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Existing schemes for demonstrating quantum computational advantage are subject to various practical
restrictions, including the hardness of verification and challenges in experimental implementation. Mean-
while, analog quantum simulators have been realized in many experiments to study novel physics. In this
work, we propose a quantum advantage protocol based on single-step Feynman-Kitaev verification of an
analog quantum simulation, in which the verifier need only run an O(λ2)-time classical computation, and
the prover need only prepare O(1) samples of a history state and perform O(λ2) single-qubit measure-
ments, for a security parameter λ. We also propose a near-term feasible strategy for honest provers and
discuss potential experimental realizations.
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I. INTRODUCTION

A. Background and motivation

Quantum computers offer the promise of executing
some computational tasks exponentially faster than clas-
sical computers. This suggests a violation of the extended
Church-Turing thesis, which says that any physically real-
izable model of computation can be efficiently simulated
by a classical Turing machine. Indeed, quantum comput-
ers were originally proposed as a means of simulating
quantum mechanical systems [1], a task considered classi-
cally hard. There has been much progress toward identify-
ing classically difficult problems that quantum computers
can solve efficiently, such as integer factorization [2],
simulating Hamiltonian dynamics [3–5], and extracting
information about solutions of high-dimensional linear
systems [6].
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A significant milestone for the field of quantum com-
puting is the first demonstration that a quantum device can
perform computational tasks that a classical device with
comparable resources cannot. This milestone has been
called quantum supremacy [7,8], quantum advantage, or a
proof of quantumness [9], and has instigated numerous the-
oretical proposals and experimental efforts. However, there
remain formidable technological challenges to building
quantum computers, requiring both theoretical and experi-
mental progress in architecture design, fault tolerance, and
control. Various proposals for quantum advantage have
addressed these challenges in different ways, by mak-
ing trade-offs between ease of experimental demonstra-
tion, ease of verification, security guarantees, and practical
applications.

Analog quantum simulation [10], i.e., using one many-
body quantum system to simulate another, is a natural
approach to demonstrating quantum advantage. By build-
ing quantum systems with tunable (but perhaps nonuni-
versal) Hamiltonians, one can emulate a large class of
Hamiltonians that may be difficult to simulate classically.
Since it directly encodes hard problems into controllable
quantum systems, analog simulation arguably mitigates
many of the issues faced by digital approaches [11,12].
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Furthermore, analog simulation avoids Trotter error and
other sources of algorithmic error in digital quantum simu-
lation [13,14]. Indeed, analog simulations of systems with
hundreds of qubits have already been performed [15].

A major challenge for both quantum simulation and
more general forms of quantum computation is the
difficulty of verifying the correctness of a quantum pro-
cess [16,17]. There have been several proposals to ver-
ify digital quantum computation [18,19] based on the
Feynman-Kitaev circuit-to-Hamiltonian mapping [20], but
such protocols are neither designed for analog quantum
simulation nor practical on near-term analog quantum
devices. Previous work towards verifying analog simu-
lation has suggested approaches such as cross-platform
verification [21,22], Hamiltonian learning [22], and per-
forming a Loschmidt echo [22–24] or randomized bench-
marking [25]. Unlike protocols for digital verification,
these approaches can be spoofed by dishonest or inac-
curate quantum simulators, and therefore cannot be used
to demonstrate quantum advantage in a sound, efficiently
verifiable way. A step toward verified analog simulation
is made in Ref. [26], in which the verifier measures the
energy of a parent Hamiltonian of the output state of ana-
log quantum simulation. However, all these works require
a significant number of samples of the simulator’s state to
certify it.

B. Our contribution

In this paper, by combining a single-step Feynman-
Kitaev encoding and the scheme of Bermejo-Vega et al.
[27], we propose a novel quantum advantage protocol
with reduced resource requirements, where a verifier capa-
ble of polynomial-time classical computation can verify
the result by asking the prover to perform trusted mea-
surements (a nonstandard setting introduced below) on a
constant number of copies of a state. We also present a
strategy for the honest prover and argue that it is feasible
on near-term devices.

1. The protocol

Our protocol involves interaction between a polynomial-
time classical verifier, and a quantum prover who can
do polynomial-time quantum computation, although we
present a strategy for an honest prover who must only per-
form analog quantum simulation and some limited addi-
tional operations. The prover’s goal is to show that he has
some superclassical quantum computational power, and
the verifier’s goal is to decide if this is true or if the prover
is cheating.

In most existing quantum advantage protocols, the
prover’s behavior is fully untrusted (i.e., he is allowed
to perform any polynomial-time operations), but in our
protocol, we consider a nonstandard setting in which the

prover is partially trusted. In particular, the prover is capa-
ble of single-qubit trusted measurements, which means
that he must first prepare some quantum states and then, for
each copy of the state, perform single-qubit measurements
as instructed with error rate ε = O(1/n) (with n the num-
ber of qubits), and report the outcome honestly. We also
allow a polynomial amount of classical communication in
both directions.

Note that the verifier does not trust the prover to pre-
pare the correct state (because this is what the verifier
wants to verify), but she trusts the prover to commit to
the states prepared, i.e., the prover’s state preparation can-
not depend on the verifier’s measurement instructions.
While this trusted measurement assumption is nonstan-
dard, it captures an experimentally relevant setting (where
the apparatus is trusted but imperfect), and there have been
other verification procedures that trust various aspects of
protocols [28].

Our protocol still works without the assumption of
trusted measurements if the prover can send polynomial-
size quantum states to the verifier, and the verifier can
perform single-qubit measurements, as in the notion of a
noninteractive QPIP1 protocol defined by Aharonov et al.
[29] (where QPIP stands for quantum prover interactive
proof ).

Definition 1 (QPIPk protocol (simplified)). An interac-
tive proof for a language L is said to be QPIPk if the
prover is a BQP machine, the verifier is a hybrid BQP-
BPP machine that can process at most k qubits at a time,
and quantum states of k qubits can be transmitted from the
prover to the verifier.

However, as reliably sending quantum states is unlikely
to be feasible in the near term, we focus on the former
model.

2. Prover’s model of computation

We also give an experimentally practical strategy for
honest provers. The strategy is specifically designed for
near-term machines that are not capable of fully digital
quantum computation, but are slightly more powerful than
analog quantum simulation, a popular notion that is often
not clearly defined. In our work, we define a mostly ana-
log model of computation, its commuting version, and
its extension with a global CZ gate, which we argue are
feasible for near-term experiments.

Definition 2 (Mostly analog quantum computation). A
model of quantum computation involving n qubits is called
mostly analog if all the following conditions hold. (1)
The system can evolve under a time-independent 2-body
Hamiltonian H containing poly(n) Pauli terms for time
T = poly(n). (2) O(1) alternations between the evolution
under H and single-qubit rotations can be performed.
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(3) Measurements can only be performed once at the end
of the whole process.

Note that condition (2) distinguishes this model from
common notions of analog quantum computation, as it may
require a degree of control not always available to analog
quantum simulators. This model is slightly unorthodox, but
similar settings have been considered in Refs. [30,31].

Despite being mostly analog, the above model of com-
putation is capable of BQP-complete quantum computa-
tions even without condition (2) [32]. However, this model
[even without condition (2)] is not necessarily feasible in
the near term because the form of the Hamiltonian is quite
general. We introduce a weaker model where the 2-local
Hamiltonian H must also be commuting, which means that
all Pauli terms must commute with each other.

Definition 3 (Mostly analog commuting quantum com-
putation). A mostly analog model of computation is called
commuting if H is a commuting Hamiltonian.

Even a mostly analog commuting quantum device can
solve some classically intractable problems [27]. We focus
on an even more restricted model that should be easier to
realize, in which the Hamiltonian H is a specific com-
muting Hamiltonian containing only nearest-neighbor Z
operators, as discussed further below.

We also assume the ability to perform a globally con-
trolled CZ gate. This arguably makes our model less ana-
log, but it plays a key role in developing a sample-efficient
protocol to verify the solutions given by the device, and it
can potentially be realized using experimental capabilities
that have already been demonstrated [33,34], as we discuss
in Sec. III B.

Definition 4 (Mostly analog + GCZ commuting quan-
tum computation). A mostly analog commuting model of
computation is called mostly analog + GCZ if the system
also contains a quantum degree of freedom (e.g., a qubit)
that can serve as a global control for all of the qubits, such
that one can apply—only O(1) times—a global CZ gate
that is controlled by the degree of freedom and acts on all
of the qubits. Here GCZ stands for global CZ.

3. The classically hard problem

In the protocol, the verifier asks the prover to solve a
classically hard problem based on Hamiltonian evolution.
The prover generates a quantum state but is not trusted to
do so correctly. However, the prover is trusted to honestly
measure this state to generate a classical witness. The ver-
ifier checks this witness to determine if the problem has
been successfully solved. If so, then quantum advantage
has been demonstrated.

Instead of considering a general quantum circuit, we
aim to demonstrate quantum advantage by verifying a spe-
cific analog quantum simulation performed on a mostly

analog + GCZ commuting machine. The simulation is
motivated by the class of IQP (instantaneous quantum
polynomial-time) circuits [35,36], in which all quantum
gates are commuting (and thus interchangeable in time).
Despite this strong restriction, IQP circuits are believed
to be hard to simulate classically [36,37]. Furthermore,
Bermejo-Vega et al. [27] presented a concrete scheme
to show quantum speedup on an analog simulator by
running a specific unit-time Hamiltonian evolution. The
Hamiltonian includes only nearest-neighbor ZZ interac-
tions and local Z terms (a form that we call a (ZZ + Z)-type
Hamiltonian) on a two-dimensional square lattice:

∑

{i,j }∈NN

π

4
ZiZj −

n∑

i=1

π

4
Zi, (1)

where NN denotes the set of edges connecting nearest-
neighbor qubits. The qubits are randomly initialized
in either 1√

2
(|0〉 + |1〉) or 1√

2
(|0〉 + e−iπ/4 |1〉). Bermejo-

Vega et al. [27] and Ringbauer et al. [38] prove that
a classical computer cannot efficiently sample from the
output distribution of X -basis measurements on the
above system within total variation distance (TVD)
0.292, under plausible computational assumptions that
we review in Appendix A. Moreover, since single-
qubit Zi operators commute with all ZiZj operators,
one can absorb the single-qubit evolution exp

(
iπ4

∑
i Zi

)

into the initial state of each qubit, so that the qubits
are initialized in either 1

2 [(1 + i) |0〉 + (1 − i) |1〉] or
1
2

[
(1 + i) |0〉 + e−iπ/4(1 − i) |1〉], which can be prepared

by single-qubit operations. Then the Hamiltonian H to be
simulated contains only ZZ interaction terms:

H =
∑

{i,j }∈NN

π

4
ZiZj . (2)

4. Main result

We now have all the building blocks to formalize the
main result. In the state-transmission scenario, we have the
following theorem.

