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We define a quantum monomer-dimer model in the space of maximal dimer coverings of qua-
sicrystalline Penrose tilings. Since Penrose tilings do not admit perfect dimer coverings, as shown
by F. Flicker et al., PRX 10, 011005 (2020), monomers are necessarily present in our model. The
model features a frustration-free Rokhsar-Kivelson (RK) point where the ground state is a uniform
superposition of all the exponentially many maximal dimer coverings, despite the presence of a
finite density of monomers. We map our model to a Z2 gauge theory with matter and calculate
various correlators to characterize the phase of the system at the RK point using classical Monte
Carlo calculations. Specifically, we compute the dimer-dimer and vison-vison correlators, as well
as open Wilson lines and closed Wilson loops corresponding to the monomers and the visons. We
find that both the dimer-dimer and vison-vison correlators decay exponentially with distance. The
open Wilson lines and closed Wilson loops decay exponentially with the same correlation length,
indicating that the gauge theory is in the confined phase, which implies that the system is likely in
an ordered phase.

Introduction.—Quantum dimer models are constrained
models where the fundamental degrees of freedom called
dimers occupy two neighboring sites of a lattice. In 1988,
Rokhsar and Kivelson (RK) proposed the first quantum
dimer model [1]. Since then quantum dimer models have
been extensively studied on a number of lattices in one,
two, and three dimensions [2–17]. Depending on the
lattice and the dimensionality, quantum dimer models
exhibit a rich set of phases possessing exotic proper-
ties. The original quantum dimer model proposed by
Rokhsar and Kivelson on the square lattice was later
shown to have an ordered ground state with dimer de-
fects (monomers) being linearly confined (i.e. their in-
teraction potential grows linearly with distance) [18–
22]. The situation is more interesting in the triangular-
lattice dimer model, where the ground state was found
to possess Z2 topological order with fractionalized excita-
tions [5, 23–25] and nontrivial topological entanglement
entropy in an extended region of the phase diagram. In
three dimensions, a quantum dimer model on the frus-
trated pyrochlore lattice hosts a U(1) quantum spin liq-
uid with fractionalized electric charges, loop-like mag-
netic monopoles, and gapless photons [6, 10, 11, 16, 26].
These examples show that quantum dimer models have
very distinct behavior depending on the lattice on which
they are defined.

It is only in the last few years that attention has
gone towards classical dimer models on more complex
quasicrystalline lattices [27–29], which can be viewed as
projections of periodic higher-dimensional lattices onto
lower-dimensional manifolds [30, 31]. Periodic tilings
are translationally invariant and can only have two-
fold, three-fold, four-fold, and six-fold rotational sym-
metries according to the crystallographic restriction the-
orem. However, aperiodic tilings, which include qua-
sicrystals [32–37], can have other rotational symme-
tries such as five-fold (Penrose tiling [38]) and eight-fold
(Ammann–Beenker tiling [39]). In Ref. [27], Flicker et

al. studied the dimer coverings of Penrose tilings and
proved that a particular kind of Penrose tilings made
of rhombuses, known as P3 Penrose tilings have a fi-
nite density of monomers in all maximal dimer cover-
ings. Moreover, certain well-defined links of the tiling
form loops and are never occupied by a dimer in any of
the maximal dimer coverings. These loops are known
as “monomer membranes” [27]. Thus, the dimer cover-
ings of regions within these loops are independent of each
other. In Fig. 1(a), we show a maximal dimer covering
of a P3 Penrose tiling. The thick black links in this fig-
ure constitute a monomer membrane. These interesting

Figure 1. (a) A maximal dimer covering of a Penrose tiling.
Monomers are shown by the orange dots, dimers by gray links
with blue dots at their ends, and links of monomer membranes
by thick black lines. (b) Example of paths for the monomer
and vison Fredenhagen-Marcu (FM) order parameters. Γ1,2

are two paths for the monomer FM order parameter between
sites i and j, shown in orange. M̂(Γi) is the operator that
moves monomers between sites i and j along Γi where i ∈
{1, 2}. Γi are two valid vison paths, i.e., they intersect an

even number of links of all plaquettes except P and Q. V̂ (Γi)
are operators that create two visons on the blue plaquettes P
and Q.

ar
X

iv
:2

50
3.

15
58

8v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

9 
M

ar
 2

02
5

https://orcid.org/0000-0001-5873-8129
https://orcid.org/0000-0003-4305-8600
https://orcid.org/0000-0003-0509-3421


2

features of dimer coverings of Penrose tilings, which are
qualitatively different from those of regular lattices, mo-
tivate us to study a quantum monomer-dimer model on
Penrose tilings. We point out that quantum and classical
dimer models with finite density of monomers have been
studied previously on periodic lattices [20, 40–44].

In this Letter, we study a quantum monomer-dimer
model on P3 Penrose tilings (henceforth called Penrose
tilings). Since there are no perfect dimer coverings of
Penrose tilings [27], the inclusion of monomers (sites not
touched by any dimer) is necessary. Despite the presence
of monomers, our model, unlike previously studied mod-
els with monomers [20, 40–44], has an RK point where
the exact ground state wavefunction can be determined.
We map our model to a Z2 gauge theory with matter
(monomers) and calculate various correlators in the RK
wavefunction using a classical Metropolis Monte Carlo
calculation. The quantities we calculate are the dimer-
dimer correlator and the vison-vison correlator, as well as
open Wilson lines and closed Wilson loops corresponding
to monomers and visons [45–52]. We average these quan-
tities over different pairs of endpoints or paths depending
on the correlator.

We consider the following Hamiltonian defined in the
space of maximal dimer coverings of Penrose tilings:

Ĥ =
∑

−t [| ⟩ ⟨ |+H.c.] + URK [| ⟩ ⟨ |+ | ⟩ ⟨ |]∑
− J [| ⟩ ⟨ |+H.c.] + VRK [| ⟩ ⟨ |+ | ⟩ ⟨ |] ,

(1)
where orange dots denote monomers, and gray links with
blue dots at their ends denote dimers. The first sum is
over all the pairs of links that share a vertex, while the
second sum is over all the plaquettes [both types of rhom-
buses, see Fig. 1(a)]. The first term (∝ t) gives rise to
monomer hopping (a dimer simultaneously hops to keep
the state in the maximal dimer covering sector). The
third term (∝ J) is a ring exchange/resonance term for
flippable plaquettes (plaquettes with dimers on two of
their opposite sides). The second term (∝ URK) is an
RK potential term for monomers, and the last (fourth)
term (∝ VRK) is an RK potential for dimers [1]. We also
propose a microscopic spin Hamiltonian in the supple-
mental material (SM) [53], whose low energy limit is a
quantum monomer-dimer model on Penrose tilings, hav-
ing some of the terms of Eq. (1).

