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The liquid-vapor transition is a classic example of a discontinuous (first-order) phase transi-
tion. Such transitions underlie many phenomena in cosmology, nuclear and particle physics, and
condensed-matter physics. They give rise to long-lived metastable states, whose decay can be
driven by either thermal or quantum fluctuations. Yet, direct experimental observations of how
these states collapse into a stable phase remain elusive in the quantum regime. Here, we use a
trapped-ion quantum simulator to observe the real-time dynamics of “bubble nucleation” induced
by quantum fluctuations. Bubbles are localized domains of the stable phase which spontaneously
form, or nucleate, and expand as the system is driven across a discontinuous quantum phase tran-
sition. Implementing a mixed-field Ising spin model with tunable and time-dependent interactions,
we track the microscopic evolution of the metastable state as the Hamiltonian parameters are varied
in time with various speeds, bringing the system out of equilibrium. Site-resolved measurements
reveal the emergence and evolution of finite-size quantum bubbles, providing direct insight into the
mechanism by which the metastable phase decays. We also identify nonequilibrium scaling behavior
near the transition, consistent with a generalized Kibble-Zurek mechanism. Our results demonstrate
the power of quantum simulators to probe out-of-equilibrium many-body physics, including quan-
tum bubble nucleation, a key feature of discontinuous quantum phase transitions, with application
to studies of matter formation in the early universe.

The concept of metastability is connected to some of
the most profound questions in physics, including the
stability of our universe itself [1]. For example, the elec-
troweak vacuum is conjectured to be metastable [2, 3].
This possibility is explored through the theory of false-
vacuum decay [2, 3], which describes transitions from
a metastable state to a more stable one. Understand-
ing metastable decay, which occurs during discontinuous
(first-order) phase transitions, could provide insights
into early-universe physics and cosmic inflation [4, 5],
and the origin of baryogenesis [6–8], primordial black
holes [9, 10], and dark matter [11, 12], with possible
gravitational-wave signals [13, 14]. Metastability also
arises in condensed matter physics, including super-
cooled liquids [15–18], crystal melting [19], and frus-
trated spin models [20–22].
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Transition from a metastable state to a more sta-
ble state occurs through “bubble nucleation” [23, 24].
This process underlies key phenomena, such as string
breaking in confining theories [25] and the Schwinger
process of particle-antiparticle pair production [26, 27].
For decays driven by quantum fluctuations, the central
mechanism governing these processes involves tunneling
through an energy barrier between the metastable state
and the true ground state. Because overcoming such en-
ergy barriers requires changes over large spatial regions,
metastable states can persist out of equilibrium for long
times [28–30].

Studying nonequilibrium dynamics near discontinu-
ous quantum phase transitions (QPTs) can be computa-
tionally challenging due to the long time scales involved
[31–34]. Quantum simulators provide precise control
over system parameters, enabling the study of complex
quantum phenomena both in and out of equilibrium. In
particular, they provide powerful tools for investigat-
ing metastable phenomena in nonequilibrium dynamics
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[34–38]. Quantum gas experiments have already probed
discontinuous QPTs in continuous space, demonstrat-
ing key features such as metastability, false vacuum de-
cay, and dynamical scaling across the transition [39–
41]. However, the control necessary to study the co-
herent formation of bubbles with spatial and temporal
resolution has not been demonstrated so far. In partic-
ular, previous observations of bubble nucleation could
not reach the low temperatures required to probe the
regime dominated by quantum fluctuations [41]; probe
large, metastable bubbles [37]; or achieve sufficiently
low dephasing to maintain coherent evolution for long
times [38].

In this work, we use a trapped-ion quantum simula-
tor to investigate, for the first time, coherent quantum
dynamics across a discontinuous quantum phase tran-
sition with spatio-temporal resolution. As an example,
we consider the phenomenon of string breaking, recently
explored both theoretically [25, 42–45] and experimen-
tally [46–52] in quantum spin systems and lattice gauge
theories. In quantum chromodynamics, string break-
ing occurs when a flux tube, i.e., string, connecting two
static probe quarks becomes unstable. The string de-
cays via the production of additional quarks that bind
to the probe quarks. We simulate a simplified one-
dimensional model of this process. Using our simula-
tor’s spatio-temporal control, we prepare a string and
gradually increase the string tension, driving it into an
unstable state. This triggers the string to break, a pro-
cess modeled as the crossing of a discontinuous QPT un-
der specific boundary conditions [25, 53]. We study the
resulting nonequilibrium dynamics, in particular search-
ing for signs of bubble formation and scaling laws.

Model and experimental setup.—We study a paradig-
matic model widely used in studies of quantum phase
transitions [54], a mixed-field Ising chain of ℓ spins de-
scribed by the Hamiltonian

H = −
ℓ∑

i<j

Ji,jσ
z
i σ

z
j −

ℓ∑
i=1

hiσ
z
i − g

ℓ∑
i=1

σx
i , (1)

where σα
i are Pauli matrices on spin i, hi and g repre-

sent the longitudinal- and transverse-field components,
respectively, and Ji,j := J exp [−β(|j − i| − 1)] are ex-
ponentially decaying ferromagnetic couplings with de-
cay constant β. Here, J , β, and g are positive. The
ground-state phase diagram of this model for a uniform
longitudinal field hi = h is presented in Fig. 1A. In the
absence of a longitudinal field (h = 0), the model has
a global Z2 symmetry generated by

∏ℓ
j=1 σ

x
j and fea-

tures a continuous QPT at a critical value g = g∗ (see
Methods, Sec. A). Explicitly, the order parameter

⟨σz⟩ := 1
ℓ

ℓ∑
i=1

⟨σz
i ⟩ (2)

changes continuously from the ferromagnetic phase at
g < g∗ where ⟨σz⟩ ̸= 0, to a paramagnetic phase at
g > g∗ where ⟨σz⟩ = 0.

Introducing a nonzero longitudinal field h breaks the
energy degeneracy in the ferromagnetic phase, result-
ing in a discontinuous QPT between the ground state
with negative magnetization |ψ↓⟩ and the ground state
with positive magnetization |ψ↑⟩ as h is varied across the
critical line hc = 0. In the limit of |g| ≪ J , these two
states become the fully polarized spin states |↓ . . . ↓⟩
and |↑ . . . ↑⟩ in the z basis.† Around h = hc, the or-
der parameter ⟨σz⟩ changes sign very rapidly with h
for finite ℓ, and the transition becomes discontinuous
in the thermodynamic limit ℓ → ∞. The energy spec-
trum for ℓ = 5 is shown in Fig. 1B. In a finite system,
the QPT arises from an avoided crossing at hc between
the two lowest energy levels, corresponding to the states
|ψ↓⟩ and |ψ↑⟩. The minimum energy gap ∆c is propor-
tional to the matrix element ⟨ψ↑|H|ψ↓⟩, which repre-
sents the transition amplitude corresponding to flipping
all the spins. As shown in Methods, Sec. A and Fig. S1,
∆c ∝ (g/g∗)ℓ [25]. To study the quantum many-body
dynamics of this model, we focus on a regime where
g ≈ J (away from the classical limit g ≪ h, J where
quantum fluctuations are negligible).

