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Gaussian boson sampling is a promising method for experimental demonstrations of quantum advantage
because it is easier to implement than other comparable schemes. While most of the properties of Gaussian
boson sampling are understood to the same degree as for these other schemes, we understand relatively
little about the statistical properties of its output distribution. The most relevant statistical property, from the
perspective of demonstrating quantum advantage, is the “anticoncentration” of the output distribution as
measured by its second moment. The degree of anticoncentration features in arguments for the complexity-
theoretic hardness of Gaussian boson sampling. In this Letter, we develop a graph-theoretic framework for
analyzing the moments of the Gaussian boson sampling distribution. Using this framework, we show that
Gaussian boson sampling undergoes a transition in anticoncentration as a function of the number of modes
that are initially squeezed compared to the number of photons measured at the end of the circuit. When the
number of initially squeezed modes scales sufficiently slowly with the number of photons, there is a lack of
anticoncentration. However, if the number of initially squeezed modes scales quickly enough, the output
probabilities anticoncentrate weakly.
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Quantum sampling problems have attracted a lot of
interest given the strong theoretical evidence for an
exponential speedup of quantum algorithms over the best
possible classical algorithms [1]. Aaronson and Arkhipov
introduced one of the most deeply studied sampling
frameworks in their seminal work on boson sampling [2].
The boson sampling task is to approximately sample from
the outcome distribution of measuring n single photons in
m optical modes transformed by a Haar-random linear-
optical unitary, which can be implemented as a random
network of beam splitters and phase shifters [3]. Aaronson
and Arkhipov [2] focused on single-photon input states,
but these can be challenging to produce experimentally [4]
because existing single-photon sources are not sufficiently
reliable to avoid an exponential amount of postselec-
tion [5]. Therefore, there has been an interest in general-
izing the original boson sampling setup to other input
states.
The currently most feasible generalization is Gaussian

boson sampling (GBS) [6–9], which uses Gaussian input
states. These states are significantly easier to prepare
reliably than single-photon states. At the same time, similar
statements can be made about the hardness of sampling
from the corresponding output distribution [9–12], and
several large-scale GBS experiments have been performed
recently [13–16].
Broadly speaking, the hardness of boson sampling is

based on the connection between output probabilities and

the permanent, which is, classically, #P-hard to compute
exactly [17]. Similarly, the hardness of GBS arises from the
fact that output probabilities are controlled by a generali-
zation of the permanent called the hafnian, while the
permanent counts the number of perfect matchings in a
weighted bipartite graph, the hafnian counts the number of
perfect matchings in an arbitrary weighted graph [18].
Because the hafnian generalizes the permanent, it is also
difficult to compute classically.
However, the complexity of classically computing an

individual output probability defined in terms of the
permanent or the hafnian is not itself sufficient to prove
hardness of sampling from the overall probability distri-
butions. The standard hardness argument based on
Stockmeyer’s algorithm [1,19] requires that outcome prob-
abilities of random boson sampling instances be hard to
approximate. Jointly with provable hardness of nearly
exactly computing output probabilities [10], so-called
“anticoncentration” of the outcome probabilities serves
as evidence for this. Intuitively, if most outcome proba-
bilities are similarly large, then a good classical sampling
algorithm needs a very precise estimate of each proba-
bility’s relative magnitude because all of them are impor-
tant. Anticoncentration quantifies this idea as, most
concisely, the second moment of the outcome probabilities
of the GBS distribution (i.e., the probability of getting the
same outcome from two independent samples) averaged
over the choice of linear-optical unitary and normalized by
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the square of the first moment [[1], Sec. IV.D]. While a
weak form of anticoncentration holds in boson sampling
[2], under what conditions and to which degree anticon-
centration holds in GBS is an open question.
In this Letter, we analyze the moments of GBS in the

photon-collision-free limit. In this limit, the output distri-
bution is dominated by outcomes with at most a single
photon in each mode, and the moments of GBS approx-
imately reduce to moments of squared hafnians of Gaussian
random matrices. We show that evaluating those moments
reduces to counting the connected components of certain
graphs. Using this perspective, we find a closed-form
expression for the first moment and derive analytical
properties of the second moment. We then identify a
transition in anticoncentration in GBS: when the number
of initially squeezed modes is large enough compared to the
measured number of photons n, a weak version of anti-
concentration holds where the normalized average second
moment scales as