We choose to study this Hamiltonian because, when
t = URK and J = VRK, the Hamiltonian becomes a sum
of projectors, and the ground state is annihilated by all
the projectors:

ĤRK =t
∑

(| ⟩ − | ⟩) (⟨ | − ⟨ |)

+ J
∑

(| ⟩ − | ⟩) (⟨ | − ⟨ |) .
(2)

It can be easily verified that |ψRK⟩ =
∑

D |D⟩, which
is a uniform superposition of all maximal dimer cover-
ings D, is the ground state for any t, J > 0. It was
shown in Ref. [27] that monomer hoppings connect all

maximal dimer coverings, i.e., starting from any maxi-
mal dimer covering, repeated monomer hoppings gener-
ate all the maximal dimer coverings. This implies that
the ground state is unique. The connectivity of the Pen-
rose tilings constrains the maximal dimer coverings in a
way that the links of monomer membranes, which form
closed loops, do not host a dimer, and the sites of the
monomer membranes do not host monomers in any of
the maximal dimer coverings [27]. These loops are called
monomer membranes because a monomer that is inside
one of these loops can never go outside of it by repeated
monomer hops [27]. Thus, one can remove the links of the
monomer membranes from the model without affecting
maximal dimer coverings. Doing so separates the tiling
into disconnected pieces which we label by Rk, where k
is an index that labels different disconnected pieces. Two
such regions are shown in Fig. S2 of the SM [53].
Since Rk are disconnected from each other, their dimer

coverings are independent of each other, and the RK
wavefunction |ψRK⟩ separates into a tensor product of
RK wavefunctions of the regions Rk. That is, |ψRK⟩ =

⊗
k

î∑
DRk

|DRk
⟩
ó
[54], where the sum is over all the max-

imal dimer coverings DRk
of a disconnected region Rk.

This implies that there are no (connected) correlations
between different regions Rk. Schematically, some of the
monomer membranes form concentric loops around the
five-fold rotationally symmetric center of the tilings. This
can be seen from Fig. S2 of the SM [53] and Fig. 7 of
Ref. [27]. Thus, by going far enough from the center,
one can obtain a region Rk that is as large as desired.
For these regions, we can meaningfully ask: what is the
long-distance behavior of the correlators that determines
the phase? To identify which correlators should be calcu-
lated to diagnose the phase of the system, we first map
the monomer-dimer model to a Z2 gauge theory with
matter.
Mapping to a Z2 gauge theory with matter.— Define

Z2 gauge field variables σ̂ij on the links of the Penrose
tiling, where i and j are neighboring sites. If the link
(i, j) is occupied by a dimer, then σz

ij = −1, and if not,
then σz

ij = 1. Next, define matter field variables τ̂i on
the sites of the tiling such that τzi = −1 if a monomer is
present, and τzi = 1 if a monomer is not present on site
i. The constraint that a site either has a monomer or is
touched by a single dimer leads to the following Gauss’s
law for all dimer coverings |D⟩ [55]:

Ĝi |D⟩ = − |D⟩ , with Ĝi = τ̂zi
∏

j∈nbr(i)

σ̂z
ij , (3)

where the product in Ĝi is over all neighbors j of i.
Note that Gauss’s law alone does not fully enforce the
hard-core dimer constraint, so we further restrict gauge
field configurations to those obtained from valid maxi-
mal dimer coverings. The negative sign of the eigenvalue
of Ĝi implies that the divergence of the Z2 electric field
is nonzero indicating the presence of a background Z2

gauge charge on every site. A monomer on site i cancels
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the background charge at i, causing all electric field vari-
ables emanating from i to take the value of +1 and the
Z2 electric field is divergence-less. Such a gauge theory is
referred to as an odd Z2 gauge theory [56]. The embed-
ding of the monomer-dimer model in a Z2 gauge theory
with matter [50, 57] allows one to identify the vison op-
erator [25, 58, 59]. The vison operator on a plaquette
P of a Penrose tiling is an operator that changes the Z2

gauge flux given by Φ̂P =
∏

(i,j)∈∂P σ̂
x
ij through the pla-

quette P , where ∂P is the set of edges of P . Since the
flux is associated with plaquette centers, the visons live
on the dual graph of the tiling. A single σ̂z

ij operator
changes the flux through two plaquettes that share the
link (i, j) and thus creates a vison on each of these pla-
quettes. These visons can be separated onto plaquettes
P and Q [see Fig. 1(b)] by applying a product of σ̂z

ij along
a path on the dual graph that goes from P to Q. These
paths intersect two links of all plaquettes along the path
except P and Q which are intersected only once. Two
such paths on the dual graph, Γ1 and Γ2, are shown in
Fig. 1(b). Thus, the vison operator is given by

V̂ (Γ) =
∏

(i,j)∈Γ

σ̂z
ij , (4)

where Γ is a path on the dual graph. Note that, due to
the presence of monomers, the vison operator depends
on the path Γ and not solely on its endpoints P and
Q. If the monomers were fixed by additional terms in
the Hamiltonian, then the vison correlator |⟨V̂ (Γ)⟩| [60]
would have been the same for all paths that have the
same endpoints.

Similarly, the operator that creates a monomer at site
i and destroys one at site j, or vice versa, is given by

M̂(Γ) = P̂ τ̂xi τ̂xj
∏

(k,l)∈Γ

σ̂x
kl , (5)

where Γ is a path from site i to site j along the edges
of the Penrose tiling and P̂ is a projector onto the maxi-
mal dimer covering sector. Fig. 1(b) shows two example
paths Γ1 and Γ2. Note that, in a maximal dimer cover-
ing, it is possible to move a monomer from i to j along
a path Γ only if the links of Γ alternate between dimers
and non-dimers. This operator also depends on the en-
tire path Γ and not solely on its endpoints. Unlike the
vison operator, the operator in Eq. (5) would be path
dependent even if the monomers were fixed by additional
terms. If a vison path Γ intersects a monomer path Γ,
then V̂ (Γ) anti-commutes with M̂(Γ), showing that vi-
sons and monomers have a mutual statistical phase of
−1. In the gauge theory picture, the monomers (visons)
are the electric (magnetic) charges.

Correlators.—To characterize the phase of the gauge
theory, we calculated the following quantities: the dimer-
dimer connected correlator and the vison-vison correla-
tor, as well as open Wilson lines and closed Wilson loops
corresponding to both visons and monomers. These were

calculated for the RK wavefunction |ψRK⟩ using classical
Metropolis Monte Carlo for two regions R1 and R2 of a
particular Penrose tiling which we show in Fig. S2 of the
SM [53]. We now present our results.
(i) Dimer-dimer connected correlator.—This correla-

tor is defined as CS
µν = ⟨σ̂z

µσ̂
z
ν⟩ − ⟨σ̂z

µ⟩⟨σ̂z
ν⟩, where µ and

ν are links of the Penrose tiling. Note that here we label
the gauge fields σ̂ by links µ and ν, whereas we labeled
the same operators by pairs of neighboring sites earlier.
We use Latin letters such as i, j for sites, and Greek let-
ters such as µ, ν for links of the tiling. We calculate this
correlator for all pairs of links in Rk and bin them accord-
ing to the Euclidean distance between the links, where
k ∈ {1, 2}. For each bin, we then calculate the average of
the correlator, the Monte Carlo error in calculating the
average of the correlator, and the standard deviation of
the correlator in that bin. These are shown in Fig. 2. We
find that bin-averaged CS

µν decays exponentially with the
distance between µ and ν. If our model were at a crit-
ical point, like the square or hexagonal lattice quantum
dimer models at the RK point [14, 15, 56, 61, 62], then
CS

µν would decay as a power-law.