While the phase diagram in Fig. 1A captures the
general equilibrium properties of the mixed-field Ising
model, additional insights can be gained by introducing
boundary conditions that link the discontinuous QPT
to string breaking (See Methods, Sec. G). This link re-
lies on the interpretation of the Ising model as a lat-
tice gauge theory, where a domain wall (i.e., the bound-
ary between two anti-aligned adjacent spins) acts as a
charged particle (or “quark,” in analogy with quantum
chromodynamics) and a domain of ↓ spins plays the
role of an electric-field flux, i.e. a string, connecting the
charges. In this analogy, J corresponds to particle mass,
h to string tension, and g to coupling strength [46].
The string-breaking setup enables the study of the spa-
tial structure of the time-evolved state, distinguishing
edge and bulk features associated with the decay of a
metastable string.

We consider boundary conditions that emulate two
static domain walls pinned at the ends of the chain
[25, 46], as shown in Fig. 1C. For h < hc, this setup
induces a flux string connecting the two static quarks,
corresponding to the eigenstate |ψ↓⟩. If the string ten-
sion h exceeds the critical threshold hc, string break-
ing becomes energetically favorable, creating two addi-
tional domain walls at the edges, generating state |ψ↑⟩.

† We refrain from carrying a z subscript to denote the states’ cho-
sen basis, since all states are assumed in the z basis throughout,
with one exception: In Methods, Sec. H, we restore such basis
subscripts to distinguish the conventional experimental compu-
tational basis from that used in the main paper.
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Figure 1. Phase diagram of the mixed-field Ising model and implementation with trapped ions. (A) Ground-
state phase diagram of the Hamiltonian in Eq. (1) as a function of the transverse field g and longitudinal field hi = h for
β = 1.21 in the thermodynamic limit. The color scale indicates the order parameter ⟨σz⟩ defined in Eq. (2). The vertical line
indicates the discontinuous phase transition (h = hc = 0 and g < g∗) and the horizontal dashed line at g = g∗ = 1.7J ends
at the continuous phase-transition point at h = hc. The arrows indicate the ramps used in the quantum simulation. (B)
Lowest energy levels of the Hamiltonian in Eq. (1) along the h-ramp for β = 1.21, g = 1.2J , and ℓ = 5. The lines are colored
by the order parameter ⟨σz⟩ using the same color scale as in A. The |ψ↓⟩ and |ψ↑⟩ eigenstates form an avoided crossing
with gap ∆c at the discontinuous quantum phase transition at hc. (C) Ising spin chain and boundary conditions in the
quantum simulation. The dynamical spins shown in orange are simulated by the quantum simulator. Two domain walls are
pinned adjacent to the dynamical spins. Interactions with the static spins, indicated by the gray arrows, are emulated by a
site-dependent longitudinal field acting on the dynamical spins, which is individually controlled over time. (D) Experimental
realization of the Hamiltonian. Purple arrows indicate the orientation and strength of the site-dependent mixed magnetic
field. Gray arrows indicate (a set of) all-to-all spin-spin interactions. Wiggly arrows in the individual-addressing beams
represent the beatnote frequencies generated by the beams, which drive the interaction and magnetic-field terms in the
Hamiltonian (see Methods, Sec. H).

This formulation provides a controlled environment for
studying the evolution of the string and its breaking in
real time [46]. Here, we aim to study metastable states
emerging in such dynamics.

The fictitious semi-infinite chains of static spins in-
duce a site-dependent longitudinal field on the dynami-
cal spins:

∆hi =
( 0∑

j=−∞
+

∞∑
j=ℓ+1

)
Ji,j⟨σz

j ⟩, 1 ≤ i ≤ ℓ. (3)

This field decays exponentially from the boundaries
and explicitly breaks the Z2 symmetry (see Methods,
Sec. G). The total longitudinal field acting on the i-th
spin among the ℓ physical spins thus reads hi = h+∆hi.
As a result, the transition point for a finite system,
i.e., the point with the smallest spectral gap, shifts to
hc(ℓ) > 0 for chains of finite size ℓ, recovering hc = 0
only in the limit ℓ → ∞.

We experimentally probe this transition and its dy-
namics using a trapped-ion quantum simulator, as il-
lustrated in Fig. 1D. Our setup consists of a one-
dimensional crystal of 171Yb+ ions in a linear surface

trap, where spin states are encoded in the electronic
ground-state clock levels of the ions. A global laser
beam and a dual array of tightly focused beams form
Raman beatnotes that generate the Hamiltonian terms,
as shown by the wiggly arrows in Fig. 1D. The tones
shown in red and blue, detuned from the motional side-
band transitions, generate the programmable Ising in-
teractions with tunable β. The tone shown in purple, on
resonance with the qubit transition, generate the longi-
tudinal fields. A common detuning on all three tones
generates the tranverse fields (see Methods, Sec. H). A
key experimental advance in this work is the simultane-
ous and fully programmable control of both transverse
and longitudinal fields at the level of individual sites,
with the ability to dynamically modulate their ampli-
tudes in time. This capability enables the implementa-
tion of spatially inhomogeneous Hamiltonians, used for
the study of nonequilibrium quantum dynamics across
a discontinuous QPT, in a way previously inaccessible.

Locating the transition point.—As mentioned above,
the boundary conditions with two static domain walls
[inducing the site-dependent longitudinal field given in
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Eq. (3)] result in a shift in the transition point hc(ℓ)
for finite ℓ. We study two complementary methods to
experimentally identify the transition point.

The first technique employs a quench, i.e., a sudden
change in Hamiltonian parameters. This method al-
lows us to probe the resonant transitions between |ψ↓⟩
and |ψ↑⟩ at hc, and is straightforward to implement
in experiment. Specifically, we initialize the system
in state |↓ . . . ↓⟩, corresponding to the ground state at
h = g = 0, and suddenly quench the Hamiltonian in
Eq. (1) to a fixed g > 0 and a variable h > 0, as indi-
cated by the arrows in Fig. 2A for an ℓ = 5 chain and
β = 1.21.

The response of the system after the quench depends
on the overlap between the initial state and the en-
ergy eigenstates of the final Hamiltonian. As shown
in Fig. S2, away from the transition point, the initial
state predominantly overlaps with |ψ↓⟩, which is an
eigenstate, hence small amplitude oscillations in ⟨σz(t)⟩.
However, at the avoided crossing h ≈ hc, the initial state
overlaps equally with the two lowest-energy eigenstates,
which are superpositions of |ψ↑⟩ and |ψ↓⟩. This results
in coherent oscillations of ⟨σz(t)⟩ at frequency ∆c, re-
flecting interference between the two magnetization pat-
terns, see Methods, Sec. A. In Fig. 2B, we extract the
maximal observed value of ⟨σz⟩ from each quench ex-
periment and plot it as a function of h. The resonance
feature, which appears as a peak in this plot, clearly
identifies the transition point at hc = 0.31J , consistent
with numerical simulations.