ffiffiffi
n

p
; when too few modes are initially

squeezed, there is a lack of anticoncentration, as this
normalized moment scales exponentially in n.
The rest of this Letter proceeds as follows. We first

provide background information and set up the system and
problem of interest. We then derive the graph-theoretic
formalism for computing the first moment of the output
probabilities. We proceed to discuss how to apply the
formalism to calculate certain properties of the second
moment. These results let us finally prove the transition in
anticoncentration.
Setup—We consider a photonic system with m modes

that is transformed by a Haar-random linear-optical unitary
U∈UðmÞ acting on the modes of the system; see Fig. 1. In
the paradigmatic version of GBS [8,9], the first k of the m
modes are prepared in single-mode squeezed vacuum states
with equal squeezing parameter r, while the remaining
m − k modes are prepared in the vacuum state. After
applying U, all m modes are measured in the Fock basis.
Reference [8] proves that, given a unitary U, the

probability of obtaining an outcome count vector n ¼
ðn1; n2;…; nmÞ∈Nm

0 with total photon count 2n ¼P
m
i¼1 ni is given by

PUðnÞ ¼
tanh2nr
coshkr

��Haf�U⊤
1k;n

U1k;n

���2; ð1Þ

where U1k;n denotes the k × 2n submatrix of U given by its
first k rows and the columns selected according to the
nonzero entries of n each copied ni times [20]. Moreover,

HafðAÞ ¼ 1

2nn!

X
σ ∈ S2n

Yn
j¼1

Aσð2j−1Þ;σð2jÞ ð2Þ

denotes the hafnian of a 2n × 2n symmetric matrix A.
We work in the regime in which the output states are,

with high probability, photon-collision-free, meaning that
the output states have at most one photon in each mode, i.e.,
that ni ∈ f0; 1g for all i. A sufficient condition for this to be
the case is that the expected number of photons E½2n� ¼
ksinh2ðrÞ ¼ oð ffiffiffiffi

m
p Þ [21]. Reference [10] provides evi-

dence that, in this regime, for any observed photon number
n ¼ oð ffiffiffiffi

m
p Þ, the distribution over submatrices is well-

captured by a generalization of the circular orthogonal
ensemble (COE) [22].
Conjecture 1 (Hiding [10])—For any k such that 1 ≤

k ≤ m and 2n ¼ oð ffiffiffiffi
m

p Þ, the distribution of the symmetric
product U⊤

1k;n
U1k;n of submatrices of a Haar-random

U∈UðmÞ closely approximates in total variation distance
the distribution of the symmetric product X⊤X of a
complex Gaussian matrix X ∼N ð0; 1=mÞk×2nc with mean 0
and variance 1=m.
We proceed, assuming that Conjecture 1 is true.

Anticoncentration can then be quantified by the inverse
of the second moment of the output probabilities normal-
ized by the squared first moment, for an arbitrary outcome
n in the photon-collision-free subspace [23],

p2ðk; nÞ ≔ E
U∼UðmÞ

½PUðnÞ�2= E
U∼UðmÞ

½PUðnÞ2�: ð3Þ

We choose this normalization to ensure that the uniform
(maximally anticoncentrated) distribution returns a value
of 1, but a distribution peaked on a single value (minimally
anticoncentrated) returns the inverse of the size of photon-
collision-free outcome space. p2ðk; nÞ lower-bounds the
fraction of the outcomes with probability larger than that
of the uniform distribution, i.e., those most relevant to
the sampling task. For anticoncentrated distributions, this
fractional support is constant and thus sufficiently large to
reduce the conjectured average-case hardness of relative-
error approximation of GBS probabilities to approximate
sampling hardness. Conversely, if the fractional support
is exponentially small, this reduction breaks because an
approximate sampler can assume that nearly all probabil-
ities are zero; see (Ref. [1], Sec. IV.D.2) for details.
This is why we consider different degrees of anti-

concentration: we speak of strong anticoncentration if
p2ðk; nÞ ≥ const; we speak of weak anticoncentration if