Figure 2. Pairs of links µ, ν ∈ R1,2 are binned together accord-
ing to the Euclidean distance |r⃗µ − r⃗ν | between midpoints of
the links, with a bin-width of 0.4a. Here a is the side length of
the rhombuses. Bin-averaged CS

µν as a function of |r⃗µ − r⃗ν |/a
is plotted in this Figure. The error bars indicate the standard
error of the averaged correlator, arising from a finite number
of Monte Carlo samples. The hatched region indicates the
standard deviation of the bins representing the spread of the
correlator. We indicate the Monte Carlo error in the averaged
correlator with error bars and the standard deviation of the
bins with hatched regions in all plots of this paper. For a
discussion of the binning procedure, see Sec. 3 of SM [53].

(ii) Vison-vison correlator.—We calculate the vison-

vison correlator, CV
Γ

= |⟨V̂ (Γ)⟩|, for 10 000 randomly

chosen paths in Rk. (Details of the path-selection al-
gorithm are provided in the SM [53]). The correlator
is then averaged over those randomly chosen paths that
have the same path length |Γ|. This path-averaged corre-
lator is plotted in Fig. 3 as a function of the path length
|Γ|. Now, V̂ (Γ) depends on the entire path Γ and not just
the path length. Different paths with the same length re-
sult in a spread (nonzero standard deviation) in the cor-
relator, represented by the hatched region in the figure.
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Figure 3. Path-averaged vison correlator as a function of the
path length |Γ|. Each blue or red point represents the path-
averaged value of the vison correlator, calculated over 500
randomly chosen paths with the same path length |Γ|. The
hatched region shows the spread, which is the standard de-
viation of the correlator over 500 random paths of the same
path length.

We find that the path-averaged vison-vison correlator de-
cays exponentially with the path length. The correlation
lengths are 5.73± 0.08 and 5.52± 0.06 in regions R1 and
R2, respectively. (If the exponential decay is αe−x/ξ,
then we refer to ξ as the correlation length.) [We also
plot the path-averaged correlator as a function of the
Euclidean distance between the endpoints of the paths
in the SM (Fig. S5) and observe an exponential decay
with distance.] The top boundary of the hatched region
shows that the exponential decay holds for the majority
of individual paths, not just for the path-averaged corre-
lator. If the vison correlator were to approach a nonzero
constant, we could conclude that the system was in an
ordered phase. In the absence of monomers, the expo-
nential decay of the vison-vison correlator would indicate
that the visons are not condensed, implying that the exci-
tations of the gauge theory are fractionalized [59], as con-
cluded in Refs. [3, 25] for triangular lattice dimer mod-
els. However, in the presence of matter (monomers), this
implication is not valid. Open Wilson lines and closed
Wilson loops become useful in such cases to determine
the phase.

(iii) Open Wilson lines and closed Wilson loops.—In
gauge theories without matter, closed Wilson loops fol-
low the area (perimeter) law in the confined (deconfined)
phase [63]. However, in the presence of matter, Wil-
son loops follow the perimeter law in both phases. De-
spite this, the origin of the perimeter law differs between
the two phases. The distinct origins can be probed by
studying the decay of open Wilson lines and closed Wil-
son loops. In the confined phase, the perimeter law
arises from fluctuations of the matter field, leading to the
same decay rates for open Wilson lines and closed Wilson
loops. In contrast, in the deconfined phase, the perime-
ter law also receives contributions from fluctuations of the
gauge field, causing closed Wilson loops to decay more
slowly than open Wilson lines [46, 50]. See Sec. 5A of
SM [53] for details on the scaling of open Wilson lines

and closed Wilson loops in the confined and deconfined
phases. Fredenhagen and Marcu [45, 47, 64] and later
Gregor, Huse, Moessner, and Sondhi [50] proposed using
the ratio of open Wilson lines to closed Wilson loops to
probe the origin of the perimeter law. The numerical un-
certainty in calculating this ratio can be large since both
the numerator and the denominator decay exponentially
with loop/path lengths. In this Letter, we instead study
the scaling of open Wilson lines and closed Wilson loops
without calculating their ratio. Given two open paths Γ1

and Γ2 on the Penrose graph with the same endpoints,
we define the following two quantities:

F op
Γ1Γ2

= ⟨M̂(Γ1)⟩ ⟨M̂(Γ2)⟩ , F cl
Γ = ⟨M̂(Γ)⟩, (6)

where Γ is a closed loop formed by connecting Γ1 and Γ2.
F op
Γ1Γ2

is a product of two open Wilson lines, while F cl
Γ is

a closed Wilson loop, both corresponding to monomers.
Analogous to the vison correlator, ⟨M̂(Γ)⟩ is referred to

as the monomer correlator, where M̂(Γ) = P
∏

(k,l)∈Γ σ̂
x
kl

for a closed loop Γ. Similarly, given two paths, Γ1 and
Γ2, on the dual graph with the same endpoints, we define
the following two quantities:

Gop

Γ1Γ2
= |⟨V̂ (Γ1)⟩ ⟨V̂ (Γ2)⟩| , Gcl

Γ
= |⟨V̂ (Γ)⟩| , (7)

where Γ is a closed loop formed by connecting Γ1 and Γ2.
Gop

Γ1Γ2
is a product of two open Wilson lines, while Gcl

Γ
is

a closed Wilson loop, both corresponding to visons. We
note that the Fredenhagen-Marcu order parameters for

monomers and visons are
»
F op
Γ1Γ2

/F cl
Γ and

»
Gop

Γ1Γ2
/Gcl

Γ

respectively. In the limit of large loops, the expectation
values of open Wilson lines and closed Wilson loops can
be interpreted as follows: if the decay rates (with loop
or path length) of closed Wilson loops and open Wilson
lines corresponding to visons are the same, the visons
are condensed, indicating an ordered phase. Similarly, if
closed Wilson loops and open Wilson lines corresponding
to monomers decay at the same rate, the monomers are
condensed, signaling that the gauge theory is in the Higgs
phase.
We now describe our calculation of open Wilson lines

and closed Wilson loops corresponding to monomers.
Approximately 18 000 and 9 000 closed loops are gen-
erated in regions R1 and R2, respectively, using a ran-
dom walk (details of the algorithm are provided in the
SM [53]). Each loop Γ is then divided into two equal
halves, Γ1 and Γ2, yielding a set of closed loops, Scl

M , and
a set of open path pairs, Sop

M . Using Monte Carlo, we
compute F op

Γ1Γ2
for all open path pairs (Γ1, Γ2) ∈ Sop

M and

F cl
Γ for all closed loops Γ ∈ Scl

M . Finally, F op
Γ1Γ2

is averaged

over all pairs of open path pairs in Sop
M with a given total

path length |Γ1|+ |Γ2|. The path-averaged F op
Γ1Γ2

is plot-
ted as a function of path length in Fig. 4(a). Following a
similar path-averaging procedure for closed loops in Scl

M ,
we obtain the path-averaged F cl

Γ , as shown in Fig. 4(b).
We find that both path-averaged F op

Γ1Γ2
and F cl

Γ decay ex-
ponentially with the path/loop length. In R1, the (unit-
less) correlation lengths are 1.43 ± 0.10 for F op

Γ1Γ2
and
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Figure 4. (a) and (b) show path-averages of F op
Γ1Γ2

and F cl
Γ ,

while (c) and (d) show the path-averages of Gop

Γ1Γ2
and Gcl

Γ
.