For larger system sizes, the energy gap ∆c decreases
exponentially, diminishing the amplitude and frequency
of oscillations near the gap (see Methods, Sec. A), mak-
ing these oscillations impractical to resolve. To estimate
hc for longer chains, we demonstrate a second technique
that applies ramps of the transverse field g, as illustrated
in Fig. 2C, to prepare the states |ψ↓⟩ and |ψ↑⟩, and
measures their energy. For each value of h, we initial-
ize the system in each of the two fully polarized states,
which are eigenstates at g = 0. We then linearly ramp g
from 0 to 1.7J and measure the energy of the resulting
state. We verify that the system adiabatically follows
the instantaneous eigenstate during the ramp by com-
paring the measured energy with the numerically evalu-
ated eigenenergy.† In Fig. 2D, we present the measured
energies for ℓ = 13, β = 0.78, and a linear ramp with
time T = 2.4/J up to a value g = 1.7J . The measured
energies are overlaid on the calculated spectrum of this
system, taking into account single spin-flip errors (see
Fig. S3). The crossing of the two energy curves thus pro-
vides hc. Although this method is more experimentally

† We verify that, unlike the classical state (i.e., g = 0), the pre-
pared states exhibit nonzero connected spin-spin correlations
Ci,j = ⟨σz

i σz
j ⟩ − ⟨σz

i ⟩⟨σz
j ⟩, indicating the presence of quantum

correlations (see Fig. S4).

Figure 2. Measurement of phase boundary hc. Bound-
ary conditions emulate two static domain walls as in Fig. 1C.
(A) For ℓ = 5 and β = 1.21, we quench the Hamiltonian from
h = g = 0 to 0 ≤ h ≤ 0.5J and g = 1.2J , indicated by the
orange arrows, and measure the dynamics after the quench
(see Fig. S2). (B) For the setting described in A, the maxi-
mum value of ⟨σz⟩ vs. h shows a peak at hc. The solid black
(dashed orange) curve corresponds to numerical simulation
without (with) decoherence (see Methods, Sec. F). (C) For
ℓ = 13 and β = 0.78, we prepare the eigenstates |ψ↓⟩ and
|ψ↑⟩ by ramping g from 0 to 1.7J , indicated by the white
arrows, with the initial states |↓ . . . ↓⟩ and |↑ . . . ↑⟩, respec-
tively. (D) For the setting described in C, the measured
energies of |ψ↓⟩ (blue) and |ψ↑⟩ (red) as a function of h, are
overlaid with the eigenenergy spectrum. A constant offset
is added to the measured values to account for single-qubit
errors (see Fig. S3). Points in B and D correspond to experi-
mental data with 250 and 2000 repetitions, respectively, and
the error bars indicate standard deviation from N = 1000
bootstrap samples.

demanding than the quench technique, it is less restric-
tive, as the required evolution time does not depend on
∆c.

Dynamics across the transition.—The technique in
the previous section allowed efficient preparation of the
phases for long chains and enabled precise estimation
of the string-breaking point, where the ground state
changes abruptly. We now study the nonequilibrium
dynamics of the system as the field h is ramped across
the phase boundary. Since both the energy gap ∆c and
the adiabaticity of the process, i.e., the h-ramp dura-
tion τh, depend strongly on system size ℓ, we expect two
qualitatively different behaviors. For small systems, the
evolution may be more or less adiabatic depending on
the ramp speed. If the ramp is slow enough, the system
remains in its ground state, flipping its magnetization
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at the transition and settling into the ground state at
larger h. In this regime, further increasing h does not
induce additional transitions. For larger systems, main-
taining adiabatic evolution becomes impractical. The
system remains in |ψ↓⟩ past hc, but enters an unstable
state that undergoes multiple level crossings as h further
increases. This leads to excitations into higher-energy
states (see Methods, Sec. E). This evolution can be in-
terpreted as the nucleation of “bubbles” (i.e. domains
with positive ⟨σz⟩) of various sizes that progressively
form as h increases. The dynamical string-breaking pro-
cess thus occurs through local breakings, rather than the
global breaking characteristic of the ground-state tran-
sition.

These transition dynamics can be studied using a
three-stage protocol illustrated in Fig. 1A. With the
initial state |↓ . . . ↓⟩ at h = 0, we adiabatically ramp
g from 0 to a positive value in the first stage to prepare
the eigenstate |ψ↓⟩. Then we ramp h to a final value
h > hc in the second stage and vary the ramp duration
τh. Lastly, we adiabatically ramp g back to zero and
measure the state in the z basis. The temporal shapes of
the g- and h-ramps are engineered, by varying the ramp
rate as a function of the instantaneous gap, to enhance
adiabaticity (see Methods, Sec. C). While the evolu-
tion during the g-ramps is approximately adiabatic, the
small gap at h = hc hinders adiabatic evolution during
the h-ramp.

For small chains and slow ramps, dynamics primar-
ily involve transitions between |ψ↓⟩ and |ψ↑⟩, and can
be approximated by a Landau-Zener process. The pop-
ulations of these two states after the h-ramp can be
measured upon ramping g back to 0, such that |ψ↓⟩ and
|ψ↑⟩ evolve adiabatically into |↓ . . . ↓⟩ and |↑ . . . ↑⟩. In
Fig. 3A, we probe the Landau-Zener behavior by mea-
suring the occurrence probabilities P↓ ≡ P (|↓ . . . ↓⟩)
and P↑ ≡ P (|↑ . . . ↑⟩) as functions of τh for an ℓ = 5
chain with β = 1.21. Here, hc = 0.31J , and h is ramped
from 0 to 1.0J at g = 1.2J . For fast ramps, the pop-
ulation remains mostly in |ψ↓⟩, while for slow ramps,
it follows the ground state, resulting in collective spin
flipping. As τh increases, P↑ gradually overtakes P↓,
and the system transitions from the string phase to the
broken-string phase. At longer evolution times, decoher-
ence effects become significant and limit the feasibility
of experiments with larger τh values.

To further characterize the crossing of the transition,
we compare the distribution of the number of flipped
spins before and after crossing hc, as shown in Fig. 3B-
C. Here, we ramp g from 0 to 1.2J and measure the z-
basis state distributions at snapshots along the h-ramp
(points along the horizontal path in Fig. 1A) without
the final g-ramp. At points h < hc (h > hc) below
(above) the critical threshold, we compare the distribu-
tion of spin flips for various h-ramp durations τh, where
τh is defined for the full h-ramp from h = 0 to h = 1J .
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Figure 3. Probe of the ground-state phase transition
for ℓ = 5 and β = 1.21. In all subplots, points corre-
spond to experimental data with 2000 repetitions, and the
error bars indicate the standard deviation from N = 1000
bootstrap samples. (A) We use the ramp procedure shown in
Fig. 1A, with g = 1.2J and h = 1.0J . The h-ramp trajectory
is optimized, as shown in Fig. S5, and the full h-ramp dura-
tion τh is varied. Red (blue) color indicates P↑ ≡ P (|↑ . . . ↑⟩)
(P↓ ≡ P (|↓ . . . ↓⟩)), i.e., the probability of all spins (no spins)
flipped starting from the |↓ . . . ↓⟩ initial state. Solid (dashed)
lines correspond to numerical simulations without (with) de-
coherence (see Methods, Sec. F). (B-C) The probability for
given numbers of flipped spins, starting from the initial state
|↓ . . . ↓⟩, measured in a state with the h-ramp terminated at
h = 0.2J < hc (B) and at h = 0.5J > hc (C). Here, g is adi-
abatically ramped up to g = 1.2J but is not ramped down
to zero. Colors correspond to different full h-ramp duration
τh from h = 0 to h = 1.0J . For B and C, simulation results
with decoherence are not shown because they nearly overlap
with the decoherence-free results shown in solid lines.

