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Gaussian boson sampling is a popular method for experimental demonstrations of quantum advantage, but
many subtleties remain in fully understanding its theoretical underpinnings. An important component in the
theoretical arguments for approximate average-case hardness of sampling is anticoncentration, which is a
second-moment property of the output probabilities. In Gaussian boson sampling these are given by hafnians
of generalized circular orthogonal ensemble matrices. In a companion work by Ehrenberg et al. [Phys. Rev.
Lett. 134, 140601 (2025)], we develop a graph-theoretic method to study these moments and use it to identify a
transition in anticoncentration. In this work, we find a recursive expression for the second moment using these
graph-theoretic techniques. While we have not been able to solve this recursion by hand, we are able to solve
it numerically exactly, which we do up to Fock sector 2n = 80. We further derive analytical results about the
second moment. These results allow us to pinpoint the transition in anticoncentration and furthermore yield the
expected linear cross-entropy benchmarking score for an ideal (error-free) device.
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I. INTRODUCTION

One of the major goals of quantum computer science is
to find examples of certain tasks on which quantum devices
can outperform classical computers. While the ultimate goal
is to develop quantum computers that can run, say, Shor’s
algorithm [1], the qubit numbers, gate fidelities, and error
correction needed to accomplish such a task fault-tolerantly
are well beyond the current state of the art. Therefore, there is
interest in finding near-term examples of quantum advantage.

One area of focus that has strong theoretical evidence for
an exponential speedup over the best possible classical algo-
rithms comprises the so-called sampling problems. Aaronson
and Arkhipov introduced one such promising framework
called boson sampling [2]. The boson sampling task is to
produce a sample (that is, a valid output Fock state) according
to the outcome distribution generated by measuring indistin-
guishable photons that have been subjected to a random linear
optical network of beam-splitters and phase shifters. In boson
sampling, the input states consist of single photons on many
input modes. However, because single-photon sources have
imperfect efficiency, these states are difficult to produce exper-
imentally, requiring an exponential amount of postselection
[3]. Therefore, generalizing this framework to other inputs
that are more reliably produced has been an important topic
of study.

Gaussian boson sampling represents one such popular gen-
eralization. There, the input states are quadratic, meaning they
are generated from the vacuum by some combination of dis-
placement and squeezing (assuming pure input states that have
no thermal contribution) [4]. Typically, the displacements are
ignored because they do not contribute to entanglement be-
tween the modes. Hence, the input states are simply squeezed

vacuum states, which are much easier to prepare in a lab-
oratory than many parallel single-photon states [3]. Much
theoretical work has been done to generalize the original state-
ments from Ref. [2] about the computational complexity of
sampling in the Fock basis to this Gaussian setting [5–11]. In
due course, many labs have performed experiments claiming
to show quantum advantage using Gaussian boson sampling
[12–15].

Broadly speaking, the hardness of sampling schemes in
general, and therefore of both Fock state and Gaussian boson
sampling, is based on certain statistical properties of the out-
put probability distributions. Fock state boson sampling and
Gaussian boson sampling have output probabilities defined by
permanents and hafnians, respectively, which are combinato-
rial functions mapping matrices over a field to an element of
that field. If one treats the input matrix as a weighted adja-
cency matrix, then the permanent and the hafnian count the
number of perfect matchings in the bipartite and generalized
weighted graph, respectively, defined by this adjacency matrix
[16]. These functions are, in general, difficult to compute.
The permanent is #P-hard to compute exactly [17], and this
hardness extends to the hafnian because one can encode the
permanent of a matrix as the hafnian of a matrix that is twice
as big. Even further, Ref. [2] extended this exact hardness
to a proof that it is GapP-hard to approximate the modulus
squared of the permanent up to inverse polynomial multiplica-
tive error (which similarly extends to the hafnian). However,
showing that it is hard to compute or approximate specific out-
put probabilities is not, in and of itself, enough to demonstrate
hardness of actually producing a sample from the Fock or
Gaussian boson sampling distributions; many theoretical tools
are needed to show that a difficulty in computing probabilities
further implies a difficulty in sampling.
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One such crucial tool is called anticoncentration. Anticon-
centration is a property of the output distribution that says,
roughly, that the outputs are not too clustered on individual
probabilities, hence making it more difficult to adequately
mimic this distribution in a sampling procedure, and it is
commonly used as evidence for approximate average-case
hardness of sampling [3]. Anticoncentration is usually proven
by analyzing the moments of the outcome probability distri-
bution. In a companion piece to this work, Ref. [18], we study
anticoncentration in the photon-collision-free limit (where the
outcome states are very likely to have at most a single photon
in each mode). We develop a graph-theoretic technique to find
a closed form for the first moment. Using this result and a
few simple analytical results about the second moment (most
saliently, that it admits a polynomial expansion in the number
of initially squeezed modes and the leading-order coefficient
of this expansion), that work shows that there is actually a
transition in whether or not anticoncentration holds based
on how many of the initial modes are squeezed; when few
are squeezed, there is a lack of anticoncentration, but, in the
opposite limit, a weak version of anticoncentration holds.

However, the second moment itself deserves a more thor-
ough treatment beyond the few analytic results needed to
prove this transition in anticoncentration. For example, lin-
ear cross-entropy benchmarking (LXEB) is a tool that has
been used to characterize the performance of sampling ex-
periments, most notably in the random circuit sampling
experiment of Ref. [19]. It can be shown that the LXEB score
that an error-free sampler would achieve when averaged over
all possible random networks is precisely given by the second
moment of the output probabilities normalized by the square
of the first moment. Therefore, a better understanding of the
second moment is crucial to achieving a better understanding
this popular benchmarking scheme.

To that end, we develop a classically efficient recursion
relation that allows us to exactly calculate the second moment
up to any desired Fock sector n. This, along with proofs
of the analytical results necessary to derive the transition in
anticoncentration, is the main technical contribution of this
work. The recursion relation follows from the graph-theoretic
approach we introduce in Ref. [18], which we generalize
and expand upon here. This approach reduces the algebraic
evaluation of the hafnian to simply counting the number of
connected components of a certain class of graphs. We then
carefully study how higher-order graphs reduce to lower-order
ones under certain operations, and the effect that this has on
the number of connected components, in order to recursively
solve for the second moment. Not only does this allow us
to make statements about the average LXEB score for an
error-free sampler, but it also allows us to pin down more
precisely where the aforementioned transition in anticoncen-
tration occurs. If k is the number of initially squeezed modes,
we provide strong evidence that this transition occurs at
k = �(n2).

The rest of the paper proceeds as follows: In Sec. II, we
provide some background information, set up the system and
problem of interest, and briefly summarize our main results.
In Sec. III, we discuss the graph-theoretic framework for
our calculations. Specifically, in Sec. III A, we review results
about the first moment from Ref. [18]; in Sec. III B, we discuss

how to generalize this framework to the second moment.
This latter section sets up the discussion of the recursion in
Sec. IV (though most of the technical details are deferred
to the Appendix). Section V discusses analytical results and
scaling properties of the second moment. Finally, in Sec. VI,
we combine these analytical results with a more detailed nu-
merical investigation to give evidence for the exact location of
the transition in anticoncentration we derive in Ref. [18].

II. THE OUTPUT DISTRIBUTION OF GAUSSIAN
BOSON SAMPLING

In this section, we provide some necessary background in-
formation on Gaussian boson sampling and set up our system
of interest. We also motivate the study of the moments of the
output probabilities. Finally, we provide a brief summary of
our main results.

A. Gaussian boson sampling

We consider a paradigmatic Gaussian boson sampling sys-
tem on m modes [7,8]. These modes pass through a random
sequence of beam splitters and phase shifters that effect a
linear optical (i.e., photon-number-conserving Gaussian) uni-
tary U ∈ U(m) and are then measured in the Fock basis (this
non-Gaussian operation is necessary for classical hardness of
sampling [10]). We consider the typical case where the initial
state on the first k modes consists of single-mode squeezed
states of equal squeezing parameter r, and the remaining
m − k modes are initialized to the vacuum state.

Reference [7] calculates the outcome probability of the
Fock measurement of such a system. Given a unitary U , the
probability of obtaining an outcome n = (n1, n2, . . . , nm) ∈
Nm

0 with total photon count 2n = ∑m
i=1 ni is given by

PU (n) = tanh2n r

coshk r

∣∣Haf
(
U �

1k ,nU1k ,n
)∣∣2

. (1)

U1k ,n is the k × 2n submatrix of U corresponding to its first k
rows and its columns determined by the nonzero elements of
n (appropriately repeated ni times). Haf refers to the hafnian,
which, for a 2n × 2n symmetric matrix A, is

Haf(A) = 1

n!2n

∑
σ∈S2n

n∏
j=1

Aσ (2 j−1),σ (2 j), (2)

with S2n the permutation group on 2n elements. We specify
that the dimensions of A are even because the hafnian of an
odd matrix vanishes; it also vanishes if the input matrix is not
symmetric. In our setting, this aligns with the physical fact
that single-mode squeezed vacuum states are supported only
on even Fock states. The hafnian generalizes the permanent
(whose computational complexity controls the hardness of
Fock state boson sampling) because one can prove that [7]

Per(A) = Haf

[(
0 A

A� 0

)]
. (3)

Hence, computing the hafnian is at least as hard as computing
the permanent.

We work in the regime where the measured output states
are, with high probability, photon-collision-free, which means
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that the output vector n has ni ∈ {0, 1}. That is, U1k ,n has no re-
peated columns. It suffices for E[2n] = k sinh2 r = o(

√
m) for

photon-collision-freeness to hold with high probability [20].
When n = o(

√
m), Ref. [11] provides strong numerical and

theoretical evidence that the distribution of submatrices U1k ,n
is well-captured by a generalization of the circular orthogonal
ensemble (COE):

Conjecture 1 (hiding [11]). For any k such that 1 � k � m
and 2n = o(

√
m), the distribution of the symmetric product

U �
1k ,nU1k ,n of submatrices of a Haar-random U ∈ U(m) closely

approximates in total variation distance the distribution of the
symmetric product X �X of a complex Gaussian matrix X ∼
N (0, 1/m)k×2n

c with mean zero and variance 1/m.
We note that, in Ref. [11], this conjecture is only for-

mulated for the case n � k � m. However, here we allow k
to reach 1. The reasoning is that the evidence for Conjec-
ture 1 in the regime k = n is based on a proof from Ref. [2]
that n × n submatrices of Haar-random unitaries are approx-
imately Gaussian. Clearly the proof still holds in the case
k < n (if n × n submatrices are approximately Gaussian, then
so are smaller submatrices), meaning we can safely extend the
conjecture to all k � m.

Roughly speaking, the intuition behind the conjecture and
the original proof of the k = n regime in Ref. [2] is that,
if one looks at a small enough submatrix of a unitary, this
submatrix no longer “notices” the unitary constraints (i.e., the
complex orthonormality of rows and columns). Multiplying
this small submatrix by its transpose washes out the remain-
ing correlations between elements of the unitary. Hence, the
product of the submatrices is approximately the same as a
product of i.i.d. Gaussian matrices. Observe also that working
in the photon-collision-free regime, n ∈ o(

√
m), is crucial for

this argument to hold; an output state with more than one
photon in a given mode leads to a repeated column or row in
the respective submatrix, which destroys the independence of
these elements. In what follows, we work under the assump-
tion that Conjecture 1 holds. We are therefore interested in the
statistical properties of X �X when the elements of X are i.i.d.
Gaussian.

B. Moments of the Gaussian boson sampling distribution
and their significance

To understand the statistical properties of the outcome
probabilities of Gaussian boson sampling, we must study not
just the distribution over individual matrix elements of X �X ,
but how they interact with one another through the hafnian.
Under Conjecture 1, the outcome probabilities of Gaussian
boson sampling given in Eq. (1) are well-approximated by

PX (n) = tanh2n r

coshk r
|Haf(X �X )|2, (4)

where X ∼ N (0, 1/m)k×2n
c is a random Gaussian matrix. Note

that, while the left-hand side (LHS) of Eq. (4) contains a
specific photon output n as an argument, the right-hand side
(RHS) is n-independent; this is precisely how Conjecture 1
captures the hiding property in Gaussian boson sampling.

We are interested in moments of the output probabil-
ity distributions. To capture this interest, we define the

moments

Mt (k, n) := EX∼Gk×2n [|Haf(X �X )|2t ], (5)

which are equivalent to the moments of PX (n) up to prefactors
[Gk×2n is shorthand for N (0, 1)k×2n

c ; we consider unit variance
in the definition of Mt for computational simplicity, as rescal-
ing X by 1/

√
m leads to an overall prefactor that can be dealt

with independently, similarly to the factor tanh2n r/ coshk r
that we ignore in Mt ]. Specifically, we are most interested in
the first and second moments, t = 1 and t = 2, respectively.
We motivate this interest in two ways: the study of anticon-
centration and linear cross entropy benchmarking.

We first discuss a useful framework for anticoncentra-
tion. The key definition is p2, the inverse normalized average
outcome-collision probability. This is a rather long name, so
it is worth slowly describing what each piece means. The
outcome-collision probability refers to the probability that two
independent trials of a Gaussian boson sampling experiment
with the same unitary transformation matrix produce the same
outcome, which is just the second moment of the output distri-
bution. Note that this is a different notion of collision than the
photon-collision probability described previously (the type of
collision in question should be clear from context, but we
also try to specify one of photon- and outcome-collision).
The average is taken over all possible unitary transformation
matrices (weighted equally, meaning the average is over the
so-called Haar measure). We normalize this quantity by di-
viding by the square of the first moment. This ensures that
the uniform distribution returns a value of one, but a narrow
distribution returns a large value (a distribution peaked on
a single value would return the size of the outcome sample
space). To finally define p2 itself, we invert this quantity
because this inverted value is what shows up in the current
state-of-the-art hardness arguments (though the raw quantity
before inverting shows up in the study of linear cross-entropy
benchmarking, as we see below). Note that this means that the
uniform distribution has p2 = 1, but a highly peaked distribu-
tion now returns a very small value of p2.

Under the hiding conjecture (Conjecture 1), p2 is approxi-
mately given by the ratio of the square of the first moment to
the second moment:

p2(U(m)) = EU∈U(m)[PU (n)]2

EU∈U(m)[PU (n)2]
≈ M1(k, n)2

M2(k, n)
=: m2(k, n).

(6)

We refer to m2(k, n) as the inverse normalized second mo-
ment. We may use p2 to define three different classes of
anticoncentration:

(A) We say that PU anticoncentrates if p2 = �(1).
(WA) We say that PU anticoncentrates weakly if p2 =

�(1/na) for some a = O(1).
(NA) We say that PU does not anticoncentrate if p2 =

O(1/na) for any constant a > 0.
In Appendix A, we explain more thoroughly where p2

arises in the argument for approximate average-case hardness
of Gaussian boson sampling (one can also consult Ref. [3],
Sec. IV D 2 for details) and further contextualize our specific
definitions in complexity-theoretic terms.
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We note also that, of course, it is important how precise
the approximation in Eq. (6) is. That is, fully formalizing
the complexity-theoretic implications of our work depends
on exactly how close in total variation distance the exact
and approximate output distributions are. In particular, if the
distribution U �

1k ,nU1k ,n is not close enough in total variation
distance to the distribution X �X , then it is not possible to
transfer statements about the normalized second moment m2

to statements about anticoncentration via p2. We address this
subtlety also in Appendix A, but, in short, we can formalize
and sharpen Conjecture 1 such that statements made about
the approximate distribution via m2 imply anticoncentration
of the exact distribution via p2 as well.

Beyond understanding anticoncentration, calculations of
M1(k, n) and M2(k, n) also allow one to study linear cross-
entropy benchmarking in Gaussian boson sampling. Recall
that linear cross-entropy benchmarking is a method by which
one can compare the outputs of a potentially noisy Gaussian
boson sampling experiment with the output of a perfect, error-
free experiment. Cross-entropy benchmarking was introduced
in the context of random circuit sampling in Refs. [21,22] and
later linearized in Ref. [19]. We review this linearized form
now, translating from the random circuit sampling language
to that of bosonic sampling.

Let {n} be the possible output photon strings sampled in
some Gaussian boson sampling experiment that are produced
with respective experimental probabilities P̃U (n). Let PU (n)
be the ideal probabilities for these outputs; that is, these are
the probabilities for an output n given by Eq. (1). The linear
cross-entropy score FXEB for such an experiment is

FXEB = |�2n|
∑

n∈�2n

PU (n)P̃U (n) − 1, (7)

where �2n is the photon-collision-free sample space with 2n
output photons in m modes such that |�2n| = (m

2n

)
. This is

the dominant space of outputs assuming that we postselect
on outcomes with 2n photons and that hiding holds (see
Appendix B). If the noisy outputs are correct, i.e., the experi-
ment is error-free, then P̃(ni ) = P(n). The ideal cross-entropy
score, then, is

F ideal
XEB = |�2n|

∑
n∈�2n

PU (n)2 − 1. (8)

The expected value of the ideal cross-entropy over all possible
unitaries is, therefore,

EU∈U (m)
[
F ideal

XEB

] = |�2n|
∑

n∈�2n

EU∈U (m)[PU (n)2] − 1. (9)

Assuming that one operates in the hiding regime, then
two facts are true: first, |�2n| ∼ M1(k, n); second,
EU∈U (m)[PU (n)2] is independent of n (see Appendix B
for more details). Therefore,

EU∈U (m)
[
F ideal

XEB

] ≈ M2(k, n)

M2
1 (k, n)

− 1 = m2(k, n)−1 − 1. (10)

Thus, anticoncentration and the expected ideal linear cross-
entropy benchmarking score both depend on m2, thereby
warranting a more fine-grained study of the second moment
beyond asymptotics.

C. Summary of results

We now come to a brief summary of our main results. In
Ref. [18], we develop a graph-theoretic formalism that allows
us to derive a closed form for the first moment M1(k, n), which
is a key result proving the transition in anticoncentration. We
review this framework in Sec. III A. Then, in Sec. III B (with
some details deferred to Appendix C), we show how to expand
this graph-theoretic framework to study the second moment
both numerically and analytically.

We derive an efficiently evaluable recursion relation that
allows us to numerically exactly calculate all coefficients of
the polynomial expansion of the second moment. We perform
this up to Fock sector 2n = 80. In the photon-collision-free
regime, where n ∈ o(

√
m), this corresponds to approximately

6400 modes, which is well beyond the current state-of-the-art
experiments. Therefore, the technique that we develop in this
work yields results that can help characterize the output distri-
bution of any near-term Gaussian boson sampling experiment.
The recursion is developed in Sec. IV, with details about its
efficiency and construction deferred to Appendices E and D,
respectively.

We then discuss some simple analytic results about the
scaling of the second moment in Sec. IV C. We follow this
with substantial numerical investigation of the results of the
recursion up to 2n = 80 in Sec. VI. In particular, we are able
to give strong evidence that the transition in anticoncentration
occurs at k = �(n2). We accomplish this with numerical plots
of m2(k, n), the quantity that controls anticoncentration, when
k scales polynomially with n. We also provide a brief ana-
lytic argument that this transition occurs somewhere between
k = �(n) and k = O(n2).

This result, along with the fact that we operate in the
conjectured hiding regime where 2n = o(

√
m) and k � m,

implies concrete advice for experimental demonstrations of
quantum advantage via Gaussian boson sampling. Namely,
one should squeeze all m modes with squeezing parameter
sinh2 r = o(m−1/2).

III. GRAPH-THEORETICAL ANALYSIS OF GAUSSIAN
BOSON SAMPLING MOMENTS

In this section, we lay out the graph-theoretic framework
for analyzing the moments of Gaussian boson sampling output
probabilities. This is a review of the same framework we
develop in Ref. [18]. We first briefly recall the derivation of
the closed form of the first moment M1(k, n), and we follow
this with a discussion of how an extension of this framework
also allows us to analyze the second moment M2(k, n).

A. First moment

In this section, we discuss the first moment of the out-
put probabilities, which is, up to some multiplicative factors,
EX∼Gk×2n [|Haf(X �X )|2]. We calculate and analyze this mo-
ment in Ref. [18], but we review the key elements of that
discussion because they are a useful point of reference for the
calculation of the second moment.

Using the definition of the hafnian in Eq. (2) and
properties of the expectation value of complex Gaussians—
EX∼Gk×2n [Xi jX ∗

uv] = δiuδ jv and EX∼Gk×2n [Xi jXuv] = 0 =
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O1 O2 O3 O4 O5 O6 O7 O8

FIG. 1. Graph G ∈ G1
n . One of 2nn! permutations that induces

this graph is τ = (1 2 3 4 5 6 7 8
1 3 5 2 4 6 8 7

)
. This graph has

two connected components, therefore contributing k2 to the first
moment.

EX∼Gk×2n [X ∗
i jX

∗
uv]—we reduce the first moment to a sum

over products of Kronecker δs:

M1(k, n) = (2n)!