Here, E denotes path-averaging over loops or paths on the
Penrose graph or its dual. In (a), Γ1 and Γ2 are paths on
the Penrose graph between the same endpoints while in (c),
Γ1 and Γ2 are paths on the dual Penrose between the same
endpoints. The legend for all four subplots is the same as the
legend for Figs. 2 and 3. The red and blue points correspond
to the averages in regions R1 and R2, respectively.

1.48± 0.01 for F cl
Γ , while in R2, they are 1.43± 0.11 and

1.48 ± 0.01, respectively. These values are equal within
numerical accuracy, implying that path-averaged F op

Γ1Γ2

decays at the same rate as path-averaged F cl
Γ . Apply-

ing a similar path-averaging procedure to the vison Wil-
son lines and Wilson loops, we obtain the path-averaged
Gop

Γ1Γ2
and Gcl

Γ
plotted in Fig. 4(c) and Fig. 4(d), respec-

tively. Both show an exponential decay with loop/path
length in both regions, R1 and R2. In R1, the (unitless)
correlation lengths of the exponential decay of Gop

Γ1Γ2
and

Gcl
Γ
are 5.66 ± 0.26 and 5.86 ± 0.42, respectively. In R2,

they are 5.29±0.15 and 5.30±0.19, respectively. In both
regions, the correlation lengths of path-averaged open
Wilson lines and closed Wilson loops are equal within
error. Thus both F op

Γ1Γ2
and F cl

Γ decay at the same rate,

as do Gop

Γ1Γ2
and Gcl

Γ
. This implies that the gauge the-

ory is in the confined phase, with visons and monomers
condensed.
Discussion.—We proposed a frustration-free quantum

monomer-dimer model on Penrose tilings, determined its
exact ground state, mapped the system to a Z2 gauge
theory, and characterized the phase of the gauge theory
at the frustration-free point. Our analysis showed that
both monomers and visons are condensed, indicating that
the gauge theory is in the confined phase and the system
is likely ordered. While our results answer key questions
about our model, they also open several new research di-
rections. For instance, what type of ordering, in terms of
dimers, does the system exhibit? What is the phase of the
system away from the RK point? By introducing addi-
tional terms in the Hamiltonian, monomers can be pinned
to specific sites, and the density of mobile monomers can
be varied (see Sec. 6 of the SM [53]). Does the system un-
dergo a phase transition as the mobile monomer density
changes [20]? 2D quasicrystals can be viewed as projec-
tions of higher-dimensional periodic lattices on certain
planes [30, 31]. Do quantum dimer models or gauge the-
ories on 2D quasicrystals exhibit properties analogous
to their higher-dimensional periodic counterparts? Fi-
nally, how can neutral atoms, which can be arranged
in arbitrary two-dimensional patterns using tweezer ar-
rays [52, 65–69], be utilized to simulate quantum dimer
models on quasicrystals?
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[49] J. Bricmont and J. Frölich, An order parameter distin-
guishing between different phases of lattice gauge theories
with matter fields, Phys. Lett. B 122, 73 (1983).

[50] K. Gregor, D. A. Huse, R. Moessner, and S. L. Sondhi,
Diagnosing deconfinement and topological order, New J.
Phys. 13, 025009 (2011).

[51] R. Verresen, M. D. Lukin, and A. Vishwanath, Prediction
of Toric Code Topological Order from Rydberg Blockade,
Phys. Rev. X 11, 031005 (2021).

[52] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T.
Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kali-
nowski, R. Samajdar, A. Omran, S. Sachdev, A. Vish-
wanath, M. Greiner, V. Vuletić, and M. D. Lukin, Prob-
ing topological spin liquids on a programmable quantum
simulator, Science 374, 1242 (2021).

[53] See Supplemental Material at URL-will-be-inserted-by-
publisher for the details.

[54] We ignore the normalization of |ψRK⟩ here.
[55] Note that not all configurations of the σ̂ and τ̂ fields satis-

fying the Gauss’s law are valid maximal dimer coverings.
[56] R. Moessner, S. L. Sondhi, and E. Fradkin, Short-ranged

resonating valence bond physics, quantum dimer models,
and Ising gauge theories, Phys. Rev. B 65, 024504 (2001).

[57] E. Fradkin and S. H. Shenker, Phase diagrams of lattice
gauge theories with Higgs fields, Phys. Rev. D 19, 3682
(1979).

[58] N. Read and B. Chakraborty, Statistics of the excitations
of the resonating-valence-bond state, Phys. Rev. B 40,
7133 (1989).

[59] T. Senthil and M. P. A. Fisher, Z2 gauge theory of
electron fractionalization in strongly correlated systems,
Phys. Rev. B 62, 7850 (2000).

[60] The absolute value is needed because ⟨V̂ (Γ)⟩ may differ
in sign for two paths that have the same endpoints for
fixed monomers.

[61] M. E. Fisher, Statistical mechanics of dimers on a plane
lattice, Phys. Rev. 124, 1664 (1961).

[62] T. M. Schlittler, R. Mosseri, and T. Barthel, Phase di-
agram of the hexagonal lattice quantum dimer model:
Order parameters, ground-state energy, and gaps, Phys.
Rev. B 96, 195142 (2017).

[63] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[64] K. Fredenhagen and M. Marcu, Confinement criterion for
QCD with dynamical quarks, Phys. Rev. Lett. 56, 223
(1986).

[65] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
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[68] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and
A. Browaeys, An atom-by-atom assembler of defect-free
arbitrary two-dimensional atomic arrays, Science 354,
1021 (2016).

[69] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and
S. Sachdev, Quantum phases of rydberg atoms on a
kagome lattice, PNAS 118, e2015785118 (2021).
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In this supplemental material, we provide additional details on our calculation methods. In Sec. 1, we describe the
generation of the finite section of the Penrose tiling used in our Monte Carlo calculations. In Sec. 2, we detail the
Monte Carlo moves and the frequency of the number of times they are executed. In Sec. 3, we explain the bin-averaging
procedure employed to produce the plot in Fig. 2 of the main text. Sec. 4 outlines our algorithm for generating random
vison paths and the path-averaging procedure used for the plot in Fig. 3. Next, in Sec. 5, we describe our algorithm
for generating loops and paths for Wilson lines and loops, along with the associated path-averaging procedure. We
also comment on the behavior of open Wilson lines and closed Wilson loops in the deconfined and confined phases.
Finally, in Sec. 6, we provide a microscopic spin Hamiltonian that maps to a quantum monomer-dimer model on
Penrose tilings in the low-energy limit. We also discuss additional terms that can be added to the Hamiltonian to
vary the density of mobile monomers.

