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To implement arbitrary quantum circuits in architectures with restricted interactions, one may
effectively simulate all-to-all connectivity by routing quantum information. We consider the en-
tanglement dynamics and routing between two regions only connected through an intermediate
“bottleneck” region with few qubits. In such systems, where the entanglement rate is restricted
by a vertex boundary rather than an edge boundary of the underlying interaction graph, existing
results such as the small incremental entangling theorem give only a trivial constant lower bound
on the routing time (the minimum time to perform an arbitrary permutation). We significantly
improve the lower bound on the routing time in systems with a vertex bottleneck. Specifically,
for any system with two regions L,R with NL, NR qubits, respectively, coupled only through an
intermediate region C with NC qubits, for any δ > 0 we show a lower bound of Ω(N1−δ

R /
√
NLNC)

on the Hamiltonian quantum routing time when using piecewise time-independent Hamiltonians, or
time-dependent Hamiltonians subject to a smoothness condition. We also prove an upper bound on
the average amount of bipartite entanglement between L and C,R that can be generated in time t by
such architecture-respecting Hamiltonians in systems constrained by vertex bottlenecks, improving
the scaling in the system size from O(NLt) to O(

√
NLt). As a special case, when applied to the

star graph (i.e., one vertex connected to N leaves), we obtain an Ω(
√
N1−δ) lower bound on the

routing time and on the time to prepare N/2 Bell pairs between the vertices. We also show that, in

systems of free particles, we can route optimally on the star graph in time Θ(
√
N) using Hamiltonian

quantum routing, obtaining a speed-up over gate-based routing, which takes time Θ(N).

1. INTRODUCTION

The promise of wide-ranging applications of quantum
computing has sparked interest in developing scalable
quantum architectures. Realistic quantum architectures
have constrained interactions, often with fixed connec-
tivity [1, 2]. This connectivity is usually specified by a
graph G, with vertices V representing qubits, and edges
E representing pairs of qubits between which interactions
are permitted. On the other hand, quantum algorithms,
quantum error correction schemes, and other quantum
information-processing protocols often require interac-
tions between arbitrary pairs of qubits. To implement
these interactions, quantum compilers effectively simu-
late all-to-all connectivity by moving quantum informa-
tion, at the cost of an overhead in the running time. This
task, known as quantum routing, aims to make general
quantum algorithms feasible on devices with connectivity
constraints by efficiently implementing any permutation
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of qubits on a given architecture graph [3]. Quantum
routing can be performed with swap gates using classical
techniques [3–7], or employing more general quantum op-
erations such as continuous-time Hamiltonian evolution
[8, 9] or unitary gates [9], possibly assisted by measure-
ment and fast classical feedback [10–12]. Recent work
has shown that the worst-case depth overhead of imple-
menting arbitrary quantum circuits while respecting con-
nectivity constraints is proportional to the circuit depth
of worst-case routing [13], highlighting the importance of
lower bounds and fast protocols for this task.

Routing is closely related to the task of entanglement
distribution, since by routing entangled qubits, we can
distribute entanglement. The rate at which entanglement
can be generated between parts of a system constrains
our ability to perform many quantum information pro-
cessing tasks, as entanglement is a critical resource for
quantum algorithms [14–18], quantum error correction
[19–21], quantum communication [22–24], and quantum
sensing [25–27]. The fundamental importance of entan-
glement and its application to a wide range of quantum
information tasks has raised many questions and led to
a large number of investigations into the dynamics of en-
tanglement [28–34].

https://arxiv.org/abs/2505.16948v1
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FIG. 1. The star graph on 9 vertices, S9.

The fact that routing can be used to distribute en-
tanglement means that bounds on entanglement dynam-
ics can also be used to constrain the time taken to per-
form routing. Previous work has used this idea to bound
routing times [9] in terms of entanglement rates [28] and
entanglement capacities [29] across system bipartitions.
These two major results on entanglement dynamics can
be interpreted in terms of bottlenecks, which are of two
kinds:

1. Edge bottlenecks: The number of edges across any
bipartition of the system constrains the rate at
which the bipartitions can be entangled, by the
small incremental entangling (SIE) theorem [28].
Thus, in systems with a small number of edges con-
necting large subsystems, the routing time is large.
An example of such system is a d-dimensional ar-
ray, where the number of edges joining two halves of
the system scales as Θ(Nd−1), which is asymptot-
ically smaller than the number of vertices on each
side (Θ(Nd)). We refer to such a set of edges as an
edge bottleneck.

2. Vertex bottlenecks: A vertex bottleneck is a set of
vertices, typically much smaller than the rest of the
system, that constrains the interactions of the rest
of the system. An archetypal example of a vertex
bottleneck is found in the star graph SN , shown
in Fig. 1, which is the complete bipartite graph
K1,N−1 between one (center) vertex and N −1 leaf
vertices. Intuitively, to implement interactions be-
tween qubits on the leaves, we must make use of the
central vertex, which forms a bottleneck. On the
other hand, this graph does not have a significant
edge bottleneck, due to the large number of edges
between the central vertex and the leaves. A gen-
eral vertex bottleneck is depicted in Fig. 2, which
represents systems with a tripartite structure. Such
systems can be divided into three parts L,C,R such
that edges are only present connecting L to C and
C to R. The small total entangling property [29]
bounds the entanglement capacity, or total amount
of entanglement that can be generated across a par-
tition, in terms of the local dimension of the ver-
tex boundary (sites on one side of a partition that
are adjacent to sites on the other side), and there-

L

C

R

FIG. 2. A tripartition with vertex bottleneck C. Parts L,C,R
contain NL, NC , NR qubits, respectively. By the tripartite
connectivity constraint, there are no edges between qubits in
L and qubits in R.

fore constrains the ability to generate entanglement
through a vertex bottleneck.

In the gate-based routing model, we make use of 2-
qubit gates that act locally, obeying the connectivity
constraints of the architecture. A special case of this
is classical swap-based routing, where only connectivity-
respecting swap gates are permitted. Alternatively, in
the more powerful Hamiltonian routing model [9], we are
permitted continuous-time evolution by an architecture-
respecting Hamiltonian with norm-bounded interactions.
In this work, we primarily investigate piecewise time-
independent Hamiltonians. The routing time of a model
for a given graph G is defined as the time taken to imple-
ment a worst-case permutation on G. In the gate-based
model, this corresponds to the minimum circuit depth
to implement the permutation, while in the Hamiltonian
routing model this corresponds to the minimum evolu-
tion time required. These routing models are described
in more detail in Sec. 2.
Using bounds on the entangling rate [28], tight bounds

can be obtained for routing constrained by edge bottle-
necks in both the gate-based and continuous-time evolu-
tion routing models. However, for routing through vertex
bottlenecks, only entanglement bounds in the gate-based
model [29] have been found to be tight [9], following the
natural assumption that no two gates can interact with
the same qubit at the same time. Attempts at a full
treatment of the entanglement dynamics in multipartite
systems reveal surprisingly more complexity than in the
bipartite case. For example, Cubitt et al. [31] showed
that in a system with a tripartition, entanglement can
be generated between the two separated parts without
ever entangling the intermediate region with the rest of
the system. While this result defies the natural intu-
ition that entanglement must flow between regions of a
system, such separable entanglement generation is only
possible if the initial state is a special mixed state. For
systems starting in a pure state, a notion of entanglement
flow between different subsystems was shown by Cubitt
et al. [30]. However, this result still provides only a trivial
lower bound for routing through vertex bottlenecks.
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For the star graph, the gate-based quantum routing
time is Θ(N) [9]. However, in the Hamiltonian rout-
ing model, which has previously only been shown to be
constrained by edge bottlenecks, the best known lower
bound on the routing time is Ω(1) (applying the result of
Van Acoleyen et al. [28] or a Lieb-Robinson bound [35]).
This lower bound intuitively seems loose, since if it were
indeed saturable, this would allow for routing in constant
time, independent of the system size.

Surprisingly, polynomial speedups for continuous-time
evolution over the gate-based model are indeed possible,
even in the simple setting of the star graph. For one of
our main results, we investigate systems of free (i.e., non-
interacting) particles, where the edges of the underlying
graph represent two-body hopping terms in the Hamilto-
nian. In systems of free particles, the gate-based model
can be considered to allow architecture-respecting cir-
cuits of free-particle gates (i.e., unitaries generated by
hopping and on-site interactions). The gate-based rout-
ing time on the star graph for free particles is Θ(N),
by the Small Total Entangling lemma [29], applied to
circuits of free-particle gates. For these systems, we de-
sign a fast Hamiltonian routing protocol that takes time
t = O(

√
N) for arbitrary permutations, which demon-

strates a Ω(
√
N) speedup over the gate-based model. We

further provide a concise proof that this protocol is op-
timal (for both free fermions and free bosons), showing

a lower bound of t = Ω(
√
N) on the routing time on

the star graph for these systems. We note that this lower
bound applies even to time-dependent Hamiltonian rout-
ing.

Returning to the more standard setting of qubit
systems, we significantly tighten the lower bound on
the Hamiltonian routing time for the star graph to
Ω(N1/2−δ) for any δ > 0, when using piecewise time-
independent Hamiltonians, or time-dependent Hamilto-
nians subject to a smoothness condition. This addresses
an open question of Bapat et al. [9]. The first part of our
proof leverages improved commutator bounds on Hamil-
tonian simulation for Trotter-Suzuki formulas [36] for
random input states [37]. This result utilizes the Frobe-
nius norm, allowing us to leverage the fact that vertex-
bottlenecked Hamiltonians exhibit tighter commutator
scaling in the Frobenius norm compared to the opera-
tor norm used in entanglement dynamics bounds [28] or
Lieb-Robinson bounds [35]. In contrast to those results,
we take advantage of the inherently state-independent
task of performing large-scale routing to bound the av-
erage-case routing time rather than just the worst case,
which allows a more precise bound based on the Frobe-
nius norm. The technique behind our proof is inspired by
the recent application of “Frobenius light cone” bounds,
which demonstrated the hardness of implementing the
shift-by-one translation on a ring architecture [38].

This result generalizes to arbitrary vertex bottlenecks,
as illustrated in Fig. 2. For an arbitrary tripartition of
NL, NC , NR qubits (with NL ≥ NR ≥ NC), we show that

the routing time is Ω(N1−δ
R /

√
NLNC) for any δ > 0.

Our techniques further allow us to prove an upper
bound on the entanglement capacity, or the amount of en-
tanglement that can be generated or distributed through
a vertex bottleneck. For a tripartition, we define the en-
tanglement capacity for evolution of a state |ψ⟩ by a given
Hamiltonian H for time t as the increase in the amount
of bipartite entanglement between the L subsystem and
the rest of the system. Existing results [28, 30] bound
the entanglement capacity as O(tNLNC) for any initial
state |ψ⟩. For the case where the input state is chosen
from a 1-design ensemble, we show an improved upper
bound of O(tNC

√
NL(

√
NLNR/NC)

δ), for any δ > 0,
on the entanglement capacity in systems with a triparti-
tion. By averaging over input states, we obtain a tighter
bound that depends on Frobenius norms of commutators
between terms of the Hamiltonian, rather than the opera-
tor norm of the Hamiltonian as used in Refs. [28, 30]. We
believe this result could be useful in bounding the time
taken for more general quantum information processing
tasks beyond routing. For example, our methods may
be useful in demonstrating the hardness of implementing
specific unitary gates on a quantum processor.
The remainder of the paper is organized as follows.

In Sec. 2, we introduce our models and technical back-
ground for the routing problem. In Sec. 3.1, we describe
a fast routing protocol for systems of free fermions with
star-graph connectivity, which performs routing in time
O(

√
N). In Sec. 3.2 we discuss the challenges of convert-

ing this to a qubit routing protocol. In Sec. 3.3, we show
a concise lower bound of Ω(

√
N) on the routing time for

fermions in systems with a vertex bottleneck, including
the star graph, which demonstrates that our protocol in
Sec. 3.1 is optimal. In Sec. 4, we show our main result
bounding the routing time through vertex bottlenecks in
systems of qubits. In Sec. 5, we show how similar tech-
niques provide a lower bound on the average entangling
capacity in systems with a tripartition. Finally, we dis-
cuss implications of our results and some open questions
in Sec. 6.

