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Studying high-energy collisions of composite
particles, such as hadrons and nuclei, is an out-
standing goal for quantum simulators. However,
preparation of hadronic wave packets has posed
a significant challenge, due to the complexity of
hadrons and the precise structure of wave pack-
ets. This has limited demonstrations of hadron
scattering on quantum simulators to date. Ob-
servations of confinement and composite exci-
tations in quantum spin systems have opened
up the possibility to explore scattering dynam-
ics in spin models. In this article, we develop
two methods to create entangled spin states cor-
responding to wave packets of composite par-
ticles in analog quantum simulators of Ising
spin Hamiltonians. One wave-packet prepara-
tion method uses the blockade effect enabled
by beyond-nearest-neighbor Ising spin interac-
tions. The other method utilizes a quantum-
bus-mediated exchange, such as the native spin-
phonon coupling in trapped-ion arrays. With
a focus on trapped-ion simulators, we numeri-
cally benchmark both methods and show that
high-fidelity wave packets can be achieved in
near-term experiments. We numerically study
scattering of wave packets for experimentally
realizable parameters in the Ising model and
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find inelastic-scattering regimes, corresponding
to particle production in the scattering event,
with prominent and distinct experimental sig-
nals. Our proposal, therefore, demonstrates
the potential of observing inelastic scattering in
near-term quantum simulators.

1 Introduction
A complete understanding of why the strong force in na-
ture confines ‘color’ charges, e.g., quarks and gluons, is
still lacking. Decades of theoretical and numerical stud-
ies have continued to shed light on the mechanism of
confinement [1]. Most existing studies examine confine-
ment in static equilibrium settings, with the prominent
example being the determination of the static poten-
tial between non-dynamical quarks using lattice-gauge-
theory methods [2]. These studies establish a linearly
rising confining potential as a function of the distance
between the charges [3–5]. They also point to the pres-
ence of gluon flux tubes, i.e., strings, between these
quarks [6–9]. Nonetheless, confinement and evolution
of strings likely also play an important role in non-
equilibrium physics of strong interactions. This, how-
ever, is much harder to study using current classical nu-
merical methods. To eliminate reliance on predictions
based on phenomenological low-dimensional models [10]
or on perturbative approaches with limited applicabil-
ity [11], a first-principles approach based on the Stan-
dard Model of particle physics is needed. Hamiltonian
simulation of real-time dynamics, enabled by quantum
simulators, offers a promising route toward this overar-
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Figure 1: Scattering of meson wave packets. (a) Kinks, which are neighboring pairs of anti-aligned spins, can form bound and
unbound two-kink states, as determined by the model parameters. We are interested in studying the scattering of bound two-kink
states, called mesons, at fixed values of the transverse field hz. Bound two-kink states form stable quasi-particles while unbound
two-kink states form unstable quasi-particles that decay into multi-particle states. Two-kink spin configurations at hz = 0 can be
labeled by the distance ℓ between the pair of kinks in the chain. We then define a critical separation ℓc, determined by the model
parameters, such that the hz = 0 spin configurations with two kinks separated by ℓ < ℓc (ℓ ≥ ℓc) are adiabatically connected to
bound (unbound) two-kink states at a given hz. Here, an unbound two-kink state is depicted as two isolated purple points and
a bound two-kink state (meson) is depicted as blue points joined by a spring. (b) An illustration of the creation of localized spin
excitations on top of the ground state of the model with Ĥ ′ = 0 [see Eq. (1)], distributed according to a wave-packet profile.
Darker shades of blue correspond to later stages of the evolution. (c) Propagation and collision of meson wave packets resulting
in elastic scattering (blue) and inelastic scattering into an unbound two-kink state (purple). (d) Elastic scattering of two incoming
1-meson wave packets into two outgoing 1-meson wave packets. (e) Inelastic scattering between two 1-mesons scattering into two
unbound kinks moving away from each other (expanding the purple region). The gradient regions in (d) and (e) from white to gray
at early times mark adiabatic ramps from Ĥ0 to Ĥ. These ramps prepare (dressed) 1-meson wave packets in the full interacting
model from the (bare) wave packets of the free model with only Ĥ0. The gradient regions back from gray to white at late times
mark the reverse ramps that convert dressed wave packets into bare ones. The tilde notation is used to indicate dressed states.

ching goal [12–17].

Current quantum simulators have not yet reached ca-
pabilities needed for studies of the quantum field the-
ories of the Standard Model. It is, nonetheless, im-
portant to take full advantage of existing platforms to
study non-equilibrium dynamics of models that share
salient features of the strong interaction, including con-
finement, to gain new insights, and to set the stage for
more complex simulations in the future. Indeed, anal-
ogous confining forces are also present in spin systems,
such as the one-dimensional Ising model [18–21]. Since
such spin Hamiltonians have long been engineered and
studied in a range of analog quantum simulators [22],
including trapped ions [23] and neutral atoms [24], they
provide a natural setting to study toy models of confine-
ment, despite the underlying physics behind the confine-
ment being different from that in the Standard Model.
In the one-dimensional ferromagnetic Ising spin model,
the elementary excitations are kinks, or ‘domain walls’,
which are anti-aligned neighboring spins, see Fig. 1(a).
Two kinks can be bound together by a string of anti-
aligned spins, to form bound two-kink states, also called
mesons. Bound-state spectra [20, 25–28], string break-
ing [21, 29–36], and slow thermalization [31, 37–41] have

been studied, both theoretically and experimentally, in
these systems in recent years.

To create non-equilibrium conditions in Ising spin
systems exhibiting confinement, we go beyond global
quench processes and focus on scattering of individ-
ual excitations on top of the interacting vacuum. This
is motivated by the fact that much of the strong-
interaction dynamics are studied in high-energy par-
ticle colliders [42, 43]. These experiments often rely
on colliding hadrons or nuclei, which are composite
(bound) excitations of the elementary quarks and glu-
ons, hence generating a plethora of final-state particles.
How non-perturbative confining dynamics lead to these
complex inelastic channels through various hadroniza-
tion and fragmentation mechanisms [10, 44, 45] is an in-
triguing question. Tensor-network methods have proven
a powerful numerical tool to study scattering in one-
dimensional models [46–50], but simulating general
scattering problems in quantum field theories has re-
mained out of reach. Several proposals have emerged
recently on how to realize scattering states and pro-
cesses in simple low-dimensional field theories on digi-
tal [51–57] and analog [49, 58, 59] quantum simulators,
but implementations have remained limited [55–57]. It
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is, therefore, valuable to study the scattering problem in
the simpler spin models, which may provide a more real-
istic path to large-scale experimental implementations.
This still demands preparing composite (bound) states
in the form of moving wave packets, which can be made
to collide. It will also be important to investigate what
types of Ising Hamiltonians and initial states can lead
to non-trivial inelastic scattering, going beyond present
studies which have found elastic and inelastic scatter-
ing in nearest-neighbor models [46, 47, 58, 60] as well
as power-law models, which, nonetheless, require non-
standard Hamiltonian engineering to generate inelastic
processes [61, 62]. Our work sets out to advance the
state-of-the-art by addressing these two requirements.

Concretely, we outline an experimental proposal cov-
ering the three central stages of scattering: (i) prepara-
tion of Gaussian meson wave packets in one-dimensional
Ising spin models [see Fig. 1(b)], (ii) propagation and
scattering of the wave packets, and finally (iii) detec-
tion of outgoing states [see Fig. 1(c)]. We propose two
techniques to prepare wave packets of bound kinks: one
scheme engineers a collective transition to a localized
wave packet using beyond nearest-neighbor spin-spin
couplings, while the other utilizes a (bosonic) quan-
tum bus to enable excitations needed to prepare the
wave packet. An adiabatic ramp is used to evolve the
wave packets in the ‘free’ theory to those in the ‘in-
teracting’ theory. Additionally, we study scattering of
bound kinks in models with long-range Ising couplings,
where kinks are confined, and in models with short-
range Ising couplings, which exhibit both bound and un-
bound kinks. Using numerical simulations of scattering
at different energies, we demonstrate elastic scattering
in the former, illustrated in Fig. 1(d), and both elastic
and inelastic scattering in the latter for highly ener-
getic wave packets, with inelastic scattering illustrated
in Fig. 1(e). Importantly, we argue that the inelastic
channel can be resolved in near-term analog-simulation
experiments. This is established by demonstrating nu-
merical evidence for a non-negligible scattering proba-
bility and prominent experimental signature for outgo-
ing free kinks constituting the final state. The remain-
der of this paper is organized as follows. In Section 2,
we present our results. In Section 5, we present a dis-
cussion and outlook for future studies. Finally, in the
Appendix, we present some details omitted in the main
text.