(2nn!)2

∑
τ∈S2n

k∑
{oi}n

i=1

n∏
j=1

δo� τ (2 j−1)
2 	o� τ (2 j)

2 	
. (11)

We ascribe a graph-theoretic interpretation to this equation;
see Fig. 1 for an example. Each permutation τ instantiates a
graph Gτ on 2n vertices labeled O1 to O2n with edges defined
by two perfect matchings: one fixed black set of edges, and
one set of red edges determined by τ . More specifically, each
index o j in the sum splits into two vertices O� and O�′ such
that �τ (�)/2	 = j = �τ (�′)/2	 (that is, o�τ (�)/2	 maps to a ver-
tex O�). One perfect matching consists of black edges between
O2 j−1 and O2 j for all j ∈ [n] := {1, 2, . . . , n}; these edges en-
force that o�τ (2 j−1)/2	 and o�τ (2 j)/2	 are linked by a Kronecker
δ. The other perfect matching has red edges between O� and
O�′ if �τ (�)/2	 = �τ (�′)/2	; these edges ensure that there is
an edge between the �, �′ mapped to the same value under τ

and the ceiling function, meaning the vertices arose from the
same lower-case-o index.

This definition of Gτ ensures that the number of connected
components of Gτ , C(Gτ ), is equivalent to the number of
unconstrained indices in the interior sum in Eq. (11), and,
hence, the number of factors of k that τ contributes overall.

Therefore,

M1(k, n) = (2n)!

(2nn!)2

∑
τ∈S2n

kC(Gτ ) (12)

We simplify this expression using a degeneracy whereby 2nn!
different τ all induce the same final graph; the factor of n!
corresponds to choosing which tuple (2 j − 1, 2 j) corresponds
to which index �τ (�)/2	 = �τ (�′)/2	, and the factor of 2n

comes from ordering within each tuple. Therefore, we study
only these final sets of graphs, which we label G1

n (1 refers
to the first moment, and n indexes the order). We study the
connected components of graphs in G1

n by writing down a
recursion relation in n and k that, when solved, yields the first
theorem of Ref. [18]:

Theorem 1 (Ref. [18]). The sum over graphs in G1
n satisfies∑

G∈G1
n

kC(G) = k(k + 2) · · · (k + 2n − 2), (13)

and hence M1(k, n) = (2n − 1)!!(k + 2n − 2)!!/(k − 2)!!.
To summarize: Eq. (11) gives an expression for the first

moment of the outcomes of Gaussian boson sampling proba-
bilities in terms of sums of products of Kronecker δs. We then
reinterpret this as counting the number of connected compo-
nents of a certain type of graph with two perfect matchings.
We solve this counting problem by developing and evaluating
a recursion relation. We use the same overall technique to cal-
culate the second moment, as we explain in the next section.

B. Second moment

We now move on to analyzing the second moment of the
output probabilities. Using similar techniques as described for
the first moment (namely, expanding the definition of the haf-
nian and using the aforementioned properties of expectations
of Gaussians) we derive in Appendix C an expression for the
second moment that is equivalent to Eq. (11):

M2(k, n) := E
X∼Gk×2n

[|Haf(X �X )|4]

=
(

1

2nn!

)4

(2n)!
∑

τ,α,β∈S2n

k∑
{�i,oi,pi}n

i=1=1

[
n∏

j=1

(
δo� τ (2 j−1)

2 	o� τ (2 j)
2 	

δp� α(2 j−1)
2 	q� β(2 j−1)

2 	
δp� α(2 j)

2 	q� β(2 j)
2 	

+ δo� τ (2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	q� β(2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	
+ δq� β(2 j−1)

2 	o� τ (2 j)
2 	

δp� α(2 j−1)
2 	o� τ (2 j−1)

2 	
δp� α(2 j)

2 	q� β(2 j)
2 	

+ δq� β(2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	o� τ (2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	

)]
. (14)

The main differences between Eqs. (14) and (11) are three-
fold: (1) We sum over three permutations (instead of a single
one) labeled τ, α, β. (2) There are now 3n indices to sum
over, {oi, qi, pi}n

i=1, instead of just the n given by {oi}n
i=1.

(3) Each factor is a sum of four possible terms instead of
just one. However, this expression still possesses a natural
graph-theoretic interpretation, as we now review. See Fig. 2
for an example graph as a guide to the following discussion

Each index in {oi, qi, pi}n
i=1 is again split into two graph

vertices {Oi, Qi, Pi}2n
i=1 that are placed into 2n columns and

three rows labeled o, p, and q, respectively. As for the first
moment, we define two perfect matchings on these vertices
given by black and red edges. The black edges are between
vertices whose labels are linked under the Kronecker δs, and
the red edges connect graph vertices that came from the same
original summation index.
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O1 O2 O3 O4 O5 O6 O7 O8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

P1 P2 P3 P4 P5 P6 P7 P8

o

p

q

Type 1 Type 2 Type 3 Type 4

FIG. 2. Example graph on n = 4 used in the calculation of the
second moment. Each of the four possible sets of black edges are
shown. An example of three permutations that would induce this

graph is τ = (1 2 3 4 5 6 7 8
1 2 4 5 3 6 8 7

)
, α = (1 2 3 4 5 6 7 8

8 6 7 3 4 5 1 2

)
, and

β = (1 2 3 4 5 6 7 8
8 5 6 2 1 7 3 4

)
. This graph has five connected compo-

nents, so it contributes k5 to the second moment.

More specifically, consider fixing a set of three permu-
tations τ, α, β. There is a red edge between O� and O�′ if
�τ (�)/2	 = �τ (�′)/2	. An analogous statement holds for P
and Q vertices, although one uses permutations α and β,
respectively, instead of τ . Note that this implies that red edges
are always contained within a single row. Now, the black
edges are slightly more complicated. There is only a single
Kronecker δ term in each factor in the product Eq. (11),
meaning there is only a single set of black edges for the graphs
in G1

n . However, because the second moment as expressed in
Eq. (14) contains factors with four Kronecker δ terms, each
value of j ∈ [n] can lead to one of four different patterns of
black edges on columns 2 j − 1 and 2 j. We refer to these
patterns of black edges on a single pair of adjacent columns as
type-1, type-2, type-3, and type-4; see Fig. 2 for an example
graph that has one of each type. The Kronecker δ terms and
their corresponding black edges, listed in order from type-1 to
type-4, are given by

δo� τ (2 j−1)
2 	o� τ (2 j)

2 	
δp� α(2 j−1)

2 	q� β(2 j−1)
2 	

δp� α(2 j)
2 	q� β(2 j)

2 	

→ {(O2 j−1, O2 j ), (P2 j−1, Q2 j−1), (P2 j, Q2 j )}, (15)

δo� τ (2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	q� β(2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	

→ {(O2 j−1, Q2 j ), (P2 j−1, Q2 j−1), (O2 j, P2 j )}, (16)

δq� β(2 j−1)
2 	o� τ (2 j)

2 	
δp� α(2 j−1)

2 	o� τ (2 j−1)
2 	

δp� α(2 j)
2 	q� β(2 j)

2 	

→ {(O2 j, Q2 j−1), (P2 j−1, O2 j−1), (P2 j, Q2 j )}, (17)

δq� β(2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	o� τ (2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	

→ {(O2 j−1, P2 j−1), (O2 j, P2 j ), (Q2 j−1, Q2 j )} (18)

Because there are four patterns of black edges per pair
of adjacent columns, and n such pairs, there are 4n possible
arrangements of black edges on the entire graph. We label
these arrangements by an integer z ∈ [4n], and we label a
graph as Gτ,α,β (z).

Analogously to the first moment, we can rewrite the sum
over products of Kronecker δs in Eq. (14) as a sum over
these graphs, where Gτ,α,β (z) contributes a factor of k raised

(a)

(b)
Type 4

Type 2Type 3

Type 1

FIG. 3. (a) Example graph in G2
6 showing how to achieve an av-

erage of two connected components per set of six vertices using only
type-1 and type-4 sets of edges. All vertices connected by horizontal
black (solid) edges are also connected by red (dashed) edges. All
type-1 vertical edges are paired off, as are type-4 vertical edges. Note
that this graph would correspond to z = 1 + 3 × 45 + 0 × 44 + 0 ×
43 + 0 × 42 + 3 × 41 + 3 × 40 = 3088. (b) Example showing how
using type-2 and type-3 black edges lead to, at most, three connected
components per two sets of six vertices.

to its number of connected components. Therefore, Eq. (14)
becomes

M2(k, n) = (2n)!

(2nn!)4

∑
τ,α,β∈S2n

z∈[4n ]

kC(Gτ,α,β (z)) (19)

There is again a degeneracy where many permutations all
lead to the same set of red edges in a given row, and, hence,
the same graph. Specifically, this degeneracy is again 2nn!,
but for each copy of S2n. We can therefore again ignore the
permutations and look only at the underlying graphs. For any
given z, we define G2

n (z) to be the graphs on 6n vertices
with two perfect matchings: the zth set of black edges and
red edges that pair vertices in the same row. We then define
G2

n = ∪z∈[4n]G2
n (z). Thus, accounting for the described degen-

eracy and these definitions, we get

M2(k, n) = (2n − 1)!!
∑

G∈G2
n

kC(G) (20)

This implies the following theorem:
Theorem 2 The second moment M2(k, n) is a degree-2n

polynomial in k and can be written as M2(k, n) = (2n −
1)!!

∑2n
i=1 ciki, where ci is the number of graphs G ∈ G2

n that
have i connected components.

Proof. Once Eq. (20) is derived, the theorem follows after
deriving the correct limits of summation. Trivially, the fewest
possible number of connected components is one. To see that
the largest possible number of connected components is 2n,
we consider the four patterns of black edges that are illustrated
in Fig. 2 and how many connected components can possibly
occur in graphs with those different patterns. See also Fig. 3
for a visual explanation of the following argument

First note that, because all vertices are paired via black
edges, every connected component has an even number of
vertices. Therefore, the two smallest sizes of connected com-
ponents are 2 and 4 vertices. To get a connected component
of size 2, one must connect a pair of vertices with both a
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black and a red edge. Red edges are constrained to lie in a
single row, meaning only type-1 and type-4 patterns of black
edges, which contain a pair of vertices connected by a black
edge in the same row, can yield a connect component of
size 2. Pairing off the remaining vertical black edges yields
connected components of size 4, the next smallest size.

Therefore, the maximum number of connected components
arises from taking only type-1 and type-4 edges. This requires
connecting each horizontal black edge by red edge (creating a
connected component with two vertices) and then pairing off
the vertical edges coming from the same type. This allows for
the maximal two connected components per set of six vertices,
meaning 2n total connected components. �

Our goal, then, is to determine these coefficients ci. It
is possible to directly compute some individual coefficients,
which we discuss in later sections, but these direct techniques
do not easily generalize to a way of computing all coefficients.
Therefore, we take a more indirect approach, which is to
derive a recursion relation that is similar in spirit to the one
we use to compute the first moment.

IV. RECURSION FOR THE SECOND MOMENT

In this section, we discuss the development and mechanics
of the recursion in more depth, with some details deferred to
the Appendices. First, in Sec. IV A, we generalize the graphs
that we have considered up to this point. While these gener-
alized graphs do not directly connect to any Gaussian boson
sampling calculation (that we know of), they provide a useful
intermediate framework for eventually evaluating Eq. (20).
Then, in Sec. IV B, we derive the recursion, making strong use
of these generalized graphs. Finally, in Sec. IV C, we provide
some useful details behind the numerical evaluation of the
recursion.

A. Generalized graphs

It is useful to generalize the graphs that we have considered
to this point. In Eq. (20), we write the second moment M2 as
a sum over graphs G ∈ G2

n , where the red edges of G may
not cross between different rows (see Fig. 2 for a reminder).
We can, however, define natural expanded sets of graphs that
allow for all possible perfect matchings of red edges across
the 6n vertices (with the black edges remaining the same).
That is, we can define graphs where red edges may cross
between rows, but we still demand that each vertex possesses
exactly one incident red edge. While weighted sums over the
connected components of these generalized graphs do not
directly correspond to any relevant statistical calculation in
Gaussian boson sampling, they provide a very useful inter-
mediate calculation that allows for the recursive evaluation
of M2.

More mathematically, we define sets of graphs
G2

n (a12, a13, a23, z) on 6n vertices {Oi, Pi, Qi}2n
i=1, where z

again indexes the 4n possible sets of black edges defined
by Eq. (15)–(18), and a12, a13, a23 represent the number of
red edges that span the first and second, first and third, and
second and third rows, respectively, of the graph. Of course,
G2

n (0, 0, 0, z) = G2
n (z). Two constraints on a12, a13, a23 are

apparent immediately: (1) a12 + a13, a12 + a23, and a13 + a23

(that is, the number of edges coming out of the first, second,
and third row, respectively) must be even; (2) a12 + a13,
a12 + a23, a13 + a23 must all be less than or equal to 2n
(there cannot be more than 2n edges coming out of a row
with only 2n vertices given that there is exactly one red edge
incident on every vertex). We also observe that, while we do
not explicitly keep track of these edges in the arguments of
G2

n (a12, a13, a23, z), we can also define a11, a22, a33 as the
number of “proper” red edges that map between vertices
in the first, second, and third rows, respectively (we refer
to these red edges as “proper” because they correspond to
allowed edges in G2

n). These edges have a simple relationship
to a12, a13, a23 that can be derived by counting how many
vertices in a given row are left after subtracting those that are
used in edges that cross between rows:

a11 = 2n − a12 − a13

2
, (21)

a22 = 2n − a12 − a23

2
, (22)

a33 = 2n − a13 − a23

2
(23)

Because we have the constraints that a12 + a13, a12 + a23,
a13 + a23 must all be even, a11, a22, a33 are all integral. Also,
the fact that a12 + a13, a12 + a23, a13 + a23 must all be less
than or equal to 2n ensures that a11, a22, a33 are all non-
negative as well.

Similarly to how we define G2
n , we write

G2
n (a12, a13, a23) := ∪z∈[4n]G2

n (a12, a13, a23, z), which means
that, as one might expect, G2

n (0, 0, 0) = G2
n . Furthermore,

we also analogously define the weighted sum over connected
components of graphs in each of these sets:

g(n, a12, a13, a23) :=
∑

G∈G2
n (a12,a13,a23 )

kC(G) (24)

M2 is then proportional to g(n, 0, 0, 0):

M2(k, n) = (2n − 1)!!g(n, 0, 0, 0) (25)

Note also that g(n, a12, a13, a23) still admits a polynomial
expansion in k, generalizing Theorem 2, where the coeffi-
cient in front of ki represents the number of graphs G ∈
G2

n (a12, a13, a23) with i connected components. However,
the highest-order term in this expansion need not be 2n
anymore—generically it can reach 3n, but no higher (there are
6n vertices, and each connected component contains at least
two vertices).

A quick counting argument provides the total num-
ber of graphs in G(a12, a13, a23), which we write as
|G(a12, a13, a23)|. There are 6n total vertices, and 2n in each
row. Given a vector a = (a12, a13, a23), we need to choose
a12 vertices in row 1 and row 2 to link to one another, a13

vertices in rows one and three (with no overlap between the
vertices chosen in the first row corresponding to a12 vs a13),
and a23 vertices in rows two and three (again, no overlap with
previously chosen vertices is allowed). Once these vertices
are chosen, it also remains to choose how to connect them.
Finally, one must pair off the remaining vertices in each
row, then multiply by 4n to account for the black edges. The
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result is

∣∣G2
n (a12, a13, a23)

∣∣ =
(

2n

a12

)(
2n − a12

a13

)(
2n

a12

)(
2n − a12

a23

)(
2n

a13

)(
2n − a13

a23

)
a12!a13!a23!

× (2n − a12 − a13 − 1)!!(2n − a12 − a23 − 1)!!(2n − a13 − a23 − 1)!!4n. (26)

Equation (26) is useful because∣∣G2
n (a12, a13, a23)

∣∣ = g(n, a12, a13, a23)|k=1 (27)

Thus, the sum of the coefficients of the polynomial expansion
of g(n, a12, a13, a23) must return the RHS of Eq. (26). This
provides a useful way to help check whether numerically de-
rived polynomial expansions of g(n, a12, a13, a23) are correct.

B. Constructing the recursion

With these generalized graphs defined, we are now ready
to discuss how the recursive evaluation of the second moment
operates. At a high level, the recursion works by determin-
ing g(n, a12, a13, a23) as a function of previously computed
g(n − 1, b12, b13, b23), where it is possible to compute the
base cases at n = 1 entirely by hand. Mathematically, we seek
coefficients c(a12, a13, a23, b12, b13, b23) such that

g(n, a12, a13, a23) =
∑

b12,b13,b23

c(a12, a13, a23, b12, b13, b23)

× g(n − 1, b12, b13, b23), (28)

where the sum over b12, b13, b23 is taken over valid com-
binations, i.e., those respecting the pairwise parity and
sum constraints listed in the paragraph above Eq. (21)
[note that, just because b12, b13, b23 are valid does not
mean that, for a given triplet a12, a13, a23, the coefficient
c(a12, a13, a23, b12, b13, b23) will be nonzero]. To find these
coefficients, we write how many connected components there
are in a graph in G2

n (a12, a13, a23) based on how many exist in
some properly chosen graph at one lower order. This is done
through a “contractive” procedure, which we soon discuss in
more detail, that reduces a graph at order n to one at order n −
1 while keeping careful track of any connected components
that may be eliminated in the process. By properly aggre-
gating all of the graphs with the same number of red edges
that cross between rows, we can work in terms of the sums
g(n, a12, a13, a23) rather than with individual graphs. Overall,
this process is morally quite similar to the derivation of the
formula for the first moment presented in the companion work
Ref. [18], but it requires substantially more machinery.

To find the c(a12, a13, a23, b12, b13, b23) in Eq. (28), and,
hence, g(n, a12, a13, a23), we find it necessary to first partition
G2

n (a12, a13, a23) into different subsets of graphs based on the
behavior of the red edges that are incident upon the vertices
in the first two columns, {O1, O2, P1, P2, Q1, Q2}. We refer
to this set of vertices as C1,2 (occasionally, we abuse this
notation and also let C1,2 refer to the edges incident on these
vertices—whether C1,2 refers to just vertices or vertices and
edges should be clear from context). There are 17 ways, 24 if
one disambiguates symmetric cases, that red edges can con-
nect the vertices in C1,2 to those in the other 2n − 2 columns.

We illustrate these cases and describe how to interpret them
in Fig. 4 With this partition in mind, we rewrite the weighted
sums as

g(n, a12, a13, a23) =
∑

i∈cases

g(n, a12, a13, a23)case(i), (29)

where

g(n, a12, a13, a23)case(i) =
∑

G∈G2
n (a12,a13,a23 )

C1,2(G)≡case(i)

kC(G), (30)

and C1,2(G) ≡ case(i) means that the red edges incident on
the first two columns of G match case (i) in Fig. 4. Continuing
along this line of reasoning, we write

g(n, a12, a13, a23)case(i)

=
∑

b12,b13,b23

c(a12, a13, a23, b12, b13, b23)case(i)

× g(n − 1, b12, b13, b23), (31)

which implicitly defines the case-wise recursive coefficients
c(a12, a13, a23, b12, b13, b23)case(i).

We determine these case-wise recursive coefficients
through the contractive procedure to which we previously
alluded. It is useful to refer to Fig. 5 throughout the following
discussion, which provides a useful example using a graph
falling under Case (13s) of Fig. 4. Again, we are interested in
the connected components of the graphs in G2

n (a12, a13, a23),
and a key realization is that the number of connected com-
ponents in a graph G in this set does not change if one
“collapses” vertices that are connected via an edge into a
single larger vertex while maintaining the other edges that are
incident upon these vertices. If one performs this collapsing
operation on all of the vertices in C1,2, which we often refer
to as “integrating out” C1,2, one converts a graph with 2n
columns into one with 2n − 2 columns; that is, one converts
a graph at order n to one at order n − 1. Through this inte-
gration, we can write the number of connected components
of the original graph as the sum of the remaining connected
components in the collapsed graph plus the number of con-
nected components originally contained entirely within C1,2.
Our recursion, then, works by considering the effect of this
contraction on all graphs at order n, grouped together by the
cases listed in Fig. 4

It is worth explicitly highlighting that this approach based
on integrating out C1,2 explains why we introduce the gen-
eralized sets of graphs G2

n (a12, a13, a23); without these new
graphs, this integration-based approach would not produce
a recursion that closes, as integrating out C1,2 in some G ∈
G2

n = G2
n(0, 0, 0) generically induces a lower-order graph

with red edges that cross between rows. As an example,
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(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(6s)

(5s)(1)

(2)

(3)

(4)

(2s) (10s)

(9s) (13s)

(15s)

FIG. 4. List of 17 cases (up to symmetry) for how the first two columns in a graph of order n can connect into the rest of the graph. Each
block represents C1,2 and a possible configuration of the red edges incident upon those vertices. Red edges connecting the two vertices in a
single row are, of course, fixed. Red edges that go between different rows in C1,2 are depicted on the left of the box. These edges are not
entirely fixed, as there is more than one way for an edge to connect vertices in two different rows. Red edges that connect C1,2 to the rest of the
graph are depicted as protruding from the same row on the right side of the block. We do not draw the four possible sets of black edges within
the block, but understanding their effect is crucial to the actual mechanics of the recursion.

the first part of Fig. 5 shows a graph in G2
4 , where C1,2 is

integrated out, as denoted by the hashing, and the second fig-
ure depicts the consequence of this integration. Consider the
path P3—P1—Q1—Q6 that passes through C1,2. Collapsing
the vertices P1 and Q1 into P3 and Q3, respectively, does not
change the number of connected components, but it induces
an edge P3—Q6 that is not allowed in graphs in G2

n . Therefore,
the newly induced graph is not an element of G2

3 , but in-
stead an element of G2

3 (0, 0, 2). Hence, if we only considered
graphs in G2

n , this integration procedure would not allow us to
derive the recursion we desire.