2. PRELIMINARIES

We let ∥·∥ denote the spectral/operator norm and ∥·∥p
the Schatten p-norm. The (normalized) Frobenius norm
of an operator O is

∥O∥F :=

√
tr[O†O]

D
, (1)

where D is the total Hilbert space dimension. Note that
∥O∥F = ∥O∥2/

√
D. With this normalization, ∥X∥F = 1

for any Pauli string X.
We specify the connectivity of a quantum system with

2-local interactions in the form of a graph G = (V,E),
with the vertices V representing qubits/modes and the
edges E representing pairs of qubits/modes between
which interactions are allowed. In this paper, we are
mostly concerned with graphs with a vertex bottleneck,
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as depicted in Fig. 2. Routing is the task of implementing
arbitrary permutations from SN , the group of all permu-
tations of N elements, on qubits labeled from 1 to N .
For any p ∈ SN , where p(i) represents the destination of
the ith qubit, we define the permutation unitary Up, such
that, for any product state |ψ⟩ = |ψ1⟩|ψ2⟩ . . . |ψN ⟩,

Up|ψ1⟩|ψ2⟩ . . . |ψN ⟩ = |ψp(1)⟩|ψp(2)⟩ . . . |ψp(N)⟩. (2)

2.1. Hamiltonian routing

In the Hamiltonian routing model, we consider
continuous-time evolution by a Hamiltonian H that re-
spects the connectivity constraints. Such an architecture-
respecting evolution has no interaction terms between
sites (qubits) that are not connected by an edge in the
underlying graph G. Thus, any valid Hamiltonian can be
written as

H =
∑

(i,j)∈E
hij +

∑
i∈V

hi, (3)

where hij is only supported on qubits i, j (i.e., acts as
identity on all other qubits). We further impose the con-
straint ∥hij∥ ≤ 1 in order to ensure that the timescale of
two-site interactions is comparable to the time required
for a 2-qubit gate in the gate-/swap-based routing mod-
els. Unitary evolution by a Hamiltonian H is given by
the time-evolution operator

U(H, t) := T e−i
∫ t
0
H(t′) dt′ , (4)

where T is the time-ordering operator. When H is time-
independent, U(H, t) = e−iHt.

The Hamiltonian routing time is the minimum time to
implement a given permutation in this model, defined as

hrt(G, p) := min
H

{t s.t. U(H, t) = Up} (5)

for any p ∈ SN . We define the worst-case Hamiltonian
routing time for a graph G as

hrt(G) := max
p∈SN

hrt(G, p). (6)

In this work, we primarily consider time-independent
or piecewise time-independent H.

Definition 2.1 (Piecewise time-independent Hamilto-
nian). H is said to be piecewise time-independent with
minimum segment width ∆ if it can be written as

H =

k−1∑
i=0

Hi · It∈[ti,ti+1), (7)

where tk = t, Hi is time-independent, It∈[ti,ti+1) is an
indicator function for t ∈ [ti, ti+1), and ∀ i, ti+1− ti ≥ ∆.

Similarly to the time-dependent case, we define the
Hamiltonian routing time for piecewise time-independent
Hamiltonians with minimum segment width ∆ as

hrt∆(G, p) := min
H

{t s.t. U(H, t) = Up} (8)

for any p ∈ SN . We define the worst-case Hamiltonian
routing time for piecewise time-independent Hamiltoni-
ans with minimum segment width ∆ for a graph G as

hrt∆(G) := max
p∈SN

hrt∆(G, p). (9)

2.2. Gate-based routing

The gate-based routing model is a variant of the Hamil-
tonian routing model where we are restricted to perform-
ing 1-qubit and 2-qubit gates that respect the connec-
tivity constraints (i.e., no gates are permitted between
qubits not connected by an edge). Gates on disjoint pairs
of vertices may be applied simultaneously. In this model,
the routing time for a given permutation is the mini-
mum depth to implement a given permutation p by an
architecture-respecting circuit,

rt(G, p) := min
U

depth(U) s.t. U = Up. (10)

Similar to the Hamiltonian routing model, we also define
the worst-case routing time for a graph G as

rt(G) := max
p∈SN

rt(G, p). (11)

The gate-based model generalizes classical routing,
which is restricted to circuits composed of architecture-
respecting swap gates [4].

2.3. Free-particle routing

An alternative type of Hamiltonian routing is free-
particle routing (of bosons or fermions).
In a fermionic model, each vertex of G represents a

local fermionic mode, which can be either empty (|0⟩) or
occupied by a fermion (|1⟩). Fermionic states and inter-
actions are represented in terms of creation and annihi-

lation operators on each mode (c†j , cj) [39].
The annihilation operator acts as follows:

cj |n0, n1, . . . , nj−1, 1, nj+1, . . . , nN ⟩

= (−1)
∑j−1

k=0 nk |n0, n1, . . . , 0j , . . . , nN ⟩, (12a)

cj |n0, n1, . . . , nj−1, 0, nj+1, . . . , nN ⟩ = 0. (12b)

These operators obey the fermionic anticommutation re-
lations

{cj , ck} = {c†j , c
†
k} = 0, {cj , c†k} = δj,k. (13)
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We also consider routing in systems of free (non-
interacting) bosons. Similarly to the fermionic case,
states are characterized as Fock states, i.e., in the oc-
cupancy number basis |ni⟩ where ni is the occupancy of
the ith mode (situated on site i). The bosonic creation

and annihilation operators are (a†j , aj). The annihilation
operator acts as follows:

aj |n0, n1, . . . , nj−1, nj , nj+1, . . . , nN ⟩
=

√
nj |n0, n1, . . . , nj − 1, . . . , nN ⟩. (14)

These operators obey the bosonic commutation rela-
tions

[aj , ak] = [a†j , a
†
k] = 0, [aj , a

†
k] = δj,k. (15)

Any fermionic or bosonic Hamiltonian can be writ-
ten as a sum of products of creation and annihilation
operators. An architecture-respecting fermionic/bosonic
Hamiltonian can be written as a sum of products of these
operators on sites that are connected by an edge in G,
and have bounded coefficients. In a free (non-interacting)
model, the Hamiltonian only contains hopping and on-
site terms (in Sec. 6, we comment on the possibility of
allowing for pairing). In particular, a free-particle Hamil-
tonian can be written as

H =
∑
i∈V

hic
†
i ci +

∑
(i,j)∈E

(
hijc

†
i cj + h.c.

)
, (16)

where |hij | ≤ 1, hi, hij may have arbitrary time depen-
dence, and ci are all fermionic or all bosonic.

A permutation p ∈ SN maps each mode on site i to
site p(i). Therefore, Up maps the set of annihiliation
operators {c1, c2, . . . } to {cp(1), cp(2), . . . }. For particles
evolving by a free Hamiltonian with modes bi, the time-
evolved creation and annihilation operators at a given
time t can be written as bi(t) =

∑
j Aij(t)bj(0) and

b†i (t) =
∑
j A

∗
ij(t)b

†
j(0) for some Aij(t) ∈ C. The dynam-

ics of Aij(t) are the same for both bosons and fermions
(and for a single particle). Hence, any protocol that per-
forms routing for free fermions yields an identical routing
protocol for free bosons and vice versa.

We define the free-particle routing time as the mini-
mum time to implement a given permutation using an
architecture-respecting free-particle Hamiltonian:

hrtF (G, p) := min
H

[t s.t. U(H, t) = Up], (17)

where U(H, t) is the time-evolution operator by H for
time t. We define the worst-case free-particle routing time
for a graph G as

hrtF (G) := max
p∈SN

rtF (G, p). (18)

Since the dynamics of the creation and annihilation op-
erators are identical for bosons and fermions, the routing
time does not depend on the particle type.

FIG. 3. A global transposition permutation on the star graph.
The black lines denote the connectivity constraints. The red
lines with arrows indicate pairs of qubits to be swapped.

One can also define a gate-based routing model for
free particles. Allowed two-mode gates between mode i
and mode j for (i, j) ∈ E are the unitaries generated

by hic
†
i ci + hjc

†
jcj + (hijc

†
i cj + h.c.) for time-dependent

hi, hj , and hij . As in the case of qubits, gates on dis-
joint pairs of vertices may be applied simultaneously,
and application of a single layer of allowed simultane-
ous gates takes depth (or time) 1. We define the gate-
based free-particle routing time rtF (G, p) as the mini-
mum depth to implement a given permutation p using an
architecture-respecting free-particle circuit (i.e., a circuit
composed of free-particle gates). We define the worst-
case gate-based free-particle routing time for a graph G
as rtF (G) := maxp∈SN

rtF (G, p).

2.4. Transpositions

Definition 2.2 (Graph Tripartition). A tripartition of
a graph G is a partitioning of the vertices of G into three
sets L,C,R with NL, NC , NR vertices, respectively, such
that there are no edges connecting vertices in L to ver-
tices in R. Without loss of generality, L is taken to be
the larger of L,R, i.e., NL ≥ NR.

A graph tripartition is depicted in Fig. 2.

Definition 2.3 (Vertex bottleneck). In a graph with a
tripartition, C is a vertex bottleneck if NC ≤ NR.

Throughout this paper, we consider tripartitions with
a vertex bottleneck, i.e., we assume everywhere that
NL ≥ NR ≥ NC .We focus on permutations that perform
the maximum possible number NR of pairs of disjoint
swaps between sites through a general vertex bottleneck
(Fig. 2). On the star graph SN+1, such a permutation
can be obtained by dividing the leaves into two sets L,R
of N/2 qubits each, and swapping each qubit of L with
a corresponding qubit of R. We call this a global trans-
position, and it is depicted in Fig. 3.
Our investigation of such permutations is motivated by

the fact that they can be used at most twice to imple-
ment an arbitrary permutation. Any cycle, or set of non-
overlapping cycles, can be performed using two global
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FIG. 4. Any cyclic permutation can be decomposed into two
stages of transpositions. For example, a clockwise cycle of
all vertices can be achieved by a global transposition between
pairs of sites connected by blue edges followed by a global
transposition for red edges. To perform an anti-clockwise cy-
cle, simply transpose along the red edges and then the blue
edges.

transpositions. Since any permutation can be decom-
posed into a product of non-overlapping cyclic permu-
tations, arbitrary permutations can be performed using
two global transpositions. For example, the cyclic per-
mutation 1 → 2, 2 → 3, . . . , 2n → 1, which we denote
by (1 2 . . . 2n), can be decomposed as a product of two
global transpositions:

(1 2 . . . 2n) = (2 2n)(3 2n− 1) · · · (n n+ 2)

× (1 2n)(2 2n− 1) · · · (n n+ 1), (19)

where the two lines on the right-hand side each consist
of non-overlapping pairwise transpositions. This is illus-
trated in Fig. 4. On the star graph, any permutation
can be decomposed into a permutation that acts only on
the leaves, followed by a single final swap with the center
node. Hence, the time taken for arbitrary permutations
on the star graph is predominantly determined by the
time to do a global transposition.

2.5. Routing and entanglement distribution

Routing can be used to distribute entanglement, as
depicted in Fig. 5. This fact allows us to lower bound
the routing time using bounds on the time to generate
entanglement. We make use of two such bounds. The
small incremental entangling theorem, whose conjecture
is attributed to Kitaev in Ref. [32] and which is proved in
Ref. [28], bounds the rate at which entanglement can be
generated between parts of a system in terms of the lo-
cal dimension and the operator norm of the Hamiltonian
coupling the parts. We restate this result here:

Lemma 2.4 (Small Incremental Entangling (SIE)).
Given a Hamiltonian H = HAa +HBb +HAB that acts
on a system consisting of subsystems a,A,B, b (Fig. 6),

L R

ℓ r

(a) Initial state with local bell pairs

L R

ℓ r

(b) Bell pairs distributed after routing

FIG. 5. Routing enables entanglement distribution. (a) The
system has two parts L,R that are initially entangled with
hidden auxiliary systems l, r, respectively. (b) On swapping
every qubit in L with the corresponding qubit in R, the L
system becomes entangled with r, and R becomes entangled
with l, so we have generated 6 ebits of entanglement across
the cut dividing L and R.

a A B b
HAa HAB HBb

FIG. 6. Partitioning of system for SIE.

for any state ρ,

dSaA(ρ)

dt
≤ c∥HAB∥ log(d), (20)

where SAa(ρ) = − tr[ρA log ρA] is the entanglement en-
tropy of ρ across the aA,Bb bipartition, c is some positive
constant (c = 2 in [40]), and d = min{dim(A),dim(B)}.