2 Confined and deconfined excitations
in the Ising model
As a prototypical spin model of confinement and bound
excitations [18, 20, 21], we consider a one-dimensional

quantum spin-1
2 chain described by the Hamiltonian

Ĥ = Ĥ0 + Ĥ ′, (1)

where

Ĥ0 = −
∑
i,j>i

Jij σ̂
x
i σ̂

x
j − hx

∑
i

σ̂x
i , (2)

Ĥ ′ = −hz
∑

i

σ̂z
i . (3)

Here, σ̂x
i and σ̂z

i are Pauli matrices acting on the spin
at site i, with ferromagnetic Ising coupling matrix Jij

between spins at site i and site j. Additionally, hz and
hx are the global transverse and longitudinal fields, re-
spectively. We choose the Ising interaction to be along
x to match the convention used in trapped-ion-based
spin models [23] and set ℏ = 1.

We consider two types of coupling profiles that can
be realized in various quantum simulators; a power-law
model, Jij = J0/r

α
ij with tunable exponent α > 1, and

an exponentially decaying model, Jij = J0e
−β(rij−1)

with tunable parameter β > 0. In both cases, J0 > 0
is a constant and rij = |i − j|. The limit β ≫ 1 or
α ≫ 1 recovers the nearest-neighbor model with uni-
form coupling J0. Trapped-ion systems can realize ei-
ther of these models with tunable 0 ≲ α ≲ 3 [23, 63] or
0 < β [64–69]. The power-law model with α = 6 (van
der Waals interactions) can be realized in neutral atoms
encoding the two-dimensional Hilbert space of a spin in
a ground state and a Rydberg state [70–73]. The power-
law model with α = 3 (dipolar interactions) can be re-
alized in polar molecules [74], magnetic atoms [75, 76],
and neutral atoms interacting via Rydberg-Rydberg in-
teractions [77–80]. In systems of electric dipoles such
as Rydberg atoms and polar molecules, dipolar interac-
tions of the Ising form can be generated either by ap-
plying an electric field to partially polarize the states or
by dressing states of opposite parity with a microwave
field [81].

2.1 Low-energy spectrum and scattering states

To understand the low-energy excitations of the model
in Eq. (1), it is useful to first study the limit Ĥ ′ = 0,
i.e., vanishing transverse field hz. We refer to this limit
as the free theory. In this limit, all eigenstates are σ̂x

eigenstates. The ground state is fully polarized in the
x direction, satisfying ⟨σ̂x

i ⟩ = 1 for all i when hx > 0,
and is doubly degenerate, satisfying ⟨σ̂x

i σ̂
x
j ⟩ = 1 for all

i and j when hx = 0. Furthermore, the low-energy
excitations of the ground state can be thought as being
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composed of ‘kinks’ and ‘anti-kinks’,

∣∣kink, i+ 1
2
〉

=

∏
j≤i

σ̂−
j

 |· · · ↑↑↑ . . .⟩x , (4)

∣∣anti-kink, i− 1
2
〉

=

∏
j≥i

σ̂−
j

 |· · · ↑↑↑ . . .⟩x , (5)

where a kink or anti-kink sits between two anti-aligned
spins, and two-kink states where the kinks are separated
by distance ℓ,

|ℓ, i⟩ =

i+ℓ−1∏
j=i

σ̂−
j

 |· · · ↑↑↑ . . .⟩x . (6)

Here, σ̂−
j = (|↓⟩x ⟨↑|x)j is the spin lowering operator

at site j. Eigenspaces of Ĥ0 can be broken down into
subspaces labeled by the number of kinks K and of spin
flips Q. States |ℓ, i⟩ of two kinks separated by distance
ℓ correspond to K = 2 and Q = ℓ. For simplicity, we do
not distinguish kink and anti-kink states, i.e., Eq. (4)
and Eq. (5), and refer to all such states with a single spin
domain wall as kinks throughout. For an illustration,
see Fig. 1(a).

The energy of an arbitrary σ̂x-basis state relative to
the fully polarized ground state can be written as a
sum of two contributions: the energy required for each
flipped spin, which for an infinite chain is given by
m0 = 2hx +4

∑∞
r=1 J(r), and an attractive pairwise po-

tential −4J(r) between each pair of flipped spins sepa-
rated by a distance r. Here, we have defined J(r) := Jij

for |ri −rj | := r. The form of the spin-spin interactions,
therefore, determines the spectrum of kinks and two-
kink states that can exist in the system for a given hx.
Kinks experience an attractive kink-kink interaction po-
tential V (ℓ) shown in Fig. 2(a) and given by

V (ℓ) = ℓm0 − 4
ℓ−1∑
i=1

ℓ−i∑
r=1

J(r). (7)

For systems with hx > 0, or for systems with hx = 0
and an interaction coupling that decays sufficiently
slowly, i.e., power-law decay with 1 < α ≤ 2, the po-
tential energy V (ℓ) of a pair of kinks increases with-
out bound as the distance ℓ between the kinks is in-
creased [21, 40]. For an example, see the black and
red curves in Fig. 2(a). This confines all kinks into
two-kink bound states labeled by the distance ℓ and
hence called ℓ-mesons, shown in Fig. 1(a) for ℓ = 1
and described by Eq. (6). When hx = 0 and the cou-
plings decay more quickly, i.e., exponential decay with
β > 0 or power-law decay with α > 2, the kinks ex-
perience an interaction potential that saturates at long

distances, see blue curve in Fig. 2(a). In this case, as
ℓ-meson energies converge to the finite value V (∞), an
infinitesimal transverse field will unbind pairs of kinks
separated by an infinite distance. In the presence of a
non-vanishing transverse field, we can define a critical
separation ℓc between two kinks such that hz endows
kinks separated by ℓ ≥ ℓc with enough kinetic energy
to unbind them [35]. Thus, the low-energy spectrum
consists of a finite number of two-kink bound-states as
well as single-kink states below the continuum of un-
bound kink states [82]. Under these circumstances, for
a small transverse field, the form given in Eq. (6) de-
scribes bound two-kink states when ℓ < ℓc and unbound
two-kink states when ℓ ≥ ℓc. Although pairs of kinks
are no longer confined for all ℓ, therefore breaking the
analogy with confined quarks, we continue to refer to
these two-kink bound states as ℓ-mesons. Note that, in
the nearest-neighbor model, confinement can only occur
if hx ̸= 0 [18, 19].

Let us now consider the model when Ĥ ′ ̸= 0, which
we refer to as the interacting theory. Here, we distin-
guish ‘bare’ kinks and ‘bare’ meson states, i.e., those
that are eigenstates of Ĥ ′ = 0, from ‘dressed’ kinks and
‘dressed’ mesons, i.e., those that are adiabatically con-
nected to their bare analogs, which are dressed by the
transverse field hz. The low-energy spectrum consists of
translationally symmetric meson and kink states with
conserved momentum and with energy eigenvalues spec-
ified by Bloch bands (i.e., dispersion relation) En(k).
As hz is adiabatically increased, the kink and meson
bands evolve from initially flat bands to bands with
dispersion, giving the excitations kinetic energy and a
momentum-dependent velocity, see Fig. 2(b) and 2(c)
for the numerically-evaluated lowest-lying Bloch bands
of a power-law and an exponentially decaying model,
respectively.

These bands evolve adiabatically unless they intersect
higher or lower energy bands. In the models considered
here, these intersections occur in the following order:
first, the meson bands above the lowest meson band
may intersect with the multi-particle continuum, start-
ing with the highest-energy meson bands. When an
ℓ-meson band intersects the multi-particle continuum,
it indicates that those ℓ-mesons are no longer stable
bound states but unstable states that can decay into
multi-particle states. When this occurs, it sets a new
critical threshold ℓc below which the ℓ-mesons are sta-
ble bound states. Finally, the gap between the lowest
band and the ground state closes, leading to a phase
transition from the ferromagnetic to the paramagnetic
phase of the Ising model. In this work, we will always
remain in the ferromagnetic phase, where we find there
is always at least one bound state (meson) that sits be-
low the multi-particle continuum and above the ground
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(a) (c)(b)

Figure 2: Confining potentials and low-energy-excitation bands. (a) Attractive potential V (ℓ) from Eq. (7) between pairs
of kinks separated by distance ℓ and normalized with respect to V (1) for power-law (red and black curves) and exponentially
decaying (blue curve) spin-spin couplings. (b) 1-meson (M1) and 2-meson (M2) Bloch bands above the ground state energy Eg at
hz = 0.8J0 (solid curves) and hz = 1.4J0 (dashed curves) for the power-law model (α = 1.5) computed using exact diagonalization
with periodic boundary conditions where convergence was checked as a function of system size. (c) Kink (K1 and K2), 1-meson
(M1), and 2-meson (M2) Bloch bands above the ground state energy Eg at hz = 0.5J0 (solid curves) and hz = 0.83J0 (dashed
curves) for the exponentially decaying coupling (β = 1) calculated using uniform matrix product states [46, 49, 83]. This method
allows for computing the energy bands of the local (meson) excitations and for the kink excitations. In both (b) and (c), as the
transverse field increases, band dispersion increases, and kinks and mesons obtain kinetic energy.

state, see Fig. 2(b) and 2(c). Depending on the values
of the parameters, there are possibly several two-kink
bound states (mesons) [21, 82].