FIG. 1. In GBS, k out of m modes are prepared in single-mode
squeezed vacuum states with squeezing parameter r, while the
remaining modes are prepared in the vacuum state j0i. The modes
are then transformed by a Haar-random linear-optical unitary
U and measured in the Fock basis with outcome counts ni
summing to 2n.
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p2ðk; nÞ ≥ 1=polyðnÞ. If p2ðk; nÞ ¼ Oð1=naÞ for any con-
stant a > 0, however, there is a lack of anticoncentration.
Together, these definitions capture the relevant regimes
with respect to the hardness reduction: a strong version,
a weak version, and no version of the reduction work; see
Ref. [24] for details.
Conjecture 1 and Eq. (1) allow us to reduce the evaluation

of anticoncentration in GBS to a combinatorial problem
regarding moments of generalized COE matrices. Let

Mtðk; nÞ ≔ E
X∼Gk×2n

½jHafðX⊤XÞj2t� ð4Þ

be the tth moment of the squared hafnian as a function
of the parameters k and n, where we have abbreviated
N ð0; 1Þk×2nc as Gk×2n [25]. Then the inverse normalized
second moment of the COE Hafnians

m2ðk; nÞ ≔ M1ðk; nÞ2=M2ðk; nÞ ≈ p2ðk; nÞ ð5Þ

captures anticoncentration. This equivalence, as well as the
details of the above approximations and the relation to
different definitions of anticoncentration, are discussed in a
companion work to this Letter [24].
First moment and graph-theoretic formalism—We begin

by analyzing the (rescaled) first moment M1 of the output
probabilities. In order to derive our graph-theoretic for-
malism, we use Eq. (2) to expand the hafnian in Eq. (4) as a
sum over permutations of a product of matrix elements.
From there, the key is to use the fact that the matrix
elements are independent complex Gaussian, meaning that
EX∼Gk ½XiX�

j � ¼ δij and EX∼Gk ½XiXj� ¼ 0 ¼ EX∼Gk ½X�
i X

�
j �.

This yields

M1ðk; nÞ ¼
ð2nÞ!
ð2nn!Þ2

X
τ∈ S2n

Xk
foigni¼1

Yn
j¼1

δo
⌈
τð2j−1Þ

2
⌉
o
⌈
τð2jÞ
2

⌉
: ð6Þ

Let us briefly discuss Eq. (6); see Appendix A for details.
The sum over τ∈ S2n and the product over index j come
from Eq. (2); the sum over the indices oi ∈ ½k� ≔
f1; 2;…; kg is due to an expansion of X⊤X as a matrix
product. Note that, when τð2j − 1Þ and τð2jÞ form a tuple
ð2l − 1; 2lÞ, then the Kronecker δ always equals 1 for
index ol, such that summing over ol yields a factor of k.
When τð2j − 1Þ and τð2jÞ do not form such a tuple, we get
a nontrivial relationship between indices that decreases the
number of independent degrees of freedom, thus decreasing
the number of factors of k in τ’s contribution. Therefore, to
evaluate Eq. (6), one must determine the number of “free
indices” of all permutations in S2n. We accomplish this with
our graph-theoretic approach.
Specifically, define a graph Gτ as follows [see Fig. 2(a)].

Let Gτ have 2n vertices labeled O1 through O2n. These
uppercase vertices are not directly equivalent to the
lowercase indices in Eq. (6). Instead, each index oj splits

into two vertices Ol and Ol0 such that ⌈τðlÞ=2⌉ ¼ j ¼
⌈τðl0Þ=2⌉ (in other words, o⌈τðlÞ=2⌉ maps to a vertex Ol).
Let Gτ have a black edge between O2j−1 and O2j for all
j∈ ½n�, and a red edge between Ol and Ol0 if ⌈τðlÞ=2⌉ ¼
⌈τðl0Þ=2⌉. These two kinds of edges mimic two types of
ways that dependencies in Eq. (6) can be induced through
an index j. Red edges identify the l and l0 that map to the
same value via τ and the ceiling function. Hence, red edges
identify which vertices came from the same o index. Black
edges identify that Eq. (6) has a Kronecker δ between
o⌈τð2j−1Þ=2⌉ and o⌈τð2jÞ=2⌉.
We see, then, that the number of connected components

of Gτ, CðGτÞ is equivalent to the number of free indices in
the sum in Eq. (6). Therefore,