For h = 0.2J < hc, the state histogram is nearly inde-
pendent of τh, whereas for h = 0.5J > hc, the distribu-
tion varies significantly with ramp duration, reflecting
increased spin flips for slower ramps. (Note that the
population in |↓ . . . ↓⟩ and |↑ . . . ↑⟩ is not equivalent to
population in |ψ↓⟩ and |ψ↑⟩ at g > 0.) This comparison
illustrates that the small gap at the avoided crossing
places stringent constraints on the ramp speed required
for adiabatic passage through the transition.

Bubble nucleation.—For larger system sizes, adiabatic
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Figure 4. Phase-transition dynamics for ℓ = 13 and
β = 1.21. Starting with |ψ↓⟩ at g = 1.2J , we linearly ramp
h from 0 to 2.0J and measure the dynamics during the ramp.
Time evolution of individual-spins magnetization, ⟨σz

i ⟩, is
plotted in (A-C), and of the probability that the largest
connected domain of ↑-spins has size n, Pdomain, is plotted in
(D-F), for Jτh = 0.27, 1.33, and 3.98, respectively. Each row
is an average of 500 experimental repetitions. The dashed
white lines in A-C indicate the moment when h = hc.

evolution across the phase boundary is suppressed by
the exponentially small energy gap ∆c. Repeating the
same measurement for ℓ = 13 and applying the same
ramping durations as for the ℓ = 5 system exhibits neg-
ligibly small probability of populating the ground state,
as shown in Fig. S6. At the same time, the transition
point hc(ℓ) gets close to zero for longer chains. While
the collective flip of all the ℓ spins at hc is highly sup-
pressed, increasing h beyond the critical value leads to
successive level crossings, involving localized spin flips
in smaller domains, as shown in Fig. S7.

To characterize these excitations, we perform a linear
ramp of h according to h(t)/J = 2t/τh, and analyze the
resulting spin-domain patterns. Following the same ini-
tial ramp of g from 0 to 1.2J to prepare |ψ↓⟩, we mea-
sure real-time spin dynamics in the z basis along the
h-ramp. We do not ramp g back down, since higher-
energy levels populated during the h-ramp cannot be
unambiguously connected with the g = 0 eigenstates
due to multiple level crossings. Figures 4(A-C) shows
the local magnetization ⟨σz

i ⟩ as the longitudinal field
h is ramped from 0 to 2J , well beyond the transition
point hc(ℓ = 13) = 0.1J . For short ramp durations,
the magnetization remains nearly constant. For slower
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Figure 5. Scaling law at the discontinuous quantum
phase transition for ℓ = 13, g = 1.2J , and β = 1.21.
(A) Dynamics of ⟨σz⟩ during the h-ramp for a range of
τh, using the same linear-ramp protocol as in Fig. 4. (B)
Rescaled time traces from A collapse to a single curve using
a power-law scaling with exponent µ = 0.56. Inset: The time
difference |t0 −tc| (where t0 is when ⟨σz⟩ changes sign and tc
is when h(t) = hc) versus τh fits a power law with exponent
µ (black line). In A and the main panel of B, points repre-
sent averages over 500 experimental repetitions, with error
bars showing standard deviations from N = 1000 bootstrap
samples. Solid lines indicate numerical simulations without
decoherence. Points in the inset in B show numerical simu-
lation results.

ramps, it changes sign at h > hc(ℓ), indicating a transi-
tion via bubble formation—localized domains of positive
magnetization—rather than a collective spin flip (see
Methods, Sec. E). Additionally, magnetization changes
at the edges prior to changing in the bulk, reflecting the
influence of static quarks at the boundaries. This sug-
gests that string breaking initiates preferentially near
static boundary quarks [25, 46].

To further characterize bubble nucleation, we ana-
lyze the growth of the largest domain size as a func-
tion of ramp time. Figures 4(D-F) display Pdomain(n),
the probability that the largest connected domain of ↑-
spins has size n, as a function of domain size n and
time elapsed during the h-ramp. For a very short ramp
duration Jτh = 0.27, bubble formation is minimal, and
the largest domain size is typically 1. For longer ramp
times Jτh = 1.33 and 3.98, domain sizes grow during
the ramp, with P (n) peaked around n = 4 and n = 5 at
the end of the ramp, respectively. The result agrees well
with numerical simulations, as shown in Fig. S8. The
maximum domain size is constrained by the ramp’s adi-
abaticity relative to the energy gaps at the level cross-
ings, with larger domains forming for slower ramps.

Generalized Kibble-Zurek scaling.—Crossing a contin-
uous QPT often follows universal scaling laws governed
by the Kibble-Zurek mechanism [4, 55]. As a system
is driven through a symmetry-breaking transition point
at a finite rate, the energy gap closes. This causes
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the evolution to become nonadiabatic near the tran-
sition, and leads to the formation of domains in the
symmetry-broken phase. Both the characteristic size
of these domains and the timescale over which they
form exhibit a power-law dependence on the rate of the
drive. The Kibble-Zurek mechanism has been verified
across multiple experimental platforms, including ultra-
cold atoms [56, 57], trapped ions [58], and Rydberg-
atom arrays [59]. However, its applicability to discontin-
uous quantum phase transitions, at least in the far-from-
adiabatic regime [53, 60, 61], remains an open question.
Generalized Kibble-Zurek scaling laws may describe dy-
namics near the transition point of certain discontinuous
phase transitions [39].

We observe a power-law scaling for the ramp dynam-
ics of ℓ = 13, as shown in Fig. 5, using the same linear-
ramp protocol as in Fig. 4. For each ramp duration τh,
define the time t0 as the moment during the ramp when
⟨σz⟩ changes sign, with the corresponding longitudinal-
field value h = h0; and tc as the moment when h = hc.
The time interval |t0 −tc|/τh ≡ |h0 −hc|/(2J) is well de-
scribed by the function τ−µ

h and our fit gives µ = 0.56,
as shown in the inset of Fig. 5B. Rescaling the time in-
terval |t − tc|/τh by τµ

h collapses the time evolution of
⟨σz⟩ onto a single curve across a wide range of ramp
durations. Further studies could elucidate whether this
scaling behavior fits within a generalized Kibble-Zurek
framework.

Conclusion.—We have experimentally studied a dis-
continuous quantum phase transition in a mixed-field
Ising spin model using a fully programmable trapped-
ion quantum simulator. By mapping the phase bound-
ary across different system sizes, we examined the sys-
tem’s nonequilibrium evolution across the transition and
investigated transition’s finite-size scaling. For small
systems, where adiabatic evolution is possible, the dy-
namics occurs in a Landau-Zener regime, while for larger
systems, the transition occurs via bubble-nucleation
dynamics, consistent with a generalized Kibble-Zurek
mechanism. The observed transition can also be in-
terpreted as a string-breaking process, analogous to
the decay of a flux string between a quark-antiquark
pair. In previous work, we studied the post-quench dy-
namics of string breaking, focusing on how the system
evolves after a sudden parameter change [46]. Here, we
took a complementary approach, exploring controlled
processes—including adiabatic and diabatic protocols—
across the transition. This framework deepens our un-
derstanding of string-breaking dynamics, in particular
revealing universal features in the form of a scaling law.