In this paper, we consider the scattering of two incom-
ing 1-mesons, the lowest energy two-kink bound states.
Open outgoing scattering channels must conserve the
energy and momentum of the incoming states. Elas-
tic scattering is always allowed and is composed of the
two 1-mesons being transmitted or reflected. Inelastic
scattering into new mesons or kinks is kinematically al-
lowed if the bands of the outgoing states, m, conserve
energy, E1(k1) + E1(k2) =

∑
m Em(km), and momen-

tum, k1 + k2 =
∑

m km mod 2π. The prominence of
various kinematically allowed outgoing channels is en-
capsulated by the scattering amplitudes. In this work,
the scattering amplitudes are obtained by performing
real-time wave-packet collisions and projecting the final
states into different meson and kink sectors.

Future experimental demonstrations of scattering will
be implemented on finite chains, which introduces
finite-size effects. On a finite chain, kinks and mesons
feel the effects of a boundary induced by the absence of
the infinite number of spins to the left and right of the
finite chain—which becomes increasingly severe as the
range of interactions increases [40]. To mitigate finite-
size effects, an effective site-dependent longitudinal field
can be introduced, which we call the ‘pseudo-infinite
potential’. This field mimics a potential imposed by an
infinite number of fictitious spins frozen in the ⟨σ̂x⟩ = 1
direction to the left and right of the N dynamical spins
(a similar idea has been introduced to study real-time
string-breaking dynamics [34, 35]). While these frozen
spins do not fully describe the physics of an infinite

chain with all-dynamical spins, this strategy alleviates
the boundary effects, increasingly so as hz is decreased,
and allows introducing approximate momentum bands
of scattering states. Additional details are presented in
the Appendix A. All numerical scattering simulations
presented in this work are performed with this pseudo-
infinite potential when applicable.

3 Experimental scattering proposal

In order to study the scattering dynamics of bound
states in this model, one needs to prepare, scatter, and
detect propagating Gaussian meson wave packets. We
design our protocol around scattering the lowest-energy
bound states, i.e., 1-mesons. We devise strategies to (i-
a) prepare two 1-meson Gaussian wave packets in the
Ĥ0 model with opposite momentum on the left and right
sides of the chain, (i-b) adiabatically change Ĥ0 to Ĥ
by ramping the transverse field to prepare wave packets
in the full interacting model, (ii) evolve the propagat-
ing wave packets under e−iĤt until the collision is con-
cluded and outgoing particles are sufficiently distant,
(iii-a) ramp down the transverse field to return to Ĥ0,
(iii-b) measure and analyze the final states.

In the Ĥ0 model, a 1-meson wave packet is simply
a superposition of all single-spin-flip states with a nor-
malized Gaussian amplitude, ψg

i (x0, k0), centered at x0
with momentum k0,
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|ψg(x0, k0)⟩ = Ψ̂†
g(x0, k0) |↑⟩⊗N

x (8)

=
N∑

i=1
ψg

i (x0, k0) |1, i⟩ , (9)

with

ψg
i (x0, k0) = 1

N
e−(xi−x0)2/(2∆2

x)+ik0xi . (10)

Here, Ψ̂†
g(x0, k0) =

∑N
i=1 ψ

g
i (x0, k0)σ̂−

i acts on the all-
spin-up state to create a 1-meson wave packet centered
at x0 and k0, ∆x is the width of the (position-space)
wave packet, and N is normalization factor such that
the wave-packet state is normalized to unity.

In the subsequent sections, we describe two protocols
to prepare the state in Eq. (9) in the Ĥ0 model. An
added benefit of preparing wave packets in the Ĥ0 model
is that the 1-meson bands have no dispersion, allowing
one to prepare wave packets with non-vanishing mo-
menta but with no velocity. This implies that the wave
packets do not move during preparation, hence simpli-
fying the protocol. Then, to prepare the wave packet
in the full interacting model (Ĥ ′ ̸= 0), the transverse
field is increased using an adiabatic ramp hz(t) = hzt/tr
for 0 ≤ t ≤ tr, implemented by the evolution operator
Ûr(tr), such that the 1-meson states are dressed by the
transverse field 1,

|ψ̃g(x0, k0)⟩ = Ûr(tr) |ψg(x0, k0)⟩ . (11)

Once the wave packets are prepared in the dressed basis,
the system can be evolved under the full Hamiltonian Ĥ
such that the wave packets propagate, collide with each
other, and scatter. In order to distinguish the outgoing
scattering channels, the transverse field is adiabatically
removed so that all final states are once again eigen-
states of Ĥ0.

The full evolution on the dressed initial states |ψ̃init⟩,
i.e.,

|ψ̃init⟩ = Ûr(tr)Ψ̂L
g

†
(xL, kL)Ψ̂R

g

†
(xR, kR) |↑⟩⊗N

x , (12)

is given by

|ψfinal⟩ = Ûr(tr)†e−iĤt |ψ̃init⟩ , (13)

where Ψ̂L
g

†
(xL, kL) only acts on sites 1 to NL = ⌊N/2⌋

and Ψ̂R
g

†
(xR, kR) only acts on sites NL + 1 to N . Mea-

surements at the end of this protocol provide informa-
tion about the different final scattering states, which

1For a slow yet finite adiabatic ramp, the time-evolved state
retains a large overlap with the instantaneous ground state and
generates only a tiny density of local kink pairs leading to small
oscillations in meson number. Our dynamical protocol is not
expected to be associated with the visible oscillations that appear
for quench protocols in similar confining models [20, 31].

are labeled by the number of kinks K and spin flips
Q. Gathering statistics of different outgoing scatter-
ing channels yields a determination of the scattering S-
matrix, conveying the probability of a particular chan-
nel.

Both of our proposed state-preparation schemes en-
gineer a transition from an easy-to-prepare initial state
to the Gaussian wave packet described in Eq. (9). Our
protocols go beyond the preparation of entangled states
invariant under arbitrary permutations of spins, like the
W state [72, 84–87] or GHZ state [88–91], to many-body
entangled states with a Gaussian profile which are re-
quired for creating wave packets for scattering.

One of our proposed schemes takes advantage of en-
gineered blockade interactions to generate the wave
packet out of an all-spin-up initial state. The other
proposed scheme benefits from quantum-bus-mediated
interactions to create wave packets from an all-spin-up
state and one excitation in the bus register. We describe
these schemes in more detail in the following sections.

3.1 Blockade wave-packet preparation.

Our first state preparation protocol utilizes the Ising
spin-spin coupling to excite a single spin flip localized
according to a Gaussian distribution. This is done by si-
multaneously addressing each spin using a specific drive
that will be introduced below. Without any spin-spin
coupling, each spin would be prepared independently
from its neighbors. However, the presence of spin-spin
interactions increases the energy of nearby excitations
such that only single-spin-flip states are on resonance.
Due to its similarity to the blockade in Rydberg ar-
rays [92–94], we refer to this protocol as blockade wave-
packet preparation.

The protocol can be implemented as follows: A Gaus-
sian wave packet described in Eq. (9) is prepared by
driving each spin with a site-dependent transverse field
hz

i (t) = hz
i cos(ωit+ ϕi), i.e., corresponding to the sys-

tem Hamiltonian Ĥ0 −
∑

i h
z
i (t)σ̂z

i . The driving fre-
quency should be set to ωi = Ei − E0 where Ei is
the energy of the eigenstate |1, i⟩ of the Ĥ0 Hamil-
tonian and E0 is the energy of the all-spin-up state.
Since the pseudo-infinite potential, described in Ap-
pendix A, reintroduces the translational invariance of
the 1-mesons on a finite chain, the driving frequency ωi

is the same for all spins. The transition from the all-
spin-up initial state to the wave packet in the Ĥ0 model
is best illustrated after a transformation into a frame
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that rotates with Ĥ0, resulting in the Hamiltonian

ĤR = − 1
2

∑
i

hz
i

(
e−iϕi |1, i⟩ ⟨↑|⊗N

x + h.c.
)

− 1
2

∑
i,j

hz
j

(
ei(δijt−ϕj)σ̂−

j |1, i⟩ ⟨1, i| + h.c.
)

+ · · · . (14)

Here, δij = 4Jij is the interaction energy between spins
at sites i and j. To prepare a Gaussian wave packet,
the transverse-field amplitude should be proportional
to the desired Gaussian wave-packet amplitude with no
momentum, i.e., hz

i = ΓJ0ψ
g
i (x0, 0) with a tunable pa-

rameter Γ, while the site-dependent phase shift should
be set to ϕi = −k0xi. Given this choice, the first term
describes a resonant transition to the Gaussian wave
packet from the all-spin-up state, while the second term
describes the closest off-resonant processes to two-spin-
flip from single-spin-flip states. These off-resonant tran-
sitions are detuned by δij . The ellipses denote all other
off-resonant contributions. If driven slowly enough, as
explained below, the state prepared at J0T = π/Γ is
the desired wave packet.