Theorem 1 (Main result—state-transmission version).
There exists a classically intractable sampling problem that
can be verified by a single-round QPIP1 protocol where
the prover runs a specific mostly analog + GCZ commuting
quantum task O(1) times.

In the trusted-measurement scenario, our result is as
follows.

Theorem 2 (Main result—trusted-measurement version).
There exists a classically intractable sampling problem
that can be verified by a single-round protocol where
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the classical verifier trusts the prover to perform single-
qubit measurements, and the prover runs a specific
mostly analog + GCZ commuting quantum task O(1)
times.

5. Comparisons

Our quantum advantage protocol is a verification pro-
tocol for quantum simulation of the ZZ + Z Hamiltonian
evolution mentioned above. Our protocol has constant
sample complexity, i.e., it only requires the prover to
generate O(1) samples of an n-qubit state. This is sig-
nificantly less expensive than Bermejo-Vega et al. [27],
which is the first work on verification of this task and uses
O(n2) samples. Reference [27] employs the certification
scheme of Ref. [26] to verify the ZZ + Z IQP sampling
problem. The main technique is to estimate the energy cor-
responding to the parent Hamiltonian of the given output
state using local measurements. The parent Hamiltonian is
− exp(−iH)

(∑
i exp(−βiZi)Xi exp(βiZi)

)
exp(iH ), where

βi ∈ {0,π/4} is the phase in the initial state of the ith qubit.
The ground state of the parent Hamiltonian is the ideal
output state U |φin〉. Reference [27] estimates the energy
using O(n2) samples, which is more expensive than our
constant-sample-complexity scheme.

In both this work and Ref. [27], the prover is expected
to perform trusted measurements (or the prover sends
qubits to the verifier for her to measure), unlike proofs
of quantumness (PoQs) based on trapdoor claw-free func-
tions (TCFs) [9,39] and quantum supremacy experiments
[7,8] based on sampling problems, which makes it diffi-
cult to compare the resource requirements. However, in
all of these schemes, single-qubit measurements must be
performed many times, either by the prover or the veri-
fier. Hence the number of qubits measured is a comparable
quantity.

Equivalently, without transforming the protocols, we
can still compare the number of measurements in terms
of the security parameter, whether the measurements are
trusted or not. The security parameter λ is defined such

that a dishonest prover without quantum computational
power needs time 2�(λ) in order to make the verifier accept.
For our protocol, the number of qubits n is quadratic
in λ, just as in Bermejo-Vega et al. [27]. Under opti-
mistic assumptions, cryptographic PoQs can probably have
n = O(λ) [39], but for most common TCFs, n scales
at least quadratically with λ [9]. Since it has constant
sample complexity, our protocol uses O(λ2) single-qubit
measurements. This is better than Bermejo-Vega et al.
[27], which uses O(λ3) measurements. Furthermore, our
protocol can be verified by O(λ2)-time classical compu-
tation, significantly below the verification cost of O(λ6)

for Bermejo-Vega et al. [27] and presumably exp(λ)
for quantum supremacy experiments based on sampling
problems [7,42,43].

On the prover side, TCF-based PoQs generally require
poly(λ)-depth low-noise digital quantum computation,
while our honest strategy is designed for analog quantum
simulators with only limited digital capabilities. This may
be harder than fully analog simulation [7,27,44,45], but
should still be feasible in the relatively near term. More-
over, our protocol can detect—and is robust against—a
specific type of phase error that happens frequently in
practice. Thus we believe our work achieves a signifi-
cant improvement in terms of verification efficiency for
verified quantum advantage protocols, and is an easier-to-
implement scheme. We provide exact threshold fidelities
(independent of the system size) for the device to demon-
strate quantum advantage using our scheme. We also show
that when the noise is incoherent, the fidelity requirements
can be further relaxed.

Kapourniotis and Datta [41] proposed a quantum advan-
tage protocol based on similar computational assumptions.
They construct a blind implementation of the IQP circuit,
featuring efficient trap-based verification of the sampling
problem and lower hardware requirements for the prover.
However, the verifier in their protocol needs to prepare
product states and transmit them to the prover, which is
arguably harder to implement than our protocol in either
the trusted measurement or state transmission setting. It is

TABLE I. Comparison of demonstrations of quantum advantage. As discussed in the main text, λ denotes the security parameter.

Scheme
No. of Mea-
surements

Classical
Verification

Requirements for
Honest Provers

Requirements for
Verifiers

Cryptographic PoQs [9,39] poly(λ) poly(λ) Digital Purely Classical
Random Circuit Sampling [7,40] O(λ) exp(λ) Digital Purely Classical
Parent Hamiltonians [27] O(λ6) O(λ6) Analog Single-Qubit

Measurements
Blind IQP [41] O(λ2) O(λ2) Analog Quantum
This Work (State Transmission) O(λ2) O(λ2) Mostly Analog + Global

CZ
Single-Qubit

Measurements
This Work (Trusted Measurements) O(λ2) O(λ2) Mostly Analog + Global

CZ + Trusted
Measurements

Purely Classical
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unclear if the quantumness of the verifier can be removed
by giving some reasonable trust to the prover, such as
trusted measurements.

We summarize the comparison between our work and
other quantum advantage protocols in Table I.

The remainder of this paper is organized as follows. In
Sec. II, we describe the sample-efficient quantum advan-
tage protocol and analyze its resource requirements. In
Sec. III, we give the near-term strategy for honest provers
and discuss potential experimental realizations. Finally, we
summarize the results and discuss their implications and
potential future extensions in Sec. IV.

II. THE QUANTUM ADVANTAGE PROTOCOL

A. The single-step Feynman-Kitaev construction

Our protocol is inspired by the Feynman-Kitaev map-
ping [20], which converts the task of executing a quantum
circuit to that of finding the ground state of an associ-
ated Hamiltonian. The Feynman-Kitaev Hamiltonian is the
foundation of several verification schemes in the circuit
model: if a quantum server can provide the ground state
(the witness) to the client, then the client can verify the
quantum computation by measuring its energy. Examples
include the Fitzsimons et al. [18] protocol where the prover
needs to perform single-qubit trusted measurements, and
the Mahadev [19] protocol that works even for untrusted
measurements.

Inspired by the above protocols for circuit-model com-
putations, we consider using a simplified Feynman-Kitaev
mapping to verify analog quantum simulation of the sys-
tem in Ref. [27], i.e., the Hamiltonian H in Eq. (2).

We define the (single-step) history state

|ψhist〉 = 1√
2
(|0〉 |φin〉 + |1〉 U |φin〉) , (3)

where |φin〉 is the input state and U is the propagation uni-
tary. The state |ψhist〉 is the ground state of the single-step
Feynman-Kitaev Hamiltonian. Since we are considering
quantum simulation of the ZZ-type Hamiltonian H defined
in Eq. (2), we have U = exp(−iHT) with T = 1, and |φin〉
is the same random input state defined in the system of
Bermejo-Vega et al. [27] with single-qubit Z evolution
absorbed. The computationally hard sampling problem can
be solved by measuring U |φin〉 in the X basis. We use Pideal
to denote the ideal distribution of measurement outcomes.

The Feynman-Kitaev Hamiltonian includes a term

H prop = 1
2

(
I ⊗ I − |1〉 〈0| ⊗ U − |0〉 〈1| ⊗ U†) , (4)

which ensures that the ground state encodes the correct
propagation unitary U. One can easily check that H prop is
positive semidefinite and H prop |ψhist〉 = 0, so |ψhist〉 is a
ground state of H prop.

The other term of the Feynman-Kitaev Hamiltonian is

H in = |0〉 〈0| ⊗
∑

i

(
I − ∣∣φin,i

〉 〈
φin,i

∣∣) (5)

where
∣∣φin,i

〉
is the state of the ith qubit of |φin〉. The term

H in ensures that the input state is |φin〉. It is also positive
semidefinite and satisfies H in |ψhist〉 = 0.

A toy version of our protocol for demonstrating quan-
tum advantage, without any technical detail, is as follows.
The verifier sends classical descriptions of H and |φin〉 to
the prover, and asks the prover to prepare NM copies of the
history state 1√

2
(|0〉 |φin〉 + |1〉 U |φin〉). For each copy, the

verifier chooses whether to generate a sample or to verify
the state, with equal probability. If she chooses to sample,
then she asks the prover to measure the first qubit (i.e.,
the clock qubit) in the Z basis and all other qubits in the
X basis, and a sample is generated if the first measure-
ment outcome is −1 (i.e., the clock qubit is in |1〉). If the
verifier chooses to verify, then she measures the energy of
H prop + H in by quantum phase estimation. Finally, if every
run of quantum phase estimation returns 0, which means
that the fidelity between the measured state and the perfect
history state is very high (the infidelity is inverse expo-
nential in NM if NM/2 copies are chosen for verification)
and therefore the measurement outcomes are close to the
desired distribution Pideal, she accepts and announces all of
the samples obtained. Otherwise, she rejects.

One disadvantage of the verification part of this scheme
is that it can only accept devices that provide history
states with exponentially small infidelity. While near-term
devices will be imperfect, they might still be able to sample
from classically intractable distributions. Also, experimen-
talists may prefer to know how well their devices are
performing and whether they are making progress, but a
“yes or no” result cannot provide this kind of information.
Finally, measurements of H prop + H in might be difficult,
potentially requiring many measurements to determine the
energy with sufficiently high precision, and quantum phase
estimation is not feasible in the near term.

Therefore, inspired by the original single-step Feynman-
Kitaev Hamiltonian, we propose a new verification scheme
to replace the toy protocol. In the new scheme, different
parameters are measured to lower bound the total varia-
tion distance between the sampled distribution Pexp and the
desired distribution Pideal, demonstrating quantum advan-
tage according to Refs. [27,38]. We also give an efficient
near-term strategy for estimating those parameters.

B. Our measurement scheme

To begin, consider an arbitrary (n + 1)-qubit state

ρ =
∑

i

pi |ψi〉 〈ψi| , (6)
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where {|ψi〉} is the (unknown) eigenbasis of ρ, and pi is the
probability corresponding to |ψi〉. We can write

|ψi〉 = αi |0〉 |φi〉 + βi |1〉 ∣∣φ′
i

〉
, (7)

where |φi〉 and
∣∣φ′

i

〉
are n-qubit states and αi,βi ∈ C satisfy

|αi|2 + |βi|2 = 1. Thus we can interpret ρ as a classical
mixture of states |ψi〉 as above with input states |φi〉 and
output states

∣∣φ′
i

〉
.