We also make use of the small total entangling property
[9, 29], which bounds the total amount of entanglement
between parts of a system that can be generated by any
unitary evolution, in terms of the local dimension of the
parts.

Lemma 2.5 (Small Total Entangling (STE) (Proposi-
tion 2 of Ref. [29])). In a system consisting of subsystems
a,A,B, b, for any unitary acting only on A and B, the
maximum change in the entanglement entropy of the Aa
subsystem is bounded as

∆SAa(ρ) ≤ 2 log(min{dim(A),dim(B)}). (21)
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In systems of free particles, we quantify bipartite en-
tanglement by the mode entanglement of the underlying
Fock state [41, 42], which is the von Neumann entropy
obtained by tracing out a subset of the modes.

Definition 2.6 (Mode entanglement). For a state of
identical particles ρ (i.e., a density matrix in the occupa-
tion number basis) with modes partitioned into X and
X̄, the mode entanglement is

SX(ρ) = − tr[ρX log ρX ]. (22)

3. ROUTING FREE PARTICLES

3.1. An optimal protocol for routing free particles

Here we consider the problem of routing free particles
on a star graph. We give a protocol that can route N
free fermions on the star graph in time

√
N . Like theW -

state-based routing protocol on the vertex barbell graph
(Fig. 9) of Bapat et al. [9], this makes use of states spread
over multiple sites (here, the leaves) and transfers them
one-by-one through the central vertex.

Theorem 3.1. hrtF (SN ) = O(
√
N).

Proof. We consider the star graph S2N+1, i.e., a star
graph with an even number of leaves. To see that this
is sufficient, consider any permutation p on a star graph
with an odd number of leaves. We can select some leaf
i, and perform a modified permutation p′ which is iden-
tical to p except when acting on sites i and p−1(i). The
permutation p′ instead maps p−1(i) to p(i) and leaves i
unchanged, and is therefore a permutation on an even
number of leaves. By first performing p′, and then swap-
ping qubits i and p(i), we can perform the permutation
p. Hence it suffices to consider a star graph with an odd
number of vertices (i.e., an even number of leaves), since
for any permutation p on a star graph with an odd num-
ber of leaves 2N + 1, the routing time is only a constant
(3) greater than the routing time for a corresponding per-
mutation on a subgraph with an even number of leaves
2N .
As explained in Sec. 2, an arbitrary permutation can be

implemented by application of at most two global trans-
positions. For any global transposition, the leaf vertices
can be divided into two sets L (left) and R (right) with
N leaves on each side, such that the transposition swaps
each qubit in L with the corresponding qubit in R. Let
the pairs of creation and annihilation operators on each

left (right) leaf i be l†i and li (r
†
i and ri), respectively. On

the center, we denote them as c† and c.
The left Fourier modes are fl,0, . . . , fl,N−1, where

fl,k :=
1√
N

∑
j

e−2πikj/N lj . (23)

Likewise, we denote the right Fourier modes as
fr,0, . . . , fr,N−1.

We divide our protocol into N time steps, numbered 0
to N −1. At the kth time step, we perform the following
operations:

• First, turn on couplingHL,k =
∑
j e

−2πijkc†lj+h.c.
for time π

2
√
N
. This Hamiltonian can be equiva-

lently written as
√
N(c†fl,k + h.c.) This swaps the

center mode with the kth Fourier mode on the left.
This is illustrated in Fig. 7a.

• Repeat the same step but with the right leaves us-
ing the coupling HR,k =

∑
j e

−2πijkc†rj +h.c. This

interaction swaps fl,k (which sits at the center fol-
lowing the first step) with fr,k such that fl,k is now
on the right leaves, fr,k is on the center, and c has
been moved to the kth left Fourier mode. This is
illustrated in Fig. 7b.

• Finally, perform the coupling HL,k =∑
j e

−2πijkc†lj + h.c. with the left leaves again to
swap c and fr,k. We have now effectively swapped
Fourier modes fl,k and fr,k, with c remaining on
the center. This is illustrated in Fig. 7a.

Since both Fourier modes and spatial modes form or-
thonormal bases, swapping all of the corresponding
Fourier modes between the left and the right vertices is
equivalent to swapping each of the corresponding spatial
modes. Since each step of this protocol swapping one
Fourier mode at a time takes time O( 1√

N
), the whole

protocol takes time O(
√
N). As discussed in Sec. 2, the

dynamics of free bosonic and free fermionic creation and
annihilation operators are identical. Hence this protocol
performs routing for both bosons and fermions.

3.2. Routing qubits

A natural question is whether a similar protocol exists
for qubits. Unfortunately, simply converting the proto-
col above to a qubit protocol does not work, as we now
explain.
First, consider the fermionic version of this protocol.

Applying the Jordan-Wigner [43] transform to convert
the fermionic operators to qubit operators yields non-
local terms, so the generated qubit Hamiltonian does not
respect the architecture’s geometry and hence does not
produce a valid protocol. Even if we permitted ancillary
qubits, using an approach such as the Verstraete-Cirac
encoding [44] to ensure that we respected locality would
introduce a large number of ancillas (Θ(N)) on the cen-
tral qubit due to the large number of non-commuting
terms in the Hamiltonian.
Now we consider whether a bosonic protocol can be

converted to a qubit protocol. One approach is to con-
sider the bosonic protocol restricted to an initial state
where each mode has occupancy at most 1, and re-
place the bosonic creation and annihilation operators
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e −
i2πk
l †
1 c+

h.c.
e−i4πkl †2c+ h.c.

e−
i6πk l

†
3
c+ h.c.

e
−i

8π
k l
†
4
c+

h.
c.

(a) Left swap with center

e
−i

2π
k r
†
1
c+

h.
c.

e−
i4πk r

†
2
c+ h.c.

e−i6πkr †
3c+ h.c.

e −
i8πk
r †
4 c+

h.c.

(b) Right swap with center

FIG. 7. Swapping the kth Fourier modes on the left and right
sets of leaves.

with spin-1/2 raising and lowering operators, respec-
tively. Another similar strategy to convert a bosonic
protocol to a qubit routing protocol is by truncating the
bosonic operators to a low (constant) occupancy sub-
space by replacing the bosonic operators with qudit op-
erators, which may yield an approximate protocol for
qubits with ancillas.

Unfortunately, such an approach is infeasible. Con-
sider a bosonic system starting in the uniform superpo-
sition of all bitstrings of length N with Hamming weight
N/2, i.e., the weight N/2 Dicke state |WN

N/2⟩. Since ev-

ery mode has occupancy at most 1, this is a valid initial
state for a qubit system as well. As before, we denote
the left Fourier modes as fl,0, . . . , fl,N−1, where

fl,k :=
1√
N

∑
j

e−2πikj/N lj . (24)

Likewise, we denote the right Fourier modes as
fr,0, . . . , fr,N−1. Then, a simple calculation shows that

the expected occupancy of the zeroth Fourier mode fl,0

is ⟨WN
N/2|f

†
l,0fl,0|WN

N/2⟩ =
√
N+2
4 . Hence, if we were to

truncate the protocol using qudit operators, it would re-
quire qudits of local dimension Ω(

√
N). Such an ap-

proach therefore cannot yield a qubit routing protocol.
Though we have ruled out some obvious approaches,

it may still be possible to produce a similar protocol for
qubits (or to rule one out entirely), which we believe are
interesting directions for future work.

3.3. Lower bound on the free-particle routing time

In this section, we give lower bounds on the time to
route N non-interacting particles (fermions or bosons)
through a vertex bottleneck.
First, we show a lower bound of Ω(NR/NC) on the

gate-based routing model for graphs with a vertex bot-
tleneck. On the star graph, this bound yields rtF (SN ) =
Ω(N). This implies that our Hamiltonian-based protocol
in Sec. 3.1 obtains a quadratic speedup over gate-based
routing.
Then, we show a lower bound on the Hamiltonian

routing time hrtF (G) for any graph G with a vertex
bottleneck. In particular, our proof implies that the
free-particle routing time on the star graph is lower-
bounded by rtF (SN ) = Ω(

√
N), which implies that the

free-particle routing protocol given in Sec. 3.1 is optimal.
To prove these routing-time lower bounds, we first

lower bound the time to generate Θ(N) mode entan-
glement (Definition 2.6) between two halves of a free-
particle system. Analogously to the discussion in Sec. 2.5,
the ability of a system to route N non-interacting par-
ticles across a partition in time t can be reduced to
the problem of generating Θ(N) mode entanglement
in that time—for example, when N modes, each of
which is entangled with an ancillary mode as the state
1√
2
(|01⟩+|10⟩), are routed across a partition, the amount

of entanglement generated across the partition is Θ(N).
As such, a lower bound on the time to generate Θ(N)
entanglement across a vertex bottleneck can be used to
lower bound the time to perform routing.
To fix the model more precisely, we assume the system

is defined on an architecture graph with a tripartition
V = L∪C ∪R (cf. Fig. 2), where each vertex represents
a mode and each edge indicates pairs of modes between
which we are allowed to apply a gate. We now show
a lower bound on the gate-based routing time for free
particles.

Theorem 3.2. For any graph G with a vertex bottleneck,
rtF (G) = Ω(NR/NC).

Proof. We first consider routing in a system of free
fermions. As discussed in Sec. 3, due to their identi-
cal operator dynamics, any lower bound for routing free
fermions also applies to routing free bosons. Consider an
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initial state ρin = 1
2NR

IR ⊗ |0⟩NC+NL . This can be con-
sidered as a state where each mode in R is maximally en-
tangled with some reference system that has been traced
out. The initial von Neumann entropy of the subsystem
R is thus SR = NR. On routing every mode from R to
L, all the entanglement (or entropy) is transferred to L,
and SR = 0. Following a similar argument to one pre-
sented in Bapat et al. [9], by a straightforward applica-
tion of STE (Lemma 2.5) to free fermions, the maximum
change in the von Neumann entropy of R when applying
a circuit of depth d is

∆SR ≤ 2dNC . (25)

On the other hand, to route every mode in R to L re-
quires a total change in the von Neumann entropy of R
of |∆SR| = NR. Hence, the minimum circuit depth to
perform routing is rtF (G) = Ω(NR/NC).

Applied to the star graph, this implies a bound of
rtF (SN ) = Ω(N), and hence our Hamiltonian routing
protocol from Sec. 3.1 obtains a quadratic speedup over
gate-based routing.

We now show a lower bound on Hamiltonian free-
particle routing in graphs with a vertex bottleneck. As
before, each vertex represents a mode and each edge cor-
responds to a possible two-body “hopping” term in the
Hamiltonian. Let the particles evolve under the following
non-interacting (time-dependent) Hamiltonian:

H(t) = H(LL) +H(CC) +H(LC)

=
∑
i,j∈L

H
(LL)
ij (t)l†i lj +

∑
i,j∈C

H
(CC)
ij (t)c†i cj

+
∑
i∈L
j∈C

[
H

(LC)
ij (t)l†i cj + h.c.

]

+
∑
i∈R
j∈C

[
H

(RC)
ij (t)r†i cj + h.c.

]
+
∑
i,j∈R

H
(RR)
ij (t)r†i rj ,

(26)

where the l†i (li) are the creation (annihilation) opera-

tors on L, c†i (ci) are the corresponding operators on C,

and r†i (ri) are the corresponding operators on R.
As before, we assume that Hamiltonian terms coupling

L and C are bounded by ∥H(LC)
ij (t)∥ ≤ 1, for all times t.

The following lemma bounds the entangling rate in a
free fermionic system. We use this to bound the free
fermionic Hamiltonian routing time, and therefore the
Hamiltonian routing time for free bosons as well.

Lemma 3.3. For a free fermionic system defined on a
graph with a vertex bottleneck evolving under the free-
particle Hamiltonian defined in Eq. (26), the entangling
rate between subsystems L and C ∪R is bounded as

dSL(ρ(t))

dt
≤ 4cNC

√
NL (27)

Proof. The proof of the theorem follows from apply-
ing the Small Incremental Entangling (SIE) theorem
(Lemma 2.4) to a free fermionic Hamiltonian acting on a
bipartition of the system (L,C ∪R).
By SIE, we are only concerned with H(LC) =∑
i∈L
j∈C

[
H

(LC)
ij (t)l†i cj + h.c.