To proceed, we work through the effect of the contraction
on each case in Fig. 4 to determine the case-wise coefficients.
In particular, there are three contributions to these coefficients,
which we refer to as loop, vectorial, and combinatorial.

First is the loop contribution, which is the easiest to
determine. This is, simply, how many internal connected
components there are entirely within C1,2. This determines,
roughly, how many factors of k there are in the case-wise
recursive coefficients. The loop factor from the contraction in
Fig. 5 is k due to the connected component O1—O2 contained
entirely in C1,2.

Second is a vectorial contribution that, essentially, tells
us how the vectors a = (a12, a13, a23) and b = (b12, b13, b23)
are related to one another after the contraction. That is, what
kinds of red edges are eliminated by integrating out C1,2,

and what red edges are thereby created between the ends of
the protruding edges (where a protruding edge is one that
connects a vertex in C1,2 to one outside that set). This con-
tribution depends on both the internal red edges determined
by the specific case as well as which rows the protruding
edges are incident upon in the rest of the graph. Generically,
then, determining this contribution will require yet more case-
work whereby we must consider all possible combinations
of where those protruding edges could land in the rest of
the graph. In the specific example depicted in Fig. 5, we
see that a = (0, 0, 0) but b = (0, 0, 2) because the contractive
procedure generates two edges that span the second and third
rows. We often refer to the vectorial contribution in terms of
a vector � = (
12,
13,
23), where 
i j := bi j − ai j . Here,
then, � = (0, 0, 2). It bears repeating one final time that the
existence of this vectorial contribution explains why we must
generalize the graphs we consider.

Finally, there is the most complicated contribution, which
is combinatorial in nature. Essentially, contraction is not an
injective procedure—contracting many graphs at a higher or-
der might lead to the same graph at lower order. Consider
once more Fig. 5. We see that the contraction procedure
induces edges P3—Q6 and P6—Q3. These come from the
paths P3—P1—Q1—Q6 and P6—P2—Q2—Q3, respectively.
However, imagine that the original graph instead contained
the paths P3—P2—Q2—Q6 and P6—P1—Q1—Q3. The red
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k ×

O1 O2 O3 O4 O5 O6 O7 O8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

P1 P2 P3 P4 P5 P6 P7 P8

O3 O4 O5 O6 O7 O8

Q3 Q4 Q5 Q6 Q7 Q8

P3 P4 P5 P6 P7 P8

PP

Q2Q

P1P

Q1Q1QQ

P

OO

1

2

P

QQ1 QQ2

OO1 O2OO1

FIG. 5. Explanation of how the contraction procedure at the heart
of the recursive analysis works, as well as why we must generalize
the kinds of graphs that we consider in order to develop the recursion.
We illustrate this procedure on an example graph from Case (13s)
in Fig. 4. The crosshatch pattern on the first two columns (C1,2) of
the top graph, collapses all vertices within C1,2 while keeping track
of any connected components contained exclusively in C1,2. In this
example, this “integrating out” induces a multiplicative factor of k
due to the connected component O1—O2 contained entirely within
C1,2, and it also induces red edges P3—Q6 and P6—Q3. Such red
edges are not allowed for graphs in G2

n , meaning the final graph is in
G3

n (0, 0, 2), hence why we consider the more general graphs defined
in Sec. IV A.

edges incident on C1,2 in this original graph still match case
(13s) in Fig. 4, and contracting these paths by integrating out
C1,2 still induces the same final edges P3—Q6 and P6—Q3,
respectively, meaning the final lower-order graph is the same.
Thus, because our recursion operates at the level of these sets
of graphs partitioned by cases, we must carefully account
for this lack of injectivity by including some combinatorial
factors (typically based on the number of edges of each type
b12, b13, b23). This is, typically, the most difficult part of the
casework.

To summarize, there are three different contributions to
c(a, b)case(i) := c(a12, a13, a23, b12, b13, b23)case(i):

(1) Loop. This corresponds to the number of connected
components in C1,2. This is the easiest contribution to deter-
mine;

(2) Vectorial. This corresponds to the relationship between
a and b. When integrating out C1,2, one loses contributions
from internal edges that are lost by collapsing the vertices,
but one gains edges of the types that are induced between
the vertices that have a protruding edge incident upon them.
While somewhat simple in spirit, it often requires significant
casework;

(3) Combinatorial. This corresponds to the combinatorial
factors that are associated with how many different higher-
order graphs contract to the same lower-order graph. This

depends both on the number of protruding edges and how the
red and black edges interact via the vertices in C1,2. It is often
the most complicated term.

In Appendix D, we provide significant details on how to
compute these different components for each of the cases in
Fig. 4. These calculations allow us to compute the case-wise
recursive coefficients, and hence the recursion itself.

C. Numerical details

Once the theoretical principles behind the recursion in
Eq. (28) are developed, we simply account for the contribu-
tions from each case and evaluate the recursion numerically
and exactly. We accomplish this using the Julia programming
language [23] and find g(n, 0, 0, 0) from n = 1 to n = 40
(which, recall, means up to photon sector 80).

We now briefly describe our implementation of the exact
numerical recursion; the code is available on GitHub [24].
As a consequence of Eq. (26), the polynomial coefficients in
g(n, a12, a13, a23) grow at most factorially, so the number of
bits needed to store the integers grows polynomially. There-
fore, to ensure exact accuracy of all of the integer calculations,
we use Julia’s BigInt type, which allows us to achieve
arbitrary-precision arithmetic [23]. Next, in order to avoid
performing slow symbolic arithmetic operations, we represent
polynomials in k as BigInt arrays, where the ith element of
the array corresponds to the coefficient in front of the ki term
in the polynomial. Multiplication and addition of polynomials
in k is then done at the array level. We begin with n = 1
and store the base case values of g(1, a12, a13, a23) given in
Appendix D 1. To compute the value of g(n, a12, a13, a23), we
iterate through the 17 cases described in Appendix D and
compute the various loop, vectorial, and combinatorial that
show up in the sum in Eq. (28). We then recursively compute
the values of g(n − 1, b12, b13, b23). The algorithm utilizes
memorization every time any value of g(n, a12, a13, a23) is
computed so that the recursion rarely needs to go particularly
deep. In the end, in order to compute up to g(40, 0, 0, 0), we
compute g(n, a12, a13, a23) for around 50 000 combinations
of arguments, resulting in almost 200 megabytes of (uncom-
pressed) data.

The evaluation of the recursion is classically efficient. In
short, the number of allowed a (i.e., those that satisfy the
necessary pairwise parity and sum constraints) is polynomi-
ally bounded, the size of the coefficients cannot be more than
factorially large (meaning they can be stored with polynomial
space), and the array-based multiplication and addition is clas-
sically tractable. More details are presented in Appendix E.

V. ANALYSIS OF THE SECOND MOMENT

In this section, we analyze the results derived from the
numerically exact evaluation of the recursion described in
the previous section. We begin by comparing our results to
a numerical approximation based on calculating the moments
through sampling random Gaussian matrices. We then derive
a few analytic results about g(n, 0, 0, 0), including its value at
k = 1 and the value of its leading-order coefficient. We can
use these results to derive upper and lower bounds for the
second moment, which we then compare with the numerically
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FIG. 6. Numerical test of recursion. The x axis represents k, and
the y axis represents E

X∼Gk×2n
[|Haf(X �X )|4]. Solid lines, from n = 1

through n = 9 are the theoretical predictions derived from the recur-
sion relation (see Ref. [24] for the code). Dots and bars represent
the expected value and standard error, respectively, estimated by
sampling 105 random Gaussian matrices and computing the second
moment using the code provided by Ref. [25]. Note that, for many
points, the size of the error bar is smaller than its associated dot. Fur-
thermore, there is an asymmetry in the error bars due to the log nature
of the plot. We see excellent alignment between theory and numerics
for n = 1 through n = 5. For larger n, the agreement is still good, but
we seem to undersample the true value in many cases. We suspect
that this is because the distribution of the second moment has a long
tail, meaning we do not suspect that the given error bars are indicative
of the true difference between the sampled and numerically exact
data. We believe that were we able to either take sufficiently more
samples we would see stronger agreement between the sampled and
true means, but this option is too computationally demanding given
the size of the matrices involved and the exponential complexity of
classically computing the hafnian [26].

exact data to understand how well they capture the scaling of
the second moment.

First for various n and k, we numerically sample 105

random X ∈ Gk×2n, compute |Haf[X �X ]|4 using the code
provided by Ref. [25], and average the results. This gives a nu-
merical approximation to (2n − 1)!!g(n, 0, 0, 0). We perform
this calculation for n, k ∈ {1, 2, . . . , 9}. The result is shown in
Fig. 6, and we see good agreement between the approximate
numerical calculations (data points and error bars) and the
theoretical values predicted by the recursion (solid lines)

We next derive a few simple analytic results about the
values of the coefficients of the polynomial expansion as well
as the overall scaling of the second moment. The former are
crucial to demonstrating the transition in anticoncentration,
which is the central result of Ref. [18], whereas the latter
provide useful intuition behind the behavior of the second
moment. We begin with a lemma.

Lemma 1. We have that
(i) M2(1, n) = [(2n − 1)!!]44n.
(ii) c2n = (2n)!!.

a. Proof, part (i). Examine Eq. (14). Because k = 1, oi =
pi = qi = 1 for all i. Thus, regardless of the permutation, all
Kronecker δs are always satisfied. This means that, indepen-
dent of the permutation, each factor is always four such that
the product becomes 4n. The sum over the three copies of S2n

then simply yields a factor of (2n)!3. The result then follows.
It also follows from combining Eqs. (25)–(27).

Proof, part (ii). We argue in the proof of Theorem 2 that
the leading-order term in the polynomial expansion of the
second moment is k2n, and it comes from graphs that consist of
only type-1 and type-4 black edges. Each type-1 and type-4 set
of edges contains a horizontal black edge, and the two vertices
linked by that black edge also must be linked by a red edge
to create a 2-vertex connected component. Additionally, the
vertical edges of the type-1 sets need to be paired off via red
edges; similarly, the vertical edges of the type-4 sets need to be
paired off. This ensures that each other connected component
has exactly four vertices, maximizing the number of possible
connected components.

Figure 7 visualizes how to now reduce the remaining cal-
culation to the value of the first moment when k = 2. If we
imagine collapsing each pair of adjacent vertical edges (i.e.,
those coming from the same group of 6 vertices) onto a pair of
vertices connected by a black edge, we reproduce the atomic
graph from the proof of the first moment. Here, by atomic
graph, we mean the vertices and the fixed black edges which
are shared by all graphs; the red edges are not yet included.
Explicitly, there are 2n vertices, and vertices O2i−1, O2i are
connected with a black edge. The black edges here act to
identify that the original uncollapsed vertical edges were of
the same type. Drawing red edges in the simplified graph
on 2n vertices corresponds to pairing off vertical edges in
the original graph on 6n vertices with red edges. Note that
this also implies that red edges connect vertical edges of the
same type. Therefore, a connected component in the simpli-
fied graph could correspond to two pre-images in the original
graph: either all type-1 vertical edges, or all type-4 vertical
edges. Then, by summing over all graphs and weighting each
connected component by 2, we are effectively evaluating the
sum in Eq. (13) at k = 2; i.e.:∑

G∈G1
n

2C(G) = (k + 2n − 2)!!

(k − 2)!!

∣∣∣∣
k=2

= (2n)!! (32)

�
As mentioned, the results of this Lemma 1 are sufficient to

derive the transition in anticoncentration in Ref. [18]. How-
ever, we can also use these results to gain confidence that our
recursive calculation of the g(n, 0, 0, 0) is correct by com-
paring our numerical calculation to these results and seeing
that they match. Even further, we find that the recursively
computed values of all g(n, a12, a13, a23) match Eq. (26) when
evaluated at k = 1.

Using Lemma 1, we can also derive upper and lower
bounds on the second moment:

Lemma 1. Lemma 1 implies

M2(k, n) � (2n − 1)!!44nk2n, (33)

M2(k, n) � (2n)!k2n, (34)

M2(k, n) � (2n − 1)!!44n (35)
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(a)

(b)

(c)

FIG. 7. Visualization of how the calculation of the coefficient
of the leading-order term in the second moment can be reduced
to the k = 2 case of the first moment. Recall that black edges are
solid and red edges are dashed. (a) As proven in Theorem 2, graphs
that maximize the number of connected components contain only
type-1 and type-4 black edges. (b) To maximize the number of
connected components, the horizontal black edges must form their
own connected component with two vertices, meaning their vertices
must be connected by a red edge. Furthermore, each vertical black
edge must be paired off with exactly one other vertical black edge
of the same type, forming a connected component with four vertices.
We draw dotted boxes around the two black vertical edges to show
that they come from the same type. (c) If we collapse each vertical
edge onto a single vertex and then connect that vertex to the vertex
stemming from its adjacent edge in the original graph (i.e., the other
vertical edge from the same group of six vertices), then we reduce
to the atomic graph (i.e., the graph with the fixed black edges, but
without red edges) from the proof of the first moment. Red edges
on this collapsed graph then correspond to pairing off vertical edges
in the original graph with red edges. Because paired edges in the
original graph can only exist between edges of the same type, each
connected component in the simplified graph could have come from
either type-1 or type-4 vertical edges. This is equivalent to evaluating∑

G∈G1
n

kC(G) after setting k, the base for the connected components,
to two.

Proof. We first prove the upper bound. The leading term in
g(n, 0, 0, 0) is of the form k2n, and the total number of graphs
with no red edges crossing between rows is (2n − 1)!!34n.
Thus, the upper bound comes from saying that all graphs have
2n connected components.

We next prove the lower bounds. The first lower bound
comes from considering only the leading-order term in
the polynomial expansion, which is given in Lemma 1(ii).
Because each term in the expansion is non-negative, this
is a valid lower bound. The second lower bound comes
from observing that g(n, 0, 0, 0) is monotonically increas-
ing with k, as there are no negative coefficients in the
polynomial expansion. Therefore, we can also take a lower
bound which is simply the value at k = 1, which we know
counts the total number of possible graphs and follows from
Lemma 1(i). �

Stirling’s approximation tells us when each lower bound is
most useful:

(2n)!k2n ∼ (nk)2n

(
4

e2

)n

, (36)

(2n − 1)!!44n ∼ n4n

(
64

e4

)n

(37)

For k ∈ o(n), Eq. (37) is larger, and when k ∈ ω(n), Eq. (36) is
instead larger. When k ∈ �(n), then both lower bounds have a
leading dependence of n4n, so which is better depends on the
constant of proportionality.

Armed with our analytical results and the exact numerical
data from the recursion, we can now investigate how the
second moment scales with k and n. In Fig. 8(a), we plot the
logarithm of the upper and lower bounds, as well as the nu-
merically exactly computed values for (2n − 1)!!g(n, 0, 0, 0),
for our largest available n, which is n = 40. We set k = na

with a ∈ [0, 4]. We see that, except for when k = n0 and
the upper bound is exactly correct (as is the lower bound
based on the number of graphs), the lower bound is a much
better approximation. In fact, as expected, the lower bound
based on the leading order appears to become a very good
approximation as k gets larger

We should also point out that the logarithmic scaling of
the y axis of Fig. 8(a) means that small differences between
the exact values and the corresponding lower bound actually
represent large multiplicative differences between the true
values. For this reason, in Fig. 8(b), we also plot on a log
scale the relative error of the exact data vs the composite lower
bound defined by max{Eq. (34), Eq. (35),}. This helps show
how the exact data trends toward Eq. (34) as k grows.

Relatedly, we can actually show analytically that Eq. (34)
cannot fully capture the scaling of the second moment when
k = O(n2). In Appendix F, we discuss how to compute indi-
vidual coefficients in the polynomial expansion of the second
moment. There, we give a new proof that c2n = (2n)!!, and we
also prove that c2n−1 = (2n)!!(3n − 2)n. Together, these two
results mean

c2nk2n

c2n−1k2n−1
= k

(3n − 2)n
∼ k

n2
(38)

Therefore, in order for the leading term c2nk2n to asymptoti-
cally dominate c2n−1k2n−1, we require k = ω(n2). A fortiori,
for the leading term to dominate all other terms, and,
therefore, for the leading-order lower bound to be a good
approximation for the second moment, k must be ω(n2).

In summary, then, the lower bounds in Eqs. (34) and (35)
typically track the true value of the second moment much bet-
ter than the upper bound in Eq. (33). When k = ω(n2), the first
lower bound, Eq. (34), which is based on the leading-order
term, appears to be a very good approximation to the second
moment.

VI. LOCATING THE TRANSITION
IN ANTICONCENTRATION

We now move on to some of the concrete consequences
of our work. The main result of Ref. [18] is identifying a
transition in anticoncentration in Gaussian boson sampling
as a function of k, the number of initially squeezed modes.
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FIG. 8. Plots showing scaling of the second moment compared with upper and lower bounds. For both plots, physically, k should be an
integer, but we here simply use the polynomial expansion of the second moment as a function of arbitrary real k. (a) Scaling of logarithm of
the second moment and its upper and lower bounds for n = 40 and k = na with a ∈ [0, 4]. The green horizontal dashed line and the yellow
slanted dashed line represent the lower bounds based on the number of graphs [Eq. (35)] and the leading-order term [Eq. (34)], respectively.
The maroon solid line represents the upper bound Eq. (33). The bound region is, therefore, highlighted in gray. Numerically exact data are
given for n = 40 by the black dots [24]. Notice that the black dots representing the exact data stay within the gray region and, for most values
of a, closely track the lower bound. Note also that, per Eqs. (36) and (37), the intersection between the two lower bounds occurs around a = 1
(it is slightly greater than a = 1 for finite n, but it trends toward one as n gets large). (b) Relative error of the composite lower bound compared
with the true value, plotted on a logarithmic scale. We see that, around a = 2, there is a rapid decrease (that appears to be exponentially fast)
in the relative error. This strongly suggests that a = 2 indicates where the lower bound starts to become a good approximation.

This result follows entirely from analytic results. Specifically,
we show through direct computation that, when k = 1, the
output probabilities do not anticoncentrate, and we use the
leading-order term to show that these output probabilities
weakly anticoncentrate in the limit that k → ∞. Hence, we
show the existence of a transition, but we do not isolate its
exact location. We do conjecture that it occurs at a = 2, where
k scales with n as k = �(na), based on an allusion to scatter-
shot boson sampling [5], which is another generalization of
Fock state boson sampling; there the initial state is composed
of two-mode squeezed states where one half of each state is
measured and postselected on measurements with at most one
photon. In short, one can roughly draw a connection between
the presence of hiding in scattershot boson sampling and the
number of initially squeezed modes.

Note that, a priori, it is possible that polynomial scaling is
not sufficient to show the transition in anticoncentration, and
it is possible that k would need to scale, say, exponentially
in n to see it. However, one of the main contributions of this
work is to show convincingly that this polynomial scaling is
sufficient and that the location of the transition is indeed at
k = �(n2). We accomplish this through numerical arguments
based on the exact data generated through the recursion for the
second moment and a few more analytic results. We formalize
this with the following conjecture:

Conjecture 2 (anticoncentration in Gaussian boson sam-
pling). Let 2n = o(

√
m) such that one operates in the

(conjectured) hiding regime. Then Gaussian boson sam-
pling does not anticoncentrate for k = O(n2), but it
weakly anticoncentrates with inverse normalized second mo-
ment, m2(k, n) := M2

1 (k, n)/M2(k, n), scaling as 1/
√

πn for
k = ω(n2).

Our evidence for Conjecture 2 is twofold and based on
results regarding the anticoncentration of the approximate
distribution (see Appendix A 2 for details on how to convert

these statements to those about anticoncentration of the exact
distribution):

(1) We provide a sequence of numerical plots of
ln([m2(k, n)

√
πn]−1) and its symmetric difference with re-

spect to n for various polynomial scalings of k with n. The
numerical plots of the function itself show an exponential
scaling when k = O(n2), but that the function becomes ap-
proximately constant when k = ω(n2). Similarly, the plots of
the symmetric difference are positive in the k = O(n2) regime
but approximately vanish when k = ω(n2).

(2) We show that, assuming the lower bound for M2(k, n)
is a good approximation, weak anticoncentration holds for
k = ω(n2). We also show that there is a lack of anticoncen-
tration when k = o(n).