M1ðk; nÞ ¼
ð2nÞ!
ð2nn!Þ2

X
τ∈ S2n

kCðGτÞ: ð7Þ

There is a degeneracy where many permutations induce
the same final graph. Each graph has the same fixed set of
black edges and then one of ð2n − 1Þ!! possible sets of red
edges (this is the number of ways of pairing 2n elements
when order does not matter). For each graph G correspond-
ing to some assignment of the red edges, there are 2nn!
permutations τ such that Gτ ¼ G. Therefore, instead of
studying Gτ as instantiated by permutations τ, we study the
underlying graphs G. Define G1

n to be the set of graphs on

(a)

(b)

FIG. 2. Examples of graphs used to calculate the (a) first and
(b) second moments of GBS outcome probabilities. (a) G∈G1

4.
There are eight vertices O1 to O8 representing the index o
(labeled in the left column). The black (solid) edges connect only
adjacent pairs, whereas the red (dashed) edges form an arbitrary
perfect matching. This graph has two connected components,
meaning it contributes k2 to the first moment. (b) G∈G2

4. The
black (solid) edges are, from left to right, Type 1, Type 2, Type 3,
and Type 4, as denoted by the gray background. z ¼ 1þ 0 ×
43 þ 1 × 42 þ 2 × 41 þ 3 × 40 ¼ 28 (this is calculated by con-
verting 0123 from base 4 to base 10 and adding 1 such that the
final result is in ½44�). Note that black (solid) edges stay within
two adjacent columns. Red (dashed) edges stay within each row
and form a perfect matching on each row, thus also forming a
perfect matching on the entire graph. This graph contributes k5 to
the second moment, as there are five connected components.
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2n vertices with one perfect matching defined by the
fixed set of black edges and one perfect matching defined
by the arbitrary red edges. We can thus rewrite M1 ¼
ð2n − 1Þ!!PG∈G1

n
kCðGÞ and state our first result.

Theorem 1—The sum over graphs in G1
n satisfies

X
G∈G1

n

kCðGÞ ¼ kðkþ 2Þ…ðkþ 2n − 2Þ; ð8Þ

and hence M1ðk; nÞ ¼ ð2n − 1Þ!!ðkþ 2n − 2Þ!!=ðk − 2Þ!!.
The proof proceeds by induction over n, where the

inductive step reduces a graph in G1
n to one in G1

n−1 through
an analysis of the red edge connected to O1. There are two
options for this red edge: either it connects toO2, the vertex
with which O1 shares a black edge, or it attaches to some
Ox>2. The former creates a connected component of size
two; the latter reduces to a graph in G1

n−1 by merging
vertices O1, O2, and Ox (which does not change the
number of connected components). Full details can be
found in Appendix A.
Second moment—We now sketch the application of our

graph-theoretic formalism to the (rescaled) second moment
M2, deferring the details to the companion piece [24]. We
expand jHafðX⊤XÞj4 using Eq. (2), which becomes a sum
of products of matrix elements that are indexed by four
permutations in S2n. The independence of matrix elements
again enforces that we have an equal number of copies
of Xij and X�

ij for the expectation value not to vanish.
However, because there are more copies of X and X�,
there are more ways of matching the indices. Accounting
for these possibilities leads to an expression analogous to
Eq. (6), but with three key differences: (1) instead of
summing over a single permutation, we now sum over three
permutations, labeled τ, α, β (as in the first moment, one of
the original four permutations eventually becomes redun-
dant); (2) instead of summing over n indices foigni¼1, we
now sum over 3n indices foi; qi; pigni¼1; (3) each factor is
now a sum of four possible Kronecker δ terms.
As before, we define a useful set of graphs; see Fig. 2(b)