1. PENROSE TILINGS

In this section, we explain how we generate the finite piece of Penrose tiling on which we perform our Monte Carlo
calculations. Penrose tilings are fascinating, with many patterns hidden in them. There are infinitely many Penrose
tilings, and various methods are known for generating them, including matching rules, the inflation procedure, de
Bruijn’s cut-and-project method, and de Bruijn’s pentagrid method [30, 31]. In this work, we use the inflation proce-
dure to generate a finite section of a Penrose tiling for our Monte Carlo simulations. In the inflation procedure [70], a

Figure S1. (a) Inflation rules. The two triangles on the left form the constituent shapes of the rhombuses in Penrose tilings.
After inflation, they are divided into smaller triangles as shown. (b) Starting with the configuration on the left, containing ten
small triangles, we apply the inflation rules once to obtain the configuration on the right. Repeating the inflation process seven
more times produces the finite section of the tiling on which we perform our Monte Carlo calculations. This finite section of
the tiling is shown in Fig. S2.

finite arrangement of triangles, as shown in Fig. S1(a), is subdivided into smaller triangles similar to the original ones
according to specific inflation rules. Two copies of the pink triangle of Fig. S1(a) form the thin rhombus of Penrose
tilings. Similarly, two copies of the blue triangle in Fig. S1(a) form the thick rhombus of Penrose tilings. Starting
from the configuration on the left in Fig. S1(b), we recursively apply the inflation procedure eight times and remove
all the links having three or four arrows on them, generating a tiling with 8 111 sites, as shown in Fig. S2. Since the
process begins with a configuration that is five-fold rotationally symmetric, the resulting Penrose tiling in Fig. S2
retains this five-fold rotational symmetry about its center.

2. MONTE CARLO DETAILS

In this section, we describe the Monte Carlo algorithm used to calculate correlators in the RK wavefunction. We
also provide details on the number of Monte Carlo moves performed and the number of samples collected. To calculate
the correlators in the RK wavefunction for the two regions, R1 and R2, shown in Fig. S2, we employ the Metropolis
Monte Carlo method at infinite temperature to sample maximal dimer coverings. The Monte Carlo move we use for

https://orcid.org/0000-0001-5873-8129
https://orcid.org/0000-0003-4305-8600
https://orcid.org/0000-0003-0509-3421
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Figure S2. The finite section of the Penrose tiling used in our calculations. The thick black lines represent the monomer
membranes, which divide the tiling into disconnected regions. R1 (red) and R2 (blue) denote the two regions where we
compute various correlators.

going from one maximal dimer covering to another is a monomer hop. We point out that the first term in Eq. (1)
implements a monomer hop.

Since the RK wavefunction factorizes into a tensor product of the RK wavefunctions on the regions Rk, it suffices
to calculate correlators within one region at a time. In our calculation, we first identify the monomer membranes,
then remove the links belonging to the membranes to obtain the graphs corresponding to regions R1 and R2. Region
R1 contains 3 645 sites, while region R2 contains 1 300 sites.

At the beginning of the simulation, we find a maximal dimer covering of the chosen region Rk using the Hopcroft-
Karp algorithm [71]. Next, we perform a monomer hop, which we describe with the help of Fig. S3. To execute a
monomer hop, we first randomly choose a site (say s1). If this site is not occupied by a monomer, then we do nothing.
But if it is occupied by a monomer, then we randomly select one of the edges (denoted as e1) connected to s1 and
label the site at the other end of e1 as s2. Since there’s a monomer on s1, there is no dimer on e1 by the definition of
a monomer. Furthermore, s2 cannot be occupied by a monomer since, in a maximal dimer covering, two neighboring
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sites cannot both be occupied by monomers. Next, we identify the edge extending from s2 that has a dimer on it
(labeled by e2) and label the site at the other end of e2 as s3. The monomer then hops from s1 to s3, and the dimer
on e2 shifts to e1, completing the monomer move.
Each Monte Carlo step consists of a monomer move. We note that monomer moves are ergodic [27] and sufficient

for the convergence of the Monte Carlo calculation. We sample the correlators every 2 000 Monte Carlo steps for R1

and every 5 000 steps for R2 to reduce correlations between samples. For each region we average the correlators over
at least 2× 106 maximal dimer coverings.

Figure S3. Hopping of a monomer from site s1 to site s3. Orange circles and disks show monomers, while blue circles with gray
links between them represent dimers.

3. AVERAGING OF THE DIMER-DIMER CORRELATOR

In this section, we describe the post-processing and the averaging procedure used to calculate the bin-averaged
dimer-dimer correlator plotted in Fig. 2 of the main text.

In a Monte Carlo run, we calculate ⟨ψRK|σ̂z
µ|ψRK⟩ for all links µ, and ⟨ψRK|σ̂z

µσ̂
z
ν |ψRK⟩ for all pairs of links (µ, ν) by

averaging over the 2× 106 dimer coverings generated in the Monte Carlo run. We perform 20 such Monte Carlo runs.
Using this information, we then calculate CS

µν = ⟨σ̂z
µσ̂

z
ν⟩ − ⟨σ̂z

µ⟩⟨σ̂z
ν⟩ for all pairs of links (µ, ν). We also calculate the

Euclidean distances dµν between the midpoints of all pairs of links. If we plot CS
µν vs. dµν , we do not get a smooth

curve; rather we get a scatter of points because of the irregularity of the Penrose tilings. To interpret the dimer-dimer
connected correlator as a function of the distance, we bin the links according to dµν , where the bins have a width of
0.4a (a is the side length of the rhombuses of the tiling). More explicitly, the first bin is a set of all pairs of links (µ, ν)
where the distance between the links µ and ν is between 0 and 0.4a. The second bin is a set of all pairs of links where
the distance between the links is between 0.4a and 0.8a, and so on. Then we define the bin-averaged dimer-dimer
correlator for bin b as

Ab =
1

Nb

∑
(µ,ν)∈b

[
⟨ψRK|σ̂z

µσ̂
z
ν |ψRK⟩ − ⟨ψRK|σ̂z

µ|ψRK⟩⟨ψRK|σ̂z
ν |ψRK⟩

]
. (S1)

For each bin b, we calculate the average and the standard deviation of CS
µν , denoted by Ab and ∆Ab, respectively. The

bin averages, Ab, are plotted as the data points in Fig. 2. The top and bottom boundaries of the hatched regions in
Fig. 2 of the main text are Ab+∆Ab and A−∆Ab, respectively. They look asymmetrical about the data points in the
plot because of the logarithmic scale used there. Thus, the hatched regions indicate the spread of the correlator about
its average value. The error bars in the plot represent the standard error in the average of the bins, Ab, arising from
a finite number of Monte Carlo samples. The standard error is determined from the 20 independently done Monte
Carlo runs. We note that we have verified that using a bin width different from 0.4a, such as 0.1a, 0.2a, or 0.5a, does
not change our results. We still obtain an exponential decay of the bin-averaged correlator, with correlation lengths
that are equal, within error margins, to those obtained for a bin width of 0.4a.