The first parameter to be estimated in our scheme, the
input fidelity, is defined as

Fin(ρ) :=
∑

i pi|αi|2 |〈φi|φin〉|2∑
i pi|αi|2 . (8)

This quantifies the quality of initial state preparation. It
plays a similar role to 〈H in〉 in the single-step Feynman-
Kitaev Hamiltonian.

Another parameter is the probability of obtaining a −1
outcome when measuring the clock qubit. We call this the
probability of sampling:

psamp :=
∑

i

pi|βi|2. (9)

The last parameter is the mean value of the non-Hermitian
operator

O10 := |1〉 〈0| ⊗ U, (10)

whose expectation value in the state ρ is

Tr[ρO10] =
∑

i

piαiβ
∗
i 〈φ′

i |U|φi〉. (11)

We mainly consider its squared norm, |Tr[ρO10]|2. This
quantity is related to the quality of propagation from |φ〉 to
U |φ〉, so it plays a similar role to 〈H prop〉 in the single-step
Feynman-Kitaev Hamiltonian.

As we show in Lemmas 1 and 2, Fin(ρ), psamp, and
Tr[ρO10] can all be estimated by single-qubit measure-
ments, and the precision depends only on the number of
samples measured, independent of the system size. Note
that O10 is not Hermitian, so it is in general not an observ-
able, but its mean value (which is a complex number) can
still be estimated. We discuss this in detail in the proof of
Lemma 2.

We are interested in the output fidelity, defined as

Foutput :=
∑

i pi|βi|2|〈φ′
i |U|φin〉|2∑

i pi|βi|2 . (12)

This quantifies the fidelity between the state being mea-
sured to generate samples from Pexp and the ideal state
that can be measured to generate samples from Pideal, and

thus can be directly related to the TVD between distri-
butions, dTVD(Pexp, Pideal). In Appendix B, we explicitly
relate Foutput and dTVD(Pexp, Pideal), and find the threshold
fidelity 0.915 using the hardness result proved in Ref. [38],
which gives a criterion for verified quantum advantage.

In Appendix B, we also derive a lower bound for Foutput
in terms of ε := 1/4 − Tr[ρO10], ε′ := 1/2 − psamp, and
ε′′ := 1 − Fin(ρ), as follows.

Theorem 3 (Lower bound on the output fidelity).

Foutput ≥ 1 − 16ε − 3ε′′ + h.o. (13)

where h.o. indicates higher-order terms in ε, ε′, ε′′.

If the device is close to perfect (which is the scenario
we consider here), then ε, ε′′ 
 1 and |ε′| 
 1. Hence,
the higher-order terms can be safely dropped, as is shown
in detail in Appendix B, and the above bound can be
written as

Fout(ρ) ≥ 16|Tr[ρO10]|2 + 3Fin(ρ)− 6. (14)

Using Theorem 3 with threshold fidelity 0.915, we con-
clude that the measurement outcomes sample from a clas-
sically intractable distribution provided 4|Tr[ρO10]|2 ≥
0.988 and Fin(ρ) ≥ 0.988.

Observe that the final lower bound does not contain first-
order terms in ε′ = 1/2 − psamp. However, we still need to
estimate psamp to ensure that its value is sufficiently close
to 1/2 that our first-order approximation still holds. Hence,
we also require |1/2 − psamp| ≤ 0.012.

It is clear from the above theorem that our protocol can
also tolerate a small amount of noise in the measurements
of the quantum state. To simplify the analysis, in the rest
of this section, we make the perfect-measurement assump-
tion: all measurements, whether performed by the prover
in the trusted-measurement scheme or by the verifier in the
state-transmission scheme, are noiseless. We postpone the
discussion of noisy measurements to Appendix C.

We claim that the number of copies of the history state
needed to verify quantumness (i.e., the sample complex-
ity) depends only on the precision and is not related to the
system size n. As a result, the prover only needs to perform
O(n) trusted single-qubit measurements. These properties
are formalized and proven in Lemmas 1 and 2.

Since the TVD between ideal and real output distribu-
tions is lower bounded by estimating Fin and Tr[ρO10],
the sample complexity of the protocol is determined by
how many copies of the state are required to estimate both
quantities to a specific precision.

Lemma 1 (Sufficiency of single-qubit measurements for
Fin and psamp). A verifier capable of single-qubit mea-
surements and polynomial-time classical computation can
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estimate Fin and psamp in a mixed state ρ with error at most
δo using O(1/δ2

o) samples of ρ.

Proof. First recall that the ideal input state |φin〉 is a
product state of either |x〉 := 1

2 [(1 + i) |0〉 + (1 − i) |1〉]
or |y〉 := 1

2

[
(1 + i) |0〉 + e−iπ/4(1 − i) |1〉]. Their corre-

sponding orthogonal states are
∣∣x⊥〉

:= 1
2 [(1 − i) |0〉 −

(1 + i) |1〉] and
∣∣y⊥〉

:= 1
2 [(1 − i) |0〉 − e−iπ/4(1 + i) |1〉],

respectively.
If a pure state |ψi〉 = αi |0〉 |φi〉 + βi |1〉 ∣∣φ′

i

〉
is given, the

fidelity of the input state, |〈φi|φin〉|2, can be estimated as
follows. We first measure the clock qubit in the Z basis,
and if the outcome is +1 (so the state collapses to |0〉 |φi〉),
we measure every other qubit in its corresponding rotated
basis, which is either {|x〉 ,

∣∣x⊥〉} or {|y〉 ,
∣∣y⊥〉}. If all mea-

surement outcomes are +1, then
∣∣φ′

i

〉
collapses to |φin〉.

Therefore, if the number of copies for which the clock
qubit measurement gives +1 is Nin+, and among them
the number of copies where all other measurements give
+1 is Nin+0, then (Nin+0)/(Nin+) is an unbiased estimator
of |〈φi|φin〉|2. Furthermore, for a mixed state ρ, the same
strategy gives an estimate of Fin(ρ):

Fin(ρ) = lim
Nin+→∞

Nin+0

Nin+
. (15)

The precision of estimating Fin increases with Nin+. More
precisely, we can use Hoeffding’s inequality to quantify
their relationship:

Pr
[|Fin,M − Fin| ≥ δo

] ≤ 2 exp
(−2δ2

oNin+
)
, (16)

where Fin,M represents the estimate from measurements.
For the estimate of Fin to have error at most δo with proba-
bility at least 1 − pe, it suffices to use Nin+ = O(|ln pe|/δ2

o)

valid measurements, independent of the system size. More-
over, since the single-step history state has equal weight
between the |0〉 and |1〉 states of the clock qubit, Nin+
should be close to NM/2, where NM is the total number
of states measured.

We also describe how to estimate psamp. Fortunately,
this can already be obtained from Nin+. Since psamp is just
the probability of a Z-basis measurement of the first qubit
returning −1, Nin+/NM is an unbiased estimator of psamp.
Similarly, the probability for the estimate of psamp to have
error more than δo is upper bounded as

Pr
[|psamp,M − psamp| ≥ δo

] ≤ 2 exp
(−2δ2

oNM
)
, (17)

where psamp,M denotes the estimated value of psamp. Since
NM > Nin+, we can always estimate psamp to a higher
precision than Fin when they are estimated together. �

Lemma 2 (Sufficiency of single-qubit Pauli measure-
ments for |〈O10〉|2). A verifier capable of single-qubit

measurements and polynomial-time classical computation
can estimate |〈O10〉|2 in a mixed state ρ with error at most
δo using O(1/δ2

o) samples of ρ.

Proof. We can write

O10 = |1〉 〈0| ⊗ U = 1
2
(X − iY)⊗ U. (18)

It can be difficult to measure O10 in general, because U
typically decomposes into exponentially many Pauli terms.
Fortunately, in our protocol, we have U = exp(−iHT) for
the ZZ-type Hamiltonian

H = π

4

m∑

k=1

Hk = π

4

∑

{i,j }∈NN

ZiZj , (19)

where each Hk is one of the ZiZj s. As all Hk terms com-
mute, we can decompose U into a product of evolutions for
each term, and further express these evolutions in terms of
trigonometric functions as every Hk is a Pauli string:

U = exp

(
−i
π

4

m∑

k=1

Hk

)

=
m∏

k=1

exp
(
−i
π

4
Hk

)

=
m∏

k=1

(
cos

(π
4

)
I − i sin

(π
4

)
Hk

)
. (20)

U is not a well-defined quantum observable since it is not
Hermitian, but we can still define its value from a single
measurement as a complex number u. Since all Hks can be
simultaneously measured, u can be inferred by evaluating
the right-hand side of Eq. (20). More specifically, letting
hk denote the outcome of a single measurement of Hk, we
have

u =
m∏

k=1

(
cos

(π
4

)
− i sin

(π
4

)
hk

)
. (21)

Since each Hk is ZiZj , the verifier need only perform
single-qubit Z measurements to obtain the hks.

In summary, to estimate the expected value of O10, it
suffices to measure the clock qubit in either the X or the
Y basis, measure all other qubits in the Z basis to get the
values of u, and repeat this process enough times to obtain
the mean values of X ⊗ U and Y ⊗ U with sufficiently high
precision.

To determine the number of samples required, we eval-
uate the probability that the measured value deviates from
the expected value using concentration bounds. Note that
O10 is not Hermitian, so its value is a complex number.
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Recall that O10 = 1
2 (X ⊗ U − iY ⊗ U), so one sample of

the value of O10 can be obtained by measuring two copies
of the state of interest, and both the real and imaginary
parts of the measurement outcome of O10 are at most
1/2. Therefore, for any 0 < δo < 1/2, letting 〈·〉M be the
average of the measurement outcomes after running the
experiment NM times, and using Hoeffding’s inequality,

Pr
[∣∣|〈O10〉M|2 − |〈O10〉|2

∣∣ ≥ δ2
o

]

≤ Pr[|Re[〈O10〉M] − Re[〈O10〉]| ≥ δo]

+ Pr[|Im[〈O10〉M] − Im[〈O10〉]| ≥ δo]

≤ 4 exp
(−2δ2

oNM
)
. (22)

In conclusion, to ensure that the error in the estimation of
|〈O10〉|2 is less than δo with probability at least 1 − pe, it
suffices to measure O10 on 2NM = O

(| ln pe|/δ2
o

)
copies of

the state, irrespective of the size of the system. Moreover, if
pe is a negligible function of the security parameter λ, then
NM only needs to scale linearly with λ. In other words, the
probability of obtaining a wrong estimate of |〈Tr[ρO10]〉|2
converges to 0 exponentially with respect to the number of
copies, NM. �

C. Our protocol

In this subsection, we outline the behavior of the verifier
and the prover in our protocol, and present the soundness
and completeness conditions.

The verifier first provides the prover with descriptions
of H and |φin〉, and the desired number of copies of the
history state NM (whose value is determined in Theorems
4 and 6).