The leading-order error occurs when the effect of the
second term in Eq. (14) is significant. Undesired tran-
sitions from the Gaussian wave packet to states with
two spin flips occur when the transition matrix ele-
ment is large compared to the interaction energy. This
transition error has the approximate form εblockade :=∑

i,j>i ϵij where ϵij = T−2
∣∣πψg

i (x0, k0)ψg
j (x0, k0)/δij

∣∣2,
see Appendix B. For far-away interacting spins, this
error is small because the wave packet does not have
simultaneous support on sites i and j, while for neigh-
boring spins, this error reduces to the condition Γ ≪ 4
which limits the magnitude of the driving field hz

to small amplitudes during the blockade wave-packet
preparation. The performance of this scheme for a
single Gaussian wave packet over N = 12 sites with
∆x =

√
24/(2π) and power-law coupling with α = 1.5

is shown in Fig. 3(a). In order to reach infidelities
lower than 0.1 (0.01), preparation times greater than
7J0 (25J0) are required. Additional details can be found
in Appendix B. The Appendix also includes a discus-
sion on generating larger, more energetic ℓ-meson wave-
packets.

3.2 Quantum-bus-mediated wave-packet prepa-
ration.
A second state-preparation scheme can be implemented
by utilizing a quantum bus with controlled coupling to
the spins within the wave packet. The idea is to trans-
fer an excitation in the quantum-bus register to the spin
registers such that the excitation is spatially distributed

according to a desired wave-packet profile. The exact
amplitude can be controlled by tuning the strength of
the coupling to each spin in the wave packet. The quan-
tum bus can be either a bosonic mode or a spin. Ex-
amples with bosonic-mode buses include ion spins cou-
pled to collective phonon modes in trapped-ion plat-
forms [23, 63, 95], Rydberg tweezer arrays coupled to
optical cavities [96], as well as transmon qubits cou-
pled to microwave resonators in circuit QED [97]. An
example where the bus is a spin is a Rydberg-atom ar-
ray where interactions are tuned such that a chosen bus
atom interacts with the other atoms, while the other
atoms do not interact with each other [98, 99].

In this work, we consider systems where the quan-
tum bus is a bosonic mode. However, for a spin bus,
the treatment is identical, with an additional simplifi-
cation that it is trivial to prepare a single excitation in
the bus. An example of a time-dependent Hamiltonian
describing the coupling between a bosonic quantum bus
and spins is given by the anti-Jaynes-Cummings Hamil-
tonian,

Ĥ(t) =
∑
i,k

(
Aike

iδktσ̂−
i âk +A∗

ike
−iδktσ̂+

i â
†
k

)
. (15)

Here, σ̂+
i = (|↑⟩x ⟨↓|x)i is the spin raising operator

at site i, σ̂−
i = (|↓⟩x ⟨↑|x)i is the spin lowering op-

erator at site i, â†
k (âk) is the boson creation (anni-

hilation) operator for mode k, Aik are the site- and
mode-dependent amplitudes, and δk = ωk − ν are the
detunings from the boson mode frequency ωk with ν
being the drive frequency. Note that site- and mode-
dependent amplitudes can be realized in, e.g., trapped-
ion systems by driving the blue-sideband transitions
with Aik = ηkbikΩi/2 where ηk is the Lamb-Dicke pa-
rameter of mode k, bik are the site-dependent orthonor-
mal mode-participation matrix elements of the collec-
tive phonon modes, and Ωi is a site-dependent Rabi
frequency [23, 100]. Note that we could have chosen
the Ising-Hamiltonian parameters such that the ground
state in absence of H ′ is an all-spin-down state. The
scattering could then be performed with 1-mesons de-
fined as |1, i⟩ := σ̂+

i |↓⟩⊗N
x . In this case, the Jaynes-

Cummings Hamiltonian, which has terms such as σ̂+
i âk,

can be used to perform the quantum-bus-mediated
preparation.

The idea of this scheme is to first start from a state
initialized with all spins up and no occupied bosonic
modes, then create an excitation in the target boson
mode and, finally, use the evolution under Eq. (15) to
transfer the bosonic excitation to the chain. To prepare
an excitation in the target boson mode, first the jth

spin is flipped down, then, by evolving under Eq. (15),
this down spin at site j is flipped back up while the
excitation from the spin register is transferred to the
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Figure 3: Preparation of 1-meson wave packets. (a) Blockade state-preparation infidelity and leakage to the two-spin-flip subspace
for preparation of a single wave packet centered at x0 = 5 with k0 = π/2 on a chain with N = 12 spins with ∆x =

√
24/(2π) and

power-law coupling with α = 1.5. The expected error εblockade due to leakage into the two-spin-flip subspace is shown as the black
dashed curve. The dotted gray vertical line denotes the preparation time for the simulation in part (b). (b) Preparation of two
wave packets, one on the right of the chain (prepared first) and one on the left (prepared second), with a combined final fidelity
of 95% for power-law coupling with α = 1.5 and total preparation time J0T = 31.5. The white vertical dashed line separates
the left and right sides of the chain. The coupling is turned off on one side of the chain when a wave packet is being created
on the other side. (c-e) Quantum-bus-mediated state preparation realized using the spin-phonon coupling present in trapped-ion
platforms with a given experimental input for ωk and bik, as outlined in Appendix B, and Ω0 = π/(2T ) MHz. Preparation infidelity
and occupation of the non-target phonon modes as a function of preparation time T reported in microseconds for the preparation
of a single wave packet at x0 = 5 with k0 = π/2 in a (c) N = 13 ion chain and (d) N = 23 ion chain. In (c) and (d), the
expected population of the non-target phonon modes εbus is shown as the black dashed curve. The dotted gray vertical line in (d)
denotes the preparation time for the simulation in part (e). (e) Preparation of two wave packets with 98% combined fidelity using
the quantum-bus-mediated scheme for N = 23 and total preparation time T = 893µs. Starting with one quantum initialized in
two different phonon modes (left heatmap) and spins in the all-spin-up state (right heatmap), the left wave packet is prepared by
coupling spins on the left of the chain to the 13th phonon mode; the same is done for the right wave packet but with the 17th

phonon mode. The horizontal red dashed line in (b) and (e) denotes the end of the first wave-packet preparation.
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target boson mode. Once this state is prepared, the
bosonic excitation can be transferred back to the spin
register but controlled such that the spin excitation is
distributed according to a wave-packet profile. We pro-
gram the desired wave-packet profile into the time evo-
lution of the target boson mode kt by setting the am-
plitude to

Aik = Ω0Bikψ
g
i (x0, k0) (16)

such that Bikt
= 1. Here, Ω0 is a tunable Rabi fre-

quency. In general, Bik contains information about the
coupling strength between the kth boson mode and each
spin. Now, if the system is driven at the target-mode
frequency, i.e., ν = ωkt , one arrives at the Hamiltonian

Ĥ(t) = Ω0
∑

i

(
ψg

i (x0, k0)σ̂−
i âkt

+ h.c.
)

+ Ω0
∑

i,k ̸=kt

(
ψg

i (x0, k0)Bike
iδktσ̂−

i âk + h.c.
)
.

(17)

Here, the first term describes the resonant transfer of an
excitation from the target boson mode to a spin excita-
tion distributed according to the Gaussian wave packet
when acted on an all-spin-up state. The second term de-
scribes the off-resonant transfer between the rest of the
boson modes and spin excitations. Starting from an ini-
tial state in which the target mode kt is occupied by one
quantum and evolving for T = π/(2Ω0) results in the
annihilation of the occupied target mode and excitation
of a single spin flip in the spin register distributed in the
shape of the Gaussian wave packet. If the spin-boson
coupling cannot be individually controlled in a given
experimental platform, then this scheme can be utilized
to create localized, but not Gaussian, wave packets. In
this case, the target modes whose spin-phonon coupling
profile is similar to the desired wave packet should be
chosen. An example of such localized modes for the site-
dependent mode-participation matrix bik in trapped-ion
platforms is shown in Fig. 6.

Undesired transitions arise when excitations in the
spin register transfer to phonon modes other than the
target mode. This leakage error occurs when the off-
resonant terms in Eq. (17) cannot be neglected, and
has the approximate form εbus :=

∑
k ̸=kt

ϵk where

ϵk = T−2
∣∣∣ π

2δk

∑N
i=1 |ψg

i (x0, k0)|2Bik

∣∣∣2
, see Appendix B.