]
. Consider the single normal-

ized mode

l̃†j(t) :=
1√∑

i∈L

∣∣∣H(LC)
ij (t)

∣∣∣2
∑
i∈L

H
(LC)
ij (t)l†i . (28)

Then

H(LC) =
∑
j∈C

hj(t) (29)

where hj(t) =

√∑
i∈L

∣∣∣H(LC)
ij (t)

∣∣∣2 [l̃†j(t)cj + h.c.
]
.

Taking the same approach as in the proof of the area
law for quasi-adiabatic continuation in [28], we can bound
the entangling rate as

dSL(ρ(t))

dt
= −i tr[H(LC)(t)[ρ(t), log(ρL(t)⊗ 1C)]]

= −i
∑
j∈C

tr[hj(t)[ρ(t), log(ρL(t)⊗ 1C)]]

≤ 2c
∑
j∈C

∥hj(t)∥,

(30)

where ρL(t) = trC [ρ(t)], and c is the constant in
Lemma 2.4. In the third line, we applied the SIE theorem
to bound the contribution of each hj(t) term separately
(cf. Eq. (18) in [28]).
To finish the proof, we bound the norm of hj(t) as

follows:

∥hj(t)∥ =

∥∥∥∥∥
√∑
i∈L

∣∣∣H(LC)
ij (t)

∣∣∣2 [l̃†j(t)cj + h.c.
]∥∥∥∥∥

≤ 2
√
NL,

(31)

where we have used the fact that, for fermions,

∥l̃†j(t)cj∥ ≤ 1. Plugging this bound on ∥hj(t)∥ into

Eq. (30) yields

dSL(ρ(t))

dt
≤ 4cNC

√
NL, (32)

as claimed.

Theorem 3.4. For a system defined on a graph with a
vertex bottleneck evolving under the free-particle Hamil-
tonian defined in Eq. (26),

hrtF (G) = Ω

(
NR

NC
√
NL

)
. (33)
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Proof. We start with the case of free fermions. By

Lemma 3.3, the entangling rate satisfies dSL(ρ(t))
dt ≤

4cNC
√
NL. Hence the time to generate SL(ρ(t)) =

Θ(NR) ebits of entanglement between subsystems L and
R ∪ C is lower bounded by

t = Ω

(
NR√
NLNC

)
. (34)

If every mode in R is initially maximally entangled with
an ancillary mode, then routing every mode from R to
L requires producing NR bits of mode entanglement be-
tween L and the rest of the system. Hence, the routing
time for free fermions (and thus for free bosons as well)

is lower bounded as Ω
(

NR√
NLNC

)
as claimed.

We now apply Theorem 3.4 to the case of the star
graph. Setting NL = N and NC = 1 yields a lower
bound of t = Ω(

√
N) on the free-particle routing time,

which matches the upper bound given by the free-fermion
routing protocol in Sec. 3.1. As such, for free particles,
the optimal routing time on the star graph is hrtF (SN ) =

Θ(
√
N).

4. LOWER BOUNDS ON QUBIT ROUTING
THROUGH VERTEX BOTTLENECKS

We now return to the more common setting of qubits
rather than free particles. An architecture-respecting
Hamiltonian for a graph with a tripartition can be de-
composed as

H = HL +HC +HR, (35)

where HL consists of local terms in L, terms coupling
different sites in L, and coupling sites in L to sites in
C; HC consists of terms local in C or coupling different
sites in C; and HR consists of terms local in R, coupling
different sites in R, and coupling sites in R to sites in C.
These terms can be further expanded in terms of Pauli
operators {X0, X1, X2, X3}:

HL =

NL∑
l1

h
(L)α1

l1
Xα1

l1
+

NL,NL∑
l1<l2

h
(LL)α1α2

l1,l2
Xα1

l1
Xα2

l2

+

NL,NC∑
l1,c1

h
(LC)α1γ1
l1,c1

Xα1

l1
Xγ1
c1 , (36a)

HC =

NC∑
c1

h(C)γ1
c1 Xγ1

c1 +

NC ,NC∑
c1<c2

h(CC)γ1γ2
c1,c2 Xγ1

c1 X
γ2
c2 , (36b)

HR =

NR∑
r1

h(R)β1
r1 Xβ1

r1 +

NR,NR∑
r1<r2

h(RR)β1β2
r1,r2 Xβ1

r1 X
β2
r2

+

NR,NC∑
r1,c1

h(CR)β1γ1
r1,c1 Xβ1

r1 X
γ1
c1 , (36c)

where we use the Einstein summation convention (i.e.
summing over repeated indices) for α1, α2, β1, β2, γ1, γ2 ∈
{1, 2, 3}. We assume the coefficients satisfy

|h(L)α1

l1
|, |h(C)γ1

c1 |, |h(R)β1
r1 | ≤

√
N,

|h(LL)α1α2

l1,l2
|, |h(LC)α1γ1

l1,c1
| ≤ 1,

|h(CC)γ1γ2
c1,c2 |, |h(RR)β1β2

r1,r2 |, |h(CR)β1γ1
r1,c1 | ≤ 1 (37)

with N = NL+NR+NC and NC ≤ NL, NR. It is natural
to assume even the single-site terms must be bounded by
1. However, some routing models may allow for faster
local fields [9]. In this work, we assume a bound of

√
N

for technical reasons to retain our bound on the Frobe-
nius commutator norm in Lemma A.1. Since our graph
has a bottleneck, NL ≥ NR ≥ NC . These coefficients
may be time-dependent such that H is piecewise time-
independent (recall Definition 2.1) with minimum seg-
ment width ∝ 1/

√
NL (this value is due to the limitations

of our techniques, as expressed by Eq. (43)). Our Hamil-
tonian can alternatively be written as H = HLC + HR,
where HLC = HL +HC .
Our main result is a lower bound on the Hamiltonian

routing time for any graph with a vertex bottleneck.

Theorem 4.1. For any graph G with a tripartition into
L,C,R with NL, NC , NR vertices, respectively, if C is a
vertex bottleneck, then for any constant δ ∈ (0, 1/3], if

NR > 4(2×5
1−δ
2δ )NC+2, there is a constant wδ such that

the routing time for piecewise time-independent Hamilto-
nians with minimum segment width ∆ = wδ/

√
NL is

hrt∆(G) = Ω

(
N1−δ
R√
NLNC

)
. (38)

Proof sketch: Our proof consists of two parts. In
the first part, in Lemma 4.3, we show that any evo-
lution U(H, t) by an architecture-respecting piecewise
time-independent Hamiltonian H with minimum seg-
ment width wδ/

√
NL for time t ≤ cδN

1−δ
R /(

√
NLNC)

can be well-approximated by an architecture-respecting

circuit Ũ of depth d ≤ NR/(4NC) + 2 × 5
1−3δ
2δ for some

constant cδ. To show this, we first prove Lemma 4.2,
which bounds the approximation error of Trotter-Suzuki
product-formula circuit approximations to U(H, t) in sys-
tems with a tripartition. This lemma is based on the fact
that vertex bottlenecks constrain the Frobenius norm
of higher-order commutators of terms in any Hamilto-
nian that respects the tripartition connectivity, which we
prove in Lemma A.1. We further make use of recent work
[37] that bounds the error of Trotter-Suzuki product-
formula circuit approximations in terms of the higher-
order-commutator Frobenius norm. In the second part
of the proof, we show that such a circuit cannot approx-
imate a desired permutation unitary well. According to
STE (Lemma 2.5), the amount of entanglement between
L and C ∪ R that can be generated by an architecture-
respecting circuit of depth d is bounded by 2dNC . There
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exist permutations p such that the permutation unitary
Up can be used to increase the entanglement between
L and R by NR, an increase which, by STE, requires
a circuit of depth NR/(2NC). In Lemma 4.4, we show
that such a circuit must be far from the target unitary
Up. Now combining the two parts of the proof, since we
know that any architecture-respecting evolution U(H, t)

for t ≤ cδN
1−δ
R /

√
NLNC is well approximated by a cir-

cuit Ũ that cannot perform the permutation p, our main
result of a lower bound on the Hamiltonian routing time
follows. We defer the formal proof to the end of this
section.

In Appendix A, we show the following bound on the
error of approximating architecture-respecting evolutions
by circuits obtained using the Trotter-Suzuki formula.

Lemma 4.2. Consider a graph with a vertex bottleneck.
Let H be any time-independent Hamiltonian that respects

this connectivity. Let Ũ be the architecture-respecting
simulation circuit corresponding to dividing the time-
evolution U = U(H, t) into M equal segments, and sim-
ulating each by the (2k)th-order Trotter-Suzuki formula.

Then, Ũ has depth d = 2 × 5k−1M [37] and there exists
a function g(k), only dependent on k, such that

∥U − Ũ∥F ≤ g(k)
t2k+1

M2k

√
NL

2kNRNC . (39)

We use this lemma to show that the circuit obtained
from the Trotter-Suzuki formula can be an arbitrarily
good approximation of the time-evolution.

Lemma 4.3. Consider a graph with a vertex bottleneck.
Let H be any piecewise time-independent Hamiltonian
with minimum segment width ∆ that respects the con-
nectivity of a graph with a tripartition. Let U = U(H, t)
be the unitary corresponding to evolution by H for time
t. Then, for any constant δ ∈ (0, 1/3] and ϵ > 0, there
exist constants cδ,ϵ, wδ,ϵ > 0 and k ∈ N+ such that, for

t ≤
cδ,ϵN

1−δ
R√

NLNC
(40)

and ∆ > wδ,ϵ/
√
NL, there exists an architecture-

respecting circuit Ũ with depth d ≤ NR/(4NC)+2×5k−1

such that ∥Ũ − U∥F ≤ ϵ.

Proof. We first assume H is time-independent for sim-
plicity, and consider the piecewise case at the end of the
proof. Let k be the smallest positive integer such that

1
2k+1 ≤ δ.

Selecting M = ⌈ 1
4

(
2× 5k−1

)−1
NR/NC⌉, the circuit

approximation Ũ obtained from Lemma 4.2 has depth
d = 2× 5k−1M ≤ NR/(4NC)+2× 5k−1. By Lemma 4.2,

∥U − Ũ∥F
≤ 26k(5k−1)2kg(k)

× t2k+1

(
NC
NR

)2k√
NL

2kNRNC . (41)

Bounding the right-hand side by ϵ and solving for t, we
obtain

t ≤

(
26k52k

2−2kg(k)ϵ−1
) −1

2k+1

NR
1− 1

2k+1

√
NLNC

. (42)

This proves the Lemma for time-independent H, because
there is a suitable constant cδ,ϵ such that Eq. (40) implies

Eq. (42), which guarantees ∥U − Ũ∥F ≤ ϵ.
The above results easily generalize to piecewise time-

independent Hamiltonians with minimum segment width
wδ,ϵ/

√
NL. The Trotter error formula Eq. (39) does not

hold directly because the Hamiltonian changes with time
in some of the time windows of duration t/M . Neverthe-
less,

t

M
≤ (8× 5k−1)cδ,ϵ

Nδ
R

√
NL

<
wδ,ϵ√
NL

(43)

for constant wδ,ϵ determined by cδ,ϵ, which will be chosen
shortly. Since t/M is smaller than the minimum segment
width wδ,ϵ/

√
NL, each time window of duration t/M can

be split into at most two smaller time windows, each con-
taining time-independent evolution. Applying the Trot-
ter error formula to these possibly smaller time windows,
we obtain Eq. (39) again but with an extra prefactor of
2, because there are at most 2M new time windows of
duration at most t/M . The extra factor of 2 propagates
to Eq. (41), so we only need to choose a slightly smaller
cδ,ϵ than the time-independent case (say, half of its value)

to guarantee that Eq. (40) still implies ∥U − Ũ∥F ≤ ϵ.
Hence wδ,ϵ = (4× 5k−1)cδ,ϵ suffices.

We now show that the approximation circuit Ũ of
Lemma 4.3 cannot achieve the permutation that routes
the maximum number of qubits through the bottleneck.