4. AVERAGING OF THE VISON CORRELATOR

In this section, we provide details on the random selection of vison paths, the evaluation of the vison correlator,
and path averaging used to generate Fig. 3 in the main text. We first describe our algorithm for generating a valid
vison path. These details are included for completeness, although we do not believe that our results are specific to
the vison paths chosen through our algorithm. We verify that considering half as many paths still gives similar plots,
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indicating that the number of paths chosen is large enough for the path averages to have converged. Recall that a
vison path Γ is a path on the dual graph of the Penrose tiling. Equivalently, vison paths can be thought of as paths
through the plaquettes of the Penrose tiling. These paths cross an even number of edges of all the plaquettes except
for plaquettes P and Q, corresponding to the endpoints of the path. Furthermore, the path crosses only one edge
of P and only one edge of Q. Figure S4 shows some of the vison paths we consider. These paths are generated as

Figure S4. A few examples of vison paths and monomer FM loops in R2 are shown, which we use in our calculation. The
green lines represent vison paths, while the blue plaquettes mark the endpoints where the visons are created. Each green path
crosses every plaquette an even number of times, except for the blue plaquettes at the ends. The purple loops correspond to
the loops for the monomer FM order parameter. The orange sites along these loops indicate points where the loops are split
to create two open paths of equal length. The monomer operator along one such open path transports monomers between its
orange-colored endpoints if it is permitted by the maximal dimer covering constraint.

follows. We start from a randomly chosen link/edge, say e1. This link will be shared between two plaquettes, say
P1 and P2. Next, we randomly choose a link, say e2, from either P1 or P2 and add it to the path. We repeat these
steps, ensuring at each step that we do not backtrack and that no more than two links of a plaquette are visited at
any intermediate step. This guarantees that we generate valid vison paths.

We repeat the entire process until we get 500 paths for each of the path lengths 2, 4, 6, . . . , 40 in each of the regions
R1 and R2. Finally, we use the five-fold rotational symmetry and the reflection symmetry to generate ten symmetry-
related paths for every path. All the symmetry-related paths have the same value of the vison correlator in principle.
However, because of the finite number of samples used in the Monte Carlo calculation, the symmetry-related paths
give slightly different values of the correlator. We average ⟨V̂ (Γ)⟩ (without taking the absolute value) over these ten
symmetry-related paths to increase the accuracy of our calculation. We sample the vison correlator for all these paths
over 2×106 maximal dimer coverings generated during the Monte Carlo calculation. This gives us the vison correlator
for all the randomly generated paths.

Now we explain the path-averaging procedure. Recall that the vison correlator |⟨V̂ (Γ)⟩| is a function of not just
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Figure S5. The path-averaged vison correlator is plotted as a function of the Euclidean distance between the first and the last
links of paths, denoted by DED(Γ) divided by a. We group the paths Γ into bins of width 0.4a based on DED(Γ). The data
points represent the average of the vison correlator over paths in each bin. The hatched regions indicate the standard deviations
of the vison correlator within each bin, while the error bars represent the standard error in the Monte Carlo calculation of the
bin averages.

the path length |Γ| (the number of links Γ intersects), but the entire path Γ. To interpret the vison correlator as
a function of the path length, we calculate the average of the vison correlator for all paths we generate that have
the same path length. This is the path-averaged vison correlator plotted in Fig. 3. For a given path length, we also
calculate the standard deviation of the vison correlator over paths of that given length. We compute the standard
error of the vison correlator for a particular path Γ from the standard deviation of the vison correlator of the ten
paths that are symmetry-related to Γ (one of these ten paths is Γ itself). The hatched regions in Fig. 3 represent these
standard deviations. We compute the standard error of the vison correlator for a particular path Γ from the standard
deviation of the vison correlator of the ten paths that are symmetry-related to Γ (one of these ten paths is Γ itself).
We average these standard errors over paths of the same length to obtain the standard error of the path-averaged
vison correlator—that is, the average of the errors gives the error of the average. We calculate the standard error of
path-averages in a similar way in Fig. 3, Fig. 4, and Fig. S5. The error bars in these figures represent this standard
error.

We also plot the path-averaged vison correlator as a function of the Euclidean distance between the first and last
links along the paths in R1 and R2; see Fig. S5. We denote this Euclidean distance for a given path Γ by DED(Γ).
Here, we employ a binning procedure similar to that used for the dimer-dimer correlator in Sec. 3. Specifically, we
bin the paths based on their DED(Γ) values, using the same bin width as that chosen for the dimer-dimer correlator,
which is 0.4a. For each bin b, we compute the average and standard deviation of the correlator over all paths within b.
Additionally, we calculate the standard error in the average correlator for each bin, arising from the finite precision of
the Monte Carlo calculation. We find that the path-averaged vison correlator decays exponentially with the Euclidean
distance between the endpoints, with correlation lengths of 1.79a±0.03a and 1.78a±0.04a in R1 and R2, respectively.
Note that DED(Γ) is bounded by a constant times the path length |Γ|, which represents the number of links crossed
by Γ. Thus, the exponential decay of the vison correlator with the path length implies an exponential decay with the
Euclidean distance between the fist and last links of the paths.

5. AVERAGING OF THE WILSON LOOPS

In this section, we discuss the behavior of open Wilson lines and closed Wilson loops in the confined and deconfined
phases. We also provide details of the path-averaging procedure for computing the path-averages of open Wilson lines
and closed Wilson loops.

A. Behavior of the Wilson lines and loops

In this section, we comment on the behavior of open Wilson lines and closed Wilson loops in the deconfined and
the confined phases based on the results of Ref. [50]. Here we only describe the results, the details of which can be
found in Sec. III of Ref. [50].

In a pure gauge theory without matter fields, closed Wilson loops decay following an area law in the confined phase
and a perimeter law in the deconfined phase, both arising from gauge field fluctuations. Now, in the presence of heavy
dynamical matter with a matter coupling J and a gauge coupling K, closed Wilson loops are screened by matter
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fields. As a result, the Wilson loop corresponding to a closed loop L decays as α
|L|
J in the confined phase. Here, |L|

denotes the number of gauge variables along the loop L and αJ < 1. On the other hand, in the deconfined phase,

closed Wilson loops decay as β
|L|
K , where βK < 1 depends on the gauge field strength K. This distinction makes it

clear that, while in the confined phase the perimeter law arises from matter field fluctuations, in the deconfined phase,
it originates from gauge field fluctuations. Now, consider open Wilson lines in the two phases. In the confined phase,

matter fields are expected to screen open Wilson lines, leading to a decay of α
|C|
J for an open path C. However, in

the deconfined phase, open Wilson lines decay as αg
Jβ

g+|C|
K , where g is the distance between the endpoints of C. This

indicates that, in the deconfined phase, both matter and gauge field fluctuations contribute to the exponential decay
of open Wilson lines. Ref. [50] proposed using the ratio of open to closed Wilson loops as an elegant way to determine
whether the decay is caused solely by matter field fluctuations or by both matter and gauge field fluctuations. This
ratio is known in the literature as the Fredenhagen-Marcu (FM) order parameter [45, 47, 64]. Since open Wilson lines
decay faster than closed Wilson loops in the deconfined phase, the FM order parameter tends to zero in the limit of
large loops. In contrast, in the confined phase, where open Wilson lines and closed Wilson loops decay at the same
rate, the FM order parameters approaches a nonzero constant. In our work, rather than studying the ratio of open
Wilson lines to closed Wilson loops, we analyze their decay rates separately.