In general, the target mode should be chosen such
that it is strongly coupled to the spins involved in the
wave packet. For example, in trapped-ion systems,
Bik = ηkbik

ηkt bikt
, and the target phonon mode is cho-

sen such that bikt
has maximal support on the wave-

packet amplitudes. The performance of this scheme can
be benchmarked using platform-specific parameters for
trapped ions. Figures 3(c) and 3(d) show the prepa-
ration performance of a single wave packet in a chain

of N = 13 and 23 ions, respectively. Given the ex-
perimental parameters chosen, preparing a wave packet
with infidelity lower than 0.1 (0.01) requires prepara-
tion times of approximately 50µs (180µs) for N = 13
and 220µs (700µs) for N = 23. See the Appendix B for
additional details on the trapped-ion implementation of
the quantum-bus-mediated protocol.

Two wave packets can be prepared in the chain as
follows. For the blockade preparation scheme, control-
ling the spin-spin coupling Jij to only have support on
the left or right side of the chain allows the left and
right wave packets to be prepared sequentially without
additional sources of error. During the preparation of
each wave packet, the pseudo-infinite potential should
be chosen such that it corresponds to the smaller half-
chain system where Jij is turned on. We note that the
spins are subject to reduced noise when spin-spin cou-
plings are turned off. For large chains, wave packets
can be prepared sufficiently far away from each other
such that they do not interact and can, therefore, be
prepared in parallel. Recall that the wave packets do
not move during preparation, so they remain separated
as they are prepared.

To prepare two wave packets using the quantum-bus-
mediated scheme, one first couples the spins on the left
of the chain to one target mode, kL

t , and then couples
the spins on the right side of the chain to another tar-
get mode, kR

t . The above protocol can be performed
sequentially with Aik ̸= 0 for the sites on which the de-
sired wave packet has support. The two modes should
ideally be chosen to maximize the support on the spins
to be flipped; however, the same mode can also be used
for both wave packets provided it is re-initialized with
a single excitation after creating the first wave packet.
Parallel preparation using the bus-mediated scheme is
also feasible if experimental control allows driving the
spins on the left side resonantly with mode kL

t and the
spins on the right side resonantly with mode kR

t . This
way, one can effectively independently dial in two inde-
pendent sets of site-dependent Rabi frequencies Ωi,kL

t

and Ωi,kR
t

for the two resonantly driven modes. Paral-
lel preparation could potentially halve the preparation
time thus reducing the overall time of the scattering
simulation.

Sequential preparation of two wave packets is studied
numerically and the results are shown in Fig. 3(b) for
the blockade scheme with N = 24 and J0T = 31.5 and
Fig. 3(e) for the bus-mediated scheme with N = 23 with
T = 893µs. To compare both schemes in trapped-ion
platforms, we note that J0 is of order ≈ 1 KHz while
Ω0 can be interpreted as the transition strength when
addressing the first sideband and is typically of order
≲ ηkbik × 1 MHz ≈ 0.01 MHz. Therefore, in trapped-
ion systems Ω0 ≫ J0 and wave packets are prepared
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Figure 4: Numerical simulation of scattering. Panels (a-c,f-h) show the expectation value of ⟨σ̂x
i ⟩ as a function of time for the

evolution and scattering of two 1-mesons for (a-c) the power-law model with α = 1.5 and (f-h) the exponentially decaying model
with β = 1. All initial states of the scattering simulations start with a perfect initial two-wave-packet state with x0 = 5, k0 = π/2
for the left wave packet and x0 = 20, k0 = −π/2 for the right wave packet, while the wave-packet width is set to ∆x =

√
N/(2π).

The first horizontal white line indicates the end of the linear adiabatic ramp Ur(tr) which turns on hz, while the second horizontal
white line indicates the beginning of the linear adiabatic ramp Ur(tr)† which turns off hz. (d) In the power-law model for
α = 1.5 and hz = 1.4J0, only elastic scattering of 1-mesons with momenta (π/2, −π/2) is allowed by conservation of energy
and momentum, marked by black stars. Here, M1 and M2 denote the two lowest-lying meson bands. (e) By contrast, in the
exponentially decaying model for β = 1 and hz = 0.83J0, several inelastic outgoing channels are kinematically-allowed: the
incoming mesons (marked by black stars) can scatter into mesons of different types or into a pair of unbound kinks. Here, M1
and M2 denote the two lowest-lying meson bands, while K1 and K2 are the two lowest-lying kink bands. (i) In the exponentially
decaying model, the probabilities are plotted as a function of hz for two mesons scattering into a pair of unbound kinks or elastically
into two mesons. Unbound kinks are observed starting at hz ≈ 0.75J0 and higher. (j) Region of kinematically allowed scattering
from mesons into unbound kinks for the exponentially decaying model (β = 1) when the input meson momenta k1 (traveling to
the right) and k2 (traveling to the left) are varied. The color corresponds to the value of hz/J0 at which the unbound kink channel
becomes kinematically allowed for the numerically computed values. For slow moving mesons near k = 0, the unbound kink
channel is kinematically allowed for hz ≳ 0.5J0. At the momenta (π/2, π/2), marked by a black star and used in the simulations
in panels (a-c, f-i), the unbound kink channel is allowed for hz ≳ 0.722J0, consistent with the initial rise from zero of the inelastic
scattering probability in (d).

much faster using the quantum-bus-mediated scheme.

4 Numerical scattering simulations
Suppose that the wave packets are generated with high
fidelities, via one of the methods described earlier in
this section. The scattering experiment can then be
performed, as outlined previously, to probe non-trivial
dynamics of post-collision processes. To develop a theo-
retical expectation for such dynamics, we perform a nu-
merical simulation by starting with perfect wave pack-
ets and studying their time evolution. We demonstrate
elastic scattering in the model with power-law coupling,
which exhibits only two-kink bound states (ℓ-mesons)—
and no unbound kinks, at low energies (considering the
chosen initial state). Additionally, we demonstrate both

elastic and inelastic scattering in the model with expo-
nentially decaying coupling, which exhibits both two-
kink bound states and unbound kinks in the relevant
energy range. Scattering simulations were performed
using a Krylov time-evolution method.

Starting with 1-meson wave packets as described in
Eq. (9), we turn on the transverse field using a linear
ramp for tr = 10/hz in order to approach the Hamil-
tonian Ĥ starting from Ĥ0. We then evolve in time
such that the meson wave packets propagate and scat-
ter. The transverse field is then removed using an in-
verted linear ramp to return to Ĥ0. The state is finally
projected into different scattering channels as defined by
the number of kinks, K, and spin flips, Q. The elastic
channel is the set of bit strings with four kinks and two
spin flips, since such a channel is characterized by two
1-mesons, each with two kinks on either side of a sin-
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gle spin flip. Inelastic scattering is detected by support
in any channel outside of the elastic channel. Inelastic
scattering in the form of unbound kinks is described by
the set of bitstrings with two kinks and any number of
spin flips greater than two. We note that while we do
not measure the momentum of the outgoing particles,
if one had access to large chains, the outgoing momen-
tum could be obtained by measuring the velocity of the
outgoing states [49, 58]. Varying hz allows for the ex-
ploration of scattering in different energy regimes.

For scattering in the power-law model with α = 1.5,
as shown in Fig. 4(a-c), only elastic scattering is de-
tected in the range of hz values considered. For the
exponentially decaying model with β = 1, we observe
both elastic and inelastic scattering in Fig. 4(f-h) as hz

increases. The region of flipped magnetization that ap-
pears between the outgoing particles in Fig. 4(g) and
4(h) is due to an inelastic scattering channel composed
of a pair of unbound kinks. When individual shots are
measured in the final state, this appears as a domain of
flipped spins, whose length grows in time as the kinks
fly away from each other. When this flipped domain has
grown to a long length, it will be simple to distinguish
it from other output states without unbound kinks. For
values of hz > 1, we observe up to 25% probability for
such an unbound-kinks scattering channel, see Fig. 4(i).
Given this sizable probability and the distinct signature
of the associated measurement, this proposal provides
an opportunity to detect inelastic scattering in near-
term spin quantum simulators.