We begin with the numerical evidence. In Fig. 9, we set
k = na and plot ln([m2(k, n)

√
πn]−1) for various values of

a. We choose this quantity because, in the asymptotic limit
of large k, [m2(k, n)

√
πn]−1 ∼ 1, but when k = 1, it is ex-

ponentially big [18]. Therefore, we hope to use Fig. 9 to
understand how this quantity interpolates between the expo-
nential and polynomial behavior of m2(k, n)−1. In Fig. 9(a),
we plot ln([m2(k, n)

√
πn]−1) for a = 0.5 to a = 4.0 with

spacing 0.5. We see that for a � 2, this quantity seems to
linearly increase with n, meaning that m2(k, n)−1 is expo-
nentially large in n. However, for a > 2, it trends to a small
constant. Because m2(k, n) ∼ 1/

√
πn is derived in the limit

of asymptotically large k using the leading-order lower bound
for the second moment in Eq. (34), this suggests that the use
of this lower bound is a good approximation to the second
moment when a > 2; this aligns well with Fig. 8. Thus, we
see that, when a > 2, the normalized second moment trends
to its asymptotic-in-k value of

√
πn. In Fig. 9(b), we en-

large the suspected transition point and plot the same quantity
when a ∈ {1.95, 1.99, 2.00, 2.01, 2.05, 2.10, 2.15, 2.20}. We
see similar behavior in this plot; namely, at approximately
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FIG. 9. Plots of ln([m2(k, n)
√

πn]−1) and its symmetric difference, denoted 
n, as a function of n for k = na. Recall that
m2(k, n) := M1(k, n)2/M2(k, n) and, for asymptotically large k, m2(k, n) ∼ 1/

√
πn [18]. (a) a ∈ [0.5, 4.0], equally spaced by 0.5.

(b) a ∈ {1.95, 1.99, 2.00, 2.01, 2.05, 2.10, 2.15, 2.20} to show the regime around a = 2 more clearly. (c) The symmetric difference of
ln([m2(k, n)

√
πn]−1) with respect to n, again with a ∈ [0.5, 4.0]. (d) Zooming in on the symmetric difference when a is around 2, with the

same values as plot (b). Note that each of the curves in plots (a) and (b) are composed of numerically exact data at 40 points (n ∈ {1, . . . , 40})
that are smoothed for visualization. The same holds for plots (c) and (d), except there are only 38 points (n = 1 and n = 40 are excluded
because we compute the symmetric difference). Finally, while k physically must be an integer, we do not enforce that for these plots; we
instead just using the polynomial expansion of the moments to extend k to arbitrary real numbers.

a = 2, the curves transition from growing in n to decreasing
toward zero. To clarify this point even further, we also plot the
symmetric difference of the above quantity as a function of n
(excluding the minimum and maximum values of n). Here, the
symmetric difference of a function f (n), which we refer to as

n f (n), is defined as [ f (n + 1) − f (n − 1)]/2. Figures 9(c)
and 9(d) use the same values of a as Figs. 9(a) and 9(b),
respectively. We see that, up to some finite-size effects, when
a > 2 this symmetric difference trends to zero, but it remains
positive for a � 2

We next plot in Fig. 10 the symmetric difference

n ln([m2(k, n)

√
πn]−1) with respect to n at n = 39 (so that

n + 1 = 40 is the largest Fock sector for which we ran our
numerical recursion) as a function of a. We see the symmetric
difference vanish near a = 2, as would be expected if the
transition occurs at k = �(n2). The inset of Fig. 10 clarifies
this by plotting the logarithm of this symmetric difference
such that its vanishing instead becomes a divergence

For our second, more analytic argument, we show that
if the lower bound is a good approximation to the second
moment, then weak anticoncentration holds for k = ω(n2) and
there is a lack of anticoncentration when k = o(n).

First, consider the case a < 1. Note that k = na is negli-
gible to n (asymptotically in n). Therefore, up to subleading

order,

(k + 2n − 2)!!

(k − 2)!!
∼ (2n)!! (39)

Using Eq. (35), which is a valid lower bound, we get

M2(k, n)

M1(k, n)2
� (2n − 1)!!44n

[(2n − 1)!!(2n)!!]2 (40)

= 4n (2n − 1)!!2

(2n)!!2
(41)

∼ 4n

πn
, (42)

which is exponentially big, demonstrating a lack of anticon-
centration (accounting for the subleading contribution of k
does not change the conclusion). Here, we have used Stirling’s
approximation and

(2n)!!

(2n − 1)!!
∼

√
2πn(2n/e)n

√
2(2n/e)n

= √
πn (43)

We now examine the case where k = na with a > 2. We
use that, according to Fig. 8, the lower bound M2(k, n) �
(2n)!k2n is actually an extremely good approximation to the

042412-14



SECOND MOMENT OF HAFNIANS IN GAUSSIAN BOSON … PHYSICAL REVIEW A 111, 042412 (2025)

ln

FIG. 10. Symmetric difference 
n ln([m2(k, n)
√

πn]−1) evalu-
ated at n = 39. Here, k = na, and a represents the x axis. Again,
physically, k must be an integer, but for this plot we are simply using
the polynomial expansions of the moments where k can be an arbi-
trary real number. This symmetric difference vanishes very close to
a = 2, suggesting that, when k = �(n2), the quantity m2(k, n)

√
πn

is a constant, meaning the normalized second moment appears to
scale as

√
πn. The inset simply plots the ln of the y axis in the main

plot (still with a along the x axis) in order to visualize more clearly
the transition. The divergence occurs somewhere around a = 2.03,
but we suspect this difference is due solely to finite-size effects. Be-
yond this divergence, the symmetric difference is negative, meaning
the logarithm is complex and, thus, not plotted.

second moment. Here, k now dominates n, so

(k + 2n − 2)!!

(k − 2)!!
∼

√
k2n = nan (44)

Correspondingly, the normalized second moment scales as

M2(k, n)

M1(k, n)2
∼ (2n − 1)!!(2n)!!k2n

(2n − 1)!!2k2n
(45)

= (2n)!!

(2n − 1)!!
(46)

∼ √
πn (47)

Therefore, when k = ω(n2), weak anticoncentration holds
(again, the inclusion of any subleading terms does not change
the conclusion). Note that this argument is similar to the
argument used to demonstrate the existence of the transition
in the first place, but it uses the fact that the second moment is
already well approximated by the leading-order lower bound
at k = ω(n2) instead of just in the asymptotic limit of large
k. Unfortunately, our current results are insufficient to more
formally handle the regime a ∈ [1, 2] regime.

To recap, we have shown the following results: First, we
have provided numerics in Figs. 9 and 10 that suggest that√

πn is a good approximation to the normalized second mo-
ment when k = ω(n2). This is the value of the normalized
second moment that is calculated when one uses the lower
bound in Eq. (34) that is based on the leading-order term. Sim-
ilarly, these plots numerically indicate that when k = O(n2),
the normalized second moment grows exponentially in n,
meaning there is a lack of anticoncentration. Next, we have
shown that, if the leading order is a good approximation to
the second moment, which, according to Fig. 8 occurs when
k = ω(n2), then the normalized second moment scales as

√
πn, meaning weak anticoncentration holds in that regime.

We have also shown that for k = O(n), there is a lack of
anticoncentration. Altogether, the totality of the evidence pre-
sented here strongly suggests the veracity of Conjecture 2
and that the transition between lack of anticoncentration and
weak anticoncentration in the approximate output distribution
occurs at k = �(n2).

VII. CONCLUSION

In this work, we have studied the output distribution of the
prototypical setup for Gaussian boson sampling in the hiding
regime. Our main theoretical contribution is the development
of a recursion relation that allows one to compute numerically
exactly in polynomial time the second moment of these out-
put probabilities for any photon Fock sector. We additionally
detail separate ways to calculate individual coefficients of the
polynomial expansion of the second moment. Together, these
results provide strong evidence for our conjecture that the
transition in anticoncentration, whose existence is proven in
Ref. [18], occurs at k = �(n2).

Ideally we would have been able to derive a closed-form
expression for the polynomial description of the second mo-
ment akin to Theorem 1, as this might have allowed us to
formally prove this conjecture, but we leave this important
question to future work. It would also be nice to develop a
better, more intuitive understanding for why this transition
occurs. It appears to be related to the transition between
photon-collisional and photon-collision-free outputs in scat-
tershot boson sampling, but the connection is not perfect, and
further investigation seems worthwhile.

Related to all of these points, the precise nature of the
crossover at k = �(n2) is an interesting realm of future
study. Specifically, we conjecture that weak anticoncentration
holds for k = ω(n2) and there is a lack of anticoncentration
when k = O(n2), which of course places the transition at k =
�(n2). But precisely how the normalized moment behaves as
we tune a through a = 2 deserves special attention.

Our results may open the door for answering other ques-
tions of interest. As we show in Sec. II B, our calculation
of the normalized second moment immediately provides the
expected linear cross-entropy benchmarking score for an
error-free Gaussian boson sampling device. This means that
all of the above statements about anticoncentration in terms
of the normalized second moment (including, specifically,
the transition in scaling as a function k) also hold for linear
cross-entropy benchmarking. Furthermore, now that this ideal
score is derived, it is possible that this information could be
helpful in evaluating experimental implementations of Gaus-
sian boson sampling. For example, any difference between the
calculated cross-entropy score and the expected score for an
error-free sampler could shed some light on the type or degree
of error in the system. Relatedly, it would be interesting to see
whether our techniques can be expanded to calculating mo-
ments in imperfect settings, such as when photons are partially
distinguishable [27], or when the measurement detectors only
distinguish between the presence or absence of photons [28].
Should any of these extensions be possible, it then suggests
that one might be able to calculate the expected cross-entropy
scores assuming specific error models. This might allow for
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even more fine-grained analysis of the types of error present in
a given experiment using calculations related to cross-entropy.
Finally, our results may make it possible to evaluate how well
certain classical algorithms may spoof cross-entropy bench-
marking in Gaussian boson sampling [29]. Further exploration
along all of these axes is worthwhile.

Finally, the graph-theoretic approach that we have devel-
oped in this paper is surprisingly flexible, and it deserves
continued treatment. In Appendix G, we present another way
to use the graphs in Gn

2 in order to develop a recursion that can
solve for the second moment. In short, this other approach
observes that there are really only five types of black edges
in our graphs: ones that stay in row 1, ones that stay in row
3, and ones that go between rows 1 and 2, rows 1 and 3,
and rows 2 and 3. Because we are interested only in the
number of connected components, and because we sum over
all perfect matchings defined by red edges in each row, we are
free to drag the black edges around and order them in new,
convenient ways. Therefore, looking at these graphs from the
perspective of the total number of each type of black edge
allows us to conceive of a different kind of recursion for the
second moment. While we only sketch the idea behind this
alternative recursion, we believe that it may be a promising
new way of looking at the problem. In particular, this new
approach allows us to find an admittedly somewhat compli-
cated expression for c1 (which reproduces our expression for
c1 found via the original recursion up to n = 40). However,
this new approach should not be viewed as a strict alternative
to what we have derived in this paper, but a complementary
approach that might yield new insights. We leave exploring it
to future work.

Note added. Recently, Ref. [30] was posted to the arXiv,
where the authors also study second moments of Gaussian
boson sampling.
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APPENDICES

In the Appendices, we provide details and derivations that
supplement the discussion in the main text

(1) Appendix A: We motivate our definition of anticon-
centration with respect to the typical arguments for hardness
of Gaussian boson sampling, and we also formalize Con-
jecture 1 to show how anticoncentration of the approximate
distribution implies anticoncentration of the exact distribu-
tion;

(2) Appendix B: We discuss the relationship between the
hiding property, Conjecture 1, and the evaluation of the first
moment.

(3) Appendix C: We derive Eqs. (14) and (20) of the main
text, which are the starting points of the graph-theoretic dis-
cussion of the second moment.

(4) Appendix D: We provide the graph-theoretic details
for how to derive the recursion for the second moment.

(5) Appendix E: We show that evaluating the recursion
for the second moment is efficient (i.e., the time and space
required scale polynomially) in the Fock sector n.

(6) Appendix F: We discuss how to compute individ-
ual coefficients of the polynomial expansion of the second
moment. Specifically, we give a combinatorial method to cal-
culate the leading and first subleading terms in the polynomial
expansion of the second moment.

(7) Appendix G: We discuss an alternative method for
developing a recursion to solve for the second moment. We
apply this alternative picture to find an expression for the
constant term in the polynomial expansion of the second
moment.

APPENDIX A: DETAILS ON ANTICONCENTRATION

In this Appendix, we discuss some of the details behind
our definition of anticoncentration and how it relates to the
standard notion of anticoncentration often used in the litera-
ture. We also discuss how these different definitions interact
when it comes to showing anticoncentration holds for the
exact distribution of the output probabilities of Gaussian bo-
son sampling (i.e., the distribution defined in terms of unitary
submatrices) given anticoncentration of the approximate dis-
tribution (i.e., the distribution defined in terms of random
Gaussian matrices).

1. Anticoncentration in hardness arguments

We first discuss in somewhat more detail the relevance
of anticoncentration to the argument for hardness of sam-
pling from the output distribution of Gaussian boson sampling
(GBS). This argument makes use of an approximate counting
algorithm due to of an approximate counting algorithm due
Stockmeyer [31]. Roughly, we assume that there is an effi-
cient sampling algorithm for GBS that, given a linear-optical
unitary U , samples from a distribution QU that is ε-close in
total-variation distance to the ideal GBS distribution PU [recall
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Eq. (1) of the main tex] where ε > 0 is a constant:

tvd(PU , QU ) := 1

2

∑
n

|PU (n) − QU (n)| � ε (A1)

Given the so-called hiding property (see Sec. IV C 4 of
Ref. [3] for details), we can use this sampling algorithm
(supposing it exists) as input to Stockmeyer’s algorithm.
Stockmeyer’s algorithm then approximates the probability
PU (n) up to an error given by

ε = 1

poly(n)
PU (n) + 2ε

|�|δ
(

1 + 1

poly(n)

)
, (A2)

with probability 1 − δ over n ∈ �, where � is the sample
space on which PU is defined. Note that ε is a combination of
additive and relative errors with respect to the total-variation
distance error ε. If it is sufficiently hard (#P-hard, to be
precise) to approximate the outcome probabilities PU (n) up to
the error (A2), on the instances on which our approximation
scheme achieves this error, this rules out the approximate sam-
pling algorithm up to very reasonable complexity-theoretic
conjectures (one of which is the noncollapse of the polynomial
hierarchy, a generalization of the famous P �= NP conjecture).
The required property is thus what we call “approximate
average-case hardness,” that is, the statement that any algo-
rithm which is able to compute PU (n) with probability 1 − δ

over the instances up to the error in Eq. (A2) is able to solve
any #P-hard problem [of the same difficulty as approximating
the outcome probabilities PU (n) up to the error in Eq. (A2)].

While we know average-case hardness of approximating
the outcome probabilities up to error 2−�(n ln n) [11,32], it is
only conjectured for the relevant approximation error given by
either c1PU (n) or c2/|�| for constants c1, c2 > 0. Anticoncen-
tration serves as evidence for the truth of the conjecture, the
idea being the following: suppose that most of the outcome
probabilities are very close to zero, i.e., �ε/2−n, meaning
only a vanishing fraction of them are relevant. Then a high
approximation error on the relevant probabilities is tolerable,
because we only need to distinguish between relevant and
irrelevant outcomes, and a sufficiently good approximation to
the irrelevant ones is zero. This is a significantly easier task
than if the distribution is highly spread out and a large fraction
of the probabilities is “relevant” in the sense that all of the
relevant probabilities are of the same order of magnitude as
those of the uniform distribution.

In the standard argument, this intuition is formalized as the
statement

Pr
U∈U(m)

[
PU (n) � α

|�|
]
� γ (α), (A3)

for some constants α, γ (α) > 0. In this formulation, we have
made crucial use of the hiding property, which asserts that
the distribution over circuits is invariant under a procedure by
which we “hide” a particular outcome n in the probability of
obtaining a different outcome n′ of a random circuit. This al-
lows us to restrict our attention to the distribution over circuits
of a fixed outcome n.

The anticoncentration property (A3) implies that the mixed
additive and relative error (A2) is dominated by the first
term on a γ (α)(1 − δ) fraction of the instances because, with

probability γ (α), we can upper bound the second term by
PU (n). But, if a large fraction of the probabilities is larger than
uniform, then none of them can be much larger than uniform
and, hence, the approximation error needs to be exponentially
small. Thus, we expect that, in the presence of anticoncentra-
tion, approximating the outcome probabilities up to the error
(A2) is much harder than without anticoncentration, lending
credibility to the approximate average-case hardness conjec-
ture.

In our definition of anticoncentration, we consider the (nor-
malized) average outcome-collision probability

P2(U(m)) := |�|
∑
n∈�

EU∈U(m)[PU (n)2] (A4)

hiding= |�|2EU∈U(m)[PU (n)2] (A5)

The outcome-collision probability is the probability that, were
one to sample the distribution twice (using the same transfor-
mation unitary U ), one would receive the same outcome both
times. For very flat distributions it is small, while it is large for
heavily peaked distributions; with the given normalization, the
outcome-collision probability of the uniform distribution is
given by 1, but the normalized outcome-collision probability
of a fully peaked distribution with a single unit probability is
given by |�|.

The average outcome-collision probability is thus another
measure of the anticoncentration of the outcome proba-
bilities in the ensemble of linear-optical unitaries. It is a
more coarse-grained measure, though, because it is only
an average quantity. Indeed, a (constantly) small average
outcome-collision probability implies anticoncentration in the
sense of (A3) via the Paley-Zygmund inequality, as

Pr
U∈U(m)

[
PU (n) � α

|�|
]
� (1 − α)2 1

P2(U(m))
(A6)

The relevant quantity of interest to anticoncentration is thus
the inverse normalized average outcome-collision probabil-
ity p2(U(m)) = 1/P2(U(m)). Assuming that hiding holds, the
first moment EU [PU (n)] must evaluate to the inverse size of
the sample space (see Appendix B for a thorough discussion
of this argument), so we can rewrite p2 for GBS as

p2(U(m)) = EU∈U(m)[PU (n)]2

EU∈U(m)[PU (n)2]
≈ M1(k, n)2

M2(k, n)
= m2(k, n)

(A7)

In the main text, we define various degrees of anticoncen-
tration in terms of the inverse normalized average outcome-
collision probability p2, which we recall here

(A) We say that PU ,U ∈ U(m) anticoncentrates if p2 =
�(1).

(WA) We say that PU anticoncentrates weakly if p2 =
�(1/na) for some a = O(1).

(NA) We say that PU does not anticoncentrate if p2 =
O(1/na) for any constant a > 0.

Here, we motivate those definitions in more detail.
(a) Anticoncentration. Clearly (A) implies anticoncentra-

tion in the sense of Eq. (A3), hence the definition.
(b) Lack of anticoncentration (NA). Ignoring the aver-

age over unitaries, the collision probability p2 of a fixed
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U upper-bounds the support of the outcome distribution of
U by p2|�|. Let us assume for simplicity that p2 is actu-
ally exponentially small. An exponentially small value of p2

implies that the average fractional support of the outcome
distributions PU is exponentially small, implying that at least
a constant fraction (over U ) of the distributions PU has expo-
nentially small support and, conversely, exponentially larger
than uniform probabilities on that support. At least for those
distributions, this implies an exponentially larger error tol-
erance compared with 1/|�|. Such an exponentially larger
error tolerance makes the approximate average-case hardness
conjecture significantly stronger, presumably even untenable.

While it is possible that for a constant fraction of the U the
outcomes are highly concentrated while, for another constant
fraction, the probabilities are highly spread out, yielding a
superpolynomially small p2 as well as the anticoncentration
property in the sense of (A3) (see Sec. V C of Ref. [33] for
an example), this seems like an extremely unlikely state of
affairs for typical instances, since it is highly fine-tuned and
not likely to occur in practical scenarios. Indeed, the hiding
property implies that it should not matter whether we talk
about the distribution over unitaries or over outcomes, which
means that the situation described above is a generic feature,
rendering (A3) false in the case p2 is exponentially small.

(c) Weak anticoncentration (WA). Our results show that
weak anticoncentration holds in the regime where sufficiently
many of the initial modes are squeezed. But why do we think
of a polynomially decaying p2 as weak anticoncentration
rather than a lack of anticoncentration?

We argue that this is a meaningful regime in the sense
that there is a stronger—but not inconceivable—approximate
average-case hardness conjecture associated with the weak
anticoncentration regime. To see this, observe that weak
anticoncentration implies anticoncentration in the sense of
Eq. (A3) with γ (α) = �(1/poly(n)), which means that an
inverse polynomial fraction of the outcome probabilities are
larger than uniform. Technically, using Stockmeyer’s algo-
rithm we can thus achieve a multiplicative error for an inverse
polynomial fraction of the outcome probabilities. To rule
out an efficient classical sampler, we thus need to conjec-

ture approximate average-case hardness with constant relative
errors for any inverse polynomial fraction of the instances.
Equivalently, we can formulate a similar conjecture for a poly-
nomially large relative or subexponentially large additive error
on a constant fraction. While clearly much stronger than the
requirement of anticoncentration, this is qualitatively different
from the lack of anticoncentration scenario (NA), where the
difference is superpolynomial.

2. Anticoncentration of the exact distribution

We also need to show that our definition of anticoncentra-
tion allows us to translate between anticoncentration of the
approximate distribution based on the hafnians of random
Gaussian matrices, which we refer to as PX (n), and anticon-
centration of the true distribution, PU (n). For a given output n,
let DU be the distribution of the symmetric product U �

1k ,nU1k ,n
with U ∈ U(m). Let DX be the distribution of the symmetric
product X �X with X ∼ N (0, 1/m)k×2n

c . In Conjecture 1, we
conjecture that DU and DX become close in total variation dis-
tance when n = o(

√
m). However, precisely how close these

two distributions are is crucial to whether anticoncentration
translates between the two output probability distributions. In
what follows, we refer to anticoncentration in the sense of
Eq. (A3) as “standard” anticoncentration, and our definition
of anticoncentration as “moment-based.”