The verifier asks the prover to perform measurements
to estimate (or measures by herself if state transmission is
allowed) |〈O10〉|2, Nin+0, and Nin+ from the NM samples to
verify the correctness of the output state. She also asks the
prover to generate samples by measuring the

∣∣φ′〉 state con-
ditioned on obtaining −1 from measuring the clock state.
Therefore, the verifier should generate two random bits for
every state before measuring it.

The first bit, bsampling, determines whether the verifier
should ask the prover to generate samples (bsampling = 1)
or verify the output state (bsampling = 0). If bsampling = 1,
the prover should measure the clock qubit in the standard
basis and all system qubits in the Hadamard basis. If the
clock is measured to be −1, and if the prover passes the
verification protocol, then the outcomes of Hadamard mea-
surements on system qubits are samples from the desired
distribution.

When bsampling = 0, the verifier must decide whether to
use this copy to estimate |〈O10〉|2 or Fin(ρ) and psamp by
generating the other random bit btesttype. If the second ran-
dom bit, btesttype, is 0, then she estimates Fin(ρ) and psamp
by asking the prover to measure the clock qubit in the

computational basis and all system qubits in their corre-
sponding basis, updating the values of Nin+0 and Nin+, as
in the proof of Lemma 1. For btesttype = 1, she estimates
|〈O10〉|2, so the prover should use the same strategy as
in the proof of Lemma 2 to measure the value of U and,
subsequently, the values of X ⊗ U or Y ⊗ U.

In the end, the verifier estimates the parameters of
interest. As in the proofs of Lemmas 1 and 2, we
denote the estimated values of |〈O10〉|2, psamp, and Fin
by |〈O10〉M|2, psamp,M, and Fin,M, respectively. The veri-
fier then decides to accept or not by checking whether
the estimated values are within the acceptance ranges,
which are 0.994 ≤ 4|〈O10〉M|2 ≤ 1, 0.994 ≤ Fin,M(ρ) ≤ 1,
and 0.494 ≤ psamp,M ≤ 0.506. Note that here we choose
more stringent values than the quantum advantage criterion
in Theorem 3 such that if the fidelity of the output state is
slightly below the quantum advantage criterion, the veri-
fier will reject with high probability. This is related to the
soundness of the protocol, which is discussed in detail in
Theorem 6.

We now present the completeness and soundness prop-
erties of the protocol. A proof of quantumness is called
complete if any honest prover with quantum computational
ability (which in our case means being able to prepare
the required history state |ψhist〉 with tolerable error, as
explained in more detail below) is accepted with proba-
bility at least 2/3. It is called sound if no prover with
only classical polynomial-time computational ability can
be accepted with probability higher than 1/3. The desired
number of copies of the history state NM is also determined
by the soundness and completeness conditions, since the
verifier can determine the values of the parameters more
precisely by measuring more copies. In the following the-
orems, we show that NM = 3.5 × 106 is sufficient for the
protocol to be both sound and complete.

Before presenting the completeness theorem, we
observe that any phase error in the clock qubit does not
affect the correctness of sampling, which means that a fam-
ily of history states can be and should be accepted. In fact,
one can easily check that Fin(|ψhist(θ)〉 〈ψhist(θ)|) = 1 and
4|Tr[|ψhist(θ)〉 〈ψhist(θ)| O10]|2 = 1 for all |ψhist(θ)〉 :=

1√
2
(|0〉 |φin〉 + eiθ |1〉 U |φin〉), where θ can be any real

number. This immediately leads to the following complete-
ness result.

Theorem 4 (Completeness). If the prover constructs
NM = 3.5 × 106 copies of |ψhist(θ)〉 with a fixed value of
θ , then the verifier will accept with probability at least 2/3.

Proof. We can calculate that Fin(|ψhist(θ)〉 〈ψhist(θ)|) =
1, 4|Tr[|ψhist(θ)〉 〈ψhist(θ)| O10]|2 = 1, and psamp = 1/2.
Therefore, it suffices to ensure the probabilities that the
measurement errors exceed 0.0015 for |〈O10〉|2, and 0.006
for Fin,M and psamp, are all less than 1/3.
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Suppose that of NM available samples, NM/2 are used
to generate samples, NM/4 are used to estimate |〈O10〉|2,
and NM/4 are used to estimate Fin. According to Lem-
mas 1 and 2, and letting Nin+ = NM/8, the probabil-
ity of rejection is at most max{2 exp

(−0.0062NM/4
)
,

4 exp
(−0.00152NM/2

)} = 0.08 < 1/3. �

However, in a real experiment, it is unlikely for a device
to only make one specific error—a phase error on the
clock qubit—and to otherwise produce |ψhist(θ)〉 perfectly.
Instead, every experimental platform might have its own
pattern of noise with multiple types of errors. Our verifica-
tion scheme also has some robustness against these more
general errors. Here we characterize the robustness for the
case where the device can prepare a noiseless initial state
but its Hamiltonian evolution has some error.

Theorem 5 (Completeness + Robustness). If the
prover constructs NM = 3.5 × 106 copies of the noisy
history state

∣∣ψnoisy
〉

:= 1√
2
(|0〉 |φin〉 + eiθ |1〉 ∣∣φ′〉) where

| 〈φ′∣∣ U |φin〉 |2 = 0.999, then the verifier will accept the
interaction with probability at least 2/3.

Proof. We can check that Fin(
∣∣ψnoisy

〉 〈
ψnoisy

∣∣) = 1,
psamp = 1/2, and 4|〈O10〉|2 = |〈φ′|U|φin〉|2 = 0.999.
Therefore, it suffices to estimate 4|〈O10〉|2 within precision
0.005 and Fin and psamp within precision 0.006. This preci-
sion can be achieved using NM copies of the prepared state,
which gives success probability 0.73 > 2/3. �

Next, we establish the soundness condition. Recall that,
informally, a quantum advantage protocol is called sound
if all provers without quantum computational capability
are rejected by the verifier with high probability.

PROTOCOL 1. Our protocol for demonstrating quantum advantage.
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Theorem 6 (Soundness). If the verifier accepts with
probability at least 2/3 with NM = 3.5 × 106 copies of
the state provided by the prover, then measurements of
the state generate samples from a classically intractable
distribution.

Proof. This theorem has almost been proven in
Theorem 3, in which Foutput ≥ 0.915 is guaranteed
if Fin ≥ 0.988, |psamp − 1/2| ≤ 0.012, and 4|〈O10〉|2 ≥
0.988. Also, according to the proof of Theorem 4, with
NM samples, the error in the estimation of all parameters
is lower than 0.006 with probability at least 2/3.

Therefore, if the verifier accepts with probability at
least 2/3, which means that Fin,M ≥ 0.994, |psamp − 1/2| ≤
0.006, and 4|〈O10〉M|2 ≥ 0.994 with probability at least
2/3, then it is immediately clear that Fin ≥ 0.988, |psamp −
1/2| ≤ 0.012, and 4|〈O10〉|2 ≥ 0.988, which implies that
Foutput ≥ 0.915. �

A detailed description of the protocol can be found in
Protocol 1.

One hidden assumption in this section is that all copies
of the history state provided by the prover are independent
of each other. However, if the prover is an adversarial chal-
lenger, he can provide correlated states. In Appendix D, we
outline how martingale inequalities can be used to show
that our protocol is sound even if the states measured are
correlated across multiple trials.

The analysis in this section assumes noiseless mea-
surements, which are impractical in real devices. We dis-
cuss the protocol’s tolerance of noisy measurements in
Appendix C.

III. THE HONEST-PROVER STRATEGY

A. History state preparation

Our protocol features a rather efficient verification strat-
egy, but for it to be practical, the prover must be able to
prepare O(1) copies of the single-step history state of the
ZZ-type quantum simulation. A simple approach is to run
the time-independent Hamiltonian evolution generated by

Hprep = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ H , (23)

giving

exp
(−iHprepT

) [
1√
2
(|0〉 + |1〉) |φ〉

]
= |ψhist〉 . (24)

However, Hprep contains three-body interaction terms. It is
possible for near-term devices to implement a three-body
Hamiltonian (see, for example, Refs. [46–48]), but it may
be challenging to realize Hprep in this way.

To circumvent the hardness of implementing three-
body interactions, we propose an echo-based method for

FIG. 1. The square lattice can be divided into two parts such
that every ZZ operator acts on qubits from both parts.

preparing history states using only one-qubit and two-qubit
operations.

One can easily prepare the history state of H by running
a half-T evolution of H from the state

∣∣ψ ′
hist

〉 ∝ |0〉 exp
( i

2 HT
) |φin〉 + |1〉 exp

(− i
2 HT

) |φin〉 .
(25)

The state
∣∣ψ ′

hist

〉
can be prepared as follows. Since H

involves nearest-neighbor ZZ interactions in a square lat-
tice, one can divide all qubits into two parts such that every
ZZ term acts on qubits from different parts, as shown in
Fig. 1. Call the filled dots part A, and the nonfilled dots
part B. Apply CNOTB gates before and after a T/2 time
evolution, where CNOTB is controlled by the clock qubit
and acts on the whole part B, followed by an X operation
(denoted by X0) on the clock qubit. This gives the state (up
to normalization)

X0CNOTB exp
(− i

2 HT
)

CNOTB(|0〉 + |1〉) |φin〉
= |1〉 exp

(− i
2 HT

) |φin〉 + |0〉 XB exp
(− i

2 HT
)
XB |φin〉

= |0〉 exp
( i

2 H2T
) |φin〉 + |1〉 exp

(− i
2 H2T

) |φin〉 , (26)

where XB denotes X operators acting on all qubits of part B.
One might be concerned that applying CNOT gates on

only half of the lattice could be difficult with a near-term
device. However, one can implement CNOTB using only
a global controlled-Z (CZ) operator and local Hadamard
operators H. For all qubits in B, we perform the operation
H · CZ · H, which is exactly a CNOTB gate. For qubits in A,
we do not apply Hadamard operators, so the controlled-Z
operation only adds a phase to the second state. This phase
is canceled out in the end, because this effective CNOTB
operation is performed twice, and Z2 = I .

Note that the idea of inverting a Hamiltonian evolution
by conjugating with Pauli operators has been discussed
in Refs. [49–51], and used for an application to analog
simulation in Ref. [31] (although not in the context of his-
tory state preparation). This echo-based approach works
for more general Ising-type Hamiltonians, although they
might not be easy to verify. A more general discussion can
be found in Appendix E.