Lemma 4.4. For any graph G with a vertex bottleneck,
consider a permutation p that maps m qubits from R to
L through the vertex bottleneck and its associated permu-
tation unitary Up. Then, for any quantum circuit Ũ with
depth d < m/NC ,

∥Ũ − Up∥2F >
1

4

(
m− 2dNC − 1

NR

)2

. (44)

Proof. First, we bound ∥Ũ − Up∥2F in terms of the trace
distance. For any bit string z of length NR, we define

ρz := |z⟩R⟨z| ⊗ (2−NL−NC I)LC . (45)

One can purify the system by a 2NL+NC -dimensional an-
cilla (labeled by A) so that

ρz = trA[|Ψ(z)⟩⟨Ψ(z)|]. (46)
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Let U ′ = U⊗IA and Ũ ′ = Ũ⊗IA. By definition of the
Frobenius norm, and introducing I = 2NL+NC

∑
z ρz,

∥U − Ũ∥2F

=
1

2NR
tr

[∑
z

ρz|U − Ũ |2
]

=
1

2NR

∑
z

⟨Ψ(z)| |U − Ũ |2 ⊗ IA |Ψ(z)⟩

=
1

2NR

∑
z

[
2− 2Re(⟨Ψ(z)|U ′†Ũ ′ |Ψ(z)⟩)

]
. (47)

Using the fact that Re(x) ≤ |x|, and for x ∈ [0, 1], 1−x2 ≤
2(1− x), we obtain∑

z

[
2− 2Re(⟨Ψ(z)|U ′†Ũ ′ |Ψ(z)⟩)

]
≥
∑
z

2(1− |⟨Ψ(z)|U ′†Ũ ′ |Ψ(z)⟩|)

≥
∑
z

1− |⟨Ψ(z)|U ′†Ũ ′ |Ψ(z)⟩|2

=
1

4

∑
z

∥U ′|Ψ(z)⟩⟨Ψ(z)|U ′† − Ũ ′|Ψ(z)⟩⟨Ψ(z)|Ũ ′†∥21

(48)

≥ 1

4

∑
z

∥trA
[
U ′|Ψ(z)⟩⟨Ψ(z)|U ′†

− Ũ ′|Ψ(z)⟩⟨Ψ(z)|Ũ ′†]∥21
=

1

4

∑
z

∥ŨρzŨ† − UpρzU
†
p∥21, (49)

where in Eq. (48), we have used the relation between
fidelity and trace-norm for pure states.

By the small total entangling theorem (Lemma 2.5),

Ũ with depth d can increase the entanglement across the
LC,R bipartition by at most 2dNC , i.e.,

SR(ŨρŨ
†)− SR(ρ) ≤ 2dNC , (50)

where SR is the von Neumann entropy of the reduced
density matrix on the right NR qubits, and the vertex
boundary of these qubits contains NC qubits as in Fig. 2.

Observe that ρz is pure on R: SR(ρz) = 0, so Eq. (50)
implies

SR(ŨρzŨ
†) ≤ 2dNC . (51)

On the other hand, Up routes m identity operators in LC
to R, so that

SR(UpρzU
†
p) = m. (52)

Intuitively, two unitaries that produce different changes
in the von Neumann entropy of the same initial state

must be distant. By the Fannes-Audenaert Inequal-
ity [45] (the second inequality below),

∥ŨρzŨ† − UpρzU
†
p∥1

≥ ∥trLC [ŨρzŨ† − UpρzU
†
p ]∥1

≥
SR(UpρzU

†
p)− SR(ŨρzŨ

†)− 1

log dimHR

≥ m− 2dNC − 1

NR
. (53)

Using this to lower bound Eq. (49) gives the result.

Combining Lemma 4.3 and Lemma 4.4, we may now
prove our main result.

Proof of Theorem 4.1. Let p be a permutation that
routes all NR qubits from R to LC. Let U be the
evolution by any architecture-respecting piecewise time-
independent Hamiltonian H with minimum segment
width wδ,ϵ/

√
N for time t ≤ cδ,ϵN

1−δ
R /

√
NLNC for any

δ > 0. By Lemma 4.3, U can be ϵ-approximated by

an architecture-respecting circuit Ũ of depth at most

NR/(4NC) + 2 × 5k−1 such that ∥Ũ − U∥F ≤ ϵ. Now,
Lemma 4.4 implies

∥Ũ − Up∥2F ≥ 1

4

(
NR − 2dNC − 1

NR

)2

≥ 1

4

(
1

2
− 2(2× 5k−1)NC

NR
− 1

NR

)2

. (54)

We thus have

∥Ũ − Up∥F ≥ 1

4
− (2× 5k−1)NC

NR
− 1

2NR

≥ 1

4
− 2(2× 5k−1)NC + 1

2NR
. (55)

From the reverse triangle inequality, we have

∥U − Up∥F ≥
∣∣∣∥Ũ − Up∥F − ∥Ũ − U∥F

∣∣∣
≥ 1

4
− 2(2× 5k−1)NC + 1

2NR
− ϵ. (56)

Since k is the smallest positive integer such that 1
2k+1 ≤

δ,

1

2(k − 1) + 1
> δ

=⇒ k − 1 <
1− δ

2δ
. (57)

Therefore,

NR >
4(2× 5

1−δ
2δ )NC + 2

1− 8ϵ

=⇒ NR >
4(2× 5k−1)NC + 2

1− 8ϵ

=⇒ ∥U − Up∥F > ϵ, (58)
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and U cannot achieve the desired permutation. Selecting
any constant ϵ allows us to pick wδ = wδ,ϵ for which the
theorem holds.

A straightforward application of Theorem 4.1 to the
star graph yields the following result.

Corollary 4.5. For any δ ∈ (0, 1/3], if N > 8(2 ×
5

1−δ
2δ )+4, the Hamiltonian routing time for the star graph

on N + 1 vertices with ∆ = 1√
N

satisfies hrt∆(SN+1) =

Ω(N
1
2−δ).

5. ENTANGLEMENT FLOW THROUGH
BOTTLENECKS

In this section, we investigate the time taken to gen-
erate entanglement between subsystems connected by a
bottleneck. In a system with a vertex bottleneck, the
small total entangling theorem (Lemma 2.5) bounds the
amount of entanglement that can be generated between
L and RC by a circuit of depth t as ∆SL(ρ) ≤ 2tNC . On
the other hand, the small incremental entangling theorem
(Lemma 2.4) [28] and other results on entanglement flow
[30] bound the entangling rate in terms of the Hamil-

tonian operator norm as dSL(ρ)
dt ≤ c∥HLC∥NC . When

NC ≪ NL, these two bounds differ greatly. Integrating
the bound from Lemma 2.4 for an evolution of time t, we
obtain

∆(SL(ρ)) ≤ cNLNCt. (59)

Therefore, if this bound were saturable, by evolving for
the same amount of time in a Hamiltonian-model rather
than a gate-based model, we would obtain a speedup by
a factor of NL in our ability to generate entanglement.

At first, this seems very counter-intuitive. Indeed, in
systems of free fermions, we showed a tighter bound of
O(NC

√
NL) on the entangling rate between L and RC in

Lemma 3.3. On the other hand, in systems of free bosons,
the entangling rate can be very large, depending on the
initial state. Consider a system with just two modes. If
the initial state is the Fock state |N, 0⟩, a simple calcu-
lation shows that applying a 50/50 beam splitter on the
two modes leads to a mode entanglement of Θ(logN).
A simple example illustrates that a large increase of

the entanglement rate with continuous evolution may be
possible for qubits as well. Consider the system depicted
in Fig. 8. In a star graph, starting with an initial GHZ
state on the leaves and |0⟩ on the center, we can evolve
into a GHZ state on the leaves and the center together
in time π/N . Since the GHZ state has a von Neumann
entropy of 1 between a single qubit and the remaining
qubits, this implies that the entangling rate at some time
must have been at least linear in N .

Although this system illustrates a worst-case coun-
terexample for the instantaneous entangling rate through
a bottleneck, the possibility of the bottleneck restricting
our ability to produce entanglement between L and R

h

h

h

h

FIG. 8. Linear entangling rate between N leaves of the star
graph and the center vertex. If the initial state is a product
state of the N -qubit GHZ state 1√

2
(|00 . . . 0⟩ + |11 . . . 1⟩) on

the leaves, and |0⟩ on the center, then evolving for time π/N
with interaction h = |1 − ⟩⟨1−|li,c (i.e., the generator of a
CNOT) on each edge results in a final (N + 1)-qubit GHZ
state on all the vertices.

remains open. Indeed, if it were always possible to gen-
erate fast entanglement, starting in any state, we could
use this as a resource to perform routing. The existence
of states that allow for fast entangling rates was used in
Ref. [9] to obtain a fast routing protocol for the vertex
barbell graph, although it also required very fast interac-
tions with ancilla qubits. Our lower bound on the routing
time in systems with a vertex bottleneck gives a hint that
such states may be rare. Following this hint, we instead
look at the entanglement that can be generated on aver-
age starting with a state drawn from a 1-design.
We define the entanglement capacity C∆(|ψ⟩, t) :=

|SL(U(H, t)|ψ⟩⟨ψ|U(H, t)†−SL(|ψ⟩⟨ψ|)| as the amount of
entanglement between L and RC that can be generated
by an architecture-respecting piecewise time-dependent
Hamiltonian H of minimum segment width ∆ in time
t, starting in the state |ψ⟩. Given a pure-state en-
semble µ, we define the average entangling capacity as
E|ψ⟩∼µ[C∆(|ψ⟩, t)]. We prove that, in a system with a
vertex bottleneck, the average entangling capacity for
any 1-design [46–48] scales with NL as O(

√
NL). This

can be contrasted with the worst-case scaling in NL of
O(NL) for the entanglement capacity that is obtained by
integrating the entangling rate obtained from Lemma 2.4.

Theorem 5.1. Let µ be a pure-state 1-design and let
H be a piecewise time-dependent Hamiltonian with min-
imum segment width ∆ = 1/

√
NL that respects the con-

nectivity constraints of a graph with a vertex bottleneck.
Then for any 0 < δ ≤ 1/6,

E
|ψ⟩∼µ

[C∆(|ψ⟩, t)] = O(1 + tNC
√
NL (NLNR/NC)

δ
).

(60)

Proof. As in Sec. 4, let U := U(H, t), and Ũ be the circuit
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obtained by the (2k)th order Trotter-Suzuki formula for
U , where k is chosen below. The entangling capacity of
H on a particular input pure state |ψ⟩ in time t is

C∆(|ψ⟩, t) = |SL(U |ψ⟩⟨ψ|U†)− SL(|ψ⟩⟨ψ|)|

=
∣∣∣SL(U |ψ⟩⟨ψ|U†)− SL(Ũ |ψ⟩⟨ψ|Ũ†)

+ SL(Ũ |ψ⟩⟨ψ|Ũ†)− SL(|ψ⟩⟨ψ|)
∣∣∣

≤ |SL(U |ψ⟩⟨ψ|U†)− SL(Ũ |ψ⟩⟨ψ|Ũ†)|+ 2dNC

≤ 1 +NL∥U |ψ⟩⟨ψ|U† − Ũ |ψ⟩⟨ψ|Ũ†∥1 + 2dNC ,
(61)

where in the final line we have applied the Fannes-
Audenaert inequality [45].