The existence of the unbound kink channel in the
exponentially decaying model is supported by an anal-
ysis of the kinematically allowed scattering channels. In
Fig. 4(e), we show the lowest energy bands of the expo-
nentially decaying model with β = 1 and hz = 0.83J0,
consisting of two kinks and two mesons. These bands
are computed using uniform matrix product states [83]
with the quasi-particle ansatz of Ref. [101]. With these
numerically determined bands, one can find sets of out-
going particles with total energy and momentum that
match those of the incoming particles. For the case of
two 1-mesons with momenta ±π/2, the resulting sets of
outgoing particles are shown in Fig. 4(e) as matching
pairs of colored circles. Despite the existence of several
kinematically allowed inelastic scattering channels, our
simulations show that only one such channel has signif-
icant probability in the output state for the parameter
range we consider. This channel consists of an unbound
pair of kinks, each of which belongs to the lowest kink
band. For incoming mesons with momenta ±π/2, this
unbound-kink channel opens up at hz ≈ 0.72J0, indi-
cated by the black star in Fig. 4(j). After the channel
becomes open, the unbound-kinks scattering probabil-
ity shown in Fig. 4(i) increases to a peak, then decreases,

then increases again. This non-monotonic behavior is
dynamically generated in the interacting model and in-
volves hz values that are inaccessible to a perturbative
analysis.

5 Discussion
An exciting promise of quantum simulators is to study
real-time dynamics of scattering processes in nuclear
and high-energy physics rooted in the fundamental the-
ory of subatomic constituents, i.e., the Standard Model.
In order to realize this promise, concrete experimental
proposals are needed to prepare complex initial scat-
tering states such as hadronic wave packets. As ana-
log quantum simulations based on the Standard-Model
Hamiltonians are not yet feasible, in this work we turned
to simpler Ising spin models in one spatial dimension,
which exhibit some of the salient features of the the-
ory of the strong force in nature, including confinement
of elementary excitations into composite bound states,
namely hadrons. We developed detailed experimental
proposals to prepare and scatter meson wave packets
in such models with both power-law and exponentially
decaying spin-spin couplings, and demonstrated well-
resolved inelastic scattering to unbound states in the
latter case. We further investigated the range of the
transverse-field strength for which the inelastic channel
becomes sufficiently prominent to be resolved in future
experiments.

Beyond the ability to simulate a one-dimensional
Ising Hamiltonian, there are a few additional exper-
imental capabilities that are required to execute the
proposal outlined in this work. If an auxiliary bosonic
degree of freedom is coupled to the spins, one may im-
plement our quantum-bus-mediated scheme, provided
that the spin-boson coupling can be controlled individ-
ually at each site. If only spin-spin interactions can
be controlled, one may use our blockade scheme, pro-
vided that site-dependent control of a driven transverse
field is available. Alternatively, in Rydberg arrays, one
can use a Rydberg blockade to create bare meson wave
packets. Additionally, experiments need to implement
adiabatic ramps of the transverse field to prepare the
wave packets in the full interacting model. Control
over site-dependent longitudinal fields permits the im-
plementation of the pseudo-infinite potential, which re-
duces the qubit overhead while mitigating the effects
of boundaries. Finally, site-resolved spin measurements
are required to access final-state probabilities and ana-
lyze the scattering channels. As an outlook, our proto-
cols can be further combined with entanglement spec-
troscopy tools [102–105], provided availability of single-
and multi-qubit operations, to analyze entanglement
structure of the final state and study net entanglement

Accepted in Quantum 2025-04-06, click title to verify. Published under CC-BY 4.0. 11



generation in the collision events. Additionally, some
of our protocols, such as our wave-packet preparation
schemes, may be relevant to meson scattering in other
models exhibiting confinement, such as the Ising-Dicke
Hamiltonian [106, 107].

Importantly, studying scattering processes using the
protocols of this work involves long simulation times,
given the requirement of adiabatic evolution of the free
isolated wave packets to interacting colliding wave pack-
ets, and a reverse adiabatic evolution to recover well-
separated free wave packets long after the collision. De-
pending on the wave-packet preparation procedure and
the characteristics of the chosen analog simulator, the
entire process may be too long to fit the coherence time
of present-day analog simulators. Based on the numer-
ical simulations of this work adopted to trapped-ion
systems, we find that the blockade state preparation
requires J0T = 31.5 to achieve 95% fidelity for creating
two wave packets, the bus-mediated state preparation
requires 890µs to achieve 98% fidelity for creating two
wave packets, and the rest of scattering (i.e., the two
linear adiabatic ramps of the transverse field and evolu-
tion with the full Hamiltonian) takes J0T = 70 − 160 in
the power-law model and J0T = 50 − 100 in the expo-
nentially decaying model, where the ranges correspond
to a range of hz values studied in this work.

For state-of-the-art trapped-ion simulators, currently
accessible simulation times are J0t = 10 − 20 [65, 108].
Given these simulation times, additional fine tunings
and improvements to the current protocols may, there-
fore, be needed to enable the first quantum simulation of
hadron scattering in an analog quantum simulator. For
example, the adiabatic ramp can be optimized, com-
plex laser-pulse-shaping methods can be employed to
improve the bus-mediated state preparation, and par-
allel implementation of the two wave packets in longer
chains can be considered to halve the time duration of
the state-preparation step. Last but not least, numeri-
cal simulations incorporating inexact wave packets, re-
alistic hardware-noise models, and specific experimental
details may be required to identify robust experimental
signatures of the final-state scattering channels. These
studies are left to future work. Our proposal, nonethe-
less, brings us closer to realizing hadronic scattering in
present-day and future analog quantum simulators.
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A Pseudo-infinite potential
In this section, we discuss the explicit form of the
pseudo-infinite potential discussed in Section 2. In or-
der to mitigate boundary effects in a finite chain, we
introduce a site-dependent longitudinal field hx

i = h∞
i ,

which we call the pseudo-infinite potential, that mimics
a potential imposed by an infinite number of fictitious
spins frozen in the ⟨σ̂x⟩ = 1 direction to the left and
right of the N dynamical spins, as shown in Fig. 5(a).
A similar idea has been introduced to study real-time
string-breaking dynamics in Refs. [34, 35]. This pseudo-
infinite potential is given by

h∞
i =

0∑
n=−∞

Jni +
∞∑

n=N+1
Jin, (18)

and is plotted in Fig. 5(b) for power-law and exponen-
tially decaying spin-spin interactions. The effect of this
potential is more significant for long-range interactions
and is less important for short-range interactions. In
addition to reintroducing (approximate) translational
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(a)
⋯ ⋯

(b)

Figure 5: Pseudo-infinite potential. (a) Illustration of ficti-
tious frozen spins (blue) to the left and right of the dynamical
spins (black) whose effect is taken into account using a pseudo-
infinite potential given by Eq. (18) and shown in (b). The form
of the effective potential which mimics these fictitious frozen
spins for power-law spin-spin interactions is plotted as red and
black curves and for an exponentially decaying coupling as the
blue curve. The effective potential is more (less) significant for
long-(short-)range spin-spin interactions.

invariance of the meson and kink states, this pseudo-
infinite potential also allows meson wave packets to
propagate closer to the chain’s edge without getting too
distorted thus reducing the required number of spins
for an experiment. Since the fictitious spins are frozen
and not dynamic, the pseudo-infinite potential does not
entirely alleviate finite-size effects. To implement this
pseudo-infinite potential in an experimental device, one
may e.g., find the α or β which best model the experi-
mental coupling matrix, Jij , and use those in Eq. (18).

B State preparation schemes
In this section, we discuss how 1-meson wave packets
are engineered in both of our protocols and derive errors
arising from transitions to off-resonant states. Prepar-
ing wave packets is an essential step required to demon-
strate scattering in experimental platforms and is a cen-
tral component of our experimental proposal. Due to
the structure of 1-meson wave packets in the eigenbasis
of Ĥ0 in Eq. (2), their preparation can be thought of
as analogous to the preparation of W-states but with
a non-uniform distribution of spin excitations. Both of
our proposed wave-packet-preparation schemes describe
an engineered resonant transition between an easy-to-
prepare initial state |ψi⟩ and a Gaussian wave packet
|ψg(x0, k0)⟩ in the Ĥ0 basis as described by Eq. (9). For
the blockade scheme, the initial state is the all-spin-up
state. For the quantum-bus-mediated scheme, the ini-
tial state is the all-spin-up state with an excitation in
the bus register. In the spin-boson implementation of

the bus protocol, this translates to a boson mode initial-
ized with one quantum. If given sufficiently long times
in the experiment, these schemes can be described only
by their resonant processes to the desired wave-packet
state. However, in order to demonstrate scattering on
current and near-term quantum simulators, time is a
valuable resource and wave packets should be prepared
as fast as possible while controlling errors.