B. Path averaging procedure

We now describe our algorithms for obtaining Wilson lines and loops corresponding to monomers and visons.
The monomer Wilson lines and loops are defined on the Penrose graph, while the vison Wilson loops and lines are

defined on its dual. To generate a loop on the Penrose graph within a given region Rk, we randomly select a site and
perform a non-backtracking random walk from that point until the walk intersects itself. Since Penrose tiling forms
a bipartite graph, all resulting loops have even lengths. Next, we divide each loop Γ at random locations into two
equal-length paths, Γ1 and Γ2. We also ensure that all loops are unique, meaning each loop is counted only once in
the path averages. Figure S4 illustrates some of the loops in region R2 that we consider. We then exploit the five-fold
rotational symmetry of the tiling, as well as reflection symmetry about a vertical axis through the center, to generate
ten symmetry-related loops. Similarly, we generate ten symmetry-related paths for each open path. These additional
copies improve numerical accuracy and allow estimation of error bars for the monomer correlator corresponding to
open paths and closed loops. At the end of this procedure, we obtain a set of closed loops Scl

M and a set Sop
M consisting

of pairs of open paths, such that each pair forms a closed loop.
In our numerical analysis, we select between 300 and 5 000 loops in R1 and between 100 and 2 700 loops in R2.

Following the approach used in Sec. 4, for a given path length l, we compute the average and standard deviation of
F op
Γ1Γ2

, for all pairs of paths (Γ1, Γ2) in S
op
M satisfying |Γ1|+ |Γ2| = l. This path-averaged value of F op

Γ1Γ2
is represented

by the data points in Fig. 4(a) of the main text, while the red and blue hatched regions in the same figure indicate
the standard deviation of F op

Γ1Γ2
for fixed |Γ1| + |Γ2|. The error bars in Fig. 4(a) represent the standard error in

the path-averaged monomer correlator, arising from the finite number of steps in the Monte Carlo calculation. This
error in the path-averaged value of F op

Γ1Γ2
is calculated by averaging the standard error in F op

Γ1Γ2
which arises due to

the finite number of Monte Carlo steps, over all pairs of paths (Γ1, Γ2) with a fixed total path length |Γ1| + |Γ2|.
Similarly, Fig. 4(b) displays the path-averaged value of F cl

Γ , along with its standard error. This standard error is
calculated by averaging the standard error in F cl

Γ over loops of a given length. It also shows the standard deviation
of F cl

Γ over closed loops of fixed length by the red and blue hatched regions. We note that Ref. [50], in its Sec. 8.3,
suggests that the (monomer) Wilson loop is defined as a dimer rearrangement on a loop that respects the hard-core
dimer constraint. Such a constraint allows for the possibility of creating additional monomers. Our Wilson loop,
corresponding to monomers, ⟨M̂(Γ)⟩, differs from this in that we impose the maximal dimer covering constraint,

which is more restrictive than the hard-core dimer constraint [see definition of M̂(Γ) in Eq. (5)]. However, since we
always calculate expectation values in the RK wavefunction, we obtain the same result even if we impose the weaker
hard-core dimer constraint instead of the maximal dimer covering constraint. We also note that path-averaged F op

Γ1Γ2
,

shown in Fig. 4(a), exhibits an alternating feature whose origin remains unclear. The data points for loop lengths
4, 8, 12, . . . appear to follow a different curve than those for loop lengths 6, 10, 14, . . ..

Having described the details of calculating path-averaged Wilson lines and loops corresponding to monomers, we
now provide the corresponding details for calculating path-averaged Wilson lines and loops corresponding to visons.
Random loops for calculating the path-averages of Gop

Γ1Γ2
and Gcl

Γ
are generated using essentially the same procedure

as that used to generate paths for the vison correlator CV
Γ

in Sec. 4. The only difference is that we continue the

random walk until the path intersects itself. Using this procedure, we generate loops Γ on the dual graph with lengths
ranging from 4 to 51 for R1 and from 4 to 50 for R2. For each of these lengths, the number of loops ranges from
about 100 to 2 200 in the two regions. We denote the set of loops generated by Scl

V . Next, we split each closed loop Γ
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into two segments, Γ1 and Γ2, of length |Γ|/2 or (|Γ| ± 1)/2, depending on whether |Γ| is odd or even. This process
yields a set of pairs of open paths (Γ1, Γ2) on the dual graph, denoted by Sop

V .
For every loop and path, we also generate ten symmetry-related counterparts (accounting for five-fold rotational

and reflection symmetries) to improve numerical accuracy. Next, we compute the expectation value of the vison

operator ⟨V̂ (Γ)⟩ for all the randomly generated paths and loops over the 2× 106 maximal dimer coverings produced

during the Monte Carlo simulation. To calculate path-averaged Gop

Γ1Γ2
, we compute |⟨V̂ (Γ1)⟩⟨V̂ (Γ2)⟩| for all pairs

(Γ1, Γ2) ∈ Sop
V and average the results over all pairs with a fixed total length |Γ1|+ |Γ2|, denoted by l. This gives us

path-averaged Gop

Γ1Γ2
as a function of loop length l which is plotted in Fig. 4(c). Similarly, to compute path-averaged

Gcl
Γ
, we evaluate |⟨V̂ (Γ)⟩| for all closed loops Γ ∈ Scl

V and average the results over all loops with fixed length |Γ|. The
resulting path-averaged Gcl

Γ
as a function of loop length is plotted in Fig. 4(d). The error bars and the spread in

Gop

Γ1Γ2
and Gcl

Γ
are determined using a procedure similar to that used for F op

Γ1Γ2
and F cl

Γ described above.

Note that we do not compute the Fredenhagen-Marcu (FM) order parameters, given by
»
F op
Γ1Γ2

/F cl
Γ and»

Gop

Γ1Γ2
/Gcl

Γ
, because their numerators and denominators are exponentially small quantities. Even a small error

arising from the finite number of Monte Carlo steps would be amplified in calculating the ratio. Additionally, certain
closed loops never exhibit an alternating configuration of dimer and no-dimer in any of the 2×106 maximal dimer con-
figurations generated during the Monte Carlo calculation. The structure of the Penrose tiling could be responsible for
preventing these loops from having an alternating dimer and no-dimer configuration. This implies that the monomer
correlator—and hence the denominator of the FM order parameter corresponding to monomers—for such loops is
exactly zero. For these loops, the monomer FM order parameter is not well-defined. Comparing the exponential
decay rates of open Wilson lines and closed Wilson loops separately circumvents this issue of the FM order parameter
being undefined and directly probes the origin of the perimeter law in Wilson loops.

6. MICROSCOPIC SPIN HAMILTONIAN

Figure S6. Line graph of the Penrose tiling used to define our microscopic spin Hamiltonian, Ĥspin. The red edges form the
Penrose tiling. Spin-1/2s are located at the midpoints of the red edges and are represented by black dots. These dots are the
vertices of the line graph of the Penrose tiling. The black edges are the edges of the line graph. The line graph can be viewed
as a graph of corner-sharing polygons (shaded in purple). Note that there is a one-to-one correspondence between the shaded
polygons and the sites of the Penrose tiling.