Note that

∥U |ψ⟩⟨ψ|U† − Ũ |ψ⟩⟨ψ|Ũ†∥1
= ∥(U − Ũ)|ψ⟩⟨ψ|U† + Ũ |ψ⟩⟨ψ|(U − Ũ)†∥1
≤ ∥(U − Ũ)|ψ⟩⟨ψ|U†∥1 + ∥Ũ |ψ⟩⟨ψ|(U − Ũ)†∥1 (62)

= 2

√
⟨ψ| (U − Ũ)†(U − Ũ) |ψ⟩, (63)

where in Eq. (62), we have used the triangle inequality,
and Eq. (63) follows from the definition of the 1-norm.
For states drawn from µ, applying Jensen’s inequality
and then using the fact that µ is a 1-design,

E
|ψ⟩∼µ

[
2

√〈
ψ
∣∣∣ (U − Ũ)†(U − Ũ)

∣∣∣ψ〉]

≤ 2

√
E

|ψ⟩∼µ

[
⟨ψ| (U − Ũ)†(U − Ũ) |ψ⟩

]
= 2∥U − Ũ∥F. (64)

Thus, we can bound the expected capacity by the Frobe-
nius distance

E
|ψ⟩∼µ

[C∆(|ψ⟩, t)] ≤ 1 + 2dNC + 2NL∥U − Ũ∥F. (65)

As in Lemma 4.3 we first treat the case of time-
independent H, and then show how the result generalizes
to piecewise time-independent H. Using Lemma 4.2 with

M =
⌈
t
√
NL (NLNR/NC)

1
4k+2

⌉
, (66)

we obtain

E
|ψ⟩∼µ

[C∆(|ψ⟩, t)] = O(1 + tNC
√
NL (NLNR/NC)

1
4k+2 )

(67)
since d ≤ 2 × 5k−1M [37]. The result for the time-
independent case follows by choosing k large enough that
1/(4k + 2) ≤ δ.
Since t/M ≤ 1/

√
NL is smaller than the minimum seg-

ment width, the Trotter error formula can be applied, and
the result holds in the piecewise time-independent case

with minimum segment width 1/
√
NL. We note that

this restriction on the segment width arises for technical
reasons (as in Eq. (43)). The number of segmentsM can-
not be chosen to be very large, since this would allow for
large d, giving a looser bound on the amount of entan-
glement generated. Our segment width is thus restricted
such that t/M is smaller than the segment width without
making M very large.

Though there exist examples of states with high entan-
gling rate with a bottleneck (as in Fig. 8), Theorem 5.1
shows that in any 1-design µ there are few such states
that can sustain a high entangling rate for long times. In
particular, we can show that the entanglement rate for
a randomly drawn state over any given period of time
is unlikely to be significantly larger than O(NC

√
NL).

Specifically, applying Markov’s inequality and using The-
orem 5.1, we obtain

Pr
|ψ⟩∼µ

[C∆(|ψ⟩, t) ≥ Γt] = O

(
1 + tNC

√
NL (NLNR/NC)

δ

Γt

)
,

(68)
which is vanishingly small when

Γ ≫ NC
√
NL

(
NLNR
NC

)δ
. (69)

For a state |ψ⟩ drawn from µ, let |ψ(t)⟩ = U(H, t)|ψ⟩ be
a state along its trajectory under evolution by H. Equa-
tion (68) shows that the averaged instantaneous entan-
glement rate over time,

C∆(|ψ(0)⟩, T ) =
1

T

∫ T

0

dSL(|ψ(t)⟩⟨ψ(t)|)
dt

dt, (70)

is not greater than O(NC
√
NL (NLNR/NC)

δ
) with high

probability.

6. DISCUSSION

In this paper, we showed a lower bound that scales
as Ω(N1−δ

R /
√
NLNC) for any δ > 0 on the routing time

in graphs with a vertex bottleneck. For the star graph,

this provides a lower bound of Ω(
√
N1−δ) on the routing

time. We further showed an optimal routing protocol
that saturates this bound in systems of free fermions on
the star graph.
For graphs with a vertex bottleneck, the best previ-

ous lower bound we are aware of is Ω(1), following from
the Small Incremental Theorem [28] or a Lieb-Robinson
bound [35]. However, unlike those results, a limitation
of our work is our introduction of additional assump-
tions about the allowed Hamiltonian: piecewise time-
independence, absence of ancillas, and bounds on the on-
site terms ∥hi∥. A straightforward argument can be used
to prove a similar lower bound for routing with time-
dependent Hamiltonians for which the Frobenius norm
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has suitably bounded derivative, by simulating the time-
dependent Hamiltonian evolution with a piecewise time-
independent evolution, as in [49]. A natural direction
for future work is to extend our lower bound to sys-
tems with more general Hamiltonians with more gen-
eral time dependence or unbounded local terms. Our
assumption on the piecewise time dependence of the al-
lowed Hamiltonians stems from our use of a Trotterized
circuit with Frobenius commutator norm scaling of error
in Lemma 4.3. If bounds on the Trotter error for ran-
dom input states can be extended beyond piecewise time-
independent Hamiltonians to time-dependent Hamilto-
nians whose norm has unbounded derivative, our result
could be extended to arbitrary time-dependent Hamil-
tonian routing as well. Such an approach might also
extend our result to Hamiltonians with unbounded lo-
cal (on-site) terms, since we could move into the inter-
action picture, removing the on-site terms and adding
time-dependence to the non-local terms. We conjec-
ture that a similar lower bound can be proved for more
general time-dependent Hamiltonians (whose norms may
have large derivatives), and that our assumed bound on
the on-site terms can be removed. Another direction
for future work is to investigate routing with a piece-
wise time-independent Hamiltonian of smaller segment
width. For technical reasons, our result is restricted to
segment width ∝ 1/

√
NL. It is natural to ask whether

routing with a piecewise time-independent Hamiltonian
of arbitrarily small segment width is equivalent to rout-
ing with arbitrary time-dependent Hamiltonians (i.e.,
whether lim∆→0 hrt∆(G) = hrt(G)).

We also assumed that interactions between any two
sites in the same partition have bounded norm. This
is a natural assumption in systems where interactions
between the partitions are physically similar to inter-
actions within the partitions. A possible direction for
future work would be to relax this assumption. We ex-
pect that this would lead to a looser lower bound on the
routing time. Indeed, in systems with ancillas and un-
bounded interactions within each partition, we can per-
form routing faster. An example of this is the W -state
broadcasting-based protocol of Bapat et al. [9], which

performs Hamiltonian routing in time O(
√
N) on the ver-

tex barbell graph with 2N + 1 vertices (Fig. 9), obtain-
ing a speedup over the gate-based model (where routing
requires depth Θ(N)). Recent work [50] implies the pos-
sibility of even faster routing, in poly(logN) time, in the
same system. However, speedups obtained in this rout-
ing model may not always apply since they require the
experimentally challenging capability of fast swap oper-
ations between qubits and their ancillas. Our techniques
provide an Ω(N1/2−δ) lower bound in the more realistic
setting of the vertex barbell graph without ancillas. Even
with bounded 2-site interactions, a related question for
future work is to obtain lower bounds that apply when
ancillas are permitted.

A more refined analysis might be used to remove the δ
dependence of our qubit lower bound. While our proofs

FIG. 9. The vertex barbell graph with 2N + 1 vertices con-
sists of two copies of the complete graph KN connected by a
common vertex. Here, we depict the vertex barbell with 11
vertices.

hold for arbitrarily small positive constant δ, we conjec-
ture that the result holds with δ = 0. A limitation of our
techniques is that our lower bound has a constant factor
inversely proportional to δ, so taking the limit as δ → 0
causes the lower bound to diverge.
We also showed an upper bound on the average en-

tanglement capacity, or average amount of entanglement
that can be produced in time t, through a vertex bottle-
neck. Intuitively, one expects a bottleneck to limit en-
tangling rates, but surprisingly there are states for which
fast entanglement with a central qubit is possible. One
such example is the W state, which can be used to cre-
ate constant entanglement with a central vertex in time
O(1/

√
N) [9]. The GHZ state allows for an even higher

entangling rate, producing a constant amount of entan-
glement in time O(1/N). Our bound on the average en-
tangling capacity for a 1-design shows that states with
an entangling rate higher than Ω(

√
N) are rare, and con-

strains their use for tasks such as routing. This result
may be interpreted as showing that most states cannot
support fast entangling through a vertex bottleneck. An
open question is whether this bound can be extended to
mixed states as well, which are known to exhibit sur-
prising entanglement dynamics [31]. It would also be in-
teresting to investigate how this bound constrains other
quantum information processing tasks based on their re-
quirements of entanglement. Similarly to our routing
lower bound, our entanglement capacity upper bound
can be extended to time-dependent Hamiltonians whose
norm has bounded derivative by approximating their evo-
lution by a piecewise time-dependent one. Natural ques-
tions for future work are to extend the entanglement ca-
pacity upper bound to Hamiltonians with arbitrary time
dependence, with fast on-site interactions and fast in-
teractions within partitions, and with ancillas. We also
conjecture that this bound holds with δ = 0.
The existence of states that saturate the worst-case

bounds on entangling rate, which depend on the opera-
tor norm, necessitates our proof by the average case, us-
ing the Frobenius norm. For quantum information tasks
involving operators with significant difference in the op-
erator norm and Frobenius norm (as for nested commu-
tators of Hamiltonians with a vertex bottleneck), our re-
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sults provide an example where studying the average case
yields tighter bounds than the worst case.

Recent work by one of the authors has shown a fast ap-
proximate broadcasting (i.e., GHZ encoding) protocol on
the complete graph [50]. While this protocol has not been
proven to have asymptotically vanishing error, numerics
suggest this may be the case. Such a protocol, coupled
with fast ancilla interactions, would allow for approxi-
mate routing on the vertex barbell in time poly(logN).
An open question is to resolve whether such broadcasting
can be done with vanishing error, or even exactly. The
best known exact protocol for routing on the vertex bar-
bell (with fast local ancillas) involves broadcasting into

a W state [9], and takes time O(
√
N).

While we developed optimal protocols for routing free
particles, a natural open question is whether such pro-
tocols can be sped up by allowing interaction terms or
even terms that do not preserve particle number, such as

l†i c
†
i . In bosonic systems, introduction of a certain type

of interaction term has been shown to provide speedups
for the closely related task of state transfer [51].

In Sec. 3.2, we discussed the difficulty of extending our
free-particle routing protocols to work for qubits or qu-
dits. A major open question is to obtain fast (sublinear-
time) qubit routing protocols through bottlenecks that
leverage continuous time evolution. While such results
have been obtained on the barbell graph using W states
(and we expect that the result of Yin [50] allows for even
faster routing using GHZ states), these protocols require
the use of ancillas with fast interactions. Currently, we

do not know of any sublinear-time routing protocol for
qubits on the star graph.
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Appendix A: Proof of Lemma 4.2

In this section, we prove Lemma 4.2. First, we upper bound the Frobenius norms of commutators of terms in the
Hamiltonian, which allows us to construct low-depth circuit approximations to the Hamiltonian evolution using the
Trotter-Suzuki formula.

Lemma A.1. Given a sequence η1, . . . , ηP+Q ∈ {LC,R}, let the nested commutator [HηP+Q
, . . . , [Hη2 , Hη1 ]] include

HLC a total of P times and HR a total of Q times. Then there exists an f(P,Q) > 0 with no dependence on
NL, NC , NR such that

∥[HηP+Q
, . . . , [Hη2 , Hη1 ]]∥F ≤ f(P,Q)

√
NP
LN

Q
RNC . (A1)

Proof. The proof strategy is as follows. We first show that the nested commutator can be expressed in terms of sums
over Pauli strings with bounded coefficients, using induction to bound the coefficients. The base case is the first-order
commutator. We write out terms of the commutator and regroup coefficients of identical Pauli strings that originate
from products of different terms, and then bound the resulting coefficient. We take a similar approach to recursively
identify the structure of the higher-order nested commutator and bound its coefficients. Finally, we use orthogonality
of Pauli strings under the Frobenius norm to compute the bound of Eq. (A1).