for an example. We expand each index in foi; qi; pigni¼1 to
two graph vertices fOi;Qi; Pig2ni¼1, and we organize them
into 2n columns and three rows assigned to O, P, and Q
vertices, respectively. We then use the Kronecker δs to
define black and red edges between these vertices. Fixing
permutations τ, α, β, there is a red edge betweenOl andOl0

if ⌈τðlÞ=2⌉ ¼ ⌈τðl0Þ=2⌉, and similarly for the P and Q
vertices using permutations α and β, respectively. This
means that the red edges are constrained to lie within rows
in the graph. Furthermore, these red edges again identify
the vertices originating from the same index. Because each
factor has four Kronecker δ terms, each factor contributes
one of four patterns of black edges, which we refer to as
Type 1, Type 2, Type 3, and Type 4. The black edges are
constrained to lie within pairs of adjacent columns, and

they also admit a symmetry between O and Q vertices
(arising from the fact that o and q indices stem from X�
terms, whereas p indices stem from X terms [26]). Each
graph then has one of 4n possible sets of black edges
indexed by an integer z. We thus call these graphs Gτ;α;βðzÞ.
As in the first moment, the number of connected

components C½Gτ;α;βðzÞ� of the graph Gτ;α;βðzÞ gives the
number of free indices of its corresponding term in the
expansion of the hafnian, meaning that graph contributes
kC½Gτ;α;βðzÞ� to the sum. The second moment then becomes

M2ðk; nÞ ¼
ð2nÞ!
ð2nn!Þ4

X
τ;α;β∈ S2n

X
z∈ ½4n�

kC½Gτ;α;βðzÞ�: ð9Þ

We also again use the fact that many permutations induce
the same final graph. We thus define G2

nðzÞ to be the set
of graphs for the zth set of black edges and G2

n ≔
∪z∈ ½4n� G2

nðzÞ. Because there are now three permutations
associated to each graph, we obtain a degeneracy factor of
ð2nn!Þ3 and find

M2ðk; nÞ ¼ ð2n − 1Þ!!
X
G∈G2

n

kCðGÞ: ð10Þ

We can now state our second result.
Theorem 2—The second moment M2ðk; nÞ is a degree-

2n polynomial in k and can be written as M2ðk; nÞ ¼
ð2n − 1Þ!!P2n

i¼1 cik
i, where ci is the number of graphs

G∈G2
n that have i connected components.

Theorem 2 follows from Eq. (10) and verifying the limits
of summation, which we do in the companion piece [24].
Transition in anticoncentration—We now use

Theorems 1 and 2 in order to show that anticoncentration
in GBS undergoes a transition as a function of k; when
k ¼ 1, GBS lacks anticoncentration, and when k → ∞
(which, of course, requires m → ∞ as well) it anticoncen-
trates weakly.
In order to do so, we analyze the polynomial coefficients

ci, observing that for k ¼ 1, M2ðk;nÞ¼ð2n−1Þ!!P2n
i¼1ci,

and for k → ∞ [27], M2ðk; nÞ ≈ ð2n − 1Þ!!c2nk2n. The
following lemma states our results for these regimes.
Lemma 1—We have that (i) M2ð1; nÞ ¼ ðð2n − 1Þ!!Þ44n

and (ii) c2n ¼ ð2nÞ!!.
Part (i) follows from a simple, direct computation using the

expansion of the second moment in terms of Kronecker δs.
Part (ii) follows by reducing the graph counting problem
to a special instance of the first moment with k ¼ 2; this
reduction happens because the types of edges that are allowed
in order to get 2n connected components are quite restrictive.
Theorem 2 and Lemma 1 imply that, when k ¼ n0 ¼ 1,