Ideally, we would be able to prove that statements about
moment-based anticoncentration of PX (n) imply equivalent
statements about moment-based anticoncentration of PU (n).
However, under worst-case assumptions, we can only show
that moment-based anticoncentration of PX (n) implies stan-
dard anticoncentration of PU (n). To understand this, let us fix
some notation. Let 1[·] be an indicator function which is 1 if
the argument is true and 0 if it is false. Let dμ be the Lebesgue
measure on C2kn (as we consider k × 2n complex matrices)
and pU (A), pX (A) be the respective probabilities of generating
A from DU and DX .

Now, let the total-variation distance between DU and DX

be less than δ. Then

Pr
U∈U(m)

[PU (n) � ε] =
∫

pU (A)1[PA(n) � ε] dμ(A) (A8)

=
∫

[pU (A) − pX (A) + pX (A)]1[PA(n) � ε] dμ(A) (A9)

=
∫

[pU (A) − pX (A)]1[PA(n) � ε] dμ(A) +
∫

pX (A)1[PA(n) � ε] dμ(A) (A10)

� −2δ + Pr
X∈Gk×2n

[PX (n) � ε] (A11)

In this calculation, we have used the Radon-Nikodym theorem [34] to express the probability measures that define DU and DX

as pU (A)dμ and pX (A)dμ, respectively. Therefore

Pr
U∈U(m)

[
PU (n) � α

|�2n|
]
� Pr

X∈Gk×2n

[
PX (n) � α

|�2n|
]

− 2δ � (1 − α)2 1

m2(k, n)
− 2δ (A12)

The final step follows from the Paley-Zygmund inequality for the approximate distribution. This proves that we can translate
statements on anticoncentration as long as 2δ is smaller than m2(k, n)−1, which, as we show in the main text, means δ = o(n−1/2).
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With this in mind, we can make the following more
precise version of Conjecture 1 such that, if it holds, moment-
based weak anticoncentration of the approximate distribu-
tion implies standard weak anticoncentration of the exact
distribution:

Conjecture 3 (formal). Let DU be the distribution of the
symmetric product U �

1k ,nU1k ,n with U unitary and n some
photon-collision-free outcome of a Gaussian boson sampling
experiment. Let DX be the distribution of the symmetric prod-
uct X �X with X ∼ N (0, 1/m)k×2n

c . Then, for any k such that
1 � k � m, and for any δ > 0 such that m � n2/δ,

tvd(DU ,DX ) = O(δ) (A13)

Specifically, if δ = o(n−1/2), then m � n5/2.
The motivation behind the choice of m � n2/δ is based on

the equivalent conjecture for Fock boson sampling in Ref. [2].
There, the authors are able to prove the equivalent result for
m � n5+ε/δ (for arbitrarily small, constant ε), but they suspect
that the result can be pushed further to m � n2/δ. We note that
this choice makes our formal conjecture slightly stronger than
the equivalent formal conjecture in Ref. [11].

As we have shown, in order to translate our results on
moment-based weak anticoncentration from the approximate
to the true distribution in the worst case, we require δ =
o(n−1/2). Therefore, in order to translate statements about an-
ticoncentration, the formal version of our conjecture requires
m � n5/2.

However, it is worth noting that we do not believe that
this worst-case scenario truly reflects the way in which PX (n)
approaches PU (n), i.e., where all of the error is concentrated
on a single probability. In general, the intuition is that, if
hiding holds, then it is more likely that the errors are more
evenly distributed among all of the exponentially many output
probabilities. Using this intuition, each individual probabil-
ity only receives an error of approximately δ/|�2n| (where
we are specifying to the photon-collision free sample space
�2n). If this is true, then we can show that moment-based
weak anticoncentration of PX (n) does actually imply the same
for PU (n). Specifically, say that PU (n) ≈ PX (n) ± δ/|�2n| ≈
PX (n) ± δE[PX (n)] (as per Appendix B). Then

E[PU (n)2]

(E[PU (n)])2 ≈ E[(PX (n) ± δE[PX (n)])2]

(E[PX (n) ± δE[PX (n)]])2 (A14)

= E
[
PX (n)2

] ± 2δE[PX (n)]2 + δ2E[PX (n)]2

(1 ± δ)2E[PX (n)]2

(A15)

≈ 1

(1 ± δ)2

E[PX (n)2]

(E[PX (n)])2 + ±2δ + δ2

(1 ± δ)2 (A16)

= 1

(1 ± δ)2

E[PX (n)2]

(E[PX (n)])2 + 1 − 1

(1 ± δ)2

(A17)

� 1

(1 − δ)2

E[PX (n)2]

(E[PX (n)])2 + 1 (A18)

In our case, where the normalized second moment of PX (n)
scales at least polynomially in n, and δ scales inverse
polynomially in n, weak anticoncentration or lack of anti-

concentration of PX (n) in terms of the normalized second
moment adequately translates to PU (n) as well. Note that, in
this case, we are assuming that δ, which is the total variation
distance between the distributions of matrices, extends to a
bound on the total variation distance between the probabilities
themselves. This intuitively arises from the fact that any map
from the distribution of the matrices to probabilities must be
bounded, meaning we can translate the total variation distance
from one to the other (however, formalizing this would require
dealing with some subtleties induced by the fact that the
hafnian of a product of Gaussians is not technically bounded,
but any large hafnians only arise with extremely small proba-
bilities).

APPENDIX B: APPROXIMATE HIDING AND
ASYMPTOTICS OF THE FIRST MOMENT

In this Appendix, we discuss more thoroughly the connec-
tion between hiding, the relevant sample space, and the first
moment of squared hafnians of generalized circular orthogo-
nal ensemble (COE) matrices.

In the main text (and elucidated upon in Appendix A),
we introduce the normalized average outcome-collision
probability as a measure of anticoncentration. Fixing
the output state to have 2n photons, we write this as
|�2n|EU∈U (m)[

∑
n∈�2n

PU (n)2], where �2n is the space of
photon-collision-free outcomes with 2n photons in m modes,
and its size, which we write as |�2n|, is simply

(m
2n

)
. We here

work specifically with the photon-collision-free sample space
because, in order for hiding to hold, photon collisions have to
be negligible (a non-negligible likelihood of repeated columns
in U �

1k ,nU1k ,n would prevent this distribution from being well
approximated by X �X with X Gaussian). And, indeed, when
n = o(

√
m), it is easy to see that the size of the full sample

space of 2n photons in m modes,(
m + 2n − 1

2n

)
,

approaches |�2n| = (m
2n

)
when n � 1. In particular,

m2n

(2n)!
� (m + 2n − 1)!

(m − 1)!(2n)!
� (m + 2n − 1)2n

(2n)!
(B1)

and (m
2n

)(m+2n−1
2n

) ∼
m2n

(2n)!

(m+2n−1)2n

(2n)!

= 1(
1 + 2n−1

m

)2n

n�1−→ 1, (B2)

where, in the last step, we are using that (2n − 1)/m =
o(1/n), which means that the limit of the expression is simply
unity [were (2n − 1)/m = �(1/n), this limit would approach
a constant depending on the constant of proportionality, and
it would vanish if (2n − 1)/m = ω(1/n)]. Thus, �2n is the
dominant contribution to the full sample space. We also note
that the above calculation is merely a simple subcase of the
general bosonic birthday paradox presented in Ref. [20].

We proceed to then replace |�2n| with the expected value of
the outcome probabilities, EU [PU (n)], that is, the first moment
over input unitaries of a specific outcome. This holds assum-
ing that the hiding property in Conjecture 1 holds. Roughly,
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hiding ensures that we do not preference any individual out-
come, meaning we can replace the expected value over all
probabilities with that over unitaries for a single probability.
By linearity of expectation (and the fact that probabilities sum
to unity), this expectation over unitaries should simply be the
inverse of the size of the sample space of photon-collision-free
outcomes. Finally, Conjecture 1 also gives us an approximate
equality between EU [PU (n)] and M1, the first moment of
the squared hafnian of generalized COE matrices (properly
rescaled to contain the correct prefactors).

We therefore now show that our calculation of the
first moment in the hiding regime is consistent with the
above discussion in the sense that EU [PU (n| ∑i ni = 2n)] =
EU [PU (n)]/P(2n) is asymptotically equal to |�2n|−1 = (m

2n

)−1

assuming Conjecture 1. Here, P(2n) is the probability that our
output is in the 2n-photon sector (i.e., the probability that �2n

is the proper sample space to consider in the first place).
Recall our input state has the first k of m modes prepared in

the single-mode squeezed vacuum state with identical squeez-
ing parameter r, and the remaining m − k modes are prepared
in the vacuum state. The probability of an outcome n is given
by Eq. (1):

PU (n) = tanh2n r

coshk r

∣∣Haf
(
U �

1k ,nU1k ,n
)∣∣2

, (B3)

where U1k ,n is the submatrix of U given by the first k rows and
the columns dictated by where n is nonzero. Define Ũ1k ,n :=
mU1k ,n. Using multiplicativity of the Hafnian, one finds

PU (n) = tanh2n r

coshk r

1

m2n

∣∣Haf
(
Ũ1k ,nŨ �

1k ,n

)∣∣2
(B4)

Assuming Conjecture 1, then approximately U �
1k ,nU1k ,n ≈

X �X (where this is an approximation of distributions), where
X ∼ N (0, 1/m)k×2n

c , which means Ũ �
1k ,nŨ1k ,n ≈ X �X , but

now X ∼ N (0, 1)k×2n
c . Then, by Conjecture 1 and Theorem 2,

we find

E
U∈U(m)

[∣∣Haf
(
Ũ �

1k ,nŨ1k ,n
)∣∣2]

≈ E
X∈Gk×2n

[|Haf(X �X )|2]

= (2n)!

2nn!

(k + 2n − 2)!!

(k − 2)!!
, (B5)

where the first part of the equation is not an equality precisely
because the hiding in Conjecture 1 is not exact. This implies
that

EU [PU (n)] ≈ tanh2n r

coshk r

1

m2n

(2n)!

2nn!

(k + 2n − 2)!!

(k − 2)!!
(B6)

Now, a single-mode squeezed vacuum state with squeezing
parameter r and phase φ has Fock-state expansion given by

|SMSV〉 = 1√
cosh r

∞∑
�=0

(−eiφ tanh r)�
√

(2�)!

2��!
|2�〉 (B7)

Therefore, the probability of measuring 2� photons is

|〈2�|SMSV〉|2 = tanh2�r

cosh r

(2�)!

(2��!)2 (B8)

Given k independent single-mode squeezed vacuum states,
the probability of finding 2n total photons is the k-fold con-
volution of the Fock-basis probability distribution of one
single-mode squeezed vacuum state:

P(2n) =
∑

2�1+···+2�k=2n

k∏
i=1

tanh2�ir

cosh r

(2�i )!

(2�i�i!)
2

= tanh2n r

coshk r

1

22n

∑
2�1+···+2�k=2n

k∏
i=1

(
2�1

�1

)
(B9)

This probability distribution is unchanged if the k indepen-
dent single-mode squeezed vacuum states are acted upon by
a linear-optical unitary before measurement (such a unitary
does not change the photon number, only the location of
the photons). The combinatorial identity at the core of this
k-fold convolution has been calculated before in Refs. [35,36].
Specifically,

∑
2�1+···+2�k=2n

k∏
i=1

(
2�1

�1

)
= 4n

(
n − 1 + k/2

n

)
, (B10)

where we note that Eq. (B10) holds even in the case where
k is odd using a generalization of the binomial coefficients in
terms of the � function.

The overall probability of finding 2n photons from k inde-
pendent single-mode squeezed vacuum states, even after the
application of a linear optical unitary, is therefore

P(2n) = tanh2n r

coshk r

1

22n
4n

(
n − 1 + k/2

n

)

= tanh2n r

coshk r

(
n − 1 + k/2

n

)
(B11)

We note that this expression, but not the full derivation, is also
provided in Ref. [8]. A bit of algebraic manipulation reveals

P(2n) = tanh2n r

coshk r

(
n − 1 + k/2

n

)

= tanh2n r

coshk r

(2n − 1)!!(k + 2n − 2)!!

(2n)!(k − 2)!!

= 1

(2n)!

tanh2n r

coshk r
E

X∼Gk×2n
[|Haf(X �X )|2] (B12)

According to Eq. (B6), then

P(2n) ≈ m2n

(2n)!
EU [PU (n)], (B13)

which finally implies

EU [PU (n)]

P(2n)
≈ (2n)!

m2n
≈

(
m

2n

)−1

= |�2n|−1, (B14)

where the first approximation is due to the fact that hiding is
not exact, and the second approximation holds in the photon
collision-free regime.
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APPENDIX C: ALGEBRAIC DETAILS OF THE SECOND MOMENT—DERIVATION OF EQS. (13) AND (19)

In this Appendix, we generalize the calculation of the first moment of the output probabilities given in the Appendix of
Ref. [18] to the second moment. The structure of the derivation is very similar, but the details are more nuanced due to the
increased number of copies of X . We begin with some algebraic manipulations:

E
X∼Gk×2n

[|Haf(X �X )|4] =
(

1

2nn!

)4 ∑
σ,τ,α,β∈S2n

E
X∼Gk×2n

⎡
⎣ n∏

j=1

⎛
⎝ k∑

� j=1

X� jσ (2 j−1)X� jσ (2 j)

⎞
⎠

⎛
⎝ k∑

o j=1

X ∗
o jτ (2 j−1)X

∗
o jτ (2 j)

⎞
⎠

×
⎛
⎝ k∑

p j=1

Xpjα(2 j−1)Xpjα(2 j)

⎞
⎠

⎛
⎝ k∑

q j=1

X ∗
q jβ(2 j−1)X

∗
q jβ(2 j)

⎞
⎠

⎤
⎦ (C1)

= 1

(2nn!)4

∑
σ,τ,α,β∈S2n

k∑
{�i,oi,pi,qi}n

i=1=1

E
X∼Gk×2n

×
⎡
⎣ n∏

j=1

X� jσ (2 j−1)X� jσ (2 j)X
∗
o jτ (2 j−1)X

∗
o jτ (2 j)Xpjα(2 j−1)Xpjα(2 j)X

∗
q jβ(2 j−1)X

∗
q jβ(2 j)

⎤
⎦. (C2)

This first equation simply comes from the definition of the hafnian, and the second from exchanging product and sum and using
the linearity of expectation. As in the proof of the first moment, we must properly match the indices of the Gaussian elements;
because our Gaussian distribution is complex with mean zero, in order for the expectation value not to vanish, the indices i, j
must show up an equal number of times in a conjugated and nonconjugated copy of X . To proceed, first recall that permutations
are bijective. Therefore, for all j and any given permutation η, there is a unique value y j such that σ (2 j − 1) = η(2y j − 1) or
σ (2 j − 1) = η(2y j ). Similarly, there is a unique value y′

j such that σ (2 j) = η(2y′
j − 1) or σ (2 j) = η(2y′

j ). Using this bijectivity
and the independence of matrix elements allows us to separate the single expectation value on the 8n matrix elements in Eq. (C2)
into a product of 2n expectation values of 4 elements:

n∏
j=1

E
X∼Gk×2n

[
X� jσ (2 j−1)Xpk j σ (2 j−1)X

∗
oi j σ (2 j−1)X

∗
qm j σ (2 j−1)

]
E

X∼Gk×2n

[
X� jσ (2 j)Xpk′

j
σ (2 j)X

∗
oi′j

σ (2 j)X
∗
qm′

j
σ (2 j)

]
(C3)

To explain more thoroughly: we have defined i j, k j, mj to be the indices that map to σ (2 j − 1) under τ, α, β, respectively, in
the sense that either η(2y j − 1) = σ (2 j − 1) or η(2y j ) = σ (2 j − 1) for η ∈ {τ, α, β} and y ∈ {i, k, m}, respectively. Because
two matrix elements are necessarily independent if they do not match on the second index, we can separate all elements with
σ (2 j − 1) as the second element into a single expectation value, hence the first term. To get the second term, we repeat this
argument where i′j, k′

j, m′
j are the indices that map to σ (2 j) under τ, α, β, respectively, in the sense that either η(2y j − 1) =

σ (2 j) or η(2y j ) = σ (2 j) for η ∈ {τ, α, β} and y ∈ {i, k, m}, respectively.
Now consider the first expectation value. For it to be nonvanishing, we must appropriately match the first indices of the matrix

elements. We have three options: either all four indices can match, or the indices can be paired off in one of two ways. In the
former case, the expectation value yields two given that the elements are complex Gaussian with mean zero and variance one.
By the same logic, the latter two cases yield an expectation value of one. In summary:

� j = pkj = oi j = qmj ⇒ E → 2, (C4)(
� j �= pkj

) ∧ (
� j = oi j

) ∧ (
pkj = qmj

) ⇒ E → 1, (C5)(
� j �= pkj

) ∧ (
� j = qmj

) ∧ (
pkj = oi j

) ⇒ E → 1 (C6)

One might naively think that there should be another contribution from matching indices as(
� j = pkj

) ∧ (
� j �= qmj

) ∧ (
qmj = oi j

)
(C7)

However, the expectation value in this case actually vanishes; again, we are working with complex Gaussian random variables,
meaning the indices need to be matched such that there are an equal number of conjugated and nonconjugated indices.

We can write this in one simple expression using Kronecker δs as

2δ� j pk j oi j qm j
+ δ� j oi j

δpk j qm j

(
1 − δ� j pk j

) + δ� j qm j
δpk j oi j

(
1 − δ� j pk j

) = δ� j oi j
δpk j qm j

+ δ� j qm j
δpk j oi j

(C8)

That is,

E
X∼Gk×2n

[
X� jσ (2 j−1)Xpk j σ (2 j−1)X

∗
oi j σ (2 j−1)X

∗
qm j σ (2 j−1)

] = δ� j oi j
δpk j qm j

+ δ� j qm j
δpk j oi j

, (C9)
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which is essentially an application of Isserlis’ or Wick’s theorem. It is straightforward to derive that we may rewrite each of
oi j , pkj , qmj in terms of j (a similar example of this in the context of the first moment is worked out explicitly in the Appendix of
Ref. [18]), giving

δ� j oi j
δpk j qm j

+ δ� j qm j
δpk j oi j

= δ� j o� τ−1 (σ (2 j−1))
2 	

δp
� α−1 (σ (2 j−1))

2 	
q

� β−1(σ (2 j−1))
2 	

+ δ� j q� β−1(σ (2 j−1))
2 	

δp
� α−1 (σ (2 j−1))

2 	
o

� τ−1 (σ (2 j−1))
2 	

. (C10)

Thus,

E
X∼Gk×2n

[
X� jσ (2 j−1)Xpk j σ (2 j−1)X

∗
oi j σ (2 j−1)X

∗
qm j σ (2 j−1)

]
E

X∼Gk×2n

[
X� jσ (2 j)Xpk′

j
σ (2 j)X

∗
oi′j

σ (2 j)X
∗
qm′

j
σ (2 j)

]
=

(
δ� j o� τ−1(σ (2 j−1))

2 	
δp

� α−1 (σ (2 j−1))
2 	

q
� β−1 (σ (2 j−1))

2 	
+ δ� j q� β−1(σ (2 j−1))

2 	
δp

� α−1 (σ (2 j−1))
2 	

o
� τ−1 (σ (2 j−1))

2 	

)
×

(
δ� j o� τ−1 (σ (2 j))

2 	
δp

� α−1 (σ (2 j))
2 	

q
� β−1 (σ (2 j))

2 	
+ δ� j q� β−1(σ (2 j))

2 	
δp

� α−1 (σ (2 j))
2 	

o
� τ−1 (σ (2 j))

2 	

)
. (C11)

Therefore,

E
X∼Gk×2n

[|Haf(X �X )|4]

=
(

1

2nn!

)4 ∑
σ,τ,α,β∈S2n

k∑
{�i,oi,pi,qi}n

i=1=1

⎡
⎣ n∏

j=1

(
δ� j o� τ−1 (σ (2 j−1))

2 	
δp

� α−1 (σ (2 j−1))
2 	

q
� β−1 (σ (2 j−1))

2 	
+ δ� j q� β−1(σ (2 j−1))

2 	
δp

� α−1 (σ (2 j−1))
2 	

o
� τ−1 (σ (2 j−1))

2 	

)

×
(
δ� j o� τ−1 (σ (2 j))

2 	
δp

� α−1 (σ (2 j))
2 	

q
� β−1(σ (2 j))

2 	
+ δ� j q� β−1 (σ (2 j))

2 	
δp

� α−1 (σ (2 j))
2 	

o
� τ−1 (σ (2 j))

2 	

)⎤
⎦. (C12)

We can reparametrize our sums over the permutations by performing a change of variables (η−1 ◦ σ ) → η for η ∈ {τ, α, β}.
This yields

E
X∼Gk×2n

[|Haf(X �X )|4] =
(

1

2nn!