In this section, we provide a microscopic spin Hamiltonian that maps, in the low-energy limit, to a quantum
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monomer-dimer model on Penrose tilings. We do this using the techniques of Ref. [8].
The low-energy subspace consists of maximal dimer coverings. Although the effective Hamiltonian obtained here

differs from the Hamiltonian in Eq. (1) studied in the main text, it offers a concrete method for realizing a quantum
monomer-dimer model starting from spins.

We begin by constructing the line graph, made of corner-sharing polygons, as illustrated in Fig. S6, derived from a
Penrose tiling under consideration. This graph is defined as follows: each vertex of the line graph represents an edge
of the Penrose tiling. There is an edge between two vertices of the line graph if and only if the corresponding edges of
the Penrose tiling share a site. After constructing the line graph, we identify polygons whose vertices are midpoints
of edges sharing a common site on the Penrose tiling. These polygons are shaded in purple in Fig. S6. For a polygon
p, we label its number of vertices by qp.

In the microscopic Hamiltonian, spin-1/2s Ŝµ are located at the midpoints of the edges µ of the Penrose tiling
(vertices of the line graph). These coincide with the gauge fields σ̂ defined in the main text. The microscopic spin
Hamiltonian is given by

Ĥspin = V
∑

polygons p

(
Ŝz
p +

qp
2

− h
)2

︸ ︷︷ ︸
Ĥ0

+Ω
∑
µ

Ŝx
µ︸ ︷︷ ︸

Ĥ1

, (S2)

where the first sum is over all purple-colored polygons p in Fig. S6, Ŝz
p =

∑
µ∈p Ŝ

z
µ, and 1/2 < h < 1. To connect

with the monomer-dimer model, we map the presence of a dimer on a link µ to Sz
µ = −1/2 and the absence of a

dimer to Sz
µ = +1/2. Thus, the relation between the spins and the gauge fields is 2Ŝz

µ = σ̂z
µ. We assume Ω ≪ V and

treat Ĥ1 as a perturbation to the classical part Ĥ0. Since there is a one-to-one correspondence between the sites of
the Penrose tiling and the polygons, we use the terms “Penrose sites” and “polygons” interchangeably. For a polygon
p hosting a monomer, all the spins on the vertices µ of p will have Sz

µ = −1/2, yielding Sz
p = −qp/2. Thus, the

contribution of such a polygon to the sum in Ĥ0 will be V h2. For a polygon p touched by a dimer, Sz
p = −qp/2 + 1,

and its contribution to Ĥ0 will be V (h− 1)2. Similarly, for a polygon touched by two dimers (an invalid configuration

for a monomer-dimer model), its contribution to the sum in Ĥ0 will be V (h − 2)2. Since 1/2 < h < 1, the energy
of a site touched by a dimer is lower than that of a monomer, which is, in turn, lower than that of a site touched
by two dimers. Thus, it is energetically favorable for all sites to be touched by a dimer. However, the geometry of
the Penrose tiling prohibits perfect dimer coverings. The next energetically favorable configuration is for a polygon
to host a monomer. Thus, the ground-state manifold of Ĥ0 is exponentially degenerate and consists of all maximal
dimer coverings of the Penrose tiling.

Next, we consider the effects of quantum fluctuations of Ĥ1 on the effective Hamiltonian in the ground-state
manifold. At first order in Ω/V , no new terms arise in the effective Hamiltonian because a single application of Ŝx

µ

on any maximal dimer configuration moves it out of the maximal dimer covering sector. At second order in Ω/V , the

monomer hopping term shown in Eq. (1) is obtained. At this order, the application of Ŝx twice on link µ generates a
diagonal term in the effective Hamiltonian, corresponding to an energy shift of the maximal dimer configuration on
which Ŝx is applied. However, we find that this constant is not the same for all maximal dimer configurations, leading
to a splitting of the degeneracy. This term is undesirable if the goal is to obtain an effective Hamiltonian identical to
Ĥ in Eq. (1). At third order in Ω/V , no new terms are introduced. At fourth order, we obtain both the ring-exchange
term shown in Eq. (1) and undesirable dimer-configuration-dependent energy shifts. To summarize, the classical
ground state manifold consists of maximal dimer configurations, and the effective Hamiltonian in this manifold, up to
fourth order in Ω/V , consists of monomer hopping terms, ring-exchange terms, and dimer-configuration-dependent
energy shifts. We note that an alternative perturbation also generates an effective Hamiltonian with the terms
mentioned above. This alternative perturbation is

Ĥ ′
1 = Ω′

∑
⟨µ,ν⟩

Ŝ+
µ Ŝ

−
ν + Ŝ−

µ Ŝ
+
ν , (S3)

where the sum is over all pairs of links µ, ν sharing a Penrose site.
While we do not obtain the exact Hamiltonian studied in the main text [Eq. (1)], this section demonstrates how a

quantum monomer-dimer model on a Penrose tiling can be realized starting from spin degrees of freedom or qubits.
This is desirable because dimer degrees of freedom are not directly available in experimental platforms such as digital
quantum computers, ion traps, optical lattices, Rydberg atom arrays in optical tweezers, etc.

The square-lattice quantum dimer model is known to undergo a phase transition as the monomer density varies [20].
This motivates the study of quantum monomer-dimer models on Penrose tilings, where the density of mobile
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monomers—monomers that can hop—can be tuned. One way to achieve such a variable density of mobile monomers
is by pinning monomers in maximal dimer coverings through site-dependent Zeeman fields added to the Hamiltonian
in Eq. (S2). Specifically, if M denotes the set of Penrose tiling sites where we wish to pin the monomers in maximal
dimer coverings, then the term to be added to the Hamiltonian of Eq. (S2) is:

Ĥpin = α
∑
i∈M

∑
µ∈star(i)

Ŝz
µ , (S4)

where star(i) is the set of links with i as one of their endpoints and α > 0. Notably, some sites—such as those
in monomer membranes—can never host a pinned monomer in maximal dimer coverings. Furthermore, in maximal
dimer coverings, certain configurations of monomer locations are not allowed. For example, two neighboring sites can
never both be occupied by monomers. Thus, we require M to contain only sites where monomers can be pinned
simultaneously in maximal dimer coverings. In the limit α,V ≫ Ω (V/α can be large or small), the classical ground-
state manifold consists of maximal dimer coverings with monomers pinned at sites in M. The sites where monomers
are pinned can effectively be removed without affecting the dimer coverings. More specifically, every maximal dimer
covering of the Penrose tiling with monomers pinned on sites of M can be mapped to a maximal dimer covering of a
modified Penrose tiling without any pinned monomers. Here, by modified Penrose tiling, we mean the tiling obtained
by removing the sites of M from the Penrose tiling and the edges that have an endpoint in M. The monomer-dimer
model on the modified Penrose tiling will have a smaller density of monomers than the Penrose tiling. Different
choices of M thus enable control over the density of mobile monomers.
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