the inverse normalized second moment is negligible,

m2ð1; nÞ ¼
½ð2n − 1Þ!!2�2
ð2n − 1Þ!!44n ¼ 4−n: ð11Þ
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Now, let k be arbitrarily large (in the companion work, we
provide evidence for the conjecture that k need only be
polynomially large in n, and, even further, that super-
quadratic scaling is sufficient [24]). Note also that, in order
to satisfy the constraint in Conjecture 1, as k increases, the
average squeezing per mode r must decrease accordingly.
In this limit, M2ðk; nÞ is dominated by the behavior of its
leading order in k, which is ð2n − 1Þ!!ð2nÞ!!k2n. Addi-
tionally, M1ðk; nÞ ¼ ð2n − 1Þ!!ðkþ 2n − 2Þ!!=ðk − 2Þ!! ∼
ð2n − 1Þ!!kn and, hence, the k dependence of m2ðk; nÞ
vanishes. Using Stirling’s approximation on the remaining
n dependence yields

m2ðk; nÞ ∼
½ð2n − 1Þ!!�2

ð2nÞ! ¼ ð2nÞ!
4nðn!Þ2 ∼

1ffiffiffiffiffiffi
πn

p : ð12Þ

This proves the central claim of our work. In Ref. [24],
we also show how anticoncentration of the approximate
GBS distribution relates to anticoncentration of the true
distribution.
Discussion and conclusion—In this Letter, we have

shown a transition in anticoncentration in the output
probabilities of GBS as a function of the number of initially
squeezed modes. The presence of anticoncentration is addi-
tional evidence for the hardness of GBS, and our results
thus yield clear advice for experiments in the photon-
collision-free regime: given a desired average photon
number, distribute the required squeezing for this number
across all modes.
Our results give rise to an interesting state of affairs when

considered in conjunction with the hiding property: in both
GBS and standard boson sampling, the hiding property is
known to fail outside of the highly dilute photon-collision-
free regime, which is characterized by m ¼ Oðn2Þ [28,29],
while it is conjectured to hold for any m ¼ ωðn2Þ [2,10].
Standard boson sampling anticoncentrates weakly with
inverse normalized second moment 1=n in the same regime
[[2], Lemma 8.8]. The only relevant scale is thus the relative
size of the number of modes to the number of photons. In
GBS, we now find an additional relevant scale, the number
of squeezed modes in the input state. This scale does not
seem to be relevant to the hiding property in GBS, which
holds for m ¼ ωðn2Þ and any k under Conjecture 1, but we
find that it is very relevant to the anticoncentration property.
For a potential explanation of the relevance of this scale,

we refer to scattershot boson sampling, which is “inter-
mediate” between standard boson sampling and GBS. In
scattershot boson sampling, n single photons are distributed
randomly across the input modes using postselection on two-
mode squeezed states. In order to satisfy photon-collision-
freeness in the input state with high probability, the total
squeezing in the input needs to be distributed across ωðn2Þ
initial squeezed states [6]; see Appendix B for details.
Our results also connect to the classical simulability of

GBS. The hafnian of A can be computed in time exponential

in the rank of A [30]. The absence of anticoncentration for
small k ≪ n overlaps with this regime of efficient classical
simulability, as the rank of X⊤X is upper-bounded by k.
But does it also extend beyond this regime? While we

have proved the existence of this transition, our above work
is not sufficient to pin down its precise location. However, we
conjecture that weak anticoncentration holds for k ¼ ωðn2Þ,
but there is a lack of anticoncentration for k ¼ Oðn2Þ. In a
companion work [24], we give evidence for this conjecture
by fully analyzing the coefficients ci of M2ðk; nÞ.

Note added—After our paper was posted to the arXiv,
Ref. [31] was posted to the arXiv, where the authors also
study second moments of Gaussian Boson Sampling.
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Appendix A: Details of the first moment—Here, we derive Eq. (6) and prove Theorem 1, beginning with the
former:
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X∼Gk×2n
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where we have defined j0 to be the index such that σð2j − 1Þ ¼ τð2j0 − 1Þ or τð2j0Þ and, similarly, j00 to be the index
such that σð2jÞ ¼ τð2j00 − 1Þ or τð2j00Þ (note: j0 ¼ j00 if fσð2j − 1Þ, σð2jÞg ¼ fτð2j − 1Þ, τð2jÞg, which is an equality
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of sets, meaning order does not matter). The first
equation uses Eq. (2), while the second follows from
exchanging product and sum, and the penultimate comes
from the linearity of expectation. To derive the final
equation, recall that the Xij are independent identically
distributed complex Gaussian random variables with
mean 0 and variance 1. Thus, the expectation of a
product of entries vanishes unless there are an equal
number of unconjugated and conjugated copies of all