The tunability of interactions and system parameters
in the platform of this work provides new opportuni-
ties to probe metastability, nonequilibrium dynamics,
and quantum critical phenomena in strongly correlated
systems, including understanding the origin and gener-
ality of the scaling law observed. The connection be-

tween the phenomena we studied and analogous situ-
ations in nuclear and high-energy physics, cosmology,
and condensed-matter physics underscores the potential
of trapped-ion quantum simulators to explore quantum
phases and phase transitions in nature. Future experi-
ments could extend these studies to larger system sizes,
more complex quantum-field and gauge-theoretic set-
tings, and real-time dynamics of models of early uni-
verse and high-energy particle collisions.

METHODS

A. Finite-size scaling of the phase transition

This section describes how the location of the phase-
transition point hc(ℓ) can be determined for finite spin
chains and how it depends on system size.

To model the dynamics near hc, one can define an
effective two-level Hamiltonian for the lowest-energy
states of the form

Heff =M(h− hc) (|ψ↓⟩ ⟨ψ↓| − |ψ↑⟩ ⟨ψ↑|)

+ ∆c

2 (|ψ↓⟩ ⟨ψ↑| + H.c.), (4)

where −M (+M) represents an effective magnetization
of the state |ψ↓⟩ (|ψ↑⟩).

At each ℓ and g, we numerically calculate the ground-
state and the first excited-state energy of the Hamilto-
nian in Eq. (1) as a function of h near hc. We then fit
the energy gap ∆(h) to the functional form ∆(h) =
∆c

√
1 + (h− hc)2/δ2 with fitting parameters hc, ∆c

and δ. This function matches the expression of the gap
of the effective Hamiltonian Heff , with δ = ∆c/(2M).
The result for β = 1.21 is shown in Fig. S1. When
g = 0, hc is given by hc = −(

∑
i ∆hi)/ℓ ∝ 1/ℓ, which

corresponds to the gray dashed line in Fig. S1A. At fi-
nite values of g, the value of hc only changes slightly
from the g = 0 case. ∆c is a measure of the transition
matrix element between |ψ↓⟩ and |ψ↑⟩, which requires
all the spins to flip. The probability of the transition
becomes exponentially small as the system size grows,
but increases with the transverse field g. We empiri-
cally fit ∆c to the functional form ∆c ∝ (g/g∗)ℓ, where
g∗ is a fit parameter and can be interpreted as the value
at the paramagnetic to ferromagnetic phase boundary.
For example, for ℓ = 13, g∗ = 1.65J for β = 1.21, and
g∗ = 2.32J for β = 0.78. The familiar case of the Ising
chain with nearest-neighbor interactions is recovered for
β → ∞, and therefore limβ→∞ g∗ = J .

The effective Hamiltonian in Eq. (4) provides an
understanding of the results of the quench experi-
ment in Fig. S2. For the time-evolved state |ψ(t)⟩ =
e−itHeff |ψ↓⟩, the probability of measuring |ψ↑⟩ at time
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Figure S1. Finite-size scaling of hc and ∆c for
β = 1.21. (A) hc scales inversely with system size ℓ and
is only weakly dependent on g. (B) The energy gap ∆c be-
comes exponentially small with ℓ, and increases with g.

t reads

P (|ψ↑⟩ , t) := |⟨ψ(t)|ψ↑⟩|2 =
(∆c

ω

)2
sin2

(ωt
2

)
, (5)

where

ω2 = ∆2
c + 4M2(h− hc)2. (6)

Therefore, for M |h − hc| ≫ ∆c, the probability of flip-
ping to the state |ψ↑⟩ is very small and the magneti-
zation is approximately constant. On the other hand,
for h = hc, the system oscillates between |ψ↓⟩ and |ψ↑⟩,
with a large oscillation amplitude in the magnetization.
The time required to flip the magnetization diverges ex-
ponentially with the system size.

In our quench experiment, the initial state is the fully
polarized state |↓ . . . ↓⟩ rather than |ψ↓⟩, so the oscilla-
tions are not expected to be perfect. Nevertheless, a
peak of the oscillation amplitude for h = hc is still ex-
pected due to the large overlap of the initial state with
|ψ↓⟩ with the chosen parameters, as shown in Fig. S2A.
Examples of quench dynamics are shown in Fig. S2B-D.

B. 13-spin eigenstates

This section provides additional details of the 13-spin
eigenstates |ψ↑⟩ and |ψ↓⟩ produced by the g-field ramp
in Fig. 2D.

Figure S3 compares the measured energies of |ψ↑⟩ and
|ψ↓⟩ for ℓ = 13 and β = 0.78, also shown in Fig 2D,
to numerically computed energies of the states after
the ramp (gray lines). To better match the experi-
mental data, we account for a spin-flip error probabil-
ity of p = 0.02 per spin. We first compute the state
|ψ⟩ = U [H(t)] |ψ0⟩, where |ψ0⟩ = |↑ . . . ↑⟩ or |↓ . . . ↓⟩
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Figure S2. The ℓ = 5 quench experiment. (A) Overlap
between the initial state |↓ . . . ↓⟩ and the two lowest-energy
eigenstates |ψ1⟩ (orange line) and |ψ2⟩ (purple line) for the
quench experiment in Fig. 2B, for β = 1.21 and g = 1.2J .
The dashed line shows the sum of the two overlaps. The
initial state has a large overlap with |ψ↓⟩ away from hc.
However, the overlap with the two eigenstates becomes equal
at hc, resulting in large oscillations of ⟨σz⟩ after the quench.
(B-D) Quench dynamics at h = 0, h = 0.26J , and h =
0.5J , respectively. Points correspond to experimental data
with 250 repetitions and the error bars indicate the standard
deviation from N = 1000 bootstrap samples. The maximum
value from each time evolution is shown in Fig. 2B. The
solid black (dashed orange) line corresponds to numerical
simulation without (with) decoherence.

and U [H(t)] is the unitary evolution corresponding to
a linear ramp of g from 0 to 1.7J . We then generate
the single-spin-flip error states |ψ⟩α

i = Rα
i (π) |ψ⟩, where

α = x or z, and Rα
i (π) is a π-rotation around the α axis

(we choose x and z because the energy is measured in
these basis). Next we calculate the energy including the
error states Ei = (1−2p)E(ψ)+p

∑
α E(ψα

i ), and aver-
age over all spins E = mean(Ei), which is shown by the
dashed lines in Fig. S3. The bit-flip errors, which may
occur in state-preparation and meansurement or during
the Hamiltonian evolution, are more likely to increase
the energy because |ψ↑⟩ and |ψ↓⟩ are the two lowest-
energy eigenstates.