In summary, to realize the proposed protocol, the exper-
imental platform should have at least n system qubits and
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|+

|φin 1

|φin 2

|φin 3

|φin 4

X

H Z H

e−iHT/2

H Z H

e−iHT/2

Z Z

Z Z

H Z H H Z H

FIG. 2. The final quantum circuit for a (4+1)-qubit example system, where the initial state has been prepared as |ψinitial〉 = 1√
2
(|0〉 +

|1〉) |φin〉). Here the first qubit is the clock qubit, and part B consists of qubits 1 and 4, while part A consists of qubits 2 and 3. The initial
state |ψinitial〉 can be prepared by single-qubit rotations. By applying Hadamard gates before and after the globally controlled-ZZZZ
gate for qubits in part B, a controlled XZZX is implemented. As single-qubit Z commutes with e−iHT, the Z operations cancel out for
qubits in block A.

be capable of running single-qubit operations, nearest-
neighbor ZZ interactions, and a global CZ operation, which
is exactly the capability of our mostly analog + GCZ
model of quantum computation. The quantum circuit for
a four-qubit toy model is shown in Fig. 2.

B. Prospects for experimental implementation

As explained in Sec. III A, our protocol uses the mostly
analog + GCZ capability, which roughly contains two
types of ingredients: first, an analog simulator capable of
implementing a ZZ-type Hamiltonian along with a limited
number of single-qubit rotations and measurements, and,
second, a global CZ gate.

The first ingredient is easily accessible in many dif-
ferent hardware platforms. Indeed, ZZ-type Hamiltonians
are common in trapped ions [52], neutral atoms [53], and
superconducting qubits [54]. Similarly, arbitrary individ-
ual single-qubit rotations are available in many trapped-ion
(see, e.g., Ref. [55]), neutral-atom (see, e.g., Refs. [56–
59]), and superconducting [54] systems. When followed
by a measurement of all qubits in the computational basis,
such individual single-qubit rotations enable arbitrary
single-qubit measurements. Apart from Pauli measure-
ments, we only need to measure in two other predefined
bases, which are the bases for initial state verification.

The second ingredient (a global CZ gate) is not common
in hardware architectures for digital quantum computing,
but similar ideas have been explored in the context of rout-
ing and switching of single- or few-photon signals [60–62]
using atomic excitations, and in the case of single-photon-
controlled switches [33,34], where a single photon can be
used to switch the state of all the photons in a wave packet.

One potential implementation is to consider a system,
such as that shown schematically in Fig. 3, in which both
the clock qubit and the system qubits are coupled to sin-
gle “bus” degree of freedom. The simplest possible such

bus takes the form of bosonic mode, such as an optical
cavity [63], microwave cavity [64], or a phonon mode in
an ion trap [52]. In some cases, such as 3D superconduct-
ing cavities [64], photon lifetimes are long enough, and
light-matter coupling strengths are large enough that a pho-
ton in the bus cavity could be used directly as the clock
qubit and would, even in the dispersive regime, induce CZ
interactions with all of the system qubits.

However, in general, it is likely desirable to use a bus
excitation only virtually, harnessing it to mediate long-
range coupling between matterlike qubits. The bus can be
used to first mediate all-to-all ZZ interactions between all
qubits (including all system qubits and the clock qubit).
If the clock qubit is decoupled from the cavity, this pro-
duces a second set of all-to-all ZZ interactions between
the system qubits alone. By combining both interactions
above, it is possible to implement the desired global CZ
gate. Neutral atom systems with this type of capabil-
ity have been developed using several methods such as
cavity-mediated Raman transitions [65–68] and Rydberg

Clock qubit

System qubits

Bus

FIG. 3. The “bus” scheme for realizing a global CZ gate. All
simulation qubits are only coupled with the central “bus” mode,
which mediates long-range couplings between the clock qubit
and the system qubits. Combining bus-mediated all-to-all ZZ
interactions with and without a π pulse on the clock qubit gives
rise to the required global CZ gate controlled by the clock qubit.
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Quantum switch

Clock qubit

Signal

System

FIG. 4. The quantum switch scheme. Here the simulation
qubits are assigned in the square lattice as usual. A photon source
gives signals that implement Z operations for each simulation
qubit. A high-performance quantum switch, controlled by the
clock qubit, which could be in superposition, determines whether
the signal can be received by simulation qubits or not, which
realizes a global CZ gate.

EIT [69,70]. In superconducting circuit systems, two-qubit
gates are often mediated by virtual photons, and a gate with
global reach controlled by a single superconducting qubit
can be achieved using a box-cavity mode to encompass all
the qubits [71].

If a global bus degree of freedom as described above is
not possible for the simulator under test, it may be pos-
sible to make use of an external quantum switch instead.
In this case, the clock qubit must now switch the control
signals for single-qubit Z gates on and off. This architec-
ture, shown schematically in Fig. 4, provides significantly
more separation between the design constraints of the sim-
ulator and those of the clock qubit, but it requires the clock
qubit to control a very high-performance quantum switch.
In particular, it is not sufficient to use a classical switch
with an extremely low switching energy provided by the
clock qubit; instead, the switch itself must be able to exist
in a superposition between on and off. Such a superposi-
tion switching state is extremely challenging to achieve
with large control signals since there are many opportu-
nities to lose a photon (and thus destroy the superposition).
Compared to other architectures, superconducting qubits
typically require very low switching power—as low as a
few photons—so they are a likely candidate for imple-
mentation of the necessary quantum switch. For example,
a broadband and high-dynamic-range switch such as the
one demonstrated in Pechal et al. [72] could be converted
to use, e.g., a galvanically coupled fluxonium qubit [73]
as the switching element. In the optical domain, single-
photon controlled switches have been implemented using
atomic ensembles [33] and self-assembled semiconductor
quantum dots [34] as the switching medium.

IV. SUMMARY AND DISCUSSIONS

In summary, we have proposed a novel scheme for
demonstrating quantum computational ability based on
verification of analog quantum simulation. The verifier in

the scheme need only be capable of polynomial-time clas-
sical computation. The prover can be an analog quantum
simulator with the additional power of single-qubit opera-
tions and a specific global CZ gate, and only needs to be
able to prepare a constant number of samples, independent
of the system size. Additionally, we assume the prover can
perform trusted measurements. We also described some
possible near-term experimental implementations of the
global CZ gate.

Hangleiter et al. [26] propose another certification
scheme that was applied in Ref. [27] to verify mea-
surement outcomes using only local measurements. The
method in Ref. [26] can even verify BQP-complete com-
putation encoded through the Feynman-Kitaev mapping,
but it requires O(n2) samples of the output state for the
ZZ + Z Hamiltonian evolution, which is more expensive
than our constant-sample-complexity scheme.

Our improvement is achieved by a combination of the
single-step Feynman-Kitaev encoding and the commuting
nature of the ZZ + Z Hamiltonian (or the ZZ Hamiltonian
when single-qubit Zs are absorbed). In fact, our proto-
col can verify all commuting Hamiltonians with constant
sample complexity if entangled multiqubit measurements
are allowed, but it is unclear whether there are also near-
term honest-prover strategies in this more general case. We
discuss this in more detail in Appendix E.

We now discuss the number of qubits n required to
demonstrate quantum computational advantage. It is worth
noting that there can be a trade-off between the number
of qubits and the difficulty of implementing the Hamil-
tonian evolution in our protocol. Note that the H used in
our protocol is uniform, i.e., the coefficient of every term
ZiZj is the same (π/4), but our verification scheme pre-
sented in Sec. II works even if the coefficients are not
uniform. If the system is an a × b square lattice (where
a ≥ b) with a uniform commuting Hamiltonian, it is pos-
sible to classically sample from the distribution of X -basis
measurement outcomes by simulating every b × 1 cluster
along the shorter side in O(2b) time. In fact, assuming that
simulating linear-depth universal quantum circuits acting
on b qubits requires at least time �(2b), a b × b cluster
state is also sufficient to make the cost of sampling �(2b).
Therefore, to make the simulation cost �(2λ), we should
take a λ× λ square lattice with n = λ2 qubits. For sim-
plicity, we focus on the uniform case in this paper, but
if there is a sufficiently high level of nonuniformity, then
the aforementioned simulation is not available, and we can
conjecture the classical simulation cost to be 2�(n), as in
Ref. [43]. In this case, the number of qubits, the number
of single-qubit measurements, and the classical compu-
tational cost can all be reduced to O(λ)—at the cost of
more difficult history state preparation—since nonuniform
Hamiltonian evolution is in general more challenging.

As the purpose of proofs of quantumness is to demon-
strate quantum advantage, we do not require λ to be
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arbitrarily large, but are satisfied with a value above what
can be handled by classical supercomputers, which is
roughly 50 as suggested by existing quantum supremacy
experiments such as Ref. [7]. Therefore, we require n � 50
if the Hamiltonian is sufficiently nonuniform. On the other
hand, if the Hamiltonian is completely uniform (e.g., the
ZZ + Z Hamiltonian used in this paper), we require n �
2500 (a 50 × 50 square lattice) as suggested at the end of
Sec. I of Ref. [27]. An interesting direction for future work
is to determine the scaling of n with λ when the Hamilto-
nian is only slightly nonuniform, as it is unclear whether
the sampling algorithm for purely uniform Hamiltonians
will work. We leave it as an open problem to understand
quantitatively the hardness of sampling when the Hamil-
tonian is in between uniform and nonuniform, which may
enable demonstrations of quantum advantage using fewer
resources.

In Appendix C, we conclude that the single-qubit mea-
surement noise rate should be O(1/n) for our protocol
to succeed. In other words, the measurements should
be asymptotically noiseless, which is unrealistic in the
absence of fault tolerance. This is a common shortcom-
ing of most proof-of-quantumness protocols [9,39], so we
leave it as an open problem to improve the tolerance of
measurement noise. We also observe that the aforemen-
tioned trade-off between the number of qubits and the
uniformity of the Hamiltonian can reduce the required
noise rate of single-qubit measurements from O(1/n) =
O(1/λ2) to O(1/λ). Therefore, it suffices to have a single-
qubit measurement noise rate of roughly 0.01%, a difficult
but feasible level, to demonstrate quantum advantage.
We also emphasize that our single-qubit measurements
only need to be performed in five different bases (the
Pauli bases, {|x〉 ,

∣∣x⊥〉}, and {|y〉 ,
∣∣y⊥〉}), rather than arbi-

trary bases. Thus it may be reasonable to implement our
measurement scheme in the relatively near term.

As the main technical tool of this work, we studied a
simplified single-step Feynman-Kitaev construction and
developed a scheme to lower bound the output fidelity
Foutput (and subsequently the TVD between ideal and
experimental distributions) using three parameters. In fact,
the lower bound holds for any unitary U, but the three
parameters may not be efficiently estimatable in general.
One might ask if we can simply combine the protocol of
Fitzsimons et al. [18] with our single-step construction
to verify arbitrary quantum operations, such as noncom-
muting Hamiltonian evolutions or digital quantum circuits.
We do not have a definite answer, but this seems difficult
for most hard-to-simulate unitaries because they gener-
ally decompose into exponentially many Pauli terms and,
unlike ZZ + Z or ZZ Hamiltonian evolution, their mea-
surement outcomes cannot be efficiently deduced from
poly(λ) single-qubit measurements.