)4

(2n)!
∑

τ,α,β∈S2n

k∑
{�i,oi,pi,qi}n

i=1=1

⎡
⎣ n∏

j=1

(
δ� j o� τ (2 j−1)

2 	
δp� α(2 j−1)

2 	q� β(2 j−1)
2 	

+δ� j q� β(2 j−1)
2 	

δp� α(2 j−1)
2 	o� τ (2 j−1)

2 	

)(
δ� j o� τ (2 j)

2 	
δp� α(2 j)

2 	q� β(2 j)
2 	

+ δ� j q� β(2 j)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	

)⎤
⎦. (C13)

Expanding the product and summing over � j yields

E
X∼Gk×2n

[|Haf(X �X )|4] =
(

1

2nn!

)4

(2n)!
∑

τ,α,β∈S2n

k∑
{oi,pi,qi}n

i=1=1

⎡
⎣ n∏

j=1

(
δo� τ (2 j−1)

2 	o� τ (2 j)
2 	

δp� α(2 j−1)
2 	q� β(2 j−1)

2 	
δp� α(2 j)

2 	q� β(2 j)
2 	

+ δo� τ (2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	q� β(2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	
+ δq� β(2 j−1)

2 	o� τ (2 j)
2 	

δp� α(2 j−1)
2 	o� τ (2 j−1)

2 	
δp� α(2 j)

2 	q� β(2 j)
2 	

+δq� β(2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	o� τ (2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	

)⎤
⎦. (C14)

This is Eq. (14) of the main text, which is the starting point of a new graph-theoretic approach.
As discussed in the main text, we use Eq. (C14) to define graphs, examples of which are provided in Figs. 2 and 3(a).

Specifically, we let Gτ,α,β (z) be a graph on 6n vertices, with labels {Oi, Pi, Qi}2n
i=1, and z an integer from 1 to 4n. We use the

Kronecker δs to define black and red edges. z enumerates the different patterns of black edges, and τ, α, β determine the red
edges. Specifically, there is a red edge between Oj and Oj′ if �τ ( j)/2	 = �τ ( j′)/2	, and similarly for the O and Q vertices
using permutations α and β, respectively. However, given a choice of permutations, there are 4n possible sets of black edges that
correspond to the 4n possible combinations of terms in Eq. (C14). The sets of edges corresponding to each term are listed below:

δo� τ (2 j−1)
2 	o� τ (2 j)

2 	
δp� α(2 j−1)

2 	q� β(2 j−1)
2 	

δp� α(2 j)
2 	q� β(2 j)

2 	
→ {(O2 j−1, O2 j ), (P2 j−1, Q2 j−1), (P2 j, Q2 j )}, (C15)

δo� τ (2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	q� β(2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	
→ {(O2 j−1, Q2 j ), (P2 j−1, Q2 j−1), (O2 j, P2 j )}, (C16)

δq� β(2 j−1)
2 	o� τ (2 j)

2 	
δp� α(2 j−1)

2 	o� τ (2 j−1)
2 	

δp� α(2 j)
2 	q� β(2 j)

2 	
→ {(O2 j, Q2 j−1), (P2 j−1, O2 j−1), (P2 j, Q2 j )}, (C17)

δq� β(2 j−1)
2 	q� β(2 j)

2 	
δp� α(2 j−1)

2 	o� τ (2 j−1)
2 	

δp� α(2 j)
2 	o� τ (2 j)

2 	
→ {(O2 j−1, P2 j−1), (O2 j, P2 j ), (Q2 j−1, Q2 j )} (C18)
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We refer to these sets of black edges as type-1, type-2, type-
3, and type-4, respectively. We take the convention that our
graphs have the vertices organized into three rows and 2n
columns. The first, second, and third rows correspond to
type-O, −P, and −Q vertices, respectively. The columns are
ordered by index i. Using this convention, black edges are
constrained to lie within groups of two columns 2i − 1 and
2i using one of the four patterns described above. Again, see
Figs. 2 and 3(a) for examples [please note that Fig. 3(a) is not
fully general, as it only has type-1 and type-4 black edges, but
it does show that patterns of black edges can repeat, and it
shows how z identifies the patterns of black edges present in
the graph].

These graphs are useful in the following way: Evaluating
the algebraic expression in Eq. (C14) amounts to computing
how many “unconstrained” or “free” indices there are in the
sum over {oi, pi, qi}n

i=1 for every combination of permutations
in S2n × S2n × S2n. Unconstrained or free indices are those
that are left over after one accounts for all of the dependencies
between indices that are enforced by the Kronecker δs, and
each free index yields a factor of k. By construction, the num-
ber of such free indices for a given set of permutations exactly
maps to the number of connected components C(Gτ,α,β (z)) of
the graph Gτ,α,β (z). Thus, this graph contributes kC(Gτ,α,β (z)) to
the sum, and the second moment can be written as

M2(k, n) = (2n)!

(2nn!)4

∑
τ,α,β∈S2n

∑
z∈[4n]

kC(Gτ,α,β (z)), (C19)

which is Eq. (19) of the main text.
Now, there is a degeneracy where many permutations in-

duce the same final graph. For any fixed set of black edges
(i.e., for any fixed z), the graph possesses one of (2n − 1)!!3

possible sets of red edges (this is the number of ways of
pairing off three sets of 2n elements when order does not
matter). For each graph G corresponding to some assignment
of the red edges, there are 2nn! of each of τ, α, β such that
Gτ,α,β = G, leading to a degeneracy factor of (2nn!)3.

Therefore, removing the degeneracies induced by different
permutations, and defining G2

n (z) to be the set of graphs for
the zth set of black edges and G2

n := ⋃4n

z=1 G
2
n (z), we get a

final result of

M2(k, n) = (2n − 1)!!
∑

G∈G2
n

kC(G) (C20)

This is Eq. (20) of the main text.

APPENDIX D: BUILDING THE RECURSION

We now describe precisely how to derive and evaluate
the recursion for the second moment. Using the framework
developed in this Appendix, we implement the full recur-
sion numerically exactly [24] in both the Julia programming
language [23] and Mathematica [37]. We show in the next
Appendix, Appendix E, that these numerical implementations
are efficient in n.

Recall that the recursion is defined by Eq. (28), which we
copy here for convenience:

g(n, a12, a13, a23) =
∑

b12,b13,b23

c(a12, a13, a23, b12, b13, b23)

× g(n − 1, b12, b13, b23) (D1)

g(n, a12, a13, a23) is a polynomial in k, where the coefficient in
front of ki is the number of graphs of type a = (a12, a13, a23)
that have i connected components, and where a graph of type
a has ai j edges between rows i, j.

We first describe the base case, i.e., g(1, a12, a13, a23) for
all valid vectors a = (a12, a13, a23). We then describe how to
handle each of the possible 17 cases that contribute to the
recursion that are depicted in Fig. 4, which is copied here as
Fig. 11 for convenience

The way that we handle each case is as follows. We con-
sider all graphs of order n such that the leftmost two columns,
which, recall, we refer to as C1,2, have red edges that cor-
respond to that case. We then “integrate out” these edges
to determine how to write the contribution of that case at
order n in terms of the terms at order n − 1. When we say
integrate out, we mean that we collapse any path that goes
through C1,2 into a new edge that remains entirely in the graph
of order n − 1 by collapsing together vertices connected by
these paths. In doing this, we must account for three main
contributions: (1) how many loops are contained solely within
C1,2—each of these loops, of course, leads to a factor of k
multiplied by the contribution at order n − 1; (2) what edges
are erased when integrating out the case, as well as what edges
are created after collapsing the paths into new edges—this
tells us what b at lower order contribute to a at a higher
order; (3) a combinatorial factor accounting for the fact that
integrating out C1,2 in multiple graphs at order n could lead
to the same graph at order n − 1, meaning we may need to
multiply the contributions at order n − 1 by something to
get the correct final answer. The loop calculation is usually
quite simple, but the vectorial and combinatorial calculations
require more significant casework.

In the abstract, this is quite complicated, but we explain it
more thoroughly through detailed examples as we proceed.
We group our analysis of these cases into four categories
corresponding to the number of edges, i.e., 0, 2, 4, or 6, that
protrude from the cases: (1)–(4), (5)–(12), (13)–(16), and (17),
respectively. However, as mentioned, we begin with the base
cases, to which we turn now.

1. Base cases for recursion

Here we calculate the base cases for the recursion; that
is, we determine all valid a when n = 1, construct all
graphs with each a, and count their connected components.
Recall that the vector a must satisfy non-negativity, pair-
wise sums being even, and pairwise sums being at most
2n; should any one of these conditions not be met, then
g(n, a) = g(n, a12, a13, a23) = 0. For n = 1, there are five pos-
sible options for a: (0,0,0), (2,0,0), (0,2,0), (0,0,2), (1,1,1). It
remains then to construct the graphs and count their connected
components. This is tedious, but the diagrams are shown in
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(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(6s)

(5s)(1)

(2)

(3)

(4)

(2s) (10s)

(9s) (13s)

(15s)

FIG. 11. Copy of Fig. 4. List of 17 cases (up to symmetry) for how the first two columns in a graph of order n can connect into the rest of
the graph.

Figs. 12 and 13, and the final results are
g(1, 0, 0, 0) = 2k2 + 2k, (D2)

g(1, 2, 0, 0) = k3 + 3k2 + 4k, (D3)

g(1, 0, 0, 2) = k3 + 3k2 + 4k, (D4)

g(1, 0, 2, 0) = 2k2 + 6k, (D5)

g(1, 1, 1, 1) = 2k3 + 14k2 + 16k (D6)

This completes the base cases, and we now move on to the
recursion.

2. Cases (1)–(4)

We now handle cases (1)–(4). There are no protruding
edges, meaning many of the contributions are easy to derive
because these cases are “independent” of from the lower-order
graph consisting of the final n − 1 pairs columns. Therefore,
when we integrate out C1,2, none of the paths affect the graph
at lower order, meaning it is much simpler to calculate their
contribution.

In fact, it is simple to see that the evaluation of the loops
mimics exactly the calculation of the base cases:

Loop (1) → 2k2 + 2k, (D7)

Loop (2) → k3 + 3k2 + 4k, (D8)

Loop (2s) → k3 + 3k2 + 4k, (D9)

Loop (3) → 2k2 + 6k, (D10)

Loop (4) → 2k3 + 14k2 + 16k (D11)

Next, examining the diagrams for each case, one can derive
simple relationships between a and b that yield a nontrivial
contribution in Eq. (D1):

Vector (1) → (b12, b13, b23) = (a12, a13, a23), (D12)

Vector (2) → (b12, b13, b23) = (a12 − 2, a13, a23), (D13)

Vector (2s) → (b12, b13, b23) = (a12, a13, a23 − 2), (D14)

Vector (3) → (b12, b13, b23) = (a12, a13 − 2, a23), (D15)

Vector (4) → (b12, b13, b23) = (a12 − 1, a13 − 1, a23 − 1)
(D16)

These can be understood by looking at the diagram for each
case and observing what kind of edges are eliminated when
collapsing all of the paths that pass through the vertices
in C1,2.

Finally, there are no combinatorial contributions because
there are no protruding edges that have to be connected to the
existing graph. That is, any graph that comes from integrating
out one of these cases arises uniquely.

Therefore, we can easily combine everything to get the
contributions to the recursion from each of these cases:

g(n, a12, a13, a23)case(1) = (2k2 + 2k)g(n − 1, a12, a13, a23),
(D17)

g(n, a12, a13, a23)case(2)

= (k3 + 3k2 + 4k)g(n − 1, a12 − 2, a13, a23), (D18)
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(2s)

(3)

(1)

(2)

FIG. 12. Base cases corresponding to (1), (2), (2s), and (3). Counting the connected components of the graphs in each case yields
contributions of 2k2 + 2k, k3 + 3k2 + 4k, k3 + 3k2 + 4k, and 2k2 + 6k, respectively.

g(n, a12, a13, a23)case(2s)

= (k3 + 3k2 + 4k)g(n − 1, a12, a13, a23 − 2), (D19)

g(n, a12, a13, a23)case(3)

= (2k2 + 6k)g(n − 1, a12, a13 − 2, a23), (D20)

(4)

FIG. 13. Base case corresponding to (4). Counting the connected components of the graphs in each case yields 2k3 + 14k2 + 16k.
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(5) 2k + 2

FIG. 14. Loop contribution for case (5).

g(n, a12, a13, a23)case(4)

= (2k3 + 14k2 + 16k)g(n − 1, a12 − 1, a13 − 1, a23 − 1)
(D21)

Recall that the notation g(n, a12, a13, a23)case(i), refers to the
contribution to g(n, a12, a13, a23) from graphs where the ver-
tices in C1,2 and their corresponding red edges fall into
case (i). That is, g(n, a) = ∑

i∈cases g(n, a)case(i), which is just
Eq. (29).

3. Cases (5)–(12)

We now tackle cases (5)–(12), which have two edges that
protrude and attach to the rest of the graph. Because of these
two protruding edges, we have to carefully derive all three of
the loop, vectorial, and combinatorial contributions. To under-
stand each of these contributions, we carefully walk through
case (5), which contains two edges protruding from the first
row, and then argue the behavior of the other cases by analogy.

Vectorial. We start with the vectorial contributions, as un-
derstanding them allows us to more easily explain and derive
the loop and combinatorial contributions. We take an existing
graph of order n where C1,2 and the respective red edges
match case (5). We then count how the numbers of edges of
each type change after collapsing all of the paths that pass
through the vertices in C1,2 into edges that lie within the other
2(n − 1) columns.

It is crucial to observe the following extremely important
fact for all cases (5)–(12): the two protruding edges are always
part of the same path that goes through C1,2, regardless of
which of the four types of black edges are present between
the vertices in C1,2. Therefore, when C1,2 is integrated out in
graphs that match these cases, the edge that is created in the
lower-order graph is simply given by the two rows upon which
those protruding edges are incident. That is, if the protruding
edges connected to rows i and j, then, after integrating, an
edge of type i j is created.

Now, there are, of course, six types of edges that can be
created by collapsing a path: 11, 22, 33, 12, 13, and 23.
However, it is somewhat convenient to actually describe nine
possible edges, 11, 22, 33, 12, 13, 23, 21, 31, and 32. The last
three are equivalent to 12, 13, and 23 edges, respectively, but
we order the edges in this way to account for the two possible
ways that the protruding edges can connect into the graph (that
is, which edge connects to row i or j, for example). Note that
this separation is extraneous for certain cases, i.e., those with
two edges protruding from the same row, but it is useful when
considering cases with edges protruding from different rows.

To determine the vector contribution for a graph of order n
with a12, a13, and a23 edges, we consider what edges b12, b13,
and b23 on the graph of order n − 1 remain after integrating
out C1,2. Case (5) has two protruding edges coming from the
first row, and then additional red edges of type 22 and 33.
These 22 and 33 edges do not change the 12, 13, or 23 edge
counts. Therefore, the only changes come from the collapse
of the path associated with the two protruding edges from
row 1.

Let us say that these two protruding edges are originally
incident on rows 2 and 3. In this example, this means that
when integrating out C1,2, we lose one edge of type 12 and
one of type 13, but we create one of type 23. Therefore, we
must have that b12 = a12 − 1, b13 = a13 − 1, and b23 = a23 +
1. Or, if we define 
i j := bi j − ai j , then (
12,
13,
23) =
(−1,−1,+1). We then consider all possible vertices that
these two protruding edges could have been connected to in
the remainder of the graph, and that defines all possible g(n −
1, b12, b13, b23) that can contribute to g(n, a12, a13, a23)case(5).
This completes our study of the vectorial contribution of
case (5).

Combinatorial. We must also consider some combinato-
rial factors C. The combinatorial factors are really just a
shorthand for determining how many times a contribution
g(n − 1, b12, b13, b23) arises when integrating out a given
case, here case (5), from all the relevant graphs of order n.
This is because different graphs at order n, when appropriately
collapsed, can lead to the same graph at order n − 1. The com-
binatorial factor is just a way of encoding this information.

Say that we are again considering an example where the
original protruding edges attach to vertices in rows 2 and
3. Then an edge of type 23 is created. But if we look from
the perspective of the lower-order graph, any of the 23 edges
could have been the one that was generated—that is, for some
graph of order n with case (5) integrated out, a different 23
edge that is present is the one generated. Therefore, when we
sum up all the contribution from integrating out case (5) over
all relevant graphs of order n, we get a factor of b23. Note also
that, as we derived above, b23 = a23 + 1. Also note that, were
we looking at protruding edges attached to the same row, we
would get an additional factor of 2 due to the ambiguity of
which edge attaches to which endpoint.

Loop. Finally, we consider the loop contribution. The
calculation for case (5) is a relatively straightforward diagram-
matic proof, which is detailed in Fig. 14. In short, we draw all
possible diagrams consistent with case (5) and count up the
loops that are induced. There are only four cases, as the red
edges are essentially fixed and there are four possible sets of
black edges. The result is a factor 2k + 2. That is, there are
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TABLE I. Information for vectorial and combinatorial contributions to cases (5)–(8). Observe that there is a symmetry when the endpoints
of the protruding edges are i j and ji. Also observe that, when the endpoints are the same, i.e., ii, there is an extra factor of two in the
combinatorial term because of the ambiguity between how the protruding edges originally attach.

Protruding endpoints C 
12 
13 
23 
12 
13 
23 
12 
13 
23 
12 
13 
23

11 2b11 0 0 0 0 0 −2 −2 0 0 −2 −2 0
12 b12 0 0 0 0 0 −2 0 0 0 0 −2 0
13 b13 0 0 0 0 0 −2 −1 +1 −1 −1 −1 −1
21 b12 0 0 0 0 0 −2 0 0 0 0 −2 0
22 2b22 −2 0 0 −2 0 −2 0 0 0 0 −2 0
23 b23 −1 −1 +1 −1 −1 −1 0 0 0 0 −2 0
31 b13 0 0 0 0 0 −2 −1 +1 −1 −1 −1 −1
32 b23 −1 −1 +1 −1 −1 −1 0 0 0 0 −2 0
33 2b33 0 −2 0 0 −2 −2 0 0 −2 0 −2 −2

two sets of black edges that lead to an internal loop, leading
to an extra factor of k, and there are two sets of black edges
where the protruding edges snake through all vertices in C1,2

such that collapsing them just leads to a graph of order n − 1
without any extra loop factors

So, putting together three factors, we have that a full con-
tribution from case (5) is

g(n, a12, a13, a23)case(5)

= (2k + 2)[(2b11 + 2b12 + 2b13)g(n − 1, a12, a13, a23)

+ 2b22g(n − 1, a12 − 2, a13, a23)

+ 2b23g(n − 1, a12 − 1, a13 − 1, a23 + 1)

+ 2b33g(n − 1, a12, a13 − 2, a23)]

= (2k + 2)[(2(n − 1) + a12 + a13)g(n − 1, a12, a13, a23)

+ (2(n − 1) − (a12 − 2) − a23)g(n − 1, a12 − 2, a13, a23)

+ 2(a23 + 1)g(n − 1, a12 − 1, a13 − 1, a23 + 1)

+ (2(n − 1) − (a13 − 2) − a23)g(n − 1, a12, a13 − 2, a23)].

(D22)

This includes the loop, combinatorial, and vectorial factors.
We also note that, should any of the combinatorial factors
actually be negative, they should be set to zero, as that in-
dicates that the graph that is constructed at lower order when
integrating out the given case does not really exist (this is also
handled by the vector input to g being negative—that is, one
of the edge counts b12, b13, b23 is negative). One can get the
contribution from case (5s) by simply mapping 1 ↔ 3.

We list the combinatorial and vectorial contributions for
cases (5)–(8) in Table I and cases (9)–(12) in Table II (the
main difference in the latter cases is that there is no longer
a symmetry between red edges attaching to vertices i j and
ji because, by convention, we attach the top protruding edge

to the vertex in row i and the bottom protruding edge to the
vertex in row j, which gives us different types of new edges,
generically). The first column of these tables gives what kind
of edge is created at order n − 1. The second column tells us
the combinatorial factor. The next four multicolumns give the
vector information for each of the cases. Note that we do not
give the symmetric cases, as they can be obtained by simply
mapping 1 ↔ 3.

We also provide the loop contributions for cases (5)–(12)
in Table III. These are derived in an analogous way to the
diagrammatic approach in Fig. 14, but there are many more
graphs to consider. Therefore, using all of this information, we
can derive an equivalent version of Eq. (D22) for each case up
to (12) (including the symmetric ones), accounting for all of
their contributions.

4. Cases (13)–(16)

We now move on to more complicated cases that have four
protruding edges. The vectorial contribution is more difficult
to calculate, as we must account for 34 = 81 possibilities for
how the protruding edges attach to the lower-order graph.
Furthermore, there is more interaction between the vectorial,
combinatorial, and loop terms. This did not occur in the pre-
vious sets of cases because the protruding edges were always
part of the same path through the black edges attached to the
vertices in C1,2. However, one must now keep track of which
protruding edges connect to one another through the vertices
in C1,2.