For convenience, we re-label the terms in H:

H(L) =
∑
l1∈L

h
(L)α1

l1
Xα1

l1
, H(LL) =

∑
l1,l2∈L
l1<l2

h
(LL)α1α2

l1,l2
Xα1

l1
Xα2

l2
, H(LC) =

∑
l1∈L
c1∈C

h
(LC)α1γ1
l1,c1

Xα1

l1
Xγ1
c1 ,

H(C) =
∑
c1∈C

h(C)γ1
c1 Xγ1

c1 , H(CC) =
∑

c1,c2∈C
c1<c2

h(CC)γ1γ2
c1,c2 Xγ1

c1 X
γ2
c2 ,

H(R) =
∑
r1∈R

h(R)β1
r1 Xβ1

r1 , H(RR) =
∑

r1,r2∈R
r1<r2

h(RR)β1β2
r1,r2 Xβ1

r1 X
β2
r2 , H(RC) =

∑
r1∈R
c1∈C

h(CR)β1γ1
r1,c1 Xβ1

r1 X
γ1
c1 (A2)

(recall that we use the Einstein summation convention for α1, α2, β1, β2, γ1, γ2 ∈ {1, 2, 3}). Here, ∀ i, li ∈ L, ri ∈
R, ci ∈ C. We number the vertices in L,C,R uniquely so that these are disjoint sets. We group these terms as

HLC = H(L) +H(LL) +H(LC) +H(C) +H(CC), (A3a)

HR = H(R) +H(RR) +H(RC). (A3b)

As mentioned above, we proceed by induction. For any sequence η1, . . . , ηP+Q ∈ {LC,R}, suppose there are P ≥ 1
LCs and Q ≥ 1 Rs (the order does not matter). We will show by induction that the corresponding nested commutator,
which we call a (P,Q)-commutator, is of the form

[HηP+Q
, . . . , [Hη2 , Hη1 ]] =

P∑
p1=0

P+1−p1∑
p2=1

Q∑
q=0

∑
l1<l2<···<lp1

∑
c1<c2<···<cp2

∑
r1<r2<···<rq

A
α1···αp1

,β1···βq,γ1···γp2
l1···lp1 ,r1···rq,c1···cp2 ;P,Q

Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
, (A4)

where

|Aα1···αp1 ,β1···βq,γ1···γp2
l1···lp1 ,r1···rq,c1···cp2 ;P,Q

| ≤ cP,QNL
(P−p1)/2NR

(Q−q)/2NC
(1−p2)/2, (A5)
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and where cP,Q is a constant that does not depend on NL, NC , NR.
The base case is the first-order commutator

[HLC , HR] =
∑

c1,r1,c′1

h(C)γ1
c1 h

(CR)β1γ
′
1

r1,c′1
Xβ1
r1 [X

γ1
c1 , X

γ′
1

c′1
] +

∑
c1,c2,r1,c′1

h(CC)γ1γ2
c1,c2 h

(CR)β1γ
′
1

r1,c′1
Xβ1
r1 [X

γ1
c1 X

γ2
c2 , X

γ′
1

c′1
]

+
∑

l1,c1,r1,c′1

h
(LC)α1γ1
l1,c1

h
(CR)β1γ

′
1

r1,c′1
Xβ1
r1 X

α1

l1
[Xγ1

c1 , X
γ′
1

c′1
]. (A6)

By expanding the commutators and grouping terms based on which sites they are supported (i.e., act non-trivially)
on, we can rewrite this in the form

[HLC , HR] =
∑
r1,c1

Aβ1γ̃1
r1c1 X

β1
r1 X

γ̃1
c1 +

∑
r1,c1,c2

Aβ1γ̃1γ̃2
r1c1c2 X

β1
r1 X

γ̃1
c1 X

γ̃2
c2 +

∑
l1,r1,c1

Aα1β1γ̃1
l1r1c1

Xα1

l1
Xβ1
r1 X

γ̃1
c1 . (A7)

Aβ1γ̃1
r1c1 , A

α1β1γ̃1
l1r1c1

, Aβ1γ̃1γ̃2
r1c1c2 are coefficients of distinct Pauli strings in Eq. (A7). For conciseness, we leave P,Q implicit in

our notation for the first-order commutator, where P = Q = 1. Also note that, for example, the coefficients Aα1β1γ̃1
l1r1c1

and Aβ1γ̃1γ̃2
r1c1c2 are distinguishable since the lower indices come from distinct sets (e.g., l1 ∈ L and r1 ∈ R). Each Aβ1γ̃1

r1c1

is a sum of coefficients of Xβ
r1X

γ̃1
c1 from Eq. (A6):

Aβ1γ̃1
r1c1 = 2

∑
γ1,γ′

1

h(C)γ1
c1 h

(CR)β1γ
′
1

r1,c1 I[Xγ1
c1 X

γ′
1
c1 = X γ̃1

c1 ], (A8)

where I[x] is the indicator function that returns 0 (1) if x is false (true). For each Aβ1γ̃1
r1c1 , there are four contributing

terms from Eq. (A6) (counting the multiplicity factor 2 in Eq. (A8)), obtained by expanding the commutator and mak-
ing use of the Pauli multiplication rules. The number of such terms is the number of valid indices (c1, r1, c

′
1, β1, γ1, γ

′
1)

that, on regrouping Eq. (A6) to the form Eq. (A7), contribute to terms with new indices (c1, r1, β1, γ̃1). A tilde on
an index indicates that it is an updated index in the commutator formed by the multiplication of two Paulis as in
Eq. (A8), where γ̃1 is the index corresponding to the single-qubit Pauli obtained on multiplying Xγ1 and Xγ′

1 . Indices
without a tilde are unchanged and are identical to those in HLC , HR.

Likewise, each Aα1β1γ̃1
l1r1c1

is the sum of four coefficients from Eq. (A6), and each Aβ1γ̃1γ̃2
r1c1c2 is the sum of eight coefficients.

Hence

|Aβ1γ̃1
r1c1 | ≤ 4max |h(C)γ1

c1 h(CR)β1γ1
r1,c1 | ≤ 4

√
N, (A9a)

|Aα1β1γ̃1
l1r1c1

| ≤ 4max |h(LC)α1γ1
l1,c1

h(CR)β1γ1
r1,c1 | ≤ 4, (A9b)

|Aβ1γ̃1γ̃2
r1c1c2 | ≤ 8max |h(CC)γ1γ2

c1,c2 h
(CR)β1γ

′
1

r1,c′1
| ≤ 8. (A9c)

Now, as different Pauli strings are orthogonal with respect to the Frobenius norm, we have

∥[HLC , HR]∥2F ≤
∑
c1,r1

16N +
∑

c1,c2,r1

64 +
∑

l1,c1,r1

16

≤ 16N ×NC ×NR + 64N2
C ×NR + 16NL ×NC ×NR, (A10)

satisfying Eq. (A1) for P = Q = 1 because we have assumed NL is larger than NR, NC .
We now consider higher-order commutators. We use the induction hypothesis Eq. (A4) to prove that the same

equation holds for the (P + 1, Q)-commutator, i.e., adding one more outermost commutator with HLC . The case

P̃ = P , Q̃ = Q+ 1 follows analogously. We use a tilde to denote next-order quantities, e.g., the numbers of LCs and
Rs in the new η sequence are

P̃ = P + 1, Q̃ = Q. (A11)

We use · · · to indicate products over intermediate indices. For example, Xα1

l1
· · ·Xαj

lj
indicates

∏j
i=1X

αi

li
. We also

use X0
j to denote the identity operator for any j. We write l /∈

−→
lp1 as shorthand for l /∈ {l1, . . . , lp1}, and similarly

for c /∈ −→cp2 , etc. We also abbreviate A
α1···αp1 ,β1···βq,γ1···γp2
l1···lp1 ,r1···rq,c1···cp2 ;P,Q

as A
−−→αp1 ,

−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
. We first compute the commutators of
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terms in HLC (whose indices are labeled by primes, e.g., X
α′

1

l′1
X
γ′
1

c′1
) with terms from the (P,Q)-commutator (whose

indices are labeled without primes, e.g., Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
).

First, we consider the commutator with H(L). Any term X
α′

1

l′1
in H(L) is non-commuting with

Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
iff ∃ j such that lj = l′1 and αj ̸= α′

1. Therefore,

[H(L), A
−−→αp1

,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
]

=
∑
l′1∈L

h
(L)α′

1

l′1
A

−−→αp1 ,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
I[l′1 = lj ]X

α1

l1
· · ·X0

lj · · ·X
αp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
[X

α′
1

l′1
, X

αj

lj
]. (A12)

Now we consider terms in H(LL). For a term X
α′

1

l′1
X
α′

2

l′2
, we divide the terms from the (P,Q)-commutator which have

the form Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
into those with exactly one overlapping site with l′1, l

′
2 or exactly two

overlapping sites. The commutator is thus expressed as

[H(LL), A
−−→αp1

,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
]

=
∑

l1,l2∈L
l1<l2

h
(LL)α′

1α
′
2

l′1,l
′
2

A
−−→αp1

,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
×

(
I[l′1 = lj ]I[l′2 /∈

−→
lp1 ]X

α1

l1
· · ·X0

lj · · ·X
αp1

lp1
X
α′

2

l′2
[X

α′
1

l′1
, X

αj

lj
] (A13)

+ I[l′1 /∈
−→
lp1 ]I[l′2 = lj ]X

α1

l1
· · ·X0

lj · · ·X
αp1

lp1
X
α′

1

l′1
[X

α′
2

l′2
, X

αj

lj
] (A14)

+ I[l′1 = lj1 ]I[l′2 = lj2 ]X
α1

l1
· · ·X0

lj1
· · ·X0

lj2
· · ·Xαp1

lp1
[X

α′
1

l′1
X
α′

2

l′2
, X

αj1

lj1
X
αj2

lj2
]

)
. (A15)

Now we look at the commutator with H(LC). Similarly to H(LL), we divide terms of the order-(P + Q) nested
commutator into those that have exactly one or two overlapping sites with each term of H(LC). Therefore,

[H(LC), A
−−→αp1

,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
] =

∑
l1∈L
c1∈C

h
(LC)α′

1γ
′
1

l′1,c
′
1

A
−−→αp1

,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xβ1
r1 · · ·Xβq

rq ×

(
I[l′1 = lj ]I[c′1 = ck]X

α1

l1
· · ·X0

lj · · ·X
αp1

lp1
Xγ1
c1 · · ·X0

ck
· · ·Xγp2

cp2
[X

α′
1

l′1
X
γ′
1

c′1
, X

αj

lj
Xγk
ck
] (A16)

+ I[l′1 /∈
−→
lp1 ]I[c′1 = cj ]X

α1

l1
· · ·Xαp1

lp1
X
α′

1

l′1
Xγ1
c1 · · ·X0

cj · · ·X
γp2
cp2

[X
γ′
1

c′1
, Xγj

cj ] (A17)

+ I[l′1 = lj ]I[c′1 /∈ −→cp2 ]X
α1

l1
· · ·X0

lj · · ·X
αp1

lp1
Xγ1
c1 · · ·Xγp2

cp2
X
γ′
1

c′1
[X

α′
1

l′1
, X

αj

lj
]

)
. (A18)

Now we consider the commutator with H(C), which is analogous to the commutator with H(L):

[H(C), A
−−→αp1

,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
]

=
∑
c′1∈C

h
(C)γ′

1

c′1
A

−−→αp1
,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
I[c′1 = cj ]X

α1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·X0

cj · · ·X
γp2
cp2

[X
γ′
1

c′1
, Xγj

cj ]. (A19)
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The case for H(CC) is analogous to the commutator with H(LL):

[H(CC), A
−−→αp1 ,

−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
]

=
∑

c1,c2∈C
c1<c2

h
(CC)γ′

1γ
′
2

c′1,c
′
2

A
−−→αp1

,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq ×

(
I[c′1 = cj ]I[c′2 /∈ −→cp2 ]Xγ1

c1 · · ·X0
cj · · ·X

γp2
cp2

X
γ′
2

c′2
[X

γ′
1

c′1
, Xγj

cj ] (A20)

+ I[c′1 /∈ −→cp2 ]I[c′2 = cj ]X
γ1
c1 · · ·X0

cj · · ·X
γp2
cp2

X
γ′
1

c′1
[X

γ′
2

c′2
, Xγj

cj ] (A21)

+ I[c′1 = cj1 ]I[c′2 = cj2 ]X
γ1
c1 · · ·X0

cj1
· · ·X0

cj2
· · ·Xγp2

cp2
[X

γ′
1

c′1
X
γ′
2

c′2
, X

γj1
cj1
X
γj2
cj2

]

)
. (A22)

Overall, the (P + 1, Q)-commutator is

[HLC , [HηP+Q
, · · · , [Hη2 , Hη1 ]]] =

P∑
p1=0

P+1−p1∑
p2=1

Q∑
q=0

∑
l1<l2<···<lp1

∑
c1<c2<···<cp2

∑
r1<r2<···<rq

(
A

−−→αp1 ,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q

× [H(L) +H(LL) +H(LC) +H(C) +H(CC), Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
]

)
. (A23)