entries. By the definition of j0, we ensure that the entry
Xljσð2j−1Þ is matched to one of the X� entries as long as
lj and oj0 match, hence the first Kronecker δ. The
second Kronecker δ arises similarly.
We can exactly calculate j0 by noting σð2j − 1Þ ∈

fτð2j0 − 1Þ; τð2j0Þg ⇔ fτ−1½σð2j − 1Þ�g=2 ∈ fj0 − 1
2
; j0g.

Thus, j0 ¼ ⌈fτ−1½σð2j − 1Þ�g=2⌉. Similarly, j00 ¼
⌈fτ−1½σð2jÞ�g=2⌉. Therefore,
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: ðA7Þ

In the first equality, we use the definitions of j0; j00. In the
second, we notice that τ and σ occur only together as τ−1∘σ,
meaning we can perform a change of variables to reduce to
a single sum over a redefined τ−1 ∈ S2n while gaining a
factor ð2nÞ!. The third equality comes from summing over
the lj indices and redefining τ−1 → τ. This is Eq. (6).
We now prove Theorem 1 by induction on n. Let fðk; nÞ

be the lhs of Eq. (8). For the base case n ¼ 1, there is only

a single possible graph G that has a single connected
component. Thus fðk; 1Þ ¼ k. For the inductive step, which
is visualized in Fig. 3, consider two subsets of G1

n. The first
set has graphs that possess a red edge between O1 and O2,
which means that these two vertices form their own
connected component (as O1 and O2 are always connected
with a black edge). Summing kCðGÞ over all graphs of this
type then yields a contribution of kfðk; n − 1Þ. The other
subset of G1

n contains graphs that possess a red edge
between O1 and a vertex Ox ≠ O2. In these graphs, the
number of connected components in the graph does not
change if one collapses the three vertices O1, O2, and Ox
into a single vertex (because they are all connected but
do not form a full connected component). Therefore,
because there are 2n − 2 choices for the vertex Ox linked
to O1 by a red edge, we get an overall contribution
of ð2n − 2Þfðk; n − 1Þ when summing kCðGÞ over these
graphs.
Overall then, we find that

fðk; nÞ ¼ kfðk; n − 1Þ þ ð2n − 2Þfðk; n − 1Þ ðA8Þ

¼ ðkþ 2n − 2Þfðk; n − 1Þ ðA9Þ

¼ ðkþ 2n − 2Þðkþ 2n − 4Þ…ðkþ 2Þk; ðA10Þ

where the final line uses the inductive hypothesis to
complete the proof.
The structure of this proof is similar to the calculation of

EX∼Gn×n ½jHafXj4� in Ref. [32] (the similarity arises because
there are four copies of X in both calculations).

(a)

(b)

FIG. 3. Visualization of the inductive step in the proof of the
first moment, which proceeds in two cases determined by the red
edge touching O1. In (a), the O1 and O2, which are linked by a
black (solid) edge, are also linked by a red (dashed) edge,
meaning they comprise a single connected component. This
contributes a factor of k times the contribution from a graph in
G1
n−1, which comes from the remaining 2n − 2 vertices and their

edges. In (b), O1 is linked via a red edge to one of 2n − 2 Ox ≠
O2 (here, x ¼ 3). The number of connected components does not
change after identifying and combining O1; O2; Ox (visualized
by the blue background) into a redefined Ox, meaning we again
reduce down to a graph in G1

n−1, but this time without the
multiplicative factor of k.
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Additionally, similar graphs, and a similar calculation
involving enumerating the number of graphs with a given
number of connected components, show up in the bio-
informatic study of breakpoint graphs used in comparative
genomics [33].