Instead of measuring the energy of the Feynman-
Kitaev Hamiltonian directly, we choose to estimate the

parameters Fin, Tr[ρO10], and psamp, and deduce the
output fidelity from them. The propagation part of the
Feynman-Kitaev Hamiltonian is 2I − O10 − O01 where
O01 := O†

10 = |0〉 〈1| ⊗ U†. The quantity 〈O01〉 can be esti-
mated using the same approach as estimating 〈O10〉, and
the energy of the Feynman-Kitaev Hamiltonian is sim-
ply 2 − 〈O10〉 − 〈O01〉. The history state is the ground
state with energy 0. However, if there is a global phase
error in the preparation of the history state such that the
real state is 1√

2
(|0〉 |φin〉 − |1〉 U |φin〉), then the value of

2 − 〈O10〉 − 〈O01〉 will be 4, the highest possible energy
of this Feynman-Kitaev Hamiltonian. However, this state
contains a perfect initial state and a perfect Hamiltonian
evolution, with a −1 phase that is effectively global if we
only care about the output state U |φin〉. Therefore, this
state will give correct samples from the hard distribution,
so a verification protocol with a reasonable completeness
level should accept it. Fortunately, our verification scheme
based on estimating |〈O10〉|2 can tolerate this kind of global
phase error, because |〈O10〉|2 directly reflects the fidelity of
the Hamiltonian evolution. However, this tolerance only
applies to systematic errors, i.e., the relative phase must
be the same for all copies given by the prover. If instead
the relative phase is random for each copy, then the ver-
ifier cannot accept. This is simply because if N complex
numbers are generated with unit magnitude but randomly
chosen phases, then the average complex value of all those
numbers will not have magnitude 1, but a much lower
value. We leave it as an open problem to improve the
verification scheme to tolerate random global phases.

Experimental implementation of the protocol would be
of significant interest. Although it might be difficult to
implement quantum communication in the adversarial sce-
nario, our protocol could be a useful tool for experimen-
talists to benchmark the quality of their devices, because
the quality of initial state preparation and that of Hamilto-
nian evolution can be estimated separately and precisely.
As shown in Appendix B, if the noise pattern is known
to be fully stochastic instead of coherent, the experimen-
talist only needs to achieve output fidelity 0.708, which
is significantly easier than the bound of 0.915 in the fully
coherent case. However, even though 0.708 seems to be a
reasonable level, achieving a constant output fidelity for a
large number of qubits may be challenging for near-term
devices. We emphasize that this is a common issue for
all quantum advantage protocols designed for non-fault-
tolerant platforms. For our approach, this may be mitigated
if we apply the trade-off between the number of qubits
and Hamiltonian implementation difficulty as mentioned
above. In summary, although a 70-qubit device capable of
non-uniform Hamiltonian simulation with approximately
0.01% measurement error suffices to demonstrate quan-
tum advantage, implementing our verification protocol
still requires designing a new experimental scheme from
scratch due to the the constant output fidelity requirement
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FIG. 5. The reconfigurable atom-array scheme. The gray dots
represent qubits in a

√
n-qubit GHZ state. Local CZ gates can

be realized between pairs of GHZ qubits and system qubits in
parallel. Then the GHZ qubits are moved down to the next row
and the parallel CZ gates are repeated.

and the difficulty of combining the high-quality GCZ gate
and nonuniform Hamiltonian evolution together in a single
platform. Therefore, even though we consider our protocol
to be near-term practical, we find it unlikely to be imme-
diately implemented with sufficient output fidelity to show
quantum advantage.

Finally, our approach may have applications to realizing
near-term quantum advantage even in devices capable of
digital quantum computation. Reconfigurable atom arrays
[74,75] may be one such system. In these arrays, physi-
cal qubits (realized by individual neutral atoms controlled
by optical tweezers) can be moved accurately on the 2D
plane in parallel, and transversal CZ gates are available.
Therefore, our global CZ gate can be implemented as fol-
lows. One can first prepare a large n-qubit GHZ state
that behaves as the clock qubit. The GHZ state prepara-
tion can be implemented by either performing a sequence
of CNOT gates or using constant-depth unitary operations
interleaved with measurements and classical computations
[76]. One can then can move all qubits in the GHZ state
such that every system qubit pairs with a GHZ qubit.
Next, using the Levine-Pichler gate [77], CZ gates can be
implemented in parallel for every pair of system and GHZ
qubits, effectively implementing the global CZ acting on
all system qubits. There is also a multistep solution to mit-
igate the hardness of GHZ preparation: since our system
is a

√
n × √

n square lattice, it suffices to prepare a 1D√
n-qubit GHZ state, and apply the transversal CZ gate

√
n

times to achieve the same global CZ gate. This proposal is
depicted in Fig. 5.

While digital reconfigurable atom arrays are capable of
even more powerful quantum operations than the mostly
analog + GCZ commuting model, it may still be worth per-
forming our proposed experiment using Rydberg atoms.
Running our verification protocol gives several quanti-
tative performance measures (Fin and |〈O10〉|2), and can
thus be used to benchmark the performance of this fast-
developing platform in a sample-efficient manner.
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APPENDIX

In these appendices, we present details omitted from the
main text. In Appendix A, we state and briefly explain
the conjectures used to establish computational hardness
[27,38]. In Appendix B, we lower bound the output fidelity
and the total variation distance between distributions using
the parameters in our verification scheme. In Appendix C,
we discuss noisy measurements and estimate the noise
rate that both verification and sampling can tolerate. In
Appendix D, we discuss an additional soundness prop-
erty of our protocol against correlated output states using
martingale inequalities. In Appendix E, we generalize the
echo method presented in the main text to more general
Ising-type Hamiltonians.

APPENDIX A: COMPUTATIONAL HARDNESS OF
THE ZZ + Z SAMPLING PROBLEM

As mentioned in the main text, the classical hardness
of X -basis sampling from a state produced by (ZZ + Z)-
Hamiltonian evolution is proven in Bermejo-Vega et al.
[27] and Ringbauer et al. [38] under several plausible
conjectures. Here we briefly introduce their main proof
ideas and state the conjectures explicitly. The hardness
of sampling originates from the hardness of estimating
the probabilities of each measurement outcome, which is
conjectured to be a #P-hard problem on average. Pre-
vious works show that if the sampling problem can be
solved in polynomial time, and if the probability distri-
bution is anticoncentrated, then these probabilities can be
estimated in the third level of polynomial hierarchy. This
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is due to Stockmeyer’s algorithm [78], which can use a
polynomial-time sampling algorithm as a subroutine and,
in the third level of polynomial hierarchy, output an esti-
mate of the probability. Therefore, no polynomial-time
algorithm can sample from the output distribution within
a constant additive error, unless the polynomial hierarchy
collapses. This additive error translates to a constant total
variation distance (TVD) value of 0.292 as calculated in
Appendix S4 of Ref. [38].

In the rest of this section, we review the three con-
jectures used in the proof in [27]. The third of these
conjectures, on anticoncentration, was proved in Ref. [79],
so we refer to it as a theorem.

The first conjecture is a very standard assumption in
computational complexity theory about the polynomial
hierarchy, which generalizes the NP and coNP complexity
classes [80].

Conjecture 1 (Polynomial hierarchy—Conjecture 1 in
Ref. [27]). The polynomial hierarchy is infinite.

The second conjecture is adopted from Ref. [37]. It con-
siders the hardness of a random nearest-neighbor Ising
model on an n × m square lattice where m grows at least
linearly with n, with the Hamiltonian

H (α,β) =
∑

i,j

π

4
ZiZj −

∑

i

h(α,β)
i Zi, (A1)

where h(α,β)
i = π/4 − (αi + βi)/2 with αi ∈ {0,π},βi ∈

{0,π/4} chosen uniformly at random.

Conjecture 2 (Average-case complexity—Conjecture 2
in Ref. [27] and conjecture in Ref. [38], originally
from Ref. [37]). Let Z(α,β) := Tr

(
eiH (α,β))

. Approximat-
ing |Z(α,β)|2 up to relative error 1/4 + o(1) for any 0.001
fraction of the field configurations is #P-hard.

The “any 0.001 fraction” condition in the above conjec-
ture indicates average-case hardness, while the worst case
has been proved to be #P-hard in Ref. [27]. This conjecture
was originally proposed in Ref. [37].

The last statement is about anticoncentration of the
output distribution. Consider a one-dimensional nearest-
neighbor n-qubit (n)-depth random circuit

C =
[

n−1∏

i=1

CZi,i+1

] [
n∏

i=1

Zci
i e−i π4 diZiHi

]
, (A2)

where ci, di are uniformly randomly chosen from {0, 1} and
Hi are Hadamard gates.

Theorem 7 (Anticoncentration—Conjecture 3 in
Ref. [27], proved in Ref. [79]). For the random circuit C

described above,

Pr
C

(
|〈x|C|0〉⊗n|2 ≥ 1

2n

)
≥ 1

e
(A3)

for any binary string x ∈ {0, 1}n.

APPENDIX B: RELATING THE PARAMETERS TO
THE TOTAL VARIATION DISTANCE

In this Appendix, we derive an upper bound on the total
variation distance of interest, dTVD(Pideal, Preal), in terms
of the parameters Fin, |〈O10〉|2, and psamp. We use the same
definition of ρ and |ψi〉 as in Eqs. (6) and (7).

First, we relate the TVD and the output fidelity

Fout(ρ) :=
∑

i pi|βi|2
∣∣〈φ′

i |U|φin〉
∣∣2

∑
i pi|βi|2 . (B1)

This is the fidelity between the state used for sampling, ρ,
and U |φin〉, since the state corresponding to the “output”
of the computation is

∣∣φ′
i

〉
for all i.

In the second step, we derive a lower bound on the state
fidelity in terms of the parameters. We lower bound Fout(ρ)

using only the parameters Tr[ρO10] and Fin(ρ). We find

Fout(ρ) ≥ 16|Tr[ρO10]|2 + 3Fin(ρ)− 6 (B2)

up to higher-order terms. As a sanity check, if the history
state is perfectly prepared, both |Tr[ρO10]|2 and Fin should
take their maximum values, which are 1/4 and 1 (as shown
later in this section), giving Fout = 1 as expected.

1. Relating the total variation distance to the output
fidelity

To demonstrate quantum advantage, we generate sam-
ples from the desired distribution Pideal defined by U |φin〉
with total variation distance (TVD) less than δ = 0.292
as per Ringbauer et al. [38]. Therefore, we would like to
relate the fidelity Fout obtained from the measurements to
the distance between the distribution Preal corresponding to
the classical mixture of

∣∣φ′
i

〉
s (i.e.,

∑
i pi|βi|2

∣∣φ′
i

〉 〈
φ′

i

∣∣) and
the ideal distribution Pideal.

Let ‖ · ‖Tr be the trace norm (Schatten 1-norm). The
TVD between probability distributions generated by mea-
surements on quantum states is upper bounded by the trace
distance between those states, which is in turn related to
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the fidelity:

dTVD(Pideal, Preal)

≤ 1
2

∥∥∥∥∥U |φin〉 〈φin| U†−
∑

i

pi|βi|2
∣∣φ′

i

〉 〈
φ′

i

∣∣
∥∥∥∥∥

Tr

≤
√√√√1 − F

(
U |φin〉 〈φin| U†,

∑

i

pi|βi|2
∣∣φ′

i

〉 〈
φ′

i

∣∣
)

=
√

1 −
∑

i

pi|βi|2F(
∣∣φ′

i

〉
, U |φin〉) =

√
1 − Fout.

(B3)

Thus, dTVD(Pideal, Preal) ≤ 0.292 is satisfied if

Fout ≥ 0.915 > 1 − δ2, (B4)

where we use δ = 0.292.
We also observe that the output fidelity requirement can

be relaxed to 0.708 if the noise in the system is known to
be fully stochastic. We discuss this in Appendix B 3.

2. Lower bounding the output fidelity using the
parameters

As a mathematical tool, we define an inner product
based on the (not explicitly known) diagonalization of ρ.
Suppose ρ = ∑2n+1

i=1 pi |ψi〉 〈ψi| and there exists an integer
N�=0 > 1 such that pi > 0 for all 1 ≤ i ≤ N�=0 and pi = 0
for all N�=0 < i ≤ 2n+1. The inner product 〈·, ·〉ρ is defined
for the N�=0-dimensional complex vector space V = C

N �=0

as

〈 �A, �B〉ρ :=
∑

1≤i≤N �=0

piAiB∗
i , (B5)

where �A := (A1, A2, . . . , AN �=0)
T and �B := (B1, B2, . . . ,

BN �=0)
T are vectors in V. It is straightforward to verify that

for any valid density matrix ρ, the vector space V equipped
with 〈·, ·〉ρ is an inner product space. Therefore, one can
define the norm of a vector in V as

‖ �A‖2 := 〈 �A, �A〉ρ =
∑

i

pi|Ai|2. (B6)

Next, we define several vectors to help represent the state
and the parameters: the input fidelity vector �fin, the propa-
gation fidelity vector �fin, the output fidelity vector �fout, the
α coefficient vector �α, the β coefficient vector �β, and the γ

coefficient vector �γ for a given mixed state ρ, namely

�fin := (. . . , 〈φi|φin〉, . . . )T,

�fprop := (. . . , 〈φ′
i |U|φi〉, . . . )T,

�fout := (. . . , 〈φ′
i |U|φin〉, . . . )T,

�α := (. . . ,αi, . . . )T,

�β := (. . . ,β, . . . )T,

�γ := (. . . ,αiβ
∗
i , . . . )T,

(B7)

respectively. Note that ‖ �γ ‖2 ≤ 1/4 and ‖�fin‖2, ‖�fprop‖2,
‖�fout‖2 ≤ 1 since |αi|2 + |βi|2 = 1,

∑
i pi = 1, and fideli-

ties are at most 1.
Observe that psamp is the same as ‖�α‖2. Another param-

eter, Tr[ρO10], can be written as the inner product of two
of the above vectors:

Tr[ρO10] =
∑

i

piαiβ
∗
i 〈φ′

i |U|φi〉 = 〈 �γ , �fprop〉ρ . (B8)

Using the Cauchy-Schwarz inequality, we find

|Tr[ρO10]|2 = |〈 �γ , �fprop〉|2 ≤ ‖�γ ‖2‖�fprop‖2 ≤ 1/4. (B9)

Since ‖ �γ ‖2 ≤ 1/4 and ‖�fprop‖2 ≤ 1, the above inequality
implies that

‖ �γ ‖2 ≥ |Tr[ρO10]|2,

‖�fprop‖2 ≥ 4|Tr[ρO10]|2.
(B10)

If the prover performs well, then the estimated value
|Tr[ρO10]|2 should be close to 1/4, ‖�α‖2 should be close to
1/2, and Fin should be close to 1. Therefore, we write them
as |Tr[ρO10]|2 = 1/4 − ε, ‖�α‖2 = 1/2 + ε′ = 1 − ‖ �β‖2,
and Fin = 1 − ε′′, where ε, ε′, ε′′ are all small and ε, ε′′ >
0. This also implies that ‖ �γ ‖2 = ∑

i pi|αi|2|βi|2 ≥ 1/4 − ε

and ‖�fprop‖2 ≥ 1 − 4ε.
Recall that our final objective is to lower bound Fout(ρ).

We start by giving a lower bound on ‖�fin‖2 in terms of Fin.
First, the Cauchy-Schwarz inequality gives

Fin(ρ) = 1
‖�α‖2

∑

i

pi|αi|2 |〈φi|φin〉|2

≤ 1
‖�α‖2

∑

i

pi|αi|2 |〈φi|φin〉|

≤ 1
‖�α‖2

(
∑

i

pi|αi|4
)1/2

‖�fin‖.

Plugging in the identity |αi|4 = |αi|2 − |αi|2|βi|2, we get

Fin(ρ) ≤ 1
‖�α‖2 (‖�α‖2 − ‖�γ ‖2)1/2‖�fin‖.

010341-16



EFFICIENTLY VERIFIABLE QUANTUM ADVANTAGE. . . PRX QUANTUM 6, 010341 (2025)

As before, suppose that ‖ �γ ‖2 = 1/4 − ε and ‖�α‖2 =
1/2 + ε′. This implies that

Fin(ρ) ≤ 1
1
2 + ε′

( 1
2 + ε′ − 1

4 + ε
)1/2 ‖�fin‖.

We can rewrite this as

‖�fin‖ ≥
1
2 + ε′

√
1
4 + ε′ + ε

Fin = (1 − 2ε)Fin + O(ε′2)+ O(ε2)

+ O(εε′).

Next, since |〈φ′
i |U|φin〉|2 ≥ ∣∣〈φ′

i

∣∣ U |φi〉
∣∣2 |〈φi|φin〉|2, we

have

Fout(ρ) ≥ 1

‖ �β‖2

∑

i

pi|βi|2
∣∣〈φ′

i

∣∣ U |φi〉
∣∣2 |〈φi|φin〉|2 .

Note that for any δ1, δ2 ∈ [0, 1], we have (1 − δ1)(1 −
δ2) ≥ 1 − δ1 − δ2 = (1 − δ1)+ (1 − δ2)− 1. Using this
inequality, we can write

Fout(ρ) ≥ 1

‖ �β‖2

∑

i

pi|βi|2
(∣∣〈φ′

i

∣∣ U |φi〉
∣∣2 + |〈φi|φin〉|2 − 1

)

= −1 + 1

‖ �β‖2

∑

i

pi(1 − |αi|2)
(∣∣〈φ′

i

∣∣ U |φi〉
∣∣2 + |〈φi|φin〉|2

)

= −1 + 1

‖ �β‖2

(
‖�fprop‖2 + ‖�fin‖2

)
− 1

‖ �β‖2

∑

i

pi|αi|2
∣∣〈φ′

i

∣∣ U |φi〉
∣∣2 − ‖�α‖2

‖ �β‖2
Fin(ρ).

The second-to-last term can be bounded in terms of ‖�fprop‖, using the same argument we used to relate Fin(ρ) and ‖�fin‖.
This yields

1

‖ �β‖2

∑

i

pi|αi|2
∣∣〈φ′

i

∣∣ U |φi〉
∣∣2 ≤

√
1
2 + ε′ − 1

4 + ε

1
2 − ε′ ‖�fprop‖ = (1 + 4ε′ + 2ε)‖�fprop‖ + O(ε′2)+ O(ε2)+ O(εε′). (B11)

Plugging this into the preceding equation, we get

Fout(ρ) ≥ −1 + 1

‖ �β‖2

(
‖�fprop‖2 + ‖�fin‖2

)
−

√
1
2 + ε′ − 1

4 + ε

1
2 − ε′ ‖�fprop‖ − ‖�α‖2

‖ �β‖2
Fin(ρ)

≥ −1 + 2
1 − 2ε′

(
‖�fprop‖2 + ‖�fin‖2

)
−

√
1
2 + ε′ − 1

4 + ε

1
2 − ε′ ‖�fprop‖ −

1
2 + ε′
1
2 − ε′ Fin(ρ)

= 1 − 16ε − 3ε′′ + h.o., (B12)

where h.o. indicates higher-order terms in ε, ε′, ε′′. Numer-
ically, this first-order approximation of the lower bound
has absolute error at the 10−3 order of magnitude if all
of ε, |ε′|, ε′′ are upper bounded by 0.02. We have thus
established Theorem 3.

3. Relaxing the fidelity requirement for fully stochastic
noise models

We notice that inequality (B3) can be improved to get a
bound that approaches

dTVD(Pideal, Preal) ≤ 1 − Fout (B13)

in cases where the errors are stochastic rather than coher-
ent. Let ρreal := ∑

i pi|βi|2
∣∣φ′

i

〉 〈
φ′

i

∣∣ be the real state (that
is, the state prepared in the experiment), and let σ =
|ψ〉 〈ψ | be the ideal pure state. The real state ρreal has
fidelity Fout = 〈ψ | ρreal |ψ〉 = 1 − δf (where δf is the
“infidelity”).

Furthermore, assume that ρreal is mixed, in the sense
that Tr(ρ2

real) = 1 − δp (where δp is the “impurity”). This
assumption can be checked by estimating Tr(ρ2

real) using
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either randomized measurements [81] or the swap test.
(The former method is appropriate for small quantum
systems where the experimenter has a relatively limited
degree of control; the latter method is capable of han-
dling much larger quantum systems, but requires more
sophisticated quantum control.)

Define projectors �0 := |ψ〉 〈ψ | and �1 := I −�0.
Write the state in block-diagonal form as ρreal = ρ00 +
ρ01 + ρ10 + ρ11, where ρab := �aρreal�b for a, b ∈ {0, 1}.

Let ‖ · ‖F be the Frobenius norm (i.e., the Schatten
2-norm). Then we can upper bound the trace distance
between ρreal and σ as follows:

‖ρreal − σ‖Tr

≤ ‖ρ00 − σ‖Tr + ‖ρ11‖Tr + ‖ρ01‖Tr + ‖ρ10‖Tr

= 2δf + 2‖ρ01‖Tr. (B14)

We have

‖ρ01‖Tr = ‖ρ01‖F

= 1√
2
(Tr(ρ2

real)− ‖ρ00‖2
F − ‖ρ11‖2

F)
1/2

≤ 1√
2
(Tr(ρ2

real)− ‖ρ00‖2
F)

1/2

= 1√
2
(1 − δp − (1 − δf )

2)1/2

= 1√
2
(2δf − δ2

f − δp)
1/2. (B15)

Therefore,

1
2
‖ρreal − σ‖Tr ≤ δf +

√
δf − δ2

f /2 − δp/2. (B16)

This bound can be compared to inequalities (B3)
and (B13). When ρ is a pure state, we have δp = 0, so
the above bound is roughly

√
δf , which looks like inequal-

ity (B3). When ρ is highly mixed, δp can be as large as
δp ≈ 2δf − δ2

f , so the above bound is roughly δf , which
looks like inequality (B13). This implies that, when the
noise model is known to be fully stochastic, the output state
fidelity need only be at least 1 − δ = 0.708 to demonstrate
quantum advantage, according to inequality (B13).

APPENDIX C: NOISY MEASUREMENTS

In the analysis in the main article, we assume that all
measurements are perfect. In this Appendix, we discuss the
potential negative effects of noisy measurements in both
verification and sampling. We also show that the tolera-
ble noise rate in single-qubit measurements for an n-qubit
system is ε 
 1/n.

1. Noisy measurements in verification

Let us first discuss the estimation of |〈O10〉|2 = |〈X ⊗
U〉 + i〈Y ⊗ U〉|2. When ε 
 1/n, the number of erroneous

measurements in each estimation of the value of X ⊗ U
or Y ⊗ U is much less than 1. Therefore, the mean values
measured for both quantities only deviate by up to nε〈X ⊗
U〉 and nε〈Y ⊗ U〉 due to the measurement errors, lead-
ing to constant-factor errors in the estimation of |〈O10〉|2.
Hence, the error rate must be sufficiently small, e.g., ε =
1/100n, such that the estimated value can still be in the
range of acceptance.

Similarly, we require the measurement error to be as
small as 1/100n to estimate Fin to sufficiently high pre-
cision, because the value of Nin+0 could be lowered by
NMnε when measuring NM samples. This may lead to a
constant-factor error (of order nε) in Fin,M.

2. Noisy measurements in sampling

In the following lemma, we show that we can still
sample from a classically intractable distribution if the
measurement error is much lower than 1/n.

Lemma 3. If Foutput = 1 − δf , and all measurements
have the same error rate ε 
 1/n, then the measure-
ment outcomes sample from a distribution Preal with
dTVD(Preal, Pideal) ≤ δ′ = √

δf + O(1).

Proof. Since there are n Hadamard measurements to
be performed, the probability of having no error in the
measurements is

pmeasure = (1 − ε)n ≈ 1 − εn. (C1)

Therefore, there is a 1 − εn probability that the measure-
ment outcome samples from a distribution that is

√
δf

away from the ideal distribution in terms of TVD. In the
worst case, we simply assume the distribution of error-
neous measurements has maximum TVD from the ideal
distribution, which is 1. Hence, the TVD between the real
experiment distribution and the ideal distribution can be
upper bounded by

dTVD(Preal, Pideal) ≤ (1 − εn)dTVD(Preal, Pideal)+ εn

= (1 − εn)
√
δf + εn = √

δf + O(1),
(C2)

where in the last step we use ε 
 1/n and δf < 1. �

APPENDIX D: RELAXING THE ASSUMPTION
THAT THE TRIALS ARE IID

Our protocol consists of NM repeated trials or experi-
ments that are carried out by the prover and the verifier. In
the preceding discussion, we have assumed that these trials
are independent and identically distributed (IID), so that
the accuracy of our protocol can be shown using simple
large-deviation bounds, such as Hoeffding’s inequality.
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Here we sketch how this IID assumption can be relaxed
to encompass situations where the trials are weakly cor-
related, for instance, due to slow drift of the experimental
apparatus. In this case, the accuracy of our protocol can
be shown using large-deviation bounds based on martin-
gales, such as Azuma’s inequality [82]. This bears some
resemblance to the use of martingales to certify the entropy
produced by quantum random number generators based on
violations of Bell’s inequality [83–85].

To demonstrate this, consider a protocol that estimates
the expectation value of an observable Tr(Aρ) by repeating
an experiment (preparing ρ and measuring A) NM times.
(More complicated protocols can be handled in a similar
way.) For j = 1, 2, . . . , NM , let Fj be the random variable
that represents the classical measurement outcome from
the j th repetition of the experiment. Let

F = 1
NM

NM∑

j =1

Fj (D1)

be the average of the Fj , which we use to estimate the
expectation value of A. In addition, assume that the opera-
tor norm of A is bounded by ‖A‖ ≤ β, where β is inde-
pendent of the size of the system, and hence |Fj | ≤ β.
This assumption is satisfied for many commonly used
measurements, such as computational-basis measurements
preceded by arbitrary single-qubit rotations.

In the case where the trials are IID, the same quantum
state ρ is prepared in every trial, and the random vari-
ables Fj are IID with expectation value Tr(Aρ). Then F has
expectation value Tr(Aρ) and variance Var(F) ≤ 4β2/NM .
Furthermore, Hoeffding’s inequality implies that F sat-
isfies a Gaussian-like large-deviation bound with width
O(β/

√
NM ):

Pr(|F − Tr(Aρ)| ≥ t) ≤ 2 exp
(

− t2NM

2β2

)
(t > 0).

(D2)

In the non-IID case, it is possible for the NM trials to be
correlated. In real experiments, these correlations may be
caused by slow drift of the experimental parameters over
time. If one can show that these correlations are weak, then
one can obtain similar conclusions as in the IID case, in the
following way.

First consider the expectation value of F in the non-
IID case. Without loss of generality, one can imagine that
there exists a joint state σ on NM copies of the quantum
system, and for each j , the random variable Fj comes
from measuring the reduced state on the j th copy of the
system, which we denote σj := Tr{1,...,NM }\{j }(σ ). Then the

expectation value of F is

E(F) = 1
NM

NM∑

j =1

Tr(Aσj ) = Tr(Aτ), (D3)

where we define τ := 1/NM
∑NM

j =1 σj to be the average of
the states σj . Thus F can still be interpreted as an estimate
of the expectation value Tr(Aτ) for some state τ on a single
copy of the system.

Next, consider the variance of F in the non-IID case.
This necessarily involves the covariances between the
different trials of the experiment:

Var(F) = 1
N 2

M

NM∑

j ,k=1

E((Fj − EFj )(Fk − EFk)). (D4)

If these covariances E((Fj − EFj )(Fk − EFk)) decay
rapidly as a function of |j − k|, then Var(F) ≤ O(β2/NM ),
which is qualitatively similar to the behavior in the IID
case.

Finally, if the correlations between the different trials
are sufficiently weak, one can still show that F satisfies
a Gaussian-like large-deviation bound. One approach is to
use martingale techniques [82]. Consider the Doob martin-
gale Gj = E(F|Fj , . . . , F1). If the correlations between the
Fj are sufficiently weak, then the differences between the
Gj will satisfy a bound of the form

|Gj − Gj −1| ≤ O(β/NM ). (D5)

[This holds, for example, when the correlations between
the different trials only occur within some fixed “corre-
lation length.” That is, suppose there exists some Lcorr ≤
O(1) such that, for all j ∈ {Lcorr, . . . , NM − Lcorr}, the ran-
dom variables (F1, . . . , Fj −Lcorr) and (Fj +Lcorr , . . . , FNM )

are independent conditioned on Fj . Then an elementary
calculation shows that |Gj − Gj −1| ≤ (2Lcorr + 1)β/NM .
This implies Eq. (D5).] Whenever Eq. (D5) holds,
Azuma’s inequality implies that

Pr(|F − Tr(Aτ)| ≥ t) ≤ 2 exp
(

−�
(

t2NM

β2

))
(t > 0).

(D6)

This result is qualitatively similar to Hoeffding’s inequal-
ity, which we used in the IID case previously.

Note that both the assumptions (D5) and the con-
clusion (D6) are very strong. The correlations between
the Fj must be weak enough that the above bound on
|Gj − Gj −1| holds with probability 1. This rules out the
possibility of rare bad events. This is necessary to prove a
large-deviation bound of the form Eq. (D6).
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APPENDIX E: ECHO FOR MORE GENERAL
HAMILTONIANS

In the main text, we have shown that the echo approach
can be used to generate the single-step history state for a
(ZZ + Z)-type Hamiltonian on a bipartite lattice. In this
section, we show that the single-step history state can
be prepared for some—though not all—other Ising-type
Hamiltonians.

A (ZZ + Z)-type Hamiltonian is very special because
its terms commute. This allows us to run the controlled
Zs independently and only worry about controlled ZZs.
For more general noncommuting Hamiltonians, we may
have to “invert” all its terms in the echo approach. Under
suitable conditions, we can do this using the following
theorem.

Theorem 8. If there exists an operator P, which is a
product of single-qubit operations such that PHP = −H ,
then the single-step history state can be prepared using
two-local operations and controlled-P gates.

Proof. We start with the initial state (|0〉 + |1〉) |φ〉 and
perform CP before and after a half-time evolution of H ,
followed by a Pauli X on the clock qubit and a half-time
evolution of H . The final state is

e−iHT/2 · X0 · CP · e−iHT/2 · CP (|0〉 + |1〉) |φ〉
= e−iHT/2 [|1〉 e−iHT/2 |φ〉 + |0〉 Pe−iHT/2P |φ〉]

= e−iHT/2

[
|1〉 e−iHT/2 |φ〉 + |0〉

∑

k

1
k!

P(−iHT/2)kP |φ〉
]

= e−iHT/2

[
|1〉 e+iHT/2 |φ〉 + |0〉

∑

k

1
k!
(+iHT/2)k |φ〉

]

= e−iHT/2 [|1〉 e−iHT/2 |φ〉 + |0〉 e+iHT/2 |φ〉]

= |0〉 |φ〉 + |1〉 e−iHT |φ〉 , (E1)

which is the desired output. �

There are several cases in which an operator P satis-
fying the conditions of the theorem can be constructed.
For example, if the Hamiltonian consists of ZZ terms on
a bipartite interaction graph, then P can apply an X (or
Y) operator to all qubits on one half of the bipartition.
We can also handle some cases where the Hamiltonian is
noncommuting, such as

H =
∑

(i,j )∈NN

(XiXj + YiYj )+
∑

i

Zi (D2)

acting on a bipartite lattice. Then we can split the system
into two sets of qubits where all interactions are between
qubits in different sets. If the operator P acts with X on

the first set of qubits and Y on the second set, then it
anticommutes with each term of H , so it has the desired
behavior.
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