Using Eqs. (A12)–(A22) and grouping terms together, we can rewrite this as

[HLC , [HηP+Q
, · · · , [Hη2 , Hη1 ]]] =

P+1∑
p̃1=0

P+2−p̃1∑
p̃2=1

Q∑
q=0∑

l̃1<···<l̃p̃1

∑
c̃1<···<c̃p̃2

∑
r1<r2<···<rq

A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

X α̃1

l̃1
· · ·X α̃p̃1

lp̃1
X β̃1
r1 · · ·X β̃q

rq X
γ̃1
c̃1

· · ·X γ̃p̃2
cp̃2

. (A24)

Each coefficient A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

is a sum of coefficients of the form A
−−→αp1 ,

−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
× h, where h is a

coefficient from HLC . We can thus bound ∥Aα̃1···α̃p̃1
,β̃1···β̃q,γ̃1···γ̃p̃2

l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q
∥ using the induction hypothesis, which bounds

∥Aα1···αp1 ,β1···βq,γ1···γp2
l1···lp1 ,r1···rq,c1···cp2 ;P,Q

∥, and by counting the number of terms (and their norms) in each of Eqs. (A12)–(A22) that

contribute to the (P + 1, Q) commutator:

• In Eq. (A12), the number of sites in the support of the commutator is the same as the number of sites in the

support of Xα1

l1
· · ·Xαp1

lp1
Xβ1
r1 · · ·Xβq

rq X
γ1
c1 · · ·Xγp2

cp2
, i.e., p̃1 = p1, p̃2 = p2. We count the number of terms in the

(P + 1, Q) commutator that are obtained from Eq. (A12). For a given
−→
l̃p̃1 , we count the number of terms from

Eq. (A12) with l′1,
−→
lp1 that would produce a term in the (P + 1, Q)-commutator with

−→
l̃p̃1 . We see that

−→
lp1 must

equal
−→
l̃p̃1 , and there are p̃1 choices of l′1 that overlap with a site from

−→
lp1 . As in Eq. (A9a), we have a multiplicity

of 4, obtained by expanding the commutator and from the Pauli multiplication rules. Thus, there are at most 4p̃1

terms from Eq. (A12) which are grouped together in Eq. (A24) for each coefficient A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

.

• Similar to the analysis of Eq. (A12), we count the number of terms of Eq. (A13) that contribute to a given
−→
l̃p̃1 . In Eq. (A13), the number of sites in L in the support of the commutator increases by 1, so we have

p̃1 = p1 + 1, p̃2 = p2. There are p̃1 choices of l′2 and p̃1 − 1 choices of l′1 that match a given
−→
l̃p̃1 . Hence there are

at most 4p̃1(p̃1 − 1) coefficients from Eq. (A23) that are grouped together in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

.
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• Equation (A14) is similar to Eq. (A13). There are at most 4p̃1(p̃1 − 1) coefficients from Eq. (A23) that are

grouped together in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

.

• Equation (A15) is non-zero on terms of H(LL) which have two overlapping sites with terms of the (P,Q)-
commutator, such that the Paulis commute on one site and anticommute on the other site. An example of this

on two sites is [X1X2, X1Z2] ∝ Y2. Once again, we count the number of choices of sites l′1, l
′
2,
−→
lp1 in Eq. (A15)

that contribute to a given A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

, i.e., match the sites
−→
l̃p̃1 . There are at most NL choices

of the site to be removed (l′2), and p̃1 choices of the site to retain (l′1). For a given Pauli on site l′1, there
are 6 commutators that contribute to the coefficient. For example, Y2 can be obtained from the following
commutators: [X1X2, X1Z2], [Y1X2, Y1Z2], [Z1X2, Z1Z2] and the commutators obtained from these by swapping
X2 ↔ Z2. On expanding each commutator, we obtain two terms. There are thus at most 12NLp̃1 contributing

terms from Eq. (A15) grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃1 = p1 − 1, p̃2 = p2.

• Equation (A16) is similar to Eq. (A15). Terms in Eq. (A16) have one overlapping site in C and one overlapping
site in L with the (P,Q)-commutator. Similar to Eq. (A15), the number of sites decreases, in either C or L. If the
site removed is from C, then there are at most NC choices of the site to be removed (c′1), and p̃1 choices of the site
to retain (l′1). Likewise, if the site removed is from L, then there are NL choices of l′1 and p̃2 choices of c′1. There

are at most 12NLp̃2 terms of Eq. (A16) grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃1 = p1−1, p̃2 = p2. Likewise,

there are at most 12NC p̃1 terms of Eq. (A16) grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃1 = p1, p̃2 = p2 − 1.

• From Eq. (A17), the number of sites in L in the support of the commutator increases by one, while the number
of sites in the support from C remains unchanged. Therefore, there are at most 4p̃1p̃2 terms of Eq. (A17)

grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃1 = p1 + 1, p̃2 = p2.

• Equation (A18) is similar to Eq. (A17), increasing the number of sites from C while leaving the number of sites

from L unchanged. There are at most 4p̃1p̃2 terms of Eq. (A17) grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with

p̃1 = p1, p̃2 = p2 + 1.

• Equation (A19) is similar to Eq. (A12). There are at most 4p̃2 terms of Eq. (A19) grouped in

A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃1 = p1, p̃2 = p2.

• The analysis of Eq. (A20) is similar to that of Eq. (A13). There are at most 4p̃2(p̃2 − 1) terms of Eq. (A13)

grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃1 = p1, p̃2 = p2 + 1.

• The analysis of Eq. (A21) is similar to that of Eq. (A20). There are at most 4p̃2(p̃2 − 1) terms of Eq. (A13)

grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃1 = p1, p̃2 = p2 + 1.

• The analysis of Eq. (A22) is similar to that of Eq. (A15). Equation (A22) is non-zero on terms of H(CC) which
have two overlapping sites with terms of the (P,Q)-commutator, such that the Paulis on one site anticommute,
and on the other site they commute. We count the number of choices of sites c′1, c

′
2,
−→cp2 that match with a given

−→
c̃p̃2 . There are at most NC choices of the site to remove (c′2) and p̃2 choices of the site to retain (c′1). Hence

there are at most 12NC p̃2 terms of Eq. (A22) grouped in A
α̃1···α̃p̃1

,β̃1···β̃q,γ̃1···γ̃p̃2
l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q

with p̃2 = p2 − 1, p̃1 = p1.

Equation (A24) is the sum of Eqs. (A12)–(A22). Applying the triangle inequality to the cases above, we thus have

∥Aα̃1···α̃p̃1
,β̃1···β̃q,γ̃1···γ̃p̃2

l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q
∥ ≤ 4p̃1 max ∥A

−−→αp1 ,
−→
βq,

−−→γp2−→
lp1 ,

−→rq ,−→cp2 ;P,Q
∥
∣∣∣∣
p1=p̃1,p2=p̃2

+ · · ·

≤ 4p̃1 × cP,QNL
(P−p̃1)/2NR

(Q−q)/2NC
(1−p̃2)/2 + · · · , (A25)
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where the first term comes from Eq. (A12), and · · · represents the contributions from the remaining equations.
The second line follows from the induction hypothesis [Eq. (A5)]. Adding the terms from the analysis of each of
Eqs. (A12)–(A22), we thus have

∥Aα̃1···α̃p̃1
,β̃1···β̃q,γ̃1···γ̃p̃2

l̃1···l̃p̃1 ,c̃1···c̃p̃2 ,r1···rq ;P+1,Q
∥ ≤

[
(4p̃1 + 4p̃2) +

(
8p̃1

2 + 4p̃1p̃2 − 8p̃1

)√
NL

+
(
8p̃2

2 + 4p̃1p̃2 − 8p̃2

)√
NC + (12p̃2 + 12p̃1)

NC√
NC

+ (12p̃1 + 12p̃2)
NL√
NL

]
× cP,QNL

(P−p̃1)/2NR
(Q−q)/2NC

(1−p̃2)/2

≤
[
(4p̃1 + 4p̃2) +

(
8(P + 1)2 + 4P (P + 1)− 8p̃1

)√
NL

+
(
8P 2 + 4P (P + 1)− 8p̃2

)√
NC + (12(P + 1) + 12P )

NC√
NC

+ (12(P + 1) + 12P )
NL√
NL

]
× cP,QNL

(P−p̃1)/2NR
(Q−q)/2NC

(1−p̃2)/2

≤ (24P 2 + 72P + 32)× cP,QNL
(P+1−p̃1)/2NR

(Q−q)/2NC
(1−p̃2)/2

≤ cP+1,QNL
(P+1−p̃1)/2NR

(Q−q)/2NC
(1−p̃2)/2, (A26)

where, for example, the term ∝ 4p̃1p̃2
√
NL comes from the contribution of Eq. (A17), with the extra factor

√
NL

due to p̃1 = p1 + 1. The induction hypothesis, Eq. (A5), is thus satisfied for P + 1, Q by choosing cP+1,Q ≥
(24P 2 + 72P + 32)cP,Q.

Now, we use this to show a bound on the commutator norm. Since different Pauli strings are orthogonal, the
Frobenius norm is bounded as

∥[HηP+Q
, · · · , [Hη2 , Hη1 ]]∥2F ≤

P∑
p1=0

P+1−p1∑
p2=1

Q∑
q=0

∑
l1<···<lp1

∑
c1<···<cp2

∑
r1<r2<···<rq

∥Aα1···αp1 ,β1···βq,γ1···γp2
l1···lp1 ,c1···cp2 ,r1···rq ;P+1,Q∥

2 (A27)

≤
P∑

p1=0

P+1−p1∑
p2=1

Q∑
q=0

∑
l1<···<lp1

∑
c1<···<cp2

∑
r1<r2<···<rq

c2P+1,QNL
P−p1NR

Q−qNC
1−p2 (A28)

≤
P∑

p1=0

P+1−p1∑
p2=1

Q∑
q=0

(
NL
p1

)(
NC
p2

)(
NR
q

)
c2P+1,QNL

P−p1NR
Q−qNC

1−p2 (A29)

≤
P∑

p1=0

P+1−p1∑
p2=1

Q∑
q=0

Np1
L

p1!

Np2
C

p2!

Nq
R

q!
c2P+1,QNL

P−p1NR
Q−qNC

1−p2 (A30)

≤ (f(P,Q))
2
NL

PNR
QNC , (A31)

where f(P,Q) does not depend on NL, NC , NR.

Now we are ready to prove Lemma 4.2, which we restate here.

Lemma A.2. Consider a graph with a vertex bottleneck. Let H be any time-independent Hamiltonian that respects

this connectivity. Let Ũ be the architecture-respecting simulation circuit corresponding to dividing the time-evolution

U = U(H, t) into M equal segments, and simulating each by the (2k)th-order Trotter-Suzuki formula. Then, Ũ has
depth d = 2× 5k−1M [37] and there exists a function g(k), only dependent on k, such that

∥U − Ũ∥F ≤ g(k)
t2k+1

M2k

√
NL

2kNRNC . (A32)

Proof. We use the decomposition in Eq. (35) to define Ũ as the simulation circuit corresponding to dividing the time-
evolution by H, U(H, t), into M equal segments, and simulating each by the (2k)th-order Trotter-Suzuki formula.
For example, if k = 1,

Ũ =
(
e−i(t/2M)HLCe−i(t/M)HRe−i(t/2M)HLC

)M
. (A33)
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Ũ consists of 2× 5k−1M gates each acting on either the left and center qubit, or the right and center qubit [37]. We

call Ũ the circuit approximation. According to Theorem 2 in Ref. [37] (but using the normalized Frobenius norm),

∥U − Ũ∥F ≤ 2(2× 5k−1)2k+1M

(
t

M

)2k+1 ∑
η1,··· ,η2k+1∈{L,R}

∥[Hη2k+1
, · · · , [Hη2 , Hη1 ]]∥F,

≤ 2(4× 5k−1)2k+1M

(
t

M

)2k+1

max
η1,··· ,η2k+1∈{L,R}

∥[Hη2k+1
, · · · , [Hη2 , Hη1 ]]∥F. (A34)

Let f∗2k+1 := maxP,Q f(P,Q) s.t.P +Q = 2k + 1. Then Lemma A.1 implies the distance is bounded by

∥U − Ũ∥F ≤ 2(4× 5k−1)2k+1M

(
t

M

)2k+1√
f∗2k+1

√
NL

2kNRNC , (A35)

which completes the proof with g(k) = 2(4× 5k−1)2k+1
√
f∗2k+1.
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