Appendix B: Scattershot boson sampling explanation
of the transition—In scattershot boson sampling (SBS)
[6], m ¼ ωðn2Þ two-mode squeezed vacuum (TMSV)
states with squeezing parameter r are prepared. The
photon number distribution of a TMSV state is supported
on Fock states of the form jnijni for n∈N0. One half of
each TMSV is then measured in the Fock basis, yielding,
with high probability, an outcome ni ∈ f0; 1g (assuming r
is small enough). Collecting outcomes in the vector
n ¼ ðn1;…; nmÞ, the other half of the input modes is
now in the postselected state jni ¼⊗m

i¼1 jnii. This post-
selected state jni is then passed through the linear-optical
unitary U and measured in the Fock basis, yielding
outcome o ¼ ðo1;…; omÞ with probability PUðn; oÞ ¼
jPerðUn;oÞj2, where the rows and columns of the
submatrix Un;o correspond to the indices with nonzero
entries in n and o. But, conditioned on jni and joi being
photon-collision-free and the hiding property, the distri-
bution of matrices Un;o equals that of the boson sampling
submatrices U1n;o, where the photons in the input state
are, by convention, in the first n modes. The properties of
SBS postselected on photon-collision-free outcomes in a
fixed photon number sector are therefore equal to the
properties of standard boson sampling.
We now argue that this equivalency hinges essentially on

the fact that ωðn2Þ of the input modes are squeezed. To this
end, consider a modification of SBS in which only k out of
the m modes are prepared in one half of a TMSV state,
while the remaining m − k modes are prepared in the
vacuum state, which resembles the GBS setting. Let us also
consider a squeezing parameter r of every TMSV state
chosen such that sinh2ðrÞ ¼ n=k, yielding a mean photon
number of n after postselection.
Recall that a TMSV state with squeezing parameter r and

phase ϕ has a Fock expansion given by

jTMSVi ¼ 1

coshðrÞ
X∞
l¼0

ð−eiϕ tanh rÞnjnijni; ðB1Þ

thus leading to a probability of tanh2l r= cosh2 r to measure
l photons in one mode. Therefore, if the input consists of k
TMSV states, then the probability that measuring one half
of each state produces a photon collision is

Pr½photon collision� ¼ 1−
�

1

cosh2r
þ tanh2r
cosh2r

	
k

¼ 1−
�

1

1þn=k
þ n=k
ð1þn=kÞ2

	
k

¼ 1−


1−
�

n=k
1þn=k

	
2
�
k

¼ 1− exp
�
−
n2

k
þ kOðn=kÞ3

	
; ðB2Þ

assuming k ¼ ωðnÞ. This photon collision probability
remains lower-bounded by a constant for k ¼ Oðn2Þ, but
vanishes for any k ¼ ωðn2Þ. Thus, the probability of a photon
collision in the input state of SBS remains high until k ¼
Θðn2Þ and decays then. But because in SBS the roles of the
(postselected) input state and the output state are sym-
metric, a photon collision implies a failure of hiding and,
therefore, a failure of anticoncentration in the regime
k ¼ Oðn2Þ. Conversely, for k ¼ ωðn2Þ we believe that
hiding holds [2,29], and hence Lemma 8.8 of Aaronson
and Arkhipov [2] shows weak anticoncentration for SBSwith
an inverse normalized second moment of 1=n in this regime.
This shows that generalized SBS with a variable number

of input squeezed states undergoes a transition in anti-
concentration similar to the one we find here for GBS. It is
not at all clear that the transition in SBS implies a transition
in GBS, however, as GBS does not involve postselection.
Indeed, in SBS, the anticoncentration coincides with—or
rather is—a transition in the hiding property. In GBS, in
contrast, we see the transition in anticoncentration, but
hiding is conjectured to hold for all k. Further, the situation
in GBS is not immediately comparable to that in this
modified SBS scenario because the input single-mode
squeezed states are supported on even numbers of photons,
and therefore any nonzero photon number input states are
photon-collision-full. Therefore, the connections outlined
here deserve future consideration.
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