Undesired processes arise in both methods from
nearby off-resonant transitions coupled to the pre-
pared wave packet. For the blockade state-preparation
scheme, the off-resonant transitions are to states with
two spin flips. For the quantum-bus-mediated prepara-
tion, the off-resonant transitions are to the states with
all spins up and a single excitation in the bus regis-
ter. In the spin-boson implementation, additional bus
registers are the set of all boson modes except the ini-
tial target mode. The undesired states can be adi-
abatically eliminated if the corresponding matrix el-
ement of the off-resonant terms, V̂ in the Hamilton-
ain Vn = ⟨n| V̂ |ψg(x0, k0)⟩, connecting the nearby off-
resonant state, denoted by |n⟩, and the prepared wave
packet is smaller than the corresponding energy differ-
ence, δn = En − Eg. In this case, the lowest-order
error describing the final probability of being in the off-
resonant state at time T goes as |Vn/δn|2. The sum over
all such off-resonant states will be denoted by ε:

ε :=
∑

n

∣∣∣∣Vn

δn

∣∣∣∣2
. (19)

The subsequent sections will explicitly show how the
resonant transitions are engineered and how transitions
to off-resonant states scale as a function of time and
wave-packet width, for both the blockade scheme and
the quantum-bus-mediated scheme.

B.1 Blockade state preparation
Our first state-preparation protocol utilizes beyond-
nearest-neighbor couplings to engineer a resonant tran-
sition to a localized wave packet. The idea behind this
technique is that, by simultaneously addressing each
spin using a specific drive, the beyond-nearest-neighbor
interactions energetically forbid nearby excitations. If
we choose the amplitude of the site-dependent driving
field to be proportional to the wave-packet amplitude,
then a single excitation will be distributed across the
chain according to the desired wave-packet profile.

Blockade state preparation is performed using the fol-
lowing Hamiltonian

ĤB = Ĥ0 + Ĥ1, (20)
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with Ĥ0 defined in Eq. (2) and

Ĥ1 = −
∑

i

hz
i cos(ωit+ ϕi)σ̂z

i . (21)

The transverse field is driven at ωi = Ei − E0 where
Ei = ⟨1, i| Ĥ0 |1, i⟩ and E0 = (⟨↑|⊗N

x )Ĥ0 |↑⟩⊗N
x . While

not necessary, it is convenient to include in Ĥ0 the
pseudo-infinite potential h∞

i because it introduces ap-
proximate translational invariance such that ωi are the
same for all spins. We can express the Hamiltonian in
Eq. (20) in terms of the energy eigenstates of Ĥ0, which
are just σ̂x eigenstates. We denote these eigenstates as
|s⃗ ⟩ where s⃗ = (s1, s2, · · · , sN ) and si ∈ {↓, ↑} (dropping
the subscript x on states for notational brevity), with
Es⃗ denoting the energy of state |s⃗ ⟩. Then,

Ĥ0 =
∑

s⃗

Es⃗ |s⃗ ⟩ ⟨s⃗ | , (22)

Ĥ1 = −
∑

i

hz
i cos(ωt+ ϕi)

∑
s⃗,s⃗ ′

|s⃗ ⟩ ⟨s⃗ | σ̂z
i |s⃗ ′⟩ ⟨s⃗ ′| .

(23)

We can move into the frame rotating with Ĥ0 to obtain

ĤR = −
∑

i

hz
i cos(ωt+ ϕi)

∑
s⃗,s⃗ ′

ei(Es⃗−Es⃗ ′ )t

× |s⃗ ⟩ ⟨s⃗ | σ̂z
i |s⃗ ′⟩ ⟨s⃗ ′| . (24)

Expanding the cosine and relabeling the energy differ-
ence as νs⃗s⃗ ′ := Es⃗ − Es⃗ ′ gives

ĤR = −
∑

i

∑
s⃗,s⃗ ′

hz
i

2

(
ei(νs⃗s⃗ ′ +ω)teiϕi + ei(νs⃗s⃗ ′ −ω)te−iϕi

)
× |s⃗ ⟩ ⟨s⃗ | σ̂z

i |s⃗ ′⟩ ⟨s⃗ ′| . (25)

When ω = ±νs⃗s⃗ ′ , one or the other term in the paren-
theses will oscillate with frequency ±2ω while the other
will be resonant. Therefore, in the rotating frame, the
state |s⃗ ′⟩ will transition to the state |s⃗ ⟩ only if |s⃗⟩ and
|s⃗ ′⟩ differ by a spin flip at site i and if their energy
difference νs⃗s⃗ ′ is close to the driving frequency ω.

For our state-preparation scheme, one needs to drive
a transition from the all-spin-up state to a superposition
of states with a spin down on site i, denoted by |1, i⟩,
by setting ω = E1 −E0 (recall that we assumed Ei are
equal for all i ≥ 1). The nearest off-resonant states are
those with two spin flips at sites i and j. For these
states, the energy difference between a single-spin-flip
state and a two-spin-flip state at sites i and j is ω+ δij

where δij = 4Jij is the interaction energy between spins
at sites i and j. We can expand Eq. (25) in terms of the
states most easily accessible from the initial all-spin-up

state:

ĤR = − 1
2

∑
i

hz
i

(
e−iϕi |1, i⟩ ⟨↑|⊗N

x + h.c.
)

− 1
2

∑
i,j ̸=i

hz
j

(
eiδijte−iϕj σ̂−

j |1, i⟩ ⟨1, i| + h.c.
)

+ · · · . (26)

The first term describes the resonant transition from the
all-spin-up state to the single-spin-flip states, while the
second term describes off-resonant transitions from the
single-spin-flip states to the two-spin-flip states. The
ellipses denote all other off-resonant contributions. To
prepare a Gaussian wave packet, as described in Eq. (9),
one can set hz

i = ΓJ0ψ
g
i (x0, 0) and ϕi = −k0xi. Insert-

ing this choice into the above Hamiltonian gives

ĤR = − ΓJ0

2

(
|ψg(x0, k0)⟩ ⟨↑|⊗N

x + h.c.
)

− ΓJ0

2
∑
i,j ̸=i

ψg
j (x0, k0)

(
eiδijtσ̂−

j |1, i⟩ ⟨1, i| + h.c.
)

+ · · · . (27)

Now, the first term produces the Gaussian wave packet
out of single-spin-flip states centered at x0 in position
space and at k0 in momentum space. If driven suffi-
ciently slowly, preparation of the Gaussian wave packet
occurs at J0T = π/Γ. It is worthwhile to note that if
a given platform cannot implement the pseudo-infinite
potential, then the drive frequency ωi needs to be differ-
ent at each site. To compensate for the site-dependent
phase introduced by the site-dependent energy differ-
ences, an additional site-dependent phase shift is re-
quired.

In order to estimate the effect of nearby off-resonant
contributions, one needs to consider the matrix element
describing the transition from the wave packet to a state
with two spin flips at sites i and j, |ij⟩,

∣∣V g
ij

∣∣ =
∣∣∣∣ ⟨ij|

( ∑
ℓ,m̸=ℓ

ΓJ0

2 ψg
ℓ (x0, k0)

σ̂−
ℓ |1,m⟩ ⟨1,m|

)
|ψg(x0, k0)⟩

∣∣∣∣
=

∣∣∣∣ΓJ0

2
∑
ℓ,m

ψg
ℓ (x0, k0)ψg

m(x0, k0) (δimδjℓ + δiℓδjm)
∣∣∣∣

=
∣∣∣ π
T
ψg

i (x0, k0)ψg
j (x0, k0)

∣∣∣. (28)

The approximate error associated with all such off-
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resonant contributions according to Eq. (19) is

εblockade :=
∑
i,j>i

ϵij =
∑
i,j>i

∣∣∣∣∣V
g

ij

δij

∣∣∣∣∣
2

(29)

=
N−1∑
i=1

N∑
j=i+1

1
T 2

∣∣∣∣∣πψ
g
i (x0, k0)ψg

j (x0, k0)
δij

∣∣∣∣∣
2

.

(30)

There are two competing quantities that determine the
behavior of this error; the interaction energy δij and
the simultaneous support of the wave packet on two
sites

∣∣ψg
i (x0, k0)ψg

j (x0, k0)
∣∣. In order to suppress this

error, the wave packet should be sufficiently localized
such that it does not have support across spins whose
interaction energy is small. For neighboring spins, the
error reduces to the condition Γ ≪ 4 which limits
the magnitude of the driving field hz to small ampli-
tudes during blockade-state preparation. For far away
spins, the error is small because the wave packet does
not have simultaneous support on sites i and j, i.e.,∣∣Γψi

g(x0, k0)ψj
g(x0, k0)

∣∣2 ≪ 1. For these reasons, the
preparation of wider wave packets requires longer evo-
lution times compared to narrower wave packets.