For example, we look at the possibilities for case (13),
shown in Fig. 15 By convention, we take the top-left vertex to
row a, the top-right vertex to row b, the middle-left vertex to
row c, and the middle-right vertex to row d , where a, b, c, d ∈
{1, 2, 3}. We see that, when the black edges attached to the
vertices in C1,2 are type-1, then the red edges that protrude
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TABLE II. Information for vectorial and combinatorial contributions to cases (9)–(12). Observe that there is no longer a symmetry between
i j and ji, but the ii cases still have an extra factor of 2 in the combinatorial term because the ambiguity between how the protruding edges
originally attach still exists.

Protruding endpoints C 
12 
13 
23 
12 
13 
23 
12 
13 
23 
12 
13 
23

11 2b11 −2 0 0 −1 −1 −1 0 −2 0 −1 −1 −1
12 b12 0 0 0 +1 −1 −1 +1 −1 −1 0 0 −2
13 b13 −1 +1 −1 0 0 −2 0 0 0 −1 +1 −1
21 b12 −2 0 0 −1 −1 −1 0 −2 0 −1 −1 −1
22 2b22 −2 0 0 −1 −1 −1 −1 −1 −1 −2 0 −2
23 b23 −2 −0 0 −1 −1 −1 −1 −1 +1 −2 0 0
31 b13 −2 0 0 −1 −1 −1 0 −2 0 −1 −1 −1
32 b23 −1 −1 +1 0 −2 0 0 −2 0 −1 −1 −1
33 2b33 −1 −1 −1 0 −2 −2 0 −2 0 −1 −1 −1

from the top row are connected to one another, which means
that one generates an edge of type ab when collapsing this
path. However, if the black edges associated with C1,2 are
type-2, then it is instead ac and bd that are connected. In total,
one of the possible types of black edges connect edges ab and
cd , and three connect ac and bd . In the case where ab and
cd are connected, this means that we generate edges of type
ab and cd but we lose edges of type 1a, 1b, 2c, 2d . When ac
and bd are connected, we of course gain edges of type ac and
bd , but we still lose edges of type 1a, 1b, 2c, 2d . We use these
observations to build up the vectorial contribution of the graph
by summing over all 81 possibilities of a, b, c, d ∈ {1, 2, 3}.
This is tedious to do by hand, but simple numerically.

TABLE III. Loop contributions for each of the cases (5)–(12).
Notice that symmetric versions of cases have the same loop con-
tribution; only their vectorial and combinatorial contributions are
different.

Case Loop contribution

(5) 2k + 2
(5s) 2k + 2
(6) k2 + 3k + 4
(6s) k2 + 3k + 4
(7) 2k + 2
(8) 2k + 6
(9) 2k2 + 6k + 8
(9s) 2k2 + 6k + 8
(10) 2k2 + 14k + 16
(10s) 2k2 + 14k + 16
(11) 4k + 12
(12) 2k2 + 14k + 16

We need also account for the loop and combinatorial fac-
tors that associate to each of these vectorial contributions.
Luckily, we do not need to consider 81 cases parametrized by
a, b, c, d , but we must consider each of the subcases defined by
the four possible sets of black edges in connecting the vertices
in C1,2. Loop-wise, we simply need to count how many loops
are induced. Working from the left to right in Fig. 15, we
get 0,0,0,1 loops, respectively, leading to factors of 1, 1, 1, k,
respectively. The combinatorial factor is given by

2δab2δcd

[
(δacδbd + δadδbc − δabcd )2

(
bab

2

)

+ [1 − (δacδbd + δadδbc − δabcd )]babbcd

]
(D23)

in the case where edges ab and cd are connected. If instead ac
and bd are connected, we replace each instance of ab and cd
with ac and bd , respectively. We then again account for all 81
cases and attach each combinatorial factor and loop factor to
its associated vectorial term.

To understand Eq. (D23), consider the following, where we
assume we are dealing with type-1 black edges so that we are
creating edges ab and cd . We get a factor of two when a and
b are the same because they correspond to protruding edges
coming from the same row, meaning there is a choice of which
edge to connect where. The same holds for c and d . If all four
edges connect to the same row, i.e., a = b = c = d , then one
might naively think we need to add an extra factor of six (to
get to a total of 4! possible connections), but this is incorrect,
as ab and cd are always paired given their connection through
case (13) with black edges of type-1. Now, if a = c and b = d
or a = d and b = c, then the two edges ab and cd are the same
type, meaning we are creating two edges of the same type in
the graph of order n − 1. There are therefore

(bab

2

)
choices of
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FIG. 15. Evaluation of case (13). By convention, we take the top-left vertex to row a, the top-right vertex to row b, the middle-left vertex
to row c, and the middle-right vertex to row d , where a, b, c, d ∈ {1, 2, 3}. The types of edges that are created after integrating out the two
leftmost columns are determined by the type of the black edges.

which edges these are in the lower-order graph, but we also
need an extra factor of two to decide which one the groups
of protruding edges each maps to. If ab and cd correspond to
different types of edges, then we just get a factor of babbcd ,
as we simply need to account for which of these edges are
generated through the integration process.

Therefore, we see that cases (13)–(16) raise substantially
more complications in their evaluation. In particular, the type
of black edges leads to far more interaction between the loop,
vectorial, and combinatorial contributions that must be care-
fully combined in code to achieve the correct recursion. While
we have only described case (13) in detail, cases (14)–(16)
follow in the exact same manner, although there are more
graphs to consider in the cases where two rows have only one
protruding edge.

5. Case (17)

Case (17) raises the same issues, although there are only
four graphs to consider. However, we have 243 = 36 possible
options for how the protruding edges may connect to the graph
at lower order (this is true in general, but not all of these
are possible when n is small). See Fig. 16 We repeat the
convention for cases (13)–(16) by taking the top-left vertex
to row a, the top-right vertex to row b, the middle-left vertex
to row c, and the middle-right vertex to row d , but we now
also take the bottom left to e and the bottom right to f , where
a, b, c, d, e, f ∈ {1, 2, 3}. Now, for type-1 black edges, we
create ab, ce, and df ; for type-2, it is a f , bd , and ce; for type-3
it is ac, be, and df ; and for type-4 it is ac, bd , and e f . We
always lose edges of type 1a, 1b, 2c, 2d , 3e, 3 f regardless of
the type of the black edges. Furthermore, the loop contribution
is always a factor of one because there are no internal loops to
case (17).

The combinatorial factor, however, is quite complicated.
Assume for now that we are working with type-1 black edges

such that ab, ce, and df are linked. The combinatorial factor
is

(2δab )33!

(
bab

3

)
× 1[{a, b} = {c, e} = {d, f }] (D24)

+2δab2δce × 2

(
bab

2

)
× 2δdf bdf × 1[{a, b} = {c, e} �= {d, f }]

(D25)

+2δab2δdf × 2

(
bab

2

)
× 2δce bce × 1[{a, b} = {d, f } �= {c, e}]

(D26)

+2δce 2δdf × 2

(
bce

2

)
× 2δabbab × 1[{a, b} �= {c, e} = {d, f }]

(D27)

+2δab2δce 2δdf babbcebdf × 1[{a, b} �= {c, e} �= {d, f }] (D28)

Here, 1[A] is an indicator function that is 1 if statement A is
true and 0 if it is false. For example, 1[{a, b} = {c, e}, {d, f }]
is 1 if {a, b}, {c, e}, and {d, f } are all equal as sets (that is,
order does not matter). The middle-three lines [Eqs. (D25)–
(D27)] are just repetitions of the combinatorial factors for
cases (13)–(16), but accounting for which sets of four edges
may be sent to the same row. The last line [Eq. (D28)] is
simple and accounts for the case where all of the edge types
ab, ce, df are different. The first line [Eq. (D24)] requires a
bit of explanation. In the case where a �= b, we simply have
to choose three edges of type ab where the order matters
(they each could have been created by integrating out different
graphs at a higher order). In the case where a = b, this is still
the case, but now we need a factor of two for each edge, as we
can flip which vertices are connected where.

Again, it is hard to account for all of these elements by
hand, but it is simple numerically. With this final case sorted
out, we simply combine contributions of all of the cases
g(n, a)case(i) to find g(n, a).
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FIG. 16. Evaluation of case (17). We repeat the convention for cases (13)–(16) by taking the top-left vertex to row a, the top-right vertex
to row b, the middle-left vertex to row c, and the middle-right vertex to row d , but we now also take the bottom left to e and the bottom right
to f , where a, b, c, d, e, f ∈ {1, 2, 3}. The types of edges that are created are still determined by the type of the black edges.

APPENDIX E: CLASSICAL COMPLEXITY
OF EVALUATING THE RECURSION FOR

THE SECOND MOMENT

In this Appendix, we argue that the numerical evaluation
of the recursion and, hence, the second moment, is classically
efficient (that is, the runtime and space used are at most
polynomial) in n, which corresponds to the Fock sector of
interest in the output samples.

We recall the setup of the recursion as we describe it in the
main text. Specifically, we define

g(n, a12, a13, a23) :=
∑

G∈G2
n (a12,a13,a23 )

kC(G) (E1)

G2
n (a12, a13, a23) is the set of second-moment graphs of order

n with ai j red edges that cross between rows i and j. C(G)
is the number of connected components of G. The second
moment is given by (2n − 1)!!g(n, 0, 0, 0). We then write
down the recursion using these g(n, a12, a13, a23) as

g(n, a12, a13, a23) =
∑

b12,b13,b23

c(a12, a13, a23, b12, b13, b23)

× g(n − 1, b12, b13, b23) (E2)

We list the following constraints on a, which is shorthand
for (a12, a13, a23). First, a12 + a13, a12 + a23, and a13 + a23

(the edges that exit the first, second, and third rows, respec-
tively) must be even. Second, a12 + a13, a12 + a23, a13 + a23

must all be less than or equal to 2n, as there cannot be more
than 2n edges coming out of a row with only 2n vertices
given that there is exactly one red edge incident on every
vertex. Finally, we also add here that, clearly, a12, a13, a23

are non-negative. These constraints imply a finite number of
valid vectors a = (a12, a13, a23) for a given order n, and any
vector satisfying these constraints corresponds to a valid set
of graphs and, therefore, a term g(n, a) in the recursion. We
provide an example of all possible a when n = 4 in Table IV.

Clearly, as n grows, the number of possible a for which
one must evaluate g(n, a) also grows. However, we can bound
this growth as being polynomial in n using some arguments
about partitions. Recall that a partition of a positive integer
t of size s is a set (i.e., order does not matter) of s positive
integers whose sum is t . A weak partition of t of size s relaxes
the positivity constraint of the set such that it contains s non-
negative elements (t is still positive).

Let t := a12 + a13 + a23. Then t � 3n, which follows from
the fact that

2a12 + 2a13 + 2a23

= (a12 + a13) + (a12 + a23) + (a13 + a23) � 6n (E3)

The conditions listed above on a imply that each a is a
weak partition of size 3 of t � 3n that satisfies two further

TABLE IV. All possible a, up to permutations of the vector ele-
ments, for 2n = 8. Each entry satisfies the constraints that a12 + a13,
a12 + a23, and a13 + a23 are even and less than or equal to 2n, a12,
a13, and a23 are non-negative, and a12 + a13 + a23 = t .

t a

0 (0,0,0)
1 ∅
2 (2,0,0)
3 (1,1,1)
4 (2, 2, 0), (4, 0, 0)
5 (3,1,1)
6 (6, 0, 0), (4, 2, 0), (2, 2, 2)
7 (5, 1, 1), (3, 3, 1)
8 (8, 0, 0), (6, 2, 0), (4, 4, 0), (4, 2, 2)
9 (7, 1, 1), (5, 3, 1), (3, 3, 3)
10 (6, 2, 2), (4, 2, 2)
11 (5,3,3)
12 (4,4,4)
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constraints: all three elements of the set must have the same
parity as t , and no element can be larger than 2n.

Now, the number of partitions of t of size at most three is
�(t + 3)2/12	 [38] (note that �T 	 refers to the closest integer
to T ). Therefore, the number of partitions of t of size exactly
3, or p3(t ), is bounded by this value, which implies that∑3n

t=0 p3(t ) = O(n3). In turn, the number of a, up to permu-
tations of the elements of a, is bounded by O(n3) (because
they form an even more restricted class of weak permuta-
tions). We can overcount for these permutations with a simple
constant multiplicative factor of 3! (this overcounts because,
when numbers are repeated in the partition, there are fewer
distinct permutations). Thus, we have a polynomial bound on
the number of terms in our recursion at any Fock sector n

(note that we could tighten this bound a bit by accounting
more precisely for the parity constraint on the elements a,
but, because we are interested only in classical efficiency, this
polynomial bound that arises from considering only size-3
partitions is sufficient).

To be sure that the recursion is efficiently computable,
however, the actual values of the terms in the recursion
must not grow too quickly. In particular, recall that each
term g(n, a) has a polynomial expansion in k of order at
most 3n (this is the largest number of connected components
possible when each one must have at least two vertices).
The sum of the coefficients of g(n, a) is the same as the
number of graphs in G2

n (a12, a13, a23), which we derive
to be

∣∣G2
n (a12, a13, a23)

∣∣ =
(

2n

a12

)(
2n − a12

a13

)(
2n

a12

)(
2n − a12

a23

)(
2n

a13

)(
2n − a13

a23

)
a12!a13!a23!

× (2n − a12 − a13 − 1)!!(2n − a12 − a23 − 1)!!(2n − a13 − a23 − 1)!!4n. (E4)

This is, at most, factorially big in n, which means that the
number of bits needed to store these numbers, and, hence,
g(n, a) is polynomial in n.

Therefore, we have a polynomial bound on the number of
terms in the recursion, as well as on the space needed to repre-
sent each of these terms. Finally, because the actual recursion
consists only of polynomial numbers of multiplication and
addition, which can each be accomplished in time polynomial
in the size of the inputs, the actual computation is efficient.

APPENDIX F: COMPUTING INDIVIDUAL
COEFFICIENTS

In this Appendix, we discuss the various methods by which
one can compute individual coefficients in the polynomial
expansion of the second moment. Recall that, per Theorem 2,
the second moment may be expanded as

M2(k, n) = (2n − 1)!!
2n∑

i=1

cik
i (F1)

Ideally, one would simply be able to find a closed functional
form for the right-hand side of this equation (as was possible
for the equivalent definition of the first moment). But, unfortu-
nately, such a result currently eludes us. Therefore, the best we
can do is find individual coefficients. We now discuss methods
of calculating c2n and c2n−1.

1. Leading-order coefficient c2n

We begin with the leading-order coefficient c2n, which, per
Lemma 1(ii), is (2n)!!. We prove this in the main text by
reducing the calculation to a special case of the first moment,
but we can also prove this purely combinatorially. As dis-
cussed in the proof of the main text, c2n contains contributions
only from graphs that possess solely type-1 and type-4 sets of
black edges. Again, in order to create the maximal number
of connected components, the horizontal black edges must
also be connected by red edges to create a size-2 connected

component. The remaining type-1 vertical black edges are
paired off, and the type-4 vertical black edges are similarly
paired off. So, for a graph of order n, say that there are p
sets of type-1 black edges and, therefore, n − p sets of type-4
black edges. There are

(n
p

)
sets of black edges with this type

distribution. There are then (2p − 1)!! ways to pair off the
2p vertical type-1 black edges, and (2n − 2p − 1)!! ways to
pair off the 2n − 2p vertical type-4 black edges. Therefore,
summing over p ∈ {0, 1, . . . , n}, we get that

c2n =
n∑

p=0

(
n

p

)
(2p − 1)!!(2n − 2p − 1)!! (F2)

We can massage the right-hand side a bit using the fact that
(2x − 1)!! = (2x)!/(2x)!! = (2x)!/(2xx!). Expanding out the
binomial coefficient and converting all terms to single factori-
als yields

c2n = n!

2n

n∑
p=0

(
2p

p

)(
2n − 2p

n − p

)
(F3)

The summation evaluates to 4n using the convolution of the
Taylor series for (1 − 4x)−1/2 [39]. Therefore,

c2n = 2nn! = (2n)!!, (F4)

matching the known result.

2. First subleading coefficient c2n−1

We now generalize the above combinatorial version of the
c2n calculation to c2n−1. It is slightly more complicated, as
there is a bit of casework to consider, but the general idea
is the same. In particular, the key idea is that because 2n
is the maximal number of connected components, finding
a graph with 2n − 1 connected components comes down to
counting the ways that one can create a “deficit” of exactly
one connected component from the maximal number. There
are nine ways to accomplish this.
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case (1)

case (3)

case (7)

case (5)

FIG. 17. Possible ways of merging type-1 and type-4 vertices to create a deficit of a single connected component. Here, we only show
cases (1), (3), (5), and (7), as (2), (4), and (6) are symmetric with (1), (3), and (5) with type-1 and type-4 edges switched.

First, consider starting with graphs with a maximal number
of connected components, meaning they have only type-1 and
type-4 black edges. The connected components have either
two vertices (red and black edge between two vertices in the
same row) or four (two vertical black edges of the same type
that are paired off via red edges). We refer to these as type-
x2-vertex and 4-vertex connected components, respectively
(where x is either 1 or 4). One can convert these graphs with
maximal connected components into graphs with a deficit
of a single connected component in the following ways, all
of which involve merging two connected components into a
single one:

(1) merge two type-1 2-vertex connected components
(2) merge two type-4 2-vertex connected components
(3) merge one type-1 2-vertex connected component with

one type-4 4-vertex connected component
(4) merge one type-4 2-vertex connected component with

one type-1 4-vertex connected component
(5) merge two type-1 4-vertex connected components
(6) merge two type-4 4-vertex connected components

(7) merge one type-1 4-vertex connected component with
one type-4 4-vertex connected component

These options are visualized (up to the symmetry of ex-
changing the roles of type-1 and type-4 edges) in Fig. 17

Next, we must also consider cases with type-2 and type-3
black edges. There are two options here: either the graph can
have exactly one set of type-2 or type-3 edges, or it can have
exactly two sets (it does not matter whether it is two type-2
sets of edges, two type-3 sets of edges, or one of each). The
rest of the sets of black edges must all be of type 1 or type 4.
Then, creating a deficit can be done in the following ways:

(8) connect one type-2 or type-3 edge (the edge connect-
ing the top row to the bottom row) to one type-1 vertical edge
and one type-4 vertical edge to make a 6-vertex loop

(9) connect two type-2 or type-3 edges (again, the top-to-
bottom edges) to form a 4-vertex connected component

These are visualized in Fig. 18 The rest of horizontal black
edges must be connected with red edges to form 2-vertex
connected components, and the remaining vertical edges must
be appropriately paired off in order to ensure 2n − 2 other
connected components are formed.

case (8)

case (9)

FIG. 18. Possible ways of creating a deficit of a single connected component while using type-2 and/or type-3 edges.
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The end result of accounting for all of these cases is a (double) sum that computes c2n−1:

c2n−1 =
n∑

p=0

(
n

p

)
×

[
2

(
p

2

)
(2p − 1)!![2(n − p) − 1]!!︸ ︷︷ ︸

(1)

+ 2

(
n − p

2

)
(2p − 1)!![2(n − p) − 1]!!︸ ︷︷ ︸

(2)

+ 2

(
p

1

)(
2(n − p)

2

)
(2p − 1)!![2(n − p − 1) − 1]!!︸ ︷︷ ︸

(3)

+ 2

(
n − p

1

)(
2p

2

)
[2(p − 1) − 1]!![2(n − p) − 1]!!︸ ︷︷ ︸

(4)

+ 6

(
2p

4

)
[2(p − 2) − 1]!![2(n − p) − 1]!!︸ ︷︷ ︸

(5)

+ 6

(
2(n − p)

4

)
(2p − 1)!![2(n − p − 2) − 1]!!︸ ︷︷ ︸

(6)

+ 2

(
2p

2

)(
2(n − p)

2

)
[2(p − 1) − 1]!![2(n − p − 1) − 1]!!︸ ︷︷ ︸

(7)

]

+
n−1∑
p=0

2

(
n

1

)(
n − 1

p

)
(2p + 1)[2(n − p − 1) + 1](2p − 1)!![2(n − p − 1) − 1]!!︸ ︷︷ ︸

(8)

+
n−2∑
p=0

4

(
n

2

)(
n − 2

p

)
(2p + 1)!![2(n − p − 2) + 1]!!︸ ︷︷ ︸

(9)

. (F5)

The last sum should be taken to be 0 when n = 1 and the sum
is empty (this is because this case of course requires at least
n = 2 to have two sets of type-2 or -3 edges). Each of these
terms can be derived through a simple combinatorial argument
regarding which types of edges are present and how they must
be connected. For each case, say that there are p type-1 sets
of black edges. This means there are n − p, n − p − 1, and
n − p − 2 sets of type-4 black edges for cases (1)-(7), case
(8), and case (9), respectively [in the latter two cases, the
remaining set(s) of edges are type-2 and/or type-3]. Each
case then comes down to deciding how to order the sets of
edges, how to choose which edges are connected together,
and then pairing off the remaining edges of the same type to
build the remaining 2- and 4-vertex connected components.
We do not detail how to count every single case, but we
discuss two examples, case (1) and case (8). The rest should
be straightforward to derive by extending these arguments.

In case (1), we merge two 2-vertex connected components
of type 1. First, we have a factor of

(n
p

)
to account for all

ways of having p type-1 sets of edges. We then must select
2 of the p horizontal black edges to merge into a single
connected component, hence the factor of

(p
2

)
; see Fig. 17. The

additional factor of two comes from the two possible ways of
merging these into a single connected component. Finally, the
remaining double factorial factors are the number of ways of
pairing off the vertical black edges with those of the same
type. We then must sum from p = 0 to n to account for all
possible black edge type distributions.

Case (8) proceeds similarly. First, we have a factor of
(n

1

)
,

or n, to choose where the type-2 or type-3 set of edges is. The
factor of two out front now actually accounts for whether it
is type-2 or type-3. Next, we have

(n−1
p

)
to account for the

placement of the p type-1 sets of edges. There are now 2p + 1
black edges that span the second and third rows (i.e., they are
black edges that arise from type-1 sets of black edges). It is
2p + 1 because the type-2 or type-3 set of black edges con-
tributes one, and the p type-1 sets contribute 2p. Analogously,
there are also [2(n − p − 1) + 1] black edges spanning the
first and second rows. We have to select one of each to connect
to the black edge that spans the first and third rows to make a
single 6-vertex connected component. The remaining factors
are again the number of ways to pair off the remaining vertical
black edges with those of the same type (horizontal black
edges must form 2-vertex connected components to reach the
required number of connected components).

It is possible, but quite tedious, to simplify this double sum
by looking at each individual term and then applying a similar
technique as in the evaluation of the sum for c2n. That is, for
each term in the sum, we use the convolution of various Taylor
series and compare the coefficients of xn. We start with the
first term

(1) →
n∑

p=0

(
n

p

)
2

(
p

2

)
(2p − 1)!![2(n − p) − 1]!!

= n!

2n

n∑
p=0

p(p − 1)

(
2p

p

)(
2n − 2p

n − p

)
(F6)

One then has through Taylor expansion that

x2 d2

dx2

1√
1 − 4x

=
∞∑

n=0

(
2n

n

)
n(n − 1)xn, (F7)
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which implies that

12x2 1

(1 − 4x)3 =
(

x2 d2

dx2

1√
1 − 4x

)
1√

1 − 4x

=
∞∑

n=0

n∑
p=0

p(p − 1)

(
2p

p

)(
2n − 2p

n − p

)
xn

(F8)

Using the Online Encyclopedia of Integer Sequences (OEIS),
we find the threefold convolution of powers of 4 A038845 [40]
has formula (n + 2)(n + 1)22n−1, meaning

∞∑
n=0

12(n + 2)(n + 1)22n−1xn+2 = 12x2 1

(1 − 4x)3

=
∞∑

n=0

n∑
p=0

p(p − 1)

(
2p

p

)(
2n − 2p

n − p

)
xn (F9)

Therefore, comparing powers of x, we get that
n∑

p=0

p(p − 1)

(
2p

p

)(
2n − 2p

n − p

)
= 12n(n − 1)22n−5, (F10)

meaning the first term in the sum is (after some algebra)
n∑

p=0

(
n

p

)
2

(
p

2

)
(2p − 1)!![2(n − p) − 1]!! = (2n)!!

3n(n − 1)

8

(F11)

Note also by the symmetry between p and n − p, the contri-
bution of the second term is the same.

We can perform similar manipulations for the other terms.
In particular,

(3) →
n∑

p=0

(
n

p

)
2p

(
2n − 2p

2

)
(2p − 1)!![2(n − p − 1) − 1]!!

= n!

2n−1

n∑
p=0

(n − p)p

(
2p

p

)(
2n − 2p

n − p

)
(F12)

Instead of taking the Taylor expansion for the second deriva-
tive of (1 − 4x)−1/2 and convolving it with that for (1 −
4x)−1/2, we convolve the Taylor series for the first derivative
with itself. That is,

4x2

(1 − 4x)3 =
(

x
d

dx

1√
1 − 4x

)2

=
∞∑

n=0

n∑
p=0

p(n − p)

(
2p

p

)(
2n − 2p

n − p

)
xn, (F13)

which, using the same result as for (1) (just with a difference
of a factor of three), yields

n∑
p=0

p(n − p)

(
2p

p

)(
2n − 2p

n − p

)
= 4n(n − 1)22n−5 (F14)

This means that the third term yields a contribution of

(3) → n!

2n−1
4n(n − 1)22n−5 = (2n)!!

2n(n − 1)

8
(F15)

Again, by the symmetry between n and n − p, the contribution
from (4) is the same.

Next,

(5) →
n∑

p=0

(
n

p

)
6

(
2p

4

)
[2(p − 2) − 1]!![2(n − p) − 1]!!

= n!

2n

n∑
p=0

p(p − 1)

(
2p

p

)(
2n − 2p

n − p

)
= (2n)!!

3n(n − 1)

8

(F16)

because this is the exact same as (1). Again, by symmetry, (6)
has the same contribution.

We also have that

(7) →
n∑

p=0

(
n

p

)
2

(
2p

2

)(
2(n − p)

2

)

× [2(p − 1) − 1]!![2(n − p − 1) − 1]!!

= n!

2n−1

n∑
p=0

p(n − p)

(
2p

p

)(
2n − 2p

n − p

)

= (2n)!!
2n(n − 1)

8
, (F17)

which follows because this term happens to be the same
as (3).

We now move on to the final two cases. Again, similar
manipulations yield that

(8) →
n−1∑
p=0

2

(
n

1

)(
n − 1

p

)
(2p + 1)[2(n − p − 1) + 1]

× (2p − 1)!![2(n − p − 1) − 1]!!

= n!

2n−1

n∑
p=0

(2p + 1)(n − p)

(
2p

p

)(
2n − 2p

n − p

)

= n!

2n−1
2

n∑
p=0

p(n − p)

(
2p

p

)(
2n − 2p

n − p

)

+ n!

2n−1

n∑
p=0

(n − p)

(
2p

p

)(
2n − 2p

n − p

)
. (F18)

We have expanded the upper limit to p = n because the factor
of n − p sets this additional contribution to zero. The first
term in the last equation is simply twice the contribution of
(3), which is (2n)!!4n(n − 1)/8. The second term requires
yet another manipulation of Taylor series. By very similar
arguments to the above, we have that

x
d

dx

1√
1 − 4x

=
∞∑

n=0

(
2n

n

)
nxn, (F19)

which implies that

2x

(1 − 4x)2 =
(

x
d

dx

1√
1 − 4x

)
1√

1 − 4x

=
∞∑

n=0

n∑
p=0

p

(
2p

p

)(
2n − 2p

n − p

)
xn, (F20)
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which is the same as the sum we are interested in (up to the
symmetry of replacing n − p with p). Using OEIS sequence
A002697 [40], that is, the convolution of powers of four, we
find that

2x

(1 − 4x)2 =
∞∑

n=0

2(n + 1)4nxn+1, (F21)

which means that, comparing powers of xn,

n!

2n−1

n∑
p=0

(n − p)

(
2p

p

)(
2n − 2p

n − p

)
= n!

2n−1
2n4n−1 = n(2n)!!

(F22)

Finally, then

(8) → (2n)!!
4n(n − 1)

8
+ (2n)!!n = 4n(n + 1)

8
(F23)

Last, we get that

(9) →
n−2∑
p=0

4

(
n

2

)(
n − 2

p

)
(2p + 1)!![2(n − p − 2) + 1]!!

= n!

2n−1

n−2∑
p=0

(
2p + 2

p + 1

)(
2n − 2p − 2

n − p − 1

)

× (p + 1)(n − p − 1)

= n!

2n−1

n∑
x=0

(
2x

x

)(
2n − 2x

n − x

)
(x)(n − x), (F24)

where we have set x = p + 1 and then expanded the limits of
summation to include x = 0 and x = n (because these terms
contribute zero). Therefore, this contribution is the same as
(3), (4), and (7), which is (2n)!!2n(n − 1)/8.

In total, we have that

c2n−1

(2n)!!
= 4

3n(n − 1)

8
+ 4

2n(n − 1)

8
+ 4n(n − 1)

8
+ n

= (3n − 2)n, (F25)

meaning

c2n−1 = (2n)!!(3n − 2)n (F26)

Numerically evaluating the sums yields the same value up
to n = 40, and this also matches the value of c2n−1 computed
via the recursion. We note that (3n − 2)n are the so-called
octagonal numbers, which are OEIS entry A000567 [40].
However, we are not sure whether there is a deeper connection
between these numbers and the graph theoretic problem at the
core of this calculation. Additionally, while it is nice that we
have been able to find an exact formula for a second coeffi-
cient, this calculation does not seem scalable, meaning other
methods are likely needed to try to find the full expansion of
the second moment.

APPENDIX G: ALTERNATIVE METHOD
FOR COMPUTING COEFFICIENTS ci

In this Appendix, we present an alternative method for
computing coefficients ci in

M2(k, n) = (2n − 1)!!
2n∑

i=1

cik
i (G1)

Using this method, we obtain a useful expression for c1.
We also outline how this method can be used to set up an
alternative recursive code for computing the coefficients ci for
all i. While we have not implemented this code, there is a pos-
sibility it is more efficient than the recursive code discussed
in the main text. It is also possible that this new method may
yield other useful analytical results about ci, including their
asymptotic behavior.

We start by recalling Eq. (20):

M2(k, n) = (2n − 1)!!
∑

G∈G2
n

kC(G), (G2)

where the sum goes over all graphs possessing the allowed
assignments of black and red edges. The new method relies
on the following key simplifying observation: for a given
fixed assignment of black edges, the contribution to M2(k, n)
(summed over all allowed red-edge assignments) depends
only on e = (e11, e12, e13, e23, e33), where ei j is the number
of black edges that connect row i to row j. In particular, the
answer does not depend on what columns the black edges
are connecting. The proof of this key observation is simple:
for a fixed set of black edges, the contribution to M2(k, n) is
summed over all possible red perfect matchings in each of the
three rows. This means that we can swap any two vertices in a
given row (while pulling the ends of the black edges to the new
destinations) without changing the answer. This completes the
proof.

Let p1 be the number of type-1 sets of black edges, p4 be
the number of type-4 sets of black edges, and p be the com-
bined number of type-2 and type-3 sets of black edges (type-2
and type-3 sets are equivalent as far as their contributions to
ei j). Then e11 = p1, e33 = p4, e12 = p + 2p4, e23 = p + 2p1,
and e13 = p. We then write

M2(k, n) =
n∑

p1=0

n−p1∑
p4=0

(
n

p1

)(
n − p1

p4

)
2pg(e), (G3)

where p = n − p1 − p4. The combinatorial factors come from
choosing p1 sets of type-1 black edges out of n possible loca-
tions, then p4 sets of type-4 black edges from n − p1 possible
locations, and finally multiplying by a factor of two for each
choice of whether a given contribution to p is type-2 or type-3.
Additionally,

g(e) =
2n∑

i=1

di(e)ki, (G4)

where di(e) is the number of ways (using the allowed red-edge
assignments) to make i loops given the black edges specified
by e.

The coefficients di(e) can then be computed with the help
of the visualization shown in Fig. 19(a). The three black dots
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FIG. 19. Graphs useful for understanding the new method for calculating coefficients ci. (a) Once the types of black edges are assigned,
the contribution to M2(k, n) depends only on the number of black ei j edges connecting row i to row j. (b) To compute c1, the number of
single-loop graphs contributing to M2, we first set e11 = e33 = 0 (later adding in the effect of nonzero values), fix the winding number w of the
loop, and break up 1-3 edges into x1 = (e13 + w)/2 clockwise edges and x2 = (e13 − w)/2 counterclockwise edges. We similarly break up the
1-2 and 2-3 edges. We then use the BEST theorem [41] to count the number of Eulerian circuits on this directed graph. (c) For u = 3, the three
types of arborescences contributing to tu(G) = x2z1 + y2x2 + y1z1 for the graph G shown in panel (b).

labeled 1, 2, and 3 represent the three rows. The numbers e jk

on the five edges (including the two loops) show how many
black edges connect row j to row k. Roughly speaking, the
coefficient di(e) is the number of ways to connect all the black
edges specified by e into exactly i loops. The red edges are
used to connect the black edges to each other and are taken
into account automatically, which is one of the key advantages
of this approach (slightly more specifically, for any two black
edges that share a row, it is possible to connect them with
a red edge between the vertices in that shared row). Each
way of joining the edges e into loops also comes with a
combinatorial factor that takes into account the fact that all
edges are distinguishable and the fact that edges that stay in
the same row can each be traversed in one of two directions

The coefficients g(e) can be computed using a recursive
procedure. Instead of doing a recursion on n (which is what
we do in the main text, with details presented in Appendix D),
we perform the recursion on the number of black edges e11 +
e12 + e13 + e23 + e33. As in the main text, we need to define
a more general function g(e, σ, c, s) to make the recursion
work. σ is a binary variable, so that σ = 1 means we are in the
process of building a loop, while σ = 0 means that we need to
start a new loop. If σ = 1, we need to also specify s ∈ {1, 2, 3}
(standing for start) indicating the row where the current loop
started and c ∈ {1, 2, 3} (standing for current) indicating the
row where we currently are.

As in the main text, the recursive procedure is efficient,
i.e., takes polynomial time in the number of edges. We first
directly compute g(e, σ, c, s) for small values of e11 + e12 +
e13 + e23 + e33. Then the recursive step goes as follows: If
σ = 0, we can either (1) close the loop right away by reducing
e11 or e33 by one, keep σ = 0, and multiply by k, or (2) set
σ = 1, start a new loop at row i, set s = i, reduce ei j by
one (for some j), and set c = j. If σ = 1, we can either (1)
close the loop by reducing ecs by one, set σ = 0, and multiply
by k, or (2) continue building the loop, keep σ = 1, keep s
unchanged, reduce ec j by one (for some j), and change the
value of c to j. As we do these calculations, we need to
also include appropriate combinatorial factors deciding which

black edge to take (e.g., if we pick one of ei j edges, we need
to multiply by ei j , and if i = j, we need to multiply by another
factor of 2).

While we have not coded up this procedure, we believe
that it offers another complementary way of understanding
and analyzing the second moment.

1. Computing c1

Again, while we have not coded up the above recursive
procedure, we show how to use the new approach to compute
c1 in Eq. (G1), i.e., the number of ways to build a single-loop
graph, which we were not able to directly compute using the
original method.

To proceed, we first ignore the contributions of the edges
e11 and e33 (effectively pretending that they are equal to zero),
but we address how to deal with them later on. We also assign
a direction to this single loop, and we later divide the final an-
swer by two because each loop will be counted twice (because
there are two possible directions around a loop). While it may
seem to make things more difficult to add directionality to a
previously undirected graph, it actually allows us to make use
of known results.

To proceed, we sort the contributions to c1 according to
the winding number w of the loop around the triangle formed
by rows 1, 2, and 3, which can now be well defined because
we have added directionality to the edges. Once w is fixed,
the total numbers of edges in the triangle of each direction-
ality also become fixed. Specifically, as shown in Fig. 19(b),
x1 = (e13 + w)/2 is the number of 1-3 edges traversed (i.e.,
directed) from 3 to 1, x2 = (x − w)/2 is the number of 1-3
edges traversed from 1 to 3, y1 = (e12 + w)/2 is the number
1-2 edges traversed from 1 to 2, y2 = (e12 − w)/2 is the num-
ber of 1-2 edges traversed from 2 to 1, z1 = (e23 + w)/2 is the
number 2-3 edges traversed from 2 to 3, and z2 = (e23 − w)/2
is the number 2-3 edges traversed from 3 to 2. Note that, here,
we are treating a positive winding number as going clockwise
around the graph. There will also be combinatorial factors
associated with which edges go in which direction, but we
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handle that factor later. We are now interested in the number
of Eulerian circuits on the resulting directed graph G, i.e., the
number of directed closed paths that visit each edge exactly
once. The BEST theorem [41] says that the number of such
Eulerian circuits is

ec(G) = tu(G)
∏
v∈V

[deg(v) − 1]!, (G5)

where V = {1, 2, 3} is the set of three vertices of our graph,
deg(v) is the indegree of vertex v, and tu(G) is the number
of arborescences of G with root u, i.e., the number of directed
tree subgraphs of G such that, for any vertex v, there is exactly

one directed path from v to u. If graph the G has an Eulerian
circuit, it is known that tu(G) is independent of the choice of
u. Choosing u = 3, the three types of trees (arborescences)
contributing to tu(G) for the graph G in Fig. 19(b) are shown in
Fig. 19(c). The result is tu(G) = x2z1 + y2x2 + y1z1. The term
x2z1 [corresponding to the first graph in Fig. 19(c)] counts
trees (arborescences) made up of a 1 → 3 edge and a 2 → 3
edge; the term y2x2 [corresponding to the second graph in
Fig. 19(c)] counts trees made up of a 2 → 1 edge and a 1 → 3
edge; and the term y1z1 [corresponding to the third graph
in Fig. 19(c)] counts trees made up of a 1 → 2 edge and a
2 → 3 edge. Plugging in the definitions of xi, yi, and zi, we
find tu(G) = (w2 + e12e13 + e13e23 + e23e12)/4. Therefore,

ec(G) = 1

4
(w2 + e12e13 + e13e23 + e23e12)

(
e12 + e13

2
− 1

)
!

(
e12 + e23

2
− 1

)
!

(
e13 + e23

2
− 1

)
!

= 1

4
[w2 + 3n2 − (p1 − p4)2 − 2n(p1 + p4)](n − p1 − 1)!(n − 1)!(n − p4 − 1)! (G6)

We now include the aforementioned combinatorial factors that account for which edges receive which directionality. When
choosing which x1 of the e13 edges to make into 3 → 1 edges, we pick up a combinatorial factor of(

e13

x1

)
=

(
n − p1 − p4

(n − p1 − p4 + w)/2

)
Similarly for e12 and e23: (

e12

y1

)
=

(
n − p1 + p4

(n − p1 + p4 + w)/2

)
and

(
e23

z1

)
=

(
n + p1 − p4

(n + p1 − p4 + w)/2

)
We can now also account for the fact that e11 and e33 may actually be nonzero. We keep G defined as before (i.e. using only

1-2, 1-3, and 2-3 edges), but we now dress the loops defined on G (and counted above) with additional 1-1 and 3-3 edges. The
number of times our loop visits vertex 1 is given by deg(1) = n − p1, so we need to sort e11 = p1 edges into n − p1 buckets,
which gives a factor of (

e11 + n − p1 − 1

e11

)
=

(
n − 1

p1

)
(by the standard “stars and bars” argument). Similarly, e33 = p4 loops give(

e33 + n − p4 − 1

e33

)
=

(
n − 1

p4

)
Because all e11 = p1 edges are distinguishable and can be traversed in two different ways, we also get a factor of p1!2p1 (that
is, after the bucket counts are decided, we still have to order the edges and assign each a direction). We similarly get a factor of
p4!2p4 . Putting all these elements together, we have

c1 =
n∑

p1=0

n−p1∑
p4=0

(
n

p1

)(
n − p1

p4

)
2pd1(e)

=
n−1∑
p1=0

n−max(p1,1)∑
p4=0

(
n

p1

)(
n − p1

p4

)
2p

∑
w

1

8
(w2 + 3n2 − (p1 − p4)2 − 2n(p1 + p4))(n − p1 − 1)!(n − 1)!(n − p4 − 1)!

×
(

n − p1 − p4

(n − p1 − p4 + w)/2

)(
n − p1 + p4

(n − p1 + p4 + w)/2

)(
n + p1 − p4

(n + p1 − p4 + w)/2

)(
n − 1

p1

)(
n − 1

p4

)
p1!2p1 p4!2p4

= n![(n − 1)!]32n−3
n∑

p1=0

n−p1∑
p4=0

n−p1−p4∑
w=−n+p1+p4

( n−p1+p4

(n−p1+p4+w)/2

)( n+p1−p4

(n+p1−p4+w)/2

)
(w2 + 3n2 − (p1 − p4)2 − 2n(p1 + p4))

p1!p4![(n − p1 − p4 − w)/2]![(n − p1 − p4 + w)/2]!
(G7)
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In the second line, we have introduced an extra factor of
1/2 because we counted every loop twice because of the two
directions in which each loop can be traversed. In the second
line, we also excluded the cases where all black edge sets are
of type-1 (p1 = n) and where all black edge sets are of type-4
(p4 = n), as there is no single-loop contribution in this case
[allowing for p1 = n would make

(n−1
p1

)
undefined; similarly

for p4 = n]. In the last line, to simplify the expression, we
allow p1 = n and p4 = n because the corresponding contri-
bution is now well-defined and vanishes anyway. In the last
line, the sum over w runs in increments of 2 due to a parity
constraint (flipping the directionality of a single edge actually
changes the winding number by two). While one can evaluate
the sum over w in the final expression in Eq. (G7) in terms of

hypergeometric functions, we were not able to then evaluate
the remaining sums over p4 and p1 to obtain a closed-form
expression for c1.

Numerical evaluation of the final expression in Eq. (G7)
agrees with the evaluation of c1 using the recursive method in
the main text up to n = 40 (which is the largest n we apply
the latter method to). The final expression in Eq. (G7) is,
however, so simple that it can easily be evaluated for much
larger values of n. For example, Mathematica [37] on a per-
sonal computer evaluates it for n = 200 in about 15 seconds.
One can also use Eq. (G7) to study in detail the asymptotic
dependence of c1 on n. We also hope that the method intro-
duced in this section can yield other useful analytical results
about ci.
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