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Developing sensors with large particle numbers N that can resolve subtle physical effects is a
central goal in precision measurement science. Entangled quantum sensors can surpass the stan-
dard quantum limit (SQL), where the signal variance scales as 1/N , and approach the Heisenberg
limit (HL) with variance scaling as 1/N2. However, entangled states are typically more sensitive
to noise, especially common-mode noise such as magnetic field fluctuations, control phase noise,
or vibrations in atomic interferometers. We propose a two-node entanglement-enhanced quantum
sensor network for differential signal estimation that intrinsically rejects common-mode noise while
remaining robust against local, uncorrelated noise. This architecture enables sensitivities approach-
ing the Heisenberg limit. We investigate two state preparation strategies: (i) unitary entanglement
generation analogous to bosonic two-mode squeezing, yielding Heisenberg scaling; and (ii) dissipative

preparation via collective emission into a shared cavity mode, offering a
√
N improvement over the

SQL. Numerical simulations confirm that both protocols remain effective under realistic conditions,
supporting scalable quantum-enhanced sensing in the presence of dominant common-mode noise.

I. INTRODUCTION

Recent advancements in quantum sensors have enabled
atomic interferometers [1–3] and optical clocks [4] to reach
the fundamental sensitivity limit set by quantum projec-
tion noise in ensembles of uncorrelated atoms. Neverthe-
less, the performance of many state-of-the-art quantum
sensors are limited by technical noise sources common
to all the atoms, such as the finite coherence time of the
electromagnetic fields used for manipulation of the atoms,
fluctuations in ambient magnetic fields or vibrations of
the optical path of atomic interferometers. A promising
strategy to overcome this limitation is the use of quantum
sensor networks [5–10]. These networks can be operated
in regimes that are insensitive to noise common to all
sensor nodes, while preserving sensitivity to spatially vary-
ing signals—such as differential frequency shifts between
nodes.

Differential phase measurement protocols play a cen-
tral role in precision metrology, enabling high-accuracy
determinations of fundamental constants [1, 11]. They
are employed in inertial sensing applications [12, 13] and
in experimental tests of the equivalence principle [14–16].
In optical magnetometers operated in a gradiometric con-
figuration, differential sensing can also suppress common-
mode magnetic field noise [17–19]. Moreover, networks
of optical clocks have recently enabled the observation of
gravitational redshift over millimeter-scale height differ-
ences [4, 20, 21], as well as differential phase estimation
using entangled states [22, 23].

These quantum sensors typically operate with ensem-
bles of N unentangled atoms, which imposes a fundamen-
tal limit on their sensitivity. In particular, the variance
associated with estimating a phase encoded into the quan-
tum system cannot be reduced below 1/N , a bound known
as the standard quantum limit (SQL) of quantum metrol-
ogy. Quantum entanglement offers a path to surpass this
limitation, enabling measurement precision to approach
the Heisenberg limit (HL) of 1/N2, the ultimate bound
permitted by quantum mechanics [24, 25].

A central challenge in entanglement-enhanced frequency
estimation arises from the fact that the attainable un-
certainty decreases with increasing interrogation time.
At long interrogation times, common-mode noise often
emerges as the dominant source of decoherence. While
highly entangled states are particularly vulnerable to such
noise, unentangled atomic ensembles tend to be more ro-
bust. Moreover, the performance of unentangled probes
can often be effectively restored through classical post-
processing techniques—such as ellipse fitting [26]—which
are routinely employed in differential atom interferometry
and optical atomic clocks [2, 11, 20, 21, 27–31]. Even
though such ellipse fitting strategy can also be extended
to a class of entangled states known as spin-squeezed
states [32–34], which have recently been realized experi-
mentally [35], in scenarios where sensor performance is
constrained by common-phase noise, the degree of useful
spin squeezing—and hence the attainable sensitivity en-
hancement—can be significantly reduced. Consequently,
the scaling of sensitivity with N achieved using two spin-
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FIG. 1. (a) Schematic illustration of the differential phase
sensing protocol. The atoms in ensembles A and B are ini-
tially prepared in their respective excited ground states, after
which an entangling operation is applied. Subsequently, each
ensemble acquires a distinct phase φA and φB . Finally, a joint
measurement of both ensembles is carried out to estimate
the differential phase ϕ with high precision, while remaining
insensitive to fluctuations of the common phase Φ. (b) The
target state after the entangling process, |ψT ⟩, is an entangled
Lieb-Mattis state (see Appendix C) that can be understood as
a permutation symmetric superposition over all states where
each atom in A forms a singlet with an atom in B. (c) In
the Dicke basis of the individual ensembles, represented by
their Wigner distributions, this state can be expressed as an
equal superposition, with alternating signs, of all Dicke-state
combinations where the number of atoms in the excited state
in ensemble A equals the number of ground-state atoms in
ensemble B.

squeezed ensembles falls short of the ideal scaling expected
in the absence of noise [36].
A viable strategy to restore Heisenberg-limited scal-

ing while preserving robustness against laser noise is to
operate the sensor network within a decoherence-free sub-
space [37–41]. This is achieved by preparing entangled
states and performing measurements that commute with
the noise-generating operators, thereby rendering the sys-
tem insensitive to common-mode noise by construction.
DFS-based techniques have recently been experimentally
demonstrated in a system of three trapped ions [42].
The optimal states for differential phase measure-

ments in this setting are typically variants of Green-
berger–Horne–Zeilinger (GHZ) states that lie within the
DFS. These states can, in principle, achieve HL precision,
reducing the estimator variance to 1/N2 [43]. However,
GHZ states are notoriously fragile: they are extremely
sensitive to local noise, which complicates their use in
practical systems containing many atoms per sensor node.
In this work, we investigate an alternative family of

DFS states that retain Heisenberg scaling but promise
significantly improved robustness to local noise than GHZ
states. Moreover, GHZ states require sampling anN -body
operator, a task that is often prohibitively challenging
in many sensing platforms; while local measurements are

sufficient to access an N -body observable, a single local
error immediately invalidates the measurement outcome.
The states we identify in this manuscript, in contrast
require the measurement of two-body operators only to
retrieve the encoded phase information. This reduces the
technical complexity of implementing a differential sensor
network with HL precision. We further propose practical
schemes to generate these robust entangled states by
harnessing cavity-mediated interactions between sensor
nodes.

The remainder of the manuscript is organized as follows.
In Sec. II, we introduce the formalism for differential phase
sensing with two nodes, each comprising an ensemble of
spin-1/2 atoms. Sec. IIA reviews the concept of a DFS
and explains how it can eliminate the effects of common
laser noise, followed by a discussion in Sec. II B of the
fundamental limits on sensor precision. In Sec. III, we
describe the notion of a robust differential sensor, start-
ing with the optimal two-body observable in Sec. IIIA,
then identifying in Sec. III B a target entangled state
that, achieves Heisenberg scaling while being less suscep-
tible to local noise than a GHZ-state. Sec. IV details
two practical methods for generating entanglement be-
tween sensor nodes via a shared cavity [44]. In Sec. IVA,
we propose a unitary preparation scheme based on a
bosonic two-mode squeezing interaction realizable with
multilevel alkaline-earth atoms, while Sec. IVB discusses
a stochastic preparation approach that exploits collective
emission. Although this latter method yields only a

√
N

improvement beyond the SQL (rather than full Heisenberg
scaling), it can be directly implemented on present-day
experiments and is robust to particle-number fluctuations,
a significant concern in cavity-based experiments. Finally,
Sec. V concludes with a summary and outlook for future
applications.

II. DIFFERENTIAL PHASE SENSING

We consider a quantum sensor that consists of N
atoms separated into two ensembles A and B with
NA = NB = N/2 atoms per ensemble, with a long-lived
transition coupling the states |↓⟩ and |↑⟩. The dynamics
of this effective spin-1/2 system are described by the Pauli
operators σx,y,z, and the whole system can be described

by the collective spin operators JKα =
∑NK

k=1 σ
(k)
α /2 of the

respective ensembles, where α = x, y, z and K = A,B.
In the interferometric sequence that we will study in

this manuscript, the quantum system is first prepared in
a potentially entangled quantum state |ψ⟩. Thereafter,
the phases φA and φB are encoded onto the quantum
system according to

|ψφA,φB
⟩ = e−i(φAJ

A
z +φBJ

B
z ) |ψ⟩ = U(φA, φB) |ψ⟩ . (1)

The final step is to perform a measurement M =∑
µ µ |µ⟩ ⟨µ| on the quantum system and convert the

measurement outcomes µ into an estimate of the encoded
phase.
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The objective is to optimize the precision in estimating
the differential phase ϕ = φA−φB

2 , encoded by the opera-

tor J−
z = JAz −JBz , while ensuring that the interferometer

remains insensitive to the common phase Φ = φA+φB

2 ,

encoded by the operator J+
z = JAz + JBz .

The common phase fluctuations can be mitigated by
preparing a product state between the two subensembles
and then performing repeated measurements of the same
differential phase while the common phase varies ran-
domly between measurement repetitions. In each repeti-
tion, independent measurements on the two subensembles
yield estimates of the phases φA and φB, which collec-
tively trace out an ellipse whose geometry depends on the
differential phase ϕ [26]. This approach has been experi-
mentally demonstrated using ensembles of unentangled
atoms [20, 21] as well as spin-squeezed states [35].

However, the practical utility of spin-squeezed states in
such measurements is fundamentally limited. In contrast
to unentangled ensembles, spin-squeezed ensembles ex-
hibit phase-dependent measurement noise: while the noise
can be reduced for certain phase values, it simultaneously
increases for others. When the common phase fluctuates
randomly across measurement repetitions, the sensor ef-
fectively samples the full range of phase-dependent noise.
As a result, spin-squeezed states that achieve a reduction
of the estimator variance by a factor of N−2/3 or more
are already too strongly squeezed to operate effectively in
such a differential measurement scenario. For moderately
squeezed states, the maximum achievable reduction in
estimator variance scales as N−1/3 [36]. See Appendix A
for further discussion.

A. Decoherence free subspace

An alternative approach is to render the sensor inher-
ently insensitive to the common phase by operating the
quantum sensor within a DFS with respect to the operator
J+
z .

Operating in a DFS is achieved by preparing an eigen-
state of J+

z , ensuring that any random fluctuations in the
common phase result only in an irrelevant global phase
factor. Additionally, measurements must be performed us-
ing an operator that commutes with J+

z , thereby making
the measurement outcomes independent of the averaging
over Φ.

From this point onward, we restrict our analysis to
unitary operations and measurements that commute with
J+
z , and thus do not couple different DFSs. Although

we account for noise processes that lead to mixed states
with populations distributed across multiple DFSs, these
processes do not induce coherences between them. Con-
sequently, the quantum state remains independent of Φ
at all times, and we therefore omit the dependence on Φ
in all subsequent expressions.

B. Sensor precision

The encoded phase is estimated by performing re-
peated measurements of the observable M over r rep-
etitions and using the sample mean of the outcomes to
invert the functional dependence of the expectation value

⟨Mϕ⟩ ≡ ⟨ψ|U†(ϕ)MU(ϕ)|ψ⟩ on ϕ, where U(ϕ) = e−iϕJ
−
z .

The variance of this estimator is determined via error
propagation

∆2
ϕ =

⟨M2
ϕ⟩ − ⟨Mϕ⟩2

r
∣∣∣ ∂∂ϕ ⟨Mϕ⟩

∣∣∣2 . (2)

In the limit of many repeated measurements r, the
sensor becomes unbiased, meaning that the average value
of the estimator for a given phase converges to the true
encoded phase. In this regime, the estimator’s perfor-
mance can be directly compared to fundamental bounds
established for unbiased estimators. The variance of an
unbiased estimator is lower bounded by the quantum
Cramér–Rao bound (QCRB) [24, 25, 45–47],

∆2
ϕ ≥ 1

r FQ
|ψ⟩
, (3)

where FQ
|ψ⟩ represents the quantum Fisher information

(QFI) of the state |ψ⟩. The QFI quantifies the best pre-
cision that can be achieved in parameter estimation for
a given quantum state across all physically realizable
measurements and estimators. Quantitatively, for a pure
state and a unitary parameter encoding, the QFI can
be expressed in terms of the variance of the operator
responsible for phase encoding:

FQ
|ψ⟩ = 4

(
⟨ψ|J−

z J
−
z |ψ⟩ − ⟨ψ|J−

z |ψ⟩2
)
. (4)

The fundamental quantum limit on the estimator variance
for a sensor comprising N unentangled atoms is given by
∆2
ϕ ≥ 1/N , known as the standard quantum limit. This

bound can be surpassed through the use of entanglement,
but cannot be improved beyond the HL, ∆2

ϕ ≥ 1/N2.
It is straightforward to observe that the state

|ψHL⟩ =
|↑, . . . , ↑⟩ |↓, . . . , ↓⟩+ |↓, . . . , ↓⟩ |↑, . . . , ↑⟩√

2
, (5)

that corresponds to a GHZ-state and a local π-rotation
on ensemble B reaches the HL and hence maximizes the
QFI. The state |ψHL⟩ is also an eigenstate of J+

z and thus
resides in a DFS, rendering it insensitive to fluctuations in
the common phase. These characteristics make this state
particularly appealing for preparation in quantum sen-
sors, as it offers enhanced sensitivity to the desired signal.
However, this amplified sensitivity also extends to most
noise sources present in current quantum sensing plat-
forms, making the preparation of large-scale GHZ states
exceptionally challenging. Consequently, the generation
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of GHZ states has become a benchmark for evaluating
the capabilities of quantum computing platforms [48–50],
with current efforts achieving GHZ-state sizes of up to 32
qubits [51].

Throughout the remainder of this work, we evaluate the
performance in terms of the r-independent contribution
to the estimator variance, which corresponds to the case
r = 1.

III. ROBUST DIFFERENTIAL PHASE SENSING

A. Two-body observable

Another fundamental challenge associated with em-
ploying GHZ states for quantum-enhanced sensing is
the requirement to either reconstruct the full distribu-
tion of measurement outcomes through repeated mea-
surements or to estimate an N-body operator, such as

M =
∏N
k=1 σ

(k)
x [43]. Measurements of N -body opera-

tors are highly susceptible to noise, particularly detection
noise, as a single erroneous outcome can invalidate the
entire result. In contrast, measurements of single- or
two-body operators over an ensemble allow for effective
averaging over a limited number of errors. To facilitate
the implementation of large-scale entangled sensors, it is
therefore advantageous to develop measurement protocols
that prioritize single- and two-body observables.

In our DFS, the expectation values of the single-particle

observables σ
(k)
x,y vanish. This is because these operators

measure coherences between states that differ in the num-
ber of excited atoms by 1. Consequently, to obtain a non-
trivial measurement outcome, it is necessary to consider
an observable composed of at least two-body operators.
The only two-body operators that do not commute with
the phase encoding and measure coherences within a given
DFS —without coupling DFSs with different number of

atoms in the excited state— are of the form σ
(k)
+ σ

(l)
− ,

where 2σ
(k)
± = σ

(k)
x ± iσ

(k)
y , and the indices k and l refer

to atoms from different ensembles.
One might be tempted to employ conventional two-

body observables that include terms coupling different
DFSs, such as JAx J

B
x , based on the assumption that these

couplings do not influence the expectation value of the
measurement. However, while the mean signal remains
unaffected, such terms lead to an increased measurement
variance due to second-order processes involving coupling
to other decoherence-free subspaces and back.

The only two-body observable that satisfies the condi-
tions of not containing any terms that commute with the
phase encoding, not coupling different DFSs, and being
permutationally invariant within the subensembles is

M = JA+J
B
− + JA−J

B
+ , (6)

where JK± = JKx ±iJKy . Note the distinction between these
collective spin raising and lowering operators and the com-
mon and differential phase operators J±

z . Expressing M

in the transformed frame yields Mϕ = U†(ϕ)MU(ϕ) =
cos(2ϕ)

(
JA+J

B
− + h.c.

)
+ i sin(2ϕ)

(
JA+J

B
− − h.c

)
. There-

fore, the measured expectation value of M exhibits in-
terference fringes. However, unlike conventional Ramsey
fringes, the response to the phase ϕ is doubled, reflecting
the fact that a two-body observable is being measured
rather than a single-body observable. See Appendix B
for a discussion on the implementation of a measurement
scheme that mimics the optimal measurement in a cavity-
based setup, realized by detecting photons emitted from
the cavity while it is tuned into resonance with the atomic
transition frequency, following the phase encoding.

For a practical implementation of the quantum sensor,
it is desirable to identify initial states that simultaneously
exhibit both a large interference fringe contrast and a low
measurement variance. However, achieving this balance
inherently involves a trade-off: increasing entanglement
enhances the QFI and thereby reduces the estimator
variance, but at the cost of a reduced fringe amplitude,
and vice versa.
In the following section, we present a quantum state

characterized by QFI and fringe amplitude that both
exhibit optimal scaling as N2. Furthermore, we demon-
strate that the measurement of M achieves the QCRB
for this initial state.

B. Entangled target state

Since the phase encoding operator J−
z and the mea-

surement M are invariant under permutations within
each subensemble, a highly sensitive state should exhibit
the same symmetry. Consequently, we restrict our anal-
ysis to states that are eigenstates of JK · JK with the
maximum eigenvalue N

4 (
N
4 + 1), thereby preserving the

subensemble permutation symmetry for K = A,B. Here,
JK = (JKx , J

K
y , J

K
z )T represents the vector of the three

collective spin operators for the respective subensemble
K = A,B and J = JA + JB. States respecting this
symmetry can be expressed in terms of the basis states
|N4 ,M

A, N4 ,M
B⟩, which satisfy JKz |N4 ,M

A, N4 ,M
B⟩ =

MK |N4 ,M
A, N4 ,M

B⟩. This basis is related to the |J,M⟩
basis, which are eigenstates of J · J and J+

z , via the
Clebsch-Gordan coefficients ⟨J,M |N4 ,M

A, N4 ,M
B⟩. Note

that |J,M⟩ of an ensemble of atoms are generally degen-
erate for J < N/2; however, imposing permutation sym-
metry within the subensembles ensures that the |J,M⟩
states are unique.
Furthermore, restricting the analysis to states within

the DFS in which N/2 atoms occupy the excited state
constrains the states to the form

|ψDFS⟩ =

N
4∑

M=−N4

cM |N4 ,M, N4 ,−M⟩ . (7)

When the coefficients cM are chosen to be ∝
[− tanh(α)]

N/4−M
, these states form a family of states
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that mimics bosonic two-mode squeezed states within a
spin system [52–54], where α is the squeezing strength.
The maximally two-mode squeezed state corresponds to
the limit α → ∞, where the state coincides with the
ground state of the Lieb-Mattis Hamiltonian (see Ap-
pendix. C)

|ψT⟩ =
1√
N
2 + 1

∑
M

(−1)
N
4 −M |N4 ,M, N4 ,−M⟩ . (8)

The Lieb-Mattis state, illustrated in Fig. 1(b), is the state
symmetrized over all permutations within each subsystem
in which each atom in one ensemble forms a singlet with
an atom in the other ensemble. Similarly a macroscopic
singlet state, in which each atom forms a singlet with
every other atom, has previously been proposed as a
resource for estimating a field gradient [55]. However,
such a state inherently breaks permutation invariance
within each subensemble.

The distinctive structure of |ψT⟩ as a superposition
of pairwise entangled atoms, in contrast to the globally
entangled GHZ state, features entanglement that is inher-
ently robust against atom loss[56–59]. The same robust-
ness applies when an atom decays from the excited state
to the ground state, effectively projecting itself and its
singlet partners into the ground state that cannot acquire
a phase and is thus lost for sensing purposes. Recent re-
sults further indicate that such robustness to particle loss
signifies that the entanglement enhancement is likely to
persist under moderate loss of atoms [60], whereas losing
even a single particle destroys the useful entanglement in
a GHZ state. While spin-squeezed states exhibit similar
resilience, the objective of this manuscript is to introduce
entangled states and measurement protocols that not only
offer robustness but also achieve a scalable improvement
in the estimator variance beyond what is possible with
two spin-squeezed ensembles.
The state |ψT⟩ is uniquely characterized as the eigen-

state of J · J with eigenvalue zero and of JK · JK
with eigenvalue N

4

(
N
4 + 1

)
. It satisfies both criteria out-

lined in the preceding section. Accordingly, we refer to
this state as the “target state” in the context of the
state-preparation protocols considered in this manuscript.
Specifically, the measurement expectation value as a func-
tion of the encoded phase is

⟨ψT|Mϕ |ψT⟩ = −N
2 + 4N

12
cos(2ϕ), (9)

⟨ψT|M2
ϕ |ψT⟩ =

N2 + 4N

240

(
N2 + 4N + 8+

(N2 + 4N − 12) cos(4ϕ)

)
, (10)

and thus the fringe amplitude (N2+4N)/12 scales asymp-
totically as N2, which is the maximum scaling achievable
for a two-body observable with N2 terms. Moreover,
the estimator variance is minimized at ϕ = π/4, corre-
sponding to the zero crossings of the interference fringes,

FIG. 2. (a) Schematic of the cavity setup. Two ensembles
of atoms, labeled A and B, trapped in a magic-wavelength
optical lattice (gray ellipses) inside a cavity and are initially
prepared in the excited and ground state, respectively. Photons
leak out of the cavity at a rate κ, and atoms in the excited
state can emit photons into free space at a rate γ. (b) The
cavity mode frequency ωC is detuned by ∆ from the atomic
transition frequency ωA, which quantifies the energy difference
between |↓⟩ and |↑⟩. (c) Spin-exchange interactions, described
by the Hamiltonian HC, are mediated by the exchange of
virtual photons through the cavity mode. (d) The atoms
can collectively emit into the cavity mode. This process is
described by the jump operator LΓ.

achieving the QCRB. The bound is characterized by the
QFI

FQ
|ψT⟩ =

4N +N2

3
, (11)

which is derived in Appendix F. The QFI, like the fringe
amplitude, asymptotically exhibits the best possible scal-
ing, deviating only by a factor of three from the funda-
mental HL. Having established that the Lieb-Mattis state
is a desirable state for robust entanglement enhanced
differential sensing we will proceed in the next sections by
describing methods for preparing this state and proxies
of this state in a cavity system.

IV. STATE PREPARATION

We consider a cavity setup as the one depicted in Fig. 2,
where atoms are confined in a deep one-dimensional magic-
wavelength optical lattice within an optical cavity, effec-
tively suppressing their motion along the lattice. A single
cavity mode, characterized by an angular frequency ωC

and power decay rate κ, couples to a long-lived transition
between an excited state |↑⟩ and a ground state |↓⟩ with
single-photon Rabi frequency of 2g. The atomic transition
has an angular frequency ωA and a natural decay rate
γ ≪ κ.
In the far-detuned limit, |∆| = |ωA − ωC| ≫ κ, g

√
N ,

the cavity field can be adiabatically eliminated, while
virtual photons mediate effective unitary interactions be-
tween the atoms, which can be described by the effective
spin Hamiltonian [61]

HC = χ
(
JA+ + JB+

) (
JA− + JB−

)
. (12)
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FIG. 3. (a) The minimized infidelity I = 1 − |⟨ψT|ψTMS(t)⟩|2,
between the target state |ψT⟩ and a state that is generated
by quenching the product state |ψ0⟩ under the two-mode
squeezing Hamiltonian HTMS [Eq. (13)] (blue). The optimal
time required to reach the minimized infidelity for different
atom numbers (orange). (b) Scaling of the estimator variance
of the quenched state |ψ∗

TMS⟩ at the optimal time and phase
ϕ0 = π/4 in comparison to the target state |ψT⟩ and the
standard quantum and HL.

The interaction strength χ = 4g2∆/
(
4∆2 + κ2

)
can be

tuned by changing the detuning ∆. In order to realize a
spin Hamiltonian of this particular form, the atoms need
to couple uniformly to a single cavity mode, which can
be achieved by trapping the atoms in a lattice with the
right spacing or in a ring cavity.
Besides unitary interactions, photons leaking out of

the cavity also lead to dissipation in the form of collec-
tive emission, described by the collective jump operator
LΓ =

√
Γ/2

(
JA− + JB−

)
, where Γ = 4g2κ/

(
4∆2 + κ2

)
.

By increasing the detuning ∆, the ratio Γ/χ can, in prin-
ciple, be made arbitrarily small, thus supressing collective
decay. However, this also reduces the overall interaction
strength χ, eventually making emission into free space,
at rate γ, the dominant source of decoherence. The jump
operator describing free-space emission from the excited

state of atom k is given by L
(k)
γ =

√
γσ

(k)
− , where k in-

dexes the atoms in both ensembles. In practice, one must
therefore choose a detuning that balances the detrimental
effects of collective and free-space emission to minimize
decoherence. The so-called collective cooperativity pa-
rameter, NC = 4Ng2/(κγ), determines the effectiveness
of state preparation in the presence of these effects.

In Section IVA, we discuss two methods for preparing
or approximating the target state by considering only
the unitary part of the cavity Hamiltonian. In contrast,
in Section IVB, we propose an alternative route to gen-

10 100
0

10

20

N

∆̃
2 ϕ
/
∆

2 ϕ
(d

B)

0.1

1

10

100
C

FIG. 4. The optimal estimator variance, denoted as ∆̃2
ϕ, at-

tainable under a quench with the two-mode squeezing Hamil-
tonian while simultaneously being subject to collective and
free-space emission. It is evaluated relative to the ideal vari-
ance achievable in the absence of collective and free-space
emission, denoted as ∆2

ϕ. ∆̃2
ϕ is optimized with respect to

the quench duration and the detuning between the cavity and
the atomic transition frequency. The red dashed line marks
the particle number N at which the standard quantum limit
(SQL) is exceeded for a given single-particle cooperativity C.

erate a proxy of the target entangled state by starting
from a suitably chosen initial product state and directly
employing collective dissipation.

A. Unitary generation of entanglement

An approach to preparing the target state is to initialize
the system in the state |ψ0⟩ = |N4 ,+

N
4 ,

N
4 ,−

N
4 ⟩, where

all atoms in ensemble A are in the excited state, and all
atoms in ensemble B are in the ground state. By adiabat-
ically sweeping a field gradient Hδ(t) = −δ(t)

(
JAz − JBz

)
in addition to the cavity Hamiltonian, from δ/χ≫ 1 to
δ/χ≪ 1, the target state can be prepared with arbitrar-
ily high fidelity, provided the sweep is sufficiently slow
(see Appendix D). This is because the target state cor-
responds to the ground state of the cavity Hamiltonian
when permutation symmetry within each subensemble is
imposed, whereas the inital state is an eigentstate of the
field gradient. However, with decoherence rates compet-
ing with the unitary dynamics, achieving a sweep that
is adiabatic and at the same time fast enough compared
to the decoherence rates requires C ≫ 1. This condition
poses a significant challenge for currently available cavity
systems, which typically operate in the regime C ≈ 1.
A more practical approach in the presence of deco-

herence is to generate a proxy of the target state by
performing a quench using a Hamiltonian of the form

HTMS = χ i
(
JA+J

B
− − JA−J

B
+

)
, (13)

applied to the same initial state |ψ0⟩. This Hamiltonian
can be viewed as the atomic analog of the bosonic Hamilto-
nian responsible for generating two-mode squeezing [53].
Such a Hamiltonian can be implemented by introduc-
ing additional one-axis twisting interactions of the form
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HOAT = χ
(
JAz J

A
z + JBz J

B
z

)
to a spin-exchange Hamilto-

nian. This addition effectively cancels the interactions
within each subensemble, since JK ·JK = JK+ J

K
− +JKz J

K
z

does not generate dynamics when the instantaneous state
is an eigenstate of this operator. In Appendix E, we de-
tail a potential method for realizing this interaction with
multi-level atoms in a cavity. Note that the Hamiltonian
derived in Appendix E is equivalent to the expression in
Eq. (13) up to a rotation generated by J−

z . Specifically,

i
(
JA+J

B
− − JA−J

B
+

)
= e+i

π
4 J

−
z

(
JA+J

B
− + JA−J

B
+

)
e−i

π
4 J

−
z .

Figure 3 (a) illustrates the outcome of a quench de-

signed to minimize the infidelity I = 1− |⟨ψTMS(t)|ψT⟩|2
between the quenched state |ψTMS(t)⟩ = e−iHTMS t |ψ0⟩
and the target state. Notably, the infidelity asymptoti-
cally approaches a finite value of approximately 0.1. It
is worth emphasizing that the quench dynamics under
purely unitary evolution is constrained to happen in a
DFS with N/2 atoms in the excited state, whose dimen-
sion grows linearly with N . Therefore, an exponential
increase in infidelity, as observed in genuine many-body
systems, is not expected. Nevertheless, it is remarkable
that the infidelity asymptotically approaches a finite value
significantly below 1.
An additional encouraging result is that the value of

χ t that minimizes the infidelity, despite lying beyond the
regime of validity of the standard Holstein–Primakoff ap-
proximation [53, 54, 62] still exhibits a linear decrease with
system size, up to a logarithmic correction. Time scales
that decrease as logN/N are beneficial if the unitary in-
teraction competes with spatially uncorrelated noise such
as free-space emission. The optimal sensitivity of the
quenched state is shown in Fig. 3 (b), demonstrating that
it asymptotically has the same scaling as the target state,
differing only by a constant prefactor of approximately
2.2.

In Fig. 4, we analyze the interplay between the unitary
generation of entanglement and the detrimental effects of
noise in the system. This is achieved by optimizing over
the detuning ∆, which governs the ratios Γ/χ and γ/χ,
as well as the quench duration.
For system sizes up to N ≤ 90, the dynamics of two

interacting atomic ensembles subject to both collective
and free-space emission can be simulated by exact diago-
nalization of the Lindblad master equation. This is made
computationally tractable by restricting the evolution to
a Liouville space whose dimension scales as ∝ N6, lever-
aging the permutation symmetry of the free-space decay
jump operators [63–66]. For larger particle numbers, a
viable approach is to employ a Monte Carlo wavefunction
simulation [67].
By optimizing the detuning ∆, a trade-off is achieved

that balances the detrimental effects of both collective and
free-space emission. Our results indicate that, once the
cooperativity-enhanced collective coupling N C is suffi-
ciently large to surpass the standard quantum limit (SQL),
the presence of noise does not alter the scaling behavior of
the estimator variance compared to the noiseless Heisen-
berg scaling. Notably, the deviations manifest solely in

FIG. 5. (a) Collective emission (red curly arrows) evolves the
initial state into a steady state, corresponding to a mixture of
Dicke states located on the lower diagonal of the Dicke state
ladder, characterized by quantum numbers J and M . The
steady-state distribution (orange circles) corresponds to the
probability of projecting the initial state onto a specific |J, 0⟩
state (orange distribution). (b) The probability of projecting
onto a given |J, 0⟩ state, is determined for the initial state
where the atoms in ensemble A are in the excited state and
those in ensemble B are in the ground state. (c) The first

moment, J =
∑

J J p(J), and the second moment, J2 =∑
J J

2 p(J), of the distribution presented in panel (b) are
shown for different atom numbers N , rescaled to highlight
their respective asymptotic scaling. The dashed lines indicate
the prefactors corresponding to the asymptotic scaling.

the prefactor, which increases as C decreases, while the
asymptotic scaling remains seemingly unaffected.

Extrapolating this trend to larger values of N C, we an-
ticipate that an enhancement consistent with Heisenberg
scaling should be achievable in current cavity-based ex-
periments. Furthermore, the performance of this scheme
could be enhanced by dynamically varying the detun-
ing during the quench given that as the instantaneous
state approaches the target state during the evolution,
the detrimental effect of collective emission diminishes.
Consequently, the detuning can be gradually reduced,
thereby also decreasing the ratio γ/χ.
In the next section, we introduce an alternative ap-

proach that circumvents the need to engineer the desired
unitary interactions directly. Instead, we exploit collec-
tive superradiance decay as the mechanism for generating
metrologically useful entanglement.

B. Stochastic preparation of entanglement

Collective emission becomes the dominant dynamical
process when the cavity is tuned close to resonance with
the atomic transition frequency. This strong dissipative
mechanism can be exploited to generate entanglement.
Conceptually, this is akin to the approach in Ref. [68],
although that work instead focused on three-level atoms
and identified states sensitive to a signal encoded by an
operator resembling the two-mode squeezing Hamiltonian



8

HLHL

ρSSρSS

1/F Q1/F Q

SQLSQL

100 101 102 103 104 105

−40

−20

0

N

N
∆

2 ϕ
(d

B)

FIG. 6. The estimator variance of the steady state ρSS
[Eq. (15)], prepared via collective emission, is evaluated at the
optimal phase ϕ = π/4 for various atom numbers N and the
measurement M. The resulting performance is benchmarked
against the QCRB associated with the inverse of the average
QFI [Eq. (17)] of the pure states appearing in the spectral
decomposition of ρSS, as well as against the SQL and the HL.

of Eq. (13).
Collective emission will generate an entangled density

matrix if it acts on the right initial state. Here we will
consider the same initial state |ψ0⟩ = |N4 ,+

N
4 ,

N
4 ,−

N
4 ⟩

as previously. Projecting this state onto the |J, 0⟩
states, which satisfy J · J |J,M⟩ = J(J + 1) |J,M⟩ and
J+
z |J,M⟩ =M |J,M⟩, results in the probability distribu-

tion shown in Fig. 5(b,c),

p(J) =
∣∣⟨J, 0|N4 ,+N

4 ,
N
4 ,−

N
4 ⟩

∣∣2
≈ 2J + 1

N/2 + 1

(
N + 2− J

N + 2 + J

)J+1

, (14)

where the approximation is valid in the limit of asymptot-
ically large N . Figures 5(b,c) further illustrate that, for
large N, the distribution becomes asymptotically centered
at a value scaling ∝

√
N , with a standard deviation that

also scales ∝
√
N . This means that the distribution has

a small but finite probability to be in the target state but
generally skewed towards small but non-zero values of J .

This probability distribution contains all the necessary
information to describe the steady state under collective
emission sketched in Fig. 5(a). This follows from the fact

that the jump operator LΓ =
√
ΓJ− commutes with J ·J ,

which ensures that the J quantum number distribution
remains invariant under the evolution and merely reduces
M , since J− |J,M⟩ ∝ |J,M − 1⟩. Consequently, each
|J,M⟩ state decays into the corresponding state with the
minimal number of excited state atoms, |J,−J⟩. The
resulting steady state is therefore given by

ρSS =

N/2∑
J=0

p(J) |J,−J⟩ ⟨J,−J | . (15)

The steady state corresponds to a mixture of |J,−J⟩
states, which all possess a large QFI for differential phase
sensing:

FQ
|J,−J⟩ =

4N +N2 − 8J − 4J2

3 + 2J
(16)

at ϕ = π/4 if J ≪ N , see Appendix F. Furthermore, the
states |J,−J⟩ correspond to the Lieb-Mattis ground state
when the Lieb-Mattis Hamiltonian is projected onto a
DFS with N/2− J atoms in the excited state.
Figure 6 shows that, in the vicinity of the optimal

phase ϕ = π/4, the estimator variance for the steady state
exhibits a scaling behavior closely matching the QCRB
for the corresponding mixed state (see Appendix G),

1

∆2
ϕ

≤ FQ =
∑
J

p(J)FQ
|J,−J⟩. (17)

Numerical calculations reveal asymptotic scaling expo-
nents of −0.50 for the variance and −0.51 for the bound,
both corresponding to the same scaling as the state
|J,−J⟩ where J is the J that is closest to the mean
value

∑
J J p(J).

We draw attention to another opportunity that be-
comes particularly relevant when the time required to
prepare the initial state is short compared to the phase
accumulation time. In this regime, measuring the pho-
tons leaking out of the cavity is advantageous, because
these photons reveal which state |J,−J⟩ has been pre-
pared. With this information, one can restart the state
preparation process if the detected photon count is too
high (i.e., the J quantum number of the stochastically
prepared state is too large). While this procedure can
reduce the estimator variance, its effectiveness strongly
depends on the relative timescales of the state preparation
and the phase accumulation, as well as on the photon
count threshold chosen to discard a prepared state.

In Fig. 7, we analyze the influence of free-space emission
on the stochastic state preparation process. In the near-
resonant bad cavity regime NΓ ≈ NCγ, an increase in
collective cooperativity enhances the favorable collective
emission relative to the detrimental free-space emission
rate. Notably, the scaling of the estimator variance re-
mains largely unaffected even as cooperativity decreases.

If this trend persists for larger systems, it suggests that
significant improvements beyond the standard quantum
limit could be realized for ensembles of a few hundred
atoms. Such improvements appear feasible for coopera-
tivity values around C ≈ 0.4, which are within reach of
current experimental setups [61, 69].

Another notable advantage of the stochastic state prepa-
ration process is its robustness to fluctuations in the
number of atoms within the subensembles. Assuming
a fixed total number of atoms with an imbalance of
N I = |NA − NB |, the probability distribution satisfies
p(J ′) = 0 for J ′ < N I, while the proportions of the
distribution remain similar for J ′ > N I. This can be
understood as a consequence of the reduced number of
atoms available in one of the ensembles to form singlet
pairs. As a result, the unpaired atoms relax to the ground
state, leading to a reduction in the total number of excited
atoms in the steady state.

Consequently, as long as the imbalance satisfies N I ≪√
N , no significant increase in the estimator variance is

expected. Additionally, this scheme benefits from the
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FIG. 7. The optimal estimator variance attainable under
stochastic entanglement generation, while being subject to
free-space emission, denoted as ∆̃2

ϕ, is evaluated relative to
the variance achievable in the absence of free-space emission,
denoted as ∆2

ϕ. ∆̃2
ϕ is optimized with respect to the duration

for which the initial state |ψ0⟩ undergoes collective and free-
space emission. The red dashed line marks the particle number
N at which the standard quantum limit (SQL) is exceeded for
a given single-particle cooperativity C.

fact that the time required to reach the steady state is
not a fine-tuned parameter dependent on specific particle
numbers.

V. OUTLOOK

In this work, we have investigated entanglement-
enhanced sensing of a phase difference encoded in two
atomic ensembles. By leveraging the concept of a DFS,
we have analyzed an interferometric scheme that is intrin-
sically robust against common-mode phase fluctuations.
Furthermore, we have identified a specific quantum state
which, when combined with an appropriate measurement
strategy, yields an estimator variance that scales at the
Heisenberg limit, while being robust to commonly encoun-
tered noise sources. This state is a superposition of all
possible permutations of states in which each atom in
ensemble A forms a singlet pair with an atom in ensemble
B. A key advantage of this state is its resilience to local
errors: a single local error merely projects one of the
singlet pairs into a trivial state, whereas, in the case of
a maximally entangled GHZ-state, a single local error
would collapse the entire many-body state into a trivial,
unentangled state.

Having established this state as the optimal target for
robust entanglement-enhanced sensing, we have proposed
and analyzed two state preparation protocols that exploit
cavity-mediated entanglement to approximate the target
state. The first protocol relies on an interaction that can
be interpreted as a bosonic two-mode squeezing interac-
tion, which for example can be realized using multilevel
alkaline-earth atoms, as described in Appendix E.
The second protocol stochastically generates an en-

tangled density matrix via collective emission into the
cavity mode. While this approach does not achieve an

estimator variance scaling at the HL, it still offers an
improvement over the SQL by a factor scaling as 1/

√
N .

Which surpasses the scaling achievable with two inde-
pendently spin-squeezed ensembles in the presence of
dominant common-mode noise. Notably, this method is
directly implementable in current cavity-based experimen-
tal setups and is expected to exhibit robustness against
fluctuations in the atom number difference between the
two ensembles at the level of

√
N .

Additionally, we have evaluated the impact of collec-
tive and free-space emission on both preparation schemes.
Our analysis indicates that while these decoherence mech-
anisms increase the prefactor of the estimator variance,
they do not affect its fundamental scaling. For collec-
tive cooperativity values achievable in state-of-the-art
experiments, a substantial enhancement beyond the SQL
remains feasible.

While our discussion has focused on a cavity-based
setup, where entanglement can be generated instanta-
neously between any pair of particles, a natural extension
of this work is the consideration of systems with finite-
range interactions. Such interactions naturally arise in a
variety of quantum sensing platforms, including optical
lattice [70] or tweezer clocks [35], trapped ions [71], and
Rydberg atoms [72, 73]. In Appendix C, we discuss a
finite-range Hamiltonian that serves as a parent Hamilto-
nian for the target state, raising the question of whether
such a Hamiltonian can be experimentally realized and
whether its ground state can be prepared, for instance
by an adiabatic ramp or a quench. Other directions
to explore are variational methods using parameterized
quantum circuits to prepare the ground state, thereby
minimizing the achievable estimator variance [74–76] or
methods that use mid-circuit measurements and feedback
[77].

Extending differential phase to frequency estimation, is
relevant for many practical applications. The precision of
such frequency estimates improves with an extended inter-
rogation time, during which the atoms interact with the
frequency signal. A fundamental limitation to arbitrarily
increasing this interrogation time is the finite lifetime of
the excited state. To circumvent this constraint, one could
employ pairs of fermionic atoms prepared in a dark state,
where emission into free space is strongly suppressed [78].
By replacing each sensor atom with such a dark-state pair,
this approach effectively removes the fundamental limit
on interrogation time, thereby enabling unprecedented
sensitivity in differential frequency estimation.

Another promising avenue for future extensions involves
applying continuous measurement protocols [79–82], in
which for example the photons leaking from the cavity
are monitored in real time while the differential phase
is simultaneously encoded onto the atomic system. This
approach could offer additional pathways to surpass clas-
sical sensing limits by continuously tracking the phase
evolution.
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FIG. 8. The Fisher information in Eq. (A2) is evaluated at the
phase ϕ that maximizes the Fisher information for a sensor
network comprising two coherent spin states (CSS) and two
spin-squeezed states (SSS). In the case of spin-squeezed states,
the Fisher information is further optimized over the degree
of spin squeezing. The dotted lines represent the asymptotic
scaling of the Fisher information in the limit of large atom
numbers N . The dashed green line corresponds to the funda-
mental Heisenberg limit, given by F ≤ N2.
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Appendix A: Separable strategies

In this section, we establish the limits on sensing the
differential phase using two spin ensembles, with no en-
tanglement shared between them but allowing for spin
squeezing within each ensemble. To achieve this, we em-
ploy the classical Fisher information, which provides a
lower bound on the sensitivity of any unbiased estima-
tor. This bound, in turn, applies to specific estimation
strategies, such as ellipse fitting [2, 11, 20, 21, 26–31].

We examine two scenarios. In the first scenario, both
ensembles are initialized in a coherent spin state, denoted

as |ψCSS⟩ = e−i
π
2 Jy |N4 ,−

N
4 ,

N
4 ,−

N
4 ⟩, where all spins are

aligned along the x-axis. In the second scenario, the
ensembles are prepared in spin-squeezed states using the
one-axis-twisting interaction [33], represented as |ψSSS⟩ =
e−iνJxe−iµ(J

A
z J

A
z +JB

z J
B
z ) |ψCSS⟩, where the parameter ν is

chosen such that the direction of the squeezed variance is
along the y-axis.

Next, the phase ϕ is encoded onto the respective states

according to |ψϕ⟩ = e−iϕJ
−
z |ψ⟩. Since both states are not

confined to a DFS, it is necessary to account explicitly
for random fluctuations of the common phase. This is
achieved by considering a density matrix of the form

ρϕ =
1

2π

∫ 2π

0

dΦ e−iΦJ
+
z |ψϕ⟩ ⟨ψϕ| e+iΦJ

+
z . (A1)

Here, J−
z and J+

z are the operators associated with the
differential and common phases, respectively. Since these
operators commute, their effects can be treated consecu-
tively.
The final step of the interferometric sequence involves

applying a π/2-pulse around the x-axis and independently
measuring the population imbalance, MA and MB, of
each ensemble independently. The conditional probability
of observing a specific population imbalance, given the
encoded differential phase ϕ, is expressed as

p(MA,MB |ϕ) = tr
[
ΠMA,MB e−i

π
2 Jxρϕe

+i
π
2 Jx

]
, (A2)

where ΠMA,MB = |N4 ,M
A, N4 ,M

B⟩ ⟨N4 ,M
A, N4 ,M

B | is
the projection operator onto the state characterized by
the specified population imbalances.

The classical Fisher information, derived from the con-
ditional probability distribution, is given by

F =
∑

MA,MB

(
∂
∂ϕp(M

A,MB |ϕ)
)2

p(MA,MB |ϕ)
(A3)

and serves as a lower bound for the estimator variance in
Eq. (2), as established by the Cramér-Rao bound (CRB),
∆2
ϕ ≥ 1/F , which is a tighter version of the QCRB that

explicitly depends on the measurement. It is important
to emphasize that the CRB derived here represents a
fundamental lower bound for any unbiased ellipse-fitting
method. However, achieving this bound with a maximum
likelihood estimator would require precise knowledge of
the probability distribution p(MA,MB |ϕ), which may be
challenging to obtain experimentally. Nonetheless, the
Fisher information provides a meaningful benchmark for
evaluating the performance of the measurement protocols
discussed in the main text.

In Fig. 8, the inverse Fisher information for two coherent
spin states initially exceeds the standard quantum limit
but asymptotically approaches the SQL as N becomes



11

|ψT⟩|ψT⟩

ρSSρSS

−0.1 0 0.1

−10

0

ϕ/π

N
∆

2 ϕ
(d

B)

FIG. 9. Estimator variance associated with measuring the
number of photons emitted from the cavity after the phase
has been encoded, evaluated for both the target state |ψT⟩
and the steady state resulting from collective emission ρSS of
a system of N = 128 atoms. The dashed lines indicate the
corresponding QCRBs.

large. Whereas, independently squeezing the individ-
ual ensembles enables surpassing the standard quantum
limit; however, the presence of common phase fluctua-
tions diminishes the potential benefits of spin squeezing.
In the absence of common phase noise, spin squeezing
generated via the one-axis twisting Hamiltonian provides
an improvement over the standard quantum limit, with
an asymptotic scaling of N−2/3 [33]. To determine the
asymptotic scaling behavior in the presence of phase noise,
we fit the inverse Fisher information optimized over the
squeezing strength. The resulting scaling exponent, rep-
resented by the dashed blue line in Fig. 8, is found to
be −0.35, which is in agreement with the previously re-
ported exponent of −1/3 obtained from ellipse fitting [36].
This notably smaller scaling exponent arises from the fact
that the measurement variance of a spin-squeezed state is
reduced only for specific phase values, while it increases
for others. The presence of random common phase fluctu-
ations leads to a situation where measurement variance
is averaged over all phase values. In order to compensate,
the optimal amount of squeezing is smaller than in the
noiseless case.

This underscores the advantages of a sensor operating
within a DFS, where scaling as favorable as N−1 can
be achieved. Even in the most experimentally realistic
scenario, where entanglement is generated via collective
emission, the achieved scaling of N−1/2 significantly out-
performs the scaling of two independently squeezed en-
sembles.

Appendix B: Measurement

Since the implementation of the optimal measurement
specified in Eq. 6 is not straightforward, we propose an
alternative measurement scheme capable of saturating
the CRB. Specifically, we consider a scenario in which the
cavity is suddenly tuned into resonance with the atomic
transition frequency (i.e., quenched) after the phase has
been encoded in the quantum system. In this regime,

the dynamics are dominated by collective emission de-
scribed by the jump operator LΓ. Each quantum jump
corresponds to the emission of a photon from the cavity.
Assuming that all photons leaking from the cavity are de-
tected until the atomic system reaches a steady state with
respect to LΓ, this measurement effectively corresponds
to observing the diagonal spin operator

O = (J +M) |J,M⟩ ⟨J,M | , (B1)

which is diagonal in the |J,M⟩ basis. This interpretation
arises from the fact that a state |J,M⟩ decays to |J,−J⟩
via the emission of J +M photons, which, in the bad
cavity limit, are rapidly lost and can thus be detected as
they exit the cavity.
The estimator variance corresponding to the measure-

ment of the number of photons leaking from the cavity
is shown in Fig. 9. For both the target state and the
steady state resulting from collective emission, the QCRB
is saturated at ϕ = 0. A limitation of this measurement
scheme, however, is that at ϕ = 0, the target state is an
eigenstate of the measurement operator and the steady
state is a mixture of eigenstates. Therefore in this limit,
both the numerator and denominator of the estimator
variance vanish, making the sensor particularly vulner-
able to additional noise in the system which overwrites
the vanishing numerator and results in a large estimator
variance.

Remarkably, the target state exhibits a finite interval
of phase values around ϕ = 0 where the QCRB is still
saturated, indicating that the sensor can be operated
away from ϕ = 0 while retaining optimal sensitivity. In
contrast, the steady state also achieves the QCRB at
ϕ = 0, but lacks such a robust phase interval. Therefore,
in practical implementations, one must trade off some
sensitivity in favor of operating at a reference phase where
the measurement is less susceptible to residual noise.

In conclusion, while photon counting via cavity leakage
allows the QCRB to be saturated, the limited robustness
of this measurement to external noise motivates the im-
plementation of the true optimal measurement scheme
for enhanced performance.

Appendix C: Lieb-Mattis Hamiltonian

In this section, we discuss the parent Hamiltonian of
the target state Eq. (8) which is commonly referred to as
the Lieb-Mattis Hamiltonian [83]

HLM = 2χJA · JB

= χ
(
J · J − JA · JA − JB · JB

)
, (C1)

The Lieb-Mattis Hamiltonian serves as a compelling and
exactly solvable toy model for investigating ferromag-
netism on a square lattice and exploring the mechanism
of spontaneous symmetry breaking. As shown in the sec-
ond line of Eq. (C1), its ground state is characterized by
maximizing the expectation values JK · JK within each
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ensemble while minimizing the expectation value of J · J ,
ultimately yielding a unique state. This ground state
can also be interpreted as a superposition of a continuum
of Néel states, each pointing with equal probability in
all possible directions on the Bloch sphere [84]. In the
thermodynamic limit, this symmetry is spontaneously
broken [83]. However, in finite systems, the symmetry
can be explicitly broken by a perturbation, such as the
phase-encoding Hamiltonian J−

z , which selects a single
Néel state from the continuum of Néel states pointing in
different directions.

If the system is restricted to a different DFS, or equiv-
alently to an eigenspace of J+

z with eigenvalue M ̸= 0,
the Lieb-Mattis ground state within this subspace corre-
sponds to the simultaneous eigenstate of J · J and J+

z ,
||M |,M⟩. These states are uniquely defined under the
condition that the expectation value of JK · JK is maxi-
mized. Notably, the estimator variance Eq. (2) for any of
these states, in conjunction with a measurement of the
optimal two-body observable Eq. (6), achieves the QCRB
for ϕ = π/4. The QFI for these states is given by

FQ
||M |,M⟩ =

4N +N2 − 8M − 4M2

3 + 2M
, (C2)

which exhibits Heisenberg scaling when M ≪ N . A
derivation of this expression for the QFI can be found in
Appendix F.

To find a parent Hamiltonian for the target state, it is
not strictly necessary to have infinite-range interactions.
Instead, it suffices to consider a bipartite lattice model in
any dimension, in which nearest-neighbor sites belong to
different sublattices, while next-nearest neighbors belong
to the same sublattice. The J1-J2 Hamiltonian

HJ1−J2 = J1
∑
⟨i,j⟩

σ(i) · σ(j) − J2
∑

⟨⟨i,j⟩⟩

σ(i) · σ(j) (C3)

is a parent Hamiltonian of the target state, provided that
the ratio of nearest-neighbor to next-nearest-neighbor
interaction strengths satisfies J1/J2 ≪ 1. Here the sum-
mation indices ⟨i, j⟩ and ⟨⟨i, j⟩⟩ denote sums over all
nearest-neighbor and next-nearest-neighbor pairs, respec-
tively.
Each term in the J1-J2 Hamiltonian commutes with

J · J , ensuring that the ground state is an eigenstate of
J · J . However, the nearest-neighbor interactions do not
commute with JA ·JA or JB ·JB , implying that the fully
permutation-symmetric state within each subensemble is
not the ground state unless J1/J2 ≪ 1. In that regime,
the J1-J2 Hamiltonian approximately commutes with
JA ·JA and JB ·JB , causing the ground state to converge
to the target state.

Appendix D: Adiabatic preparation

In this section, we provide additional intuition for the
adiabatic sweep, which is implemented using the cavity
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FIG. 10. Energy gap between the ground and first excited
state of the Hamiltonian H = χ
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for N = 1024 atoms.

Hamiltonian from Eq. (12) in combination with a time-
dependent field gradient that is ramped off during as a
function of the ramp time t. The resulting Hamiltonian is

Had(t) =χ
(
JA+ + JB+

)(
JA− + JB−

)
− δ(t)

(
JAz − JBz

)
. (D1)

and enables the adiabatic preparation of the target state.
This state corresponds to the unique ground state of
the Lieb-Mattis Hamiltonian introduced in Eq. (C1))
HLM = J+J− + J2

z − JA · JA − JB · JB. The terms
J2
z ,J

A ·JA,JB ·JB , which are required to transform the
cavity Hamiltonian into the parent Hamiltonian, commute
with all components of the cavity Hamiltonian. Moreover,
both the initial state and the final state are eigenstates of
these operators with identical eigenvalues. Consequently,
these terms do not need to be explicitly included during
the adiabatic sweep to achieve the desired target state.
The speed at which the adiabatic sweep can be per-

formed depends on the instantaneous energy gap of the
Hamiltonian to the state closest in energy that shares the
same symmetries as the cavity Hamiltonian and the initial
state. In the two limits δ/χ ≫ 1 and δ/χ ≪ 1, the gap
between the ground and first excited state is independent
of N and scales with 2δ and 2χ respectively, see Fig. 10.
To ensure the success of the sweep, its speed must be
small compared to these energy scales while remaining
sufficiently fast to avoid perturbations such as free-space
or collective emissions that could take the system out of
the symmetry subspace. However, achieving this balance
poses challenges under typical cavity parameters that rely
on the collective cooperativity NC and not just C.

Appendix E: Realizing a two-mode squeezing
interaction with multi-level alkaline earth atoms

In this section, we present a potential implementation of
the two-mode squeezing interaction described by Eq. (13).
Our focus is on alkaline-earth atoms with large nuclear
spin, such as 87Sr. We select the nuclear spin quantization
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FIG. 11. Level scheme for generating the two-mode squeezing
interaction between two atomic ensembles, A and B, mediated
by a cavity. (a) Π-polarized light facilitates spin-exchange
interactions among all atoms, as described by Eq. (12). The
atoms in ensemble A are initially prepared in the |eA1 ⟩ state,
while those in ensemble B are initialized in the |gB1 ⟩ state.
(b) Resonant driving to auxiliary levels, whose energies are
shifted relative to one another, combined with Σ-polarized
light, induces effective interactions within each ensemble. This
intra-ensemble interaction modifies the global spin-exchange
dynamics and gives rise to the desired two-mode squeezing
interaction described by Eq. (13). (c) The effective spin-1/2
states of ensemble A are |↑A⟩ = |eA1 ⟩ and the hybridized state

|↓A⟩ = |−A⟩ =
|gA⟩−|eA2 ⟩√

2
and |↓B⟩ = |gB1 ⟩ and |↑B⟩ = |−B⟩ =

|gB2 ⟩+|eB⟩√
2

.

axis to be perpendicular to the cavity axis, so that the lin-
early polarized light (Π) and horizontally polarized light
(Σ) drive different transitions between the ground and
excited-state manifolds. To realize the desired interaction,
we isolate three hyperfine states from the ground-state
manifold, denoted as |gA⟩ , |gB1 ⟩, and |gB2 ⟩, along with
three states from the excited-state manifold, labeled |eA1 ⟩,
|eA2 ⟩ and |eB⟩, as illustrated in Fig. 11. The subscripts
A and B indicate that atoms in ensemble A exclusively
occupy states labeled with A, while atoms in ensemble B
are restricted to states labeled with B. The isolation of
these energy levels is achieved through appropriate Zee-
man and AC Stark shifts. The energy splitting between
the isolated ground and excited states is given by ωA,
except for the state |eA2 ⟩, which experiences an additional
shift δ relative to |eA1 ⟩ and |eB⟩.
As sketched in Fig. 11(a), the atoms in ensemble A

are prepared in state |eA1 ⟩, while those in ensemble B are
initialized in state |gB1 ⟩. The linearly polarized cavity
mode drives transitions |gA⟩ ↔ |eA1 ⟩ and |gB1 ⟩ ↔ |eB⟩.
When the cavity is sufficiently far detuned ∆ = ωC−ωA ≫
g
√
N , the cavity mode can be adiabatically eliminated

and the unitary evolution of the spins is described by
the Hamiltonian in Eq. (12). The underlying process is
sketched in Fig. 11(a) where an excited state atom decays
to the ground state and emits a linearly polarized photon
which can be absorber by a ground-state atom in the same

or the other ensemble leading to the desired spin-exchange
between ensembles but also the undesired spin-exchange
between atoms in the same ensemble.

To mitigate the latter effect, we drive the transitions
|gA⟩ ↔ |eA2 ⟩ and |gB⟩ ↔ |eB⟩ using two lasers with equal
Rabi frequency Ω. Additionally, the state |eA2 ⟩ is shifted
by an energy δ relative to the other excited states. This ad-
ditional detuning ensures that vertically polarized photons
that drive the same transitions are reabsorbed exclusively
by atoms within the same ensemble, thereby inducing
effective interactions of the form JAz J

A
z and JBz J

B
z , while

suppressing any unwanted inter-ensemble interactions.

To derive this formally we consider the combined system
of atoms and the cavity, which is described by an atomic
Hamiltonian HA, light Hamiltonian HL, and atom-light
Hamiltonian HAL. In a rotating frame where |eA1 ⟩ →
e−iωAt |eA1 ⟩, |eA2 ⟩ → e−i(ωA+δ)t |eA2 ⟩, |eB⟩ → e−iωAt |eB⟩,
and aP → eiωAtaP , the Hamiltonians are

HA =Ω

(
|gA⟩ ⟨eA2 |+ |gB2 ⟩ ⟨eB |+ h.c

)
, (E1)

HL = ∆
∑

P=Σ,Π

a†PaP , (E2)

and

HAL = g

(
eiδta†Σc

eA2
gA

|gA⟩ ⟨eA2 |+ a†Σc
eB

gB2
|gB2 ⟩ ⟨eB |

+ a†Πc
eA2
gA

|gA⟩ ⟨eA1 |+ a†Πc
eB

gB1
|gB1 ⟩ ⟨eB |

+ h.c.

)
. (E3)

Here ∆ = ωC − ωA, a
†
P is the creation operator of a

photon in the respective polarization mode, and cβα are
the Clebsh-Gordan coefficients between the states |α⟩ and
|β⟩.
In the following, we consider the dressed-state basis

defined by |±A⟩ = (|eA2 ⟩ ± |gA⟩)/
√
2 and |±B⟩ = (|eB⟩ ±

|gB2 ⟩)/
√
2. In this basis, the atomic Hamiltonian takes

the form

HA = Ω
(
|+A⟩ ⟨+A| − |−A⟩ ⟨−A|

+ |+B⟩ ⟨+B | − |−B⟩ ⟨−B |
)
. (E4)

Finally, we express the atom-light interaction Hamiltonian
in an interaction picture with respect to HA and HL,
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which yields
√
2
g H

I
AL =a†Πc

eA1
gA

|−A⟩ ⟨eA1 | e−i(∆−Ω)t+

a†Πc
eB

gB1
|gB1 ⟩ ⟨+B | e−i(∆−Ω)t+

a†Σc
eA2
gA
e−i(∆+δ)t

√
2

(
|+A⟩ ⟨+A| −

|−A⟩ ⟨−A|
)
+

a†Σc
eB

gB2
e−i∆t

√
2

(
|+B⟩ ⟨+B | −

|−B⟩ ⟨−B |
)
+

+ h.c, (E5)

where off-resonant terms that oscillate at frequencies Ω +
∆, ∆− 2Ω, and ∆ + 2Ω are omitted.

Identifying the collective spin operators discussed
in the main text as JA− =

∑
i |−A⟩i ⟨eA|, JB− =∑

i |gB1 ⟩ ⟨+B |, JAz =
∑
i
|eA⟩i⟨e

A|−|−A⟩i⟨−
A|

2 , and JAz =∑
i
|+B⟩i⟨+

B |−|gB⟩i⟨g
B |

2 and adiabatically eliminating the
two cavity modes yields an effective many-body spin
Hamiltonian of the form

Heff = g2

2(∆−Ω) |c
eA1
gA

|2
(
JA− + JB−

) (
JA+ + JB+

)
+

g2

∆ |ce
A
2

gA
|2
(
JAz +

N

4

)2

+

g2

∆+δ |c
eB

gB2
|2
(
JBz +

N

4

)2

, (E6)

where we have assumed that |ce
A
1

gA
|2 = |ceB

gB1
|2 and that the

number of atoms in both ensembles is exactly the same.
The final step is to identify hyperfine states and laser pa-

rameters for which g2

2(∆−Ω) |c
eA1
gA

|2 = g2

∆ |ce
A
2

gA
|2 = g2

∆+δ |c
eB

gB2
|2,

such that the effective spin Hamiltonian simplifies to

Heff = g2

2(∆−Ω) |c
eA1
gA

|2
(
JA−J

B
+ + JA+J

B
− + JA · JA+

JB · JB +
N

2

(
JAz − JBz

) )
. (E7)

By adding an additional field gradient between the two en-
sembles and assuring that permutation invariance within
the subensembles is maintained during the dynamics this
yields the Hamiltonian of Eq. (13) up to a π/4-rotation
under the phase encoding generator.
As a concrete example, we consider the states

|gA⟩ , |gB1 ⟩, and |gB2 ⟩ to correspond to the 9/2,−9/2,
and −7/2 levels of the 1S0 manifold of 87Sr. Simi-

larly, we assign the excited states |e⟩A1 , |e⟩
A
2 , and |eB⟩

to the 9/2, 11/2, and −9/2 levels of the 3P1 manifold,
respectively. Furthermore, by choosing ∆ = (9/8)Ω and

δ = (1/4)Ω, the condition g2

2(∆−Ω) |c
eA1
gA

|2 = g2

∆ |ce
A
2

gA
|2 =

g2

∆+δ |c
eB

gB2
|2 is satisfied.

Appendix F: Analytic expressions for |J,M⟩ states

In this section, we explicitly derive the QFI and other
expectation values for the |J,M⟩ states, which exhibit
permutational symmetry within the two subensembles.
To achieve this, it is convenient to represent the generator
of phase encoding in the |J,M⟩ basis as follows:

J−
z =

N/2∑
J=1

J∑
M=−J+1

√
(J2−M2)((N/2+1)2−J2)

4J2−1

×
(
|J − 1,M⟩ ⟨J,M |+ h.c.

)
. (F1)

In this basis, the generator of phase encoding establishes
couplings between states with the same M but J differing
by one.

From this expression, it is straightforward to verify that
the QFI for the state |J,M⟩ is given by

FQ
|J,M⟩ =4

(
⟨J,M |J−

z J
−
z |J,M⟩ − ⟨J,M |J−

z |J,M⟩2
)

=
12M2 + 8J(1 + J)(J + J2 −M2 − 1)

3− 4J(1 + J)

+
(1− 2J(1 + J) + 2M2)

3− 4J(1 + J)
(N2 + 4N). (F2)

This result simplifies to the expression in Eq. (C2) when
J is replaced by |M |.
The expectation values of the measurement operator,

given by Eq. (6), can be computed in the transformed
frame with respect to the phase encoding. This is achieved
using identities such as J+J− = J ·J−JzJz and leveraging
the fact that the states |J,M⟩ are eigenstates of the
operators J · J , Jz,JK · JK for K = A,B. The final
expression for the measurement expectation value is

⟨J,M |Mϕ |J,M⟩ / cos(2ϕ) (3− 4(4J(J + 1)))

=J(J + 1)
(
2 +M2 − 3J(J + 1)

)
+
(
J2 + J +M2 − 1

) (
N2/4 +N). (F3)

Notably, the measurement expectation value for any
values of J and M is proportional solely to cos(2ϕ).

For the Lieb-Mattis ground state within a given J+
z

eigenspace, this expression further simplifies to

⟨|M |,M |Mϕ ||M |,M⟩ / cos(2ϕ)

=
(M + 1)(2M −N)(2M +N + 4)

8M + 12
. (F4)

This result highlights that, eigenspaces where |M | ≪ N ,
the fringe amplitudes of the measurement operator M
scale quadratically with N . This scaling makes these
states particularly promising candidates for robust sensing
applications.
Similarly, the expression for ⟨J,M |M2

ϕ |J,M⟩ can
be derived following the same procedure. However,
the resulting expression is too extensive to be pre-
sented here. Instead, we focus on its dependence on
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ϕ, which takes the form ⟨J,M |M2
ϕ |J,M⟩ = α(N, J,M)+

β(N, J,M) cos(4ϕ). The general expressions for the real
coefficients α(N, J,M) and β(N, J,M) simplify to

α(N, |M |,M)
32(3 + 2M)(5 + 2M)

(1 +M)(2M −N)(4 + 2M +N)

=4(1 +M)(−4 +M +M2)

− 4(2 +M)N − (2 +M)N2, (F5)

β(N, |M |,M)
32(3 + 2M)(5 + 2M)

(1 +M)(2M −N)(4 + 2M +N)

=(2 +M)(2 + 2M −N)(6 + 2M +N), (F6)

for the Lieb-Mattis ground states in different eigenspaces
of J+

z .

Substituting the expressions from Eqs. (F4, F5, F6) into
the estimator variance defined in Eq. (2), it can be shown
that the estimator variance is minimized at ϕ = π/4.
Furthermore, under this condition, the estimator variance

saturates the QCRB, which is defined in terms of the QFI
given in Eq. (C2).

Appendix G: Average quantum Fisher information

In this section, we discuss a condition under which the
convex sum of the QFI of the pure states appearing in the
spectral decomposition of a density matrix coincides with
the QFI of the density matrix itself. The QFI of a mixed
state with spectral decomposition ρ =

∑
i pi |ψi⟩ ⟨ψi|

which is not full rank is given by [85]

FQ
ρ =

∑
i

piF
Q
|ψi⟩ −

∑
i ̸=j

8pipj
pi + pj

∣∣⟨ψi| J−
z |ψj⟩

∣∣2 . (G1)

For the density matrix in Eq. (15), the states |ψJ⟩ =
|J,−J⟩ which represent the spectral decomposition satisfy
⟨ψi| J−

z |ψj⟩ = 0 for all i, j. Thus the QFI coincides with
the average QFI with respect to the probability p(J), see
Eq. (17). In general the average QFI is just an upper
bound to the actual QFI of a density matrix [86].
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