Fig. 3 | Simulation of imperfections. a, Numerical simulations of 
the transverse magnetization ∑i⟨σ̂

z
i ⟩/L using the same Jij as the experiment (solid 

lines). b, Numerical simulation of the transverse magnetization ∑i⟨σ̂
z
i ⟩/L using a 

tilted initial state (dashed lines, see text for definition). Dots in both subfigures 
are experimental data for the same initial states as shown in Fig. 2 of the main 
text. g/J = 0.31. L = 13. Numerical simulations including noise of c, Squared 
magnetization and d, Transverse magnetization. Black solid lines closest to data 

are corresponding noiseless results (that is not including the three noise sources 
discussed in the Methods, section “Influences of errors on the dynamics”), while 
dashed lines are the noisy results. We show dynamics of the two initial states with 
largest and smallest energy evolving under the smallest and largest magnetic 
field. We emphasize that this is the only figure that includes noise in the 
numerics; all other numerics are noiseless.
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Extended Data Fig. 4 | Finite-energy phase diagram. a, Binder cumulant 
from purification-MPS for different system sizes. b, Crossing temperature of 
two consecutive system sizes. X-axis is defined as the smaller of the two. Bond 
dimension 16, time step 0.01/J, γ = 10.8, g/J = 0.25. c, Verification of matrix-
product-state simulations using classical Monte Carlo. Monte Carlo simulations 
employ a Wolff cluster update [59]for long-range interactions [60] and 106 
Monte Carlo iterations. d, Phase diagram extracted from matrix-product-state 
simulations. System sizes up to L = 128 were used in the finite-size extrapolation 
described in the text. Black dots indicate classical Monte Carlo results for g = 0. 
Black solid line is the analytical mean-field result for γ = 0. e, Scaling collapse of 
the Binder cumulant. Same data as in subfigure a. Tc(L) is chosen such that all 
system sizes cross at T − Tc(L) = 0. f, Energy density and g, Squared magnetization. 
The infinite-system-size extrapolation is using a quadratic fit to the finite-size 
results. g/J = 0.25. Gray shading is an estimate for the residual finite-size error 
obtained by comparing the extrapolation result using system sizes 16, 32, 

64 and 16, 32, 64, 128. h, i, Finite-size behavior of energy-dependent squared 
magnetization. Solid lines are obtained from MPS simulations in the canonical 
ensemble using the target interactions defined in Eq. (1) of the main text. 
Transverse field g/J = 0.25, γ = 10.8, bond dimension χ = 16. h, System sizes chosen 
as powers of two. The vertical gray line indicates the critical energy Ec/J ≈ − 0.08 
obtained as described in section “Equilibrium phase diagram”. The thickness of 
the light gray line indicates the uncertainty of the critical energy due to residual 
finite-size effects, defined as the difference in critical energy obtained from the 
infinite-system-size extrapolation using system sizes 16, 32, 64 and 16, 32, 64, 
128. Dark gray shading is an independent estimate of the uncertainty resulting 
from the uncertainty in the critical temperature (± 0.01J). i, Experimentally 
probed system sizes using homogeneous interactions (full lines) using the 
inhomogeneous experimentally realized interactions, shown in Extended Data 
Fig. 1.
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Extended Data Fig. 5 | Experimentally measured squared magnetization for different system sizes. Experimentally measured late-time squared magnetization 
(dots) compared to the numerical results in the canonical ensemble for the experimental Jij (dashed lines, same as dashed lines in Extended Data Fig. 4i). g/J = 0.24, 0.21, 
0.18 for L = 7, 13, 23, respectively.
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Extended Data Fig. 6 | Correlation functions. a, b, Correlation functions  
from numerical evaluation of time evolution with same parameters as Fig. 4 in  
the main text. First column: L = 7, second column: L = 13, third column: L = 23.  
c, d Matrix-product-state simulations of finite-temperature state. g/J = 0.5, 
temperature T/J = 0.25, bond dimension 16, time step 0.01/J. System size 8, 16, 32, 

64 increasing from left to right. In c, d we use the interactions Jij in the main text, 
Junnormalized
ij  defined in Eq. (S3) respectively. We find that the correlations decay 

faster as system size is increased when the interactions are not normalized, 
indicating the absence of long-range order.
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Extended Data Fig. 7 | Thermalization of all x-product initial states. Obtained from noiseless numerics evolved to the experimental latest time (crosses) and infinite 
time (orange dots). Blue dots are the latest time points of the time averaged experimental data. a, L=13, g/J = 0.1, b, L=13, g/J = 0.21, c, L=7, g/J = 0.12, d, L=7, g/J = 0.24.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Verification of equilibration. Same plot as Fig. 2 of main 
text for all transverse fields shown in Fig. 3 of the main text. The transverse field 
is fixed for each row and increases from top to bottom: g/J = 0.04 (a), 0.10 (b), 
0.21 (c), 0.31 (d), 0.41 (e), 0.62 (f). g/J = 0.31J corresponds to Fig. 2 of the main 
text, which we repeat here for completeness. System size L = 13. First column: 
time-evolved squared magnetization in the experiment (dots) and numerical 
simulations (dashed lines). Second column: time-average (up to time T) of the 
time-evolved squared magnetization using the data from the first row (dots) 

and the corresponding numerical data (dashed lines), evaluated according to 
Eq. 2 of the main text. Third column: comparison of the latest-time experimental 
data points from the second column (dots), numerical data evolved until the 
experimental time (crosses) and to infinite time, that is the diagonal ensemble 
(stars, evaluated according to the RHS in Eq.(S4)). The expectation from the 
canonical ensemble is shown as a solid line. The numerics use the experimentally 
realized interactions. L = 13, g = 0.31J. Error bars for the experimental data are 
quantum projection noise and are smaller than the point size.
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Extended Data Fig. 9 | Test of thermalization for large systems. Matrix-product-state simulations for the totally polarized initial state using bond dimension χ and 
imaginary time evolution step Δt. γ = 10.8. g/J = 0.125, 0.25, 0.5, 0.625, 0.75 for a, b, c, d, e, respectively.
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Extended Data Table 1 | Table of initial states

a, Initial states for L = 7. b, Initial states for L = 13. c, Initial states for L = 23. States are eigenstates of σ̂x
i .
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