Figure S4A shows the connected two-point spin cor-
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Figure S3. Measured eigenenergies of the ℓ = 13 sys-
tem versus numerical simulation. The red and blue
points correspond to the measured energy of |ψ↑⟩ and |ψ↓⟩,
respectively, at β = 0.78, also shown in Fig. 2D. The states
are prepared via a g-ramp from g = 0 to 1.7J , as explained
in the main text. The gray lines correspond to the numer-
ical simulation of the state energies. The dashed lines cor-
respond to the numerical simulation including a 2% bit-flip
error on each qubit, which fit the experimental points rea-
sonably well.
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Figure S4. Spatial correlations for the ℓ = 13 eigen-
state. (A) Connected correlation matrix Ci,j = ⟨σz

i σ
z
j ⟩ −

⟨σz
i ⟩⟨σz

j ⟩ for |ψ↓⟩ at h = 0.3J with g = 1.7J and β =
0.78. (B) The nearest-neighbor (orange) and next-nearest-
neighbor (red) Ci,i+d (d = 1, 2) components from A, com-
pared with numerical simulation (solid lines). Error bars
represent standard deviation from N = 1000 bootstrap sam-
ples. The correlation is stronger at the edges than the center
due to the site-dependent longitudinal field ∆hi.

relations Ci,j = ⟨σz
i σ

z
j ⟩ − ⟨σz

i ⟩⟨σz
j ⟩ for the eigenstate

|ψ↓⟩ for ℓ = 13, β = 0.78, and h = 0.3 prepared with
the g-ramp in Fig. 2(D). These correlations are non-
trivial compared to the product state |↓ . . . ↓⟩ at g = 0.
Notably, nearest-neighbor correlations are stronger near
the edges than at the center. This is due to the spatially
varying longitudinal field ∆hi that breaks translational
symmetry, and enhances correlations near the bound-
aries, as evident from the nearest- and next-nearest-
neighbor components of Ci,j in Fig. S4(B).
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Figure S5. Optimized h-ramp for ℓ = 5. The black line
shows the ramp trajectory h(t/τh), and the red line shows
the instantaneous energy gap between the ground and the
first excited states, for β = 1.21 and g = 1.2J . The dashed
lines mark the critical field hc, the corresponding critical
time, and the energy gap ∆c.

C. Optimized ramp

This section describes the implementation of opti-
mized ramp protocols designed to enhance adiabaticity
across the phase transition while minimizing the total
ramp duration.

To optimize the ramp through the phase boundary
for the ℓ = 5 chain, we use a protocol that dynam-
ically adjusts the ramp speed based on the instanta-
neous energy gap ∆(h). A simple linear ramp of the
longitudinal field h would require prohibitively long du-
rations to maintain adiabaticity, as the energy gap ∆c

at the avoided crossing decreases exponentially with sys-
tem size. Instead, our optimized ramp slows down near
the minimum gap and speeds up elsewhere, allowing for
near-adiabatic evolution in significantly shorter time.

The ramp is constructed such that the rate of change
of the longitudinal field satisfies [62, 63]

dh

dt
∝ ∆(h)2, (7)

where ∆(h) is the energy gap between the two lowest-
energy eigenstates. The resulting ramp trajectory, ob-
tained by numerically integrating Eq. (7), is shown in
Fig. S5. For comparison, a linear ramp with a slope
equal to that at h = hc would require a total duration
approximately 4.3 times longer.

We also applied optimized ramp profiles for the g-
field ramps in Figs. 3 and 4 to reduce total evolution
time. Since the energy gap remains relatively large and
varies smoothly during these ramps, the optimized pro-
files closely resemble linear ramps in practice.

D. Nonadiabaticity of the optimized ramp
protocol for ℓ = 13

This section presents experimental data demonstrat-
ing that for a 13-spin system, adiabatic passage through
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the first-order quantum phase transition is not achiev-
able with experimentally feasible ramp protocols, due to
the exponentially small energy gap near the transition.

In Fig 3(A), we probe the adiabaticity of a Landau-
Zener for an ℓ = 5 chain. Figure S6 shows the result for
the same ramp protocol for the ℓ = 13 chain. Despite
the optimized ramp profile, no significant population
transfer to |ψ↑⟩ is observed, confirming that the expo-
nentially small energy gap prohibits adiabatic evolution
across the transition for this system sizes.
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Figure S6. State probabilities during the ramp for
ℓ = 13, g = 1.2J , and β = 1.21. Points correspond to
experimental data with 2000 repetitions and the error bars
indicate the standard deviation from N = 1000 bootstrap
samples. The solid lines correspond to numerical simulation
without decoherence while the points represent experimental
data. To obtain these probabilities, the same ramp protocol
as in Fig. 3A is used but for the larger system of ℓ = 13
spins. The state |↑ . . . ↑⟩ remains unpopulated throughout
the ramp due to the exponentially small ∆c.

E. Eigenstates for h > hc

This section presents a study of low-energy eigen-
states in the regime h > hc, providing insight into do-
main formation and the excitation pathways during the
ramp.

The energy spectrum for ℓ = 13, β = 1.21, and
g = 1.2J is shown in Fig. S7. The Hamiltonian is in-
variant under left-right reflection, defined by exchanging
spin indices i ↔ ℓ+1−i for all 1 ≤ i ≤ ℓ. Consequently,
its eigenstates can be classified as either symmetric or
antisymmetric under this reflection. Because the initial
state used in our experiment is symmetric, the system
evolves entirely within the symmetric subspace (in the
absence of experimental noise). For this reason, only
symmetric eigenstates are shown in the energy spec-
trum.

To gain intuition about the spin polarization of the
eigenstates, it is helpful to consider the limit h ≫ g,
where the longitudinal field dominates the Hamilto-
nian, and β ≫ 1, where interactions are only nearest-
neighbor. Then, the energy of an eigenstate is approx-
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Figure S7. Low-energy eigenenergies as a function of
h for ℓ = 13, g = 1.2J , and β = 1.21. Only the en-
ergy levels associated with eigenstates symmetric under left-
right reflection are shown. Lines are colored according to
the value of ⟨σz⟩. As h increases, the eigenstate |ψ↓⟩ forms
many avoided crossings with other levels with fewer than ℓ
total number of ↑-spins. These avoided crossings occur at
several values of h, and the associated energy gaps can be-
come wider than the critical gap ∆c, allowing these states
with partial spin flips (positive magnetization) to become
populated during the ramp.

imately determined by the number of ↑-spins, N↑, and
the number of domain walls, NDW. The dominant h-
dependent contribution to the energy comes from the
longitudinal-field term, yielding a leading-order slope
∼ 2(ℓ−N↑) for the eigenenergy as a function of h. For a
fixed N↑, states with fewer domain walls have lower en-
ergy due to minimized spin-spin interaction energy. In
particular, the lowest-energy configuration for a given
N↑ corresponds to all ↑-spins forming a single contigu-
ous domain attached to either of the static ↑-spins at
the chain edge.

For example, in Fig. S7, at h/J ≈ 0.55 and E/J =
−22, the eigenstate is adiabatically connected to the
symmetric superposition 1/

√
2(|↑ . . . ↑↓⟩ + |↓ . . . ↓↑⟩) in

the h ≫ g limit, where a single domain of 12 ↑-spins is
connected to either edge. This state has an energy off-
set of ∼ 2h+4J relative to |ψ↓⟩, consistent with the ex-
pected linear-h dependence and the interaction-energy
shift. More generally, for large h, the ordering of ex-
cited states depends on both N↑ and NDW: reducing N↑
increases the energy due to the longitudinal field, and
additional domain walls increases interaction energy.

In the limit h ≫ g, the states most accessible from
|ψ↓⟩ are those containing only a few ↑-spins. During the
h-ramp, these states become populated successively de-
pending on the corresponding transition amplitudes and
on the ramp speed. States with many ↑-spins have expo-
nentially suppressed amplitudes, and thus are harder to
reach, requiring very slow ramps. As h increases, states
with smaller ↑-spin domains come into resonance with



11

1 7 13
Spin index

0

0.2

0.4

0.6

0.8

1.0

T
im

e
t/
τ h

A 
Jτh =0.27

1 7 13
Spin index

B 
Jτh =1.33

1 7 13
Spin index

C 
Jτh =3.98

0 5 10
Domain size

0

0.2

0.4

0.6

0.8

1.0

T
im

e
t/
τ h

D 

0 5 10
Domain size

E 

0 5 10
Domain size

F 

0.0

0.4

0.8

1.2

1.6

2.0

L
o
n
g
.

fi
el

d
h
/
J

0.0

0.4

0.8

1.2

1.6

2.0

L
o
n
g
.

fi
el

d
h
/
J

−1.0

−0.5

0.0

0.5

1.0
〈σzi 〉

0.0

0.2

0.4

0.6

0.8

1.0
Pdomain

Figure S8. Numerical simulation of linear-ramp dy-
namics for ℓ = 13. These data are numerically simulated
counterparts of the data shown in Fig. 4. (A-C) Time evolu-
tion of local magnetization ⟨σz

i ⟩, and (D-F) time evolution of
probability Pdomain of domains of given size for Jτh = 0.27,
1.33, and 3.98, respectively.

|ψ↓⟩; due to their larger transition amplitudes, they can
be populated with moderate ramp speeds.

F. Numerical simulation of the experiment

This section outlines the numerical methods used to
simulate the experiment, including the modeling of co-
herent dynamics and decoherence effects.

Two methods are used to numerically simulate the
time dynamics of the experiment. The first method is
solving the Schrödinger’s equation

d

dt
|ψ(t)⟩ = −iH(t) |ψ(t)⟩ . (8)

We use the Ji,j values calculated using Eq. (11) be-
low and normalize them so that the average of the
nearest-neighbor interactions is equal to the experimen-
tally measured value.

The numerical simulation of local magnetization,
⟨σz

i ⟩, and probability the largest flipped-spin domain
to have size n, Pdomain(n), for the 13-ion linear-ramp
experiment is shown in Fig. S8. These results should
be compared with the experimental results in Fig. 4.
The experimental data is in good agreement with the
simulation. Many of the features from the simulation,

such as the propagation of spin-flip domains from the
edge to the bulk, and the formation of larger domains
of flipped spins at longer ramp durations, are accurately
reproduced by the experiment.

For the 5-ion ramp experiments, the total duration
of the g- and h-ramps becomes long enough that deco-
herence causes a significant difference between the ex-
periment and the exact dynamics. The experiment of
this work has two main sources of decoherence. The
first is a site-dependent dephasing in the Bloch z ba-
sis with rate γi for the i-th spin and the second is a
common x-dephasing rate γc, see Methods, Sec. H. The
open-quantum-system master equation including these
two decoherence sources is given by [64]

dρ

dt
= − i[H, ρ] −

∑
i

γi(ρ− σz
i ρσ

z
i )

− γc

∑
i

(ρ− σx
i ρσ

x
i ), (9)

where ρ is system’s density matrix and Sx =
∑

i σ
x
i .

The values of γi and γc are obtained by fitting the de-
cay of oscillation contrast of the Ji,j measurement. For
ℓ = 5, we get γi = 0.009J for all ions (since the 5 ad-
jacent ions at the center of the chain have very similar
decoherence rate), and γc = 0.010J . For the ℓ = 5
ramp shown in Fig. 3, we see good agreement between
the experiment and decoherence simulation, especially
for longer ramp times. The ℓ = 5 quench dynamics,
shown in Fig. S2, also shows the decoherence effect at
long evolution times. We do not simulate the 13-ion
experiment with decoherence, because the linear ramps
have shorter durations, and decoherence effects are less
severe.

G. String breaking and the boundary conditions

This section presents details of our implementation
of the boundary conditions that mimic static quarks.
This set up yields a mapping between the mixed-field
Ising model and the string-breaking problem in a gauge
theory.

The mixed-field Ising model in Eq. (1) can be mapped
to a Z2 lattice gauge theory [28, 46, 65], as shown in
Fig. S9. In this model, fermionic particles (quarks)
are created or annihilated on the links between the
spin sites, and the spins are mapped to the bosonic
fields mediating the interaction between the fermions.
A domain wall (↑↓ or ↓↑) represents a quark. The ↓-
spins in between two quarks represent the string joining
them, whereas the ↑-spins represent the vacuum. The
fermionic degrees of freedom can be integrated out by
Gauss’s law, and the dynamics can be entirely deter-
mined by the spin degrees of freedom.

In our model, the static spins on the boundaries rep-
resent two quarks at the edges, with the vacuum extend-
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Figure S9. Mapping of the spin model to a Z2 lattice
gauge theory. The gauge theory describes dynamics of
quarks (gray circles) and electric fluxes or strings (springs
connecting the quarks).

ing to infinity to the left (right) of the left (right) static
quark. The static-spins’ interactions with the dynami-
cal spins create the site-dependent longitudinal field ∆hi

given by [25]

∆hi = −1 − 2e−β

1 − e−β

(
e−β(i−1) + e−β(ℓ−i)

)
. (10)

In our setup, where β > log(2), we find that ∆hi is
strictly negative. The amplitude of ∆hi is largest at the
two edges and decays exponentially towards the center.

For a finite chain of length ℓ, the critical field satisfies
hc > 0, and the ground state just below the transition
at h = 0 < hc is well approximated by |ψ↓⟩, which rep-
resent the string state. The string potential energy can
be adjusted by the longitudinal-field strength h, which
imparts an energy cost on the ↓-spins as h increases.
At h > hc, the ground state becomes |ψ↑⟩, which rep-
resents the formation of two additional quarks at the
edges, thus breaking the original string.

H. Experimental Apparatus

This section describes our trapped-ion quantum sim-
ulator and the experimental techniques used to imple-
ment site-resolved spin interactions and programmable
fields.

In the main text, we define the spin-spin interaction
along the z-axis, following standard Ising model con-
ventions. However, in our experimental implementa-
tion using the Mølmer-Sørensen interaction, the phys-
ical spin-spin coupling is realized along the x-axis. In
this section, we adopt the original experimental con-
vention: the qubit computational basis is the z basis,
the spin-spin interactions are along the x axis, and field
and measurement directions are described accordingly.
To distinguish this basis, and their associated Pauli op-
erators, from those in the main text, we adopt a tilde
notation for states and operators in the following. To
explicitly connect with the notation |↑⟩, |↑⟩, and σz

i used
in the main text for states and the Pauli-z operator, in
the present appendix, one should consider the identifi-
cations |↑⟩ ≡ |↑̃⟩x, |↓⟩ ≡ |↓̃⟩x, and σz

i ≡ σ̃x
i .

We trap a chain of N = 15 171Yb+ ions in a sur-
face ion trap [66]. The spin states are encoded in
the two clock levels of the 2S1/2 ground state, namely
|↓̃⟩z := |F = 0,mF = 0⟩ and |↑̃⟩z := |F = 1,mF = 0⟩,
with an energy difference ω0 = 2π × 12.6 GHz. At the
begining of each experiment cycle, the ions are cooled
with Doppler cooling, and the collective radial mo-
tional modes responsible for the spin-spin interactions
are cooled by resolved-sideband cooling. The ions are
initialized in the |↓̃⟩z state by optical pumping, and pre-
pared in either |↑̃⟩x or |↓̃⟩x with single-qubit Ry(±π/2)
rotations. The experiments of this work involve per-
forming the Hamiltonian ramps and measuring the state
distribution in the end in the x basis. This measure-
ment amounts to applying Ry(−π/2) rotations followed
by state-dependent fluorescence detection.

Spin-spin interaction can be generated by virtually
coupling to one set of the radial collective motional
modes of the ion chain. We tune the orientations of
the two radial principal axes of the trap, so that one
principal axis is parallel and the other perpendicular to
the k⃗-vector of the Raman beatnote. Thus, only one set
of N motional modes is affected by the Raman laser.
For an N = 15 ion chain, the collective motional modes
range from the highest-frequency center-of-mass mode
ω0 = 2π × 3.03 MHz to the lowest-frequency “zig-zag”
mode ωN = 2π × 2.74 MHz.

The global and individual beams are derived from a
pulsed 355 nm laser. The global Raman beam passes
through an acousto-optic modulator (AOM), which
splits the beam into two frequency components given
by ωglobal = ωglobal

0 ± (ωN + µ), where µ is a large neg-
ative detuning from the zig-zag mode. The individual
beam is split into more than 30 beams with a diffrac-
tive element, and each beam passes through a channel
from a 32-channel AOM. Each individual AOM channel
also contains two frequencies that results in the dual
array of individual beams, which are imaged onto the
ions through a telecentric optical path. The first array
of individual beams has the frequency ωind

0 that satisfies
the condition ωglobal

0 −ωind
0 = ω0. Thus the beatnote be-

tween ωglobal and ωind
0 corresponds to ω0 ± (ωN +µ). In

the dispersive regime (|µ| ≫ ηΩi, where η is the Lamb-
Dicke parameter and Ωi is the Rabi frequency on the
i-th ion), the simultaneous red and blue sidebands in
the Raman beatnote produce the spin-spin interaction
term

∑
i<j Ji,j σ̃

x
i σ̃

x
j . The interaction strength is given

by

Ji,j =
N∑

k=1

η2bi,kbj,kΩiΩj

2(ωN + µ− ωk) , (11)

where the summation is over all the participating mo-
tional modes, η = 0.08 is the Lamb-Dicke factor, and
bi,k is the mode-participation matrix element of the
i-th ion in the k-th motional mode. In this work,
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Figure S10. Calibration of the Hamiltonian terms.
(A) Blue points correspond to the measured |bi,N | values
for the zig-zag mode, normalized by the maximum value.
Red points correspond to Ωi in Eq. (11) to make a uni-
form Ji,j matrix. (B) Measured nearest-neighbor (blue) and
next-nearest-neighbor (red) components of the Ji,j matrix,
normalized by J , for ℓ = 13 and β = 1.21. (C) Measured
site-dependent longitudinal-field values vs. target values, for
ℓ = 13, β = 1.21, and h = 2J .

the negative detuning µ means that the interaction
is dominated by the zig-zag mode. The interaction
matrix Ji,j decays exponentially with ion separation,
Ji,j ≈ J exp[−β(|j − i| − 1)], where β = 1.21 for
µ = −2π×100 kHz, and β = 0.78 for µ = −2π×35 kHz.

For the zig-zag mode, the mode-participation ampli-
tude |bi,N | is higher at the center of the chain and lower
at the edges. To compensate for this inhomogeneity and
generate a translationally invariant Ji,j matrix, we use
RF amplitude control for the individual AOM channels
to tune the local Rabi frequencies Ωi so that the nearest-
neighbor interactions are uniform, as demonstrated in
Fig. S10A. These RF amplitudes (in arbitrary units)
are used as the Ωi values in Eq. (11) to compute the
Ji,j matrix numerically. We then rescale the resulting
matrix so that the average nearest-neighbor interaction
matches the experimentally measured value.

We experimentally measure Ji,j by turning on only
the individual beams at the i-th and j-th ions and
observing the Rabi oscillation between |↑̃i↓̃j⟩ z and
|↓̃i↑̃j⟩ z. The measured nearest-neighbor and next-
nearest-neighbor Ji,j components for β = 1.21 are
shown in Fig. S10B. In addition, the sign of bi,N is
staggered, i.e., sgn(bi,N ) = −sgn(bi+1,N ), which re-
sults in the opposite sign between the d-th nearest-
neighbor and d+ 1-th nearest-neighbor interaction, i.e.,
sgn(Ji,i+d) = −sgn(Ji,i+d+1). We add a π phase shift to

every other individual beam to render all the interaction
signs the same.

In the experiment, we always maintain an N = 15 ion
chain. The voltages on the trap electrodes are adjusted
so that the center 13 ions are aligned with the evenly-
spaced individual beams. We use the AOMs to turn on
the individual beams for the center ℓ ions to simulate
the different system sizes. For ℓ = 5, J = 2π×0.68 kHz,
and for ℓ = 13, J = 2π × 0.4 kHz.

The second array of individual-addressing beams have
the frequency ωind

1 = ωind
0 − (ωN + µ). The beatnote

between ωind
1 and the lower-frequency global tone is res-

onant with the qubit transition ω0. This produces a
σ̃ϕ

i = cosϕ σ̃x
i + sinϕ σ̃y

i rotation where ϕ is tuned by
the phase of the RF drive of the individual AOM chan-
nel. We tune the phases of the individual RF tones to
ensure σ̃ϕ

i = σ̃x
i , and the amplitudes to ensure the mea-

sured h + ∆hi frequencies match the desired values, as
shown in Fig. S10C. The RF amplitudes are also varied
in time to simulate the h-ramps.

Lastly, the time-dependent transverse field g(t) σ̃z
i can

be produced by shifting the frequencies of both arrays
of the individual beams by 2g(t). The varying intensity
of the individual beams across the ion chain also pro-
duces site-dependent AC Stark shifts on the ions, which
causes a coherent δiσ̃

z
i error. We add an equal and op-

posite frequency shift −δi to both individual RF tones
to cancel the error.

Decoherence in our system primarily arises from fluc-
tuations in the Rabi rates and motional-mode frequen-
cies. Uncertainty in the relative positions between
the ions and the tightly focused individual-addressing
beams, caused by axial motional heating and trap charg-
ing, leads to site-dependent fluctuations in the Rabi fre-
quency and results in dephasing along the Bloch x axis,
characterized by a rate γi. Additionally, fluctuations
in the radial mode frequencies, arising from radial mo-
tional heating or variations in the trapping potential,
lead to collective dephasing along the Bloch z axis, with
rate γc. Since the spin-spin interaction terms are driven
by a much stronger Rabi rate (∼ 2π × 100 kHz) com-
pared to the longitudinal-field terms (∼ 2π × 1 kHz),
the decoherence rates γi and γc are determined from
the measured contrast decay of the Ji,j-driven spin-spin
oscillations.
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