Preparing and scattering larger ℓ-mesons is of signif-
icant interest, especially since larger mesons are more
energetic and their scattering might lead to interest-
ing inelastic particle production [58]. In general, this
would require engineering a resonant transition from
some product state, most likely the all-spin-up or all-
spin-down state, to these ℓ-meson wave packets. One
could imagine preparing larger mesons by expanding
the blockade scheme into ℓ stages. First, one resonantly
drives an all-spin-up state to the 1-meson manifold,
then changes the driving frequency to be resonant with
ω2 = E2 −E1 to drive the system to the 2-meson man-
ifold and so on. During each stage, the transverse-field
strength would be tailored such that the final state is
a Gaussian wave packet of ℓ-mesons. This procedure
would take at least J0Tℓ ≥ ℓπ

Γ , but most likely longer
since each subsequent stage should be driven slower.
This is because ℓ-mesons correspond to higher-lying
states in the spectrum, which typically have smaller en-
ergy gaps to the next excited states. To respect adia-
baticity, the preparation time should be slower to avoid
exciting unwanted states. One could also imagine en-
gineering a direct transition from a product state to a
2-meson, for example, if one had access to two-body
transverse terms like

∑
i h

z
i (t)σ̂z

i σ̂
z
i+1. However, engi-

neering such terms in current experiments is challeng-
ing.

B.2 Quantum-bus-mediated state preparation

Our second scheme applies quantum buses to the task of
preparing wave packets. Starting with a state initialized
in the all-spin-up state, this wave-packet-preparation
scheme proceeds in two steps: (1) preparing an exci-
tation in a chosen boson mode, (2) facilitating an ex-
change between the excitation in the boson mode and
a wave packet in the spin register.

To prepare an excitation in a particular boson mode,
a carrier transition is applied at site j to flip the spin
down. Then an excitation in the chosen boson mode can
be created while flipping the spin back to an up state
by applying the Hamiltonian in Eq. (15). For example,
in trapped-ion systems, this can be achieved by driving
predominantly the first-order blue-sideband transitions,
choosing the amplitude in the anti-Jaynes-Cummings
Hamiltonian in Eq. (15) to be Aik = ηkbikΩ0/2 for
i = j and Aik = 0 otherwise, and frequency to be res-
onant with the kt mode, i.e., ν = ωkt

. Here, Ω0 is
the Rabi frequency and kt is the mode that is aimed
to be populated by one excitation. If the spin on site
j is down, then the above choice couples the jth spin
to the chosen target boson mode kt. Evolving this sys-
tem for T = π/(Ω0ηkt

bjkt
) with a constant-amplitude

drive Ω0 initializes a single excitation in the target bo-
son mode and flips the jth spin back to an up state, thus
returning the spins to the all-spin-up state. Depending
on the experimental implementation, each boson mode
may not be uniformly coupled to all spins. For example,
in trapped-ion systems, the coupling strength between
a given spin and a given phonon mode is described by
the orthonormal mode-participation matrix bik. In this
case, the target mode kt should be chosen such that
bikt has maximal support on spins involved in the wave
packet. Due to a stronger heating for the center-of-
mass and nearby long-wavelength modes [95], the tar-
get phonon mode should ideally be far away from the
center-of-mass mode. Examples of experimental mode-
participation matrices as well as phonon-mode frequen-
cies for N = 15 and 27 ion chains are given in Fig. 6.

The second (and final) stage of the process involves
transferring the excitation from the target boson mode
back into the spin register with the excitation dis-
tributed according to a chosen wave-packet profile. This
step is described in sufficient detail in Section 3, with
the end result noted in Eq. (17). To understand the
error arising from off-resonant contributions, i.e., the
second term in Eq. (17), one needs to compute the cor-
responding matrix element between the Gaussian wave
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packet and the neighboring modes, k ̸= kt:

|V g
k | =

∣∣∣∣ ⟨k|b ⟨↑|⊗N
x

(
Ω0

∑
i,p

Bipψ
g
i (x0, k0)∗

σ+
i a

†
p

)
|0⟩b |ψg(x0, k0)⟩

∣∣∣∣ (31)

=
∣∣∣∣Ω0

∑
i

|ψg
i (x0, k0)|2Bik

∣∣∣∣. (32)

Here, |0⟩b denotes the boson vacuum state while |k⟩b

denotes the state of one boson in mode k. The ap-
proximate probability of undesired transitions into the
non-target boson mode at T = π/(2Ω0) goes as

εbus :=
∑
k ̸=kt

∣∣∣∣V g
k

δk

∣∣∣∣2

(33)

=
∑
k ̸=kt

1
T 2

∣∣∣∣∣ π2δk

N∑
i=1

|ψg
i (x0, k0)|2Bik

∣∣∣∣∣
2

. (34)

This error is plotted in Fig. 3(c) and 3(d). We note that
this form does not entirely characterize the infidelity
observed numerically. An additional error is most likely
caused by a site-dependent phase shift due to the site-
dependent coupling to each non-target mode.

The scaling of the error in Eq. (34) as a function of
system size depends on how Bik and δk change as a
function of N . Owing to orthogonality of the mode-
participation matrix bik, while some modes could be
localized, a typical element scales with the number of
ions as bik = O(1/

√
N) [such that Bik = bik/bikt =

O(1)]. Assuming the trapping potential maintains a
mode spectrum bandwidth that is independent of N ,
we can take ∆ωk = O(1/N), where ∆ωk is the mode
spacing. The scaling of detuning from a given mode,
δk, should, therefore, be comparable to the scaling of
∆ωk. Then, since the wave-packet state is normal-
ized, i.e.,

∑
i |ψg

i (x0, k0)|2 = 1, the total error scales as
εbus = O

(
N3/T 2)

. Therefore, increasing T as N3/2 can
maintain a constant error as the chain size is increased.

There are many variations of the quantum-bus-
mediated state preparation scheme that one can imag-
ine. First, assume we start with all spins in state down
and the bosonic mode in vacuum, evolve for a short
time under Eq. (15), measure the number of excita-
tions in the bosonic mode, and find that the result is
one. Then the spins would be projected onto a wave-
packet state of a single delocalized up spin on top of
all down spins. This approach is particularly useful
if the bosonic mode is not a long-lived cavity mode,
but is instead a lossy cavity mode or is replaced with
a continuum of free-space modes. In fact, this process
forms the basis of atomic-ensemble-based quantum re-
peaters [109]. Second, an itinerant single photon can

(a) (b)

(c) (d)

Figure 6: Experimental details for the trapped-ion real-
ization of quantum-bus-mediated state preparation. De-
tails of the experimental parameters used in benchmarking the
quantum-bus-mediated state preparation realized with trapped
ions as shown in Fig. 3(c-e). Site-dependent orthonormal
mode-participation matrix of the collective phonon modes for
(a) N = 15 and (b) N = 27 ion chains, as well as the phonon-
mode frequencies ωk/(2π) for chains with (c) N = 15 and (d)
N = 27 ions. The simulations of this work correspond to sys-
tems with N = 13 and N = 23 spins. We take ions 1 − 13
from the 15-ion chain and ions 1 − 23 for the 27-ion chain to
map to these spins. The quantities plotted also contribute to
the strength of the error εbus in Eq. (34).

be mapped onto a desired wave packet using photon
storage [110–112], i.e., the reversible storage of light in
atomic memory, a process that can be particularly effi-
cient for ordered arrays [113]. Third, one can prepare
spins in state ⊗N

j=1
(√

1 − pj |↑⟩x + eik0xj
√
pj |↓⟩x

)
, en-

gineer dispersive quantum-non-demolition coupling ∝
â†â

∑
i σ̂

x
i [114, 115] of the spins to the bosonic mode,

and measure the energy shift of the bosonic mode. This
effectively measures

∑
i σ̂

x
i , and if the measurement re-

sult is N − 2, then a wave packet ∝
∑

j e
ik0xj

√
pj |1, j⟩

of one delocalized down spin is prepared [116].

C Experimental details of a trapped-ion
implementation
This section outlines additional details required to real-
ize our experimental protocol with trapped-ion quan-
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tum simulators. While the proposal of this work is
suitable for many spin quantum simulators, trapped-
ion platforms are particularly suited to carry out the
outlined protocols in the near term. Trapped-ion simu-
lators exhibit controllable short- and long-range Ising
interactions, quantum buses realized by spin-phonon
couplings, as well as favorable control across all stages
of scattering.

Trapped-ion systems can realize both power-law and
exponentially decaying Ising models modelled by the
function Jij = J0e

−β(rij−1)/rα
ij [65, 117]. This inter-

action can be realized in a native manner in trapped-
ion quantum simulators with tunable coefficients α and
β [65, 118]. For β = 0, this model recovers the
long-range Ising model with power-law coupling, where
0 ≲ α ≲ 3 depends on the detuning of the applied
optical fields from the first phonon side band of the
transverse center-of-mass mode [21, 23]. For α = 0
and β > 0, this model recovers exponentially decaying
couplings that can be realized, e.g., by coupling primar-
ily to the low-frequency transverse zig-zag modes with
β > 0 [64–69].

In trapped-ion platforms, the quantum-bus-mediated
preparation realized with spin-phonon coupling offers
a more favorable preparation time compared with the
blockade state preparation considering the coherence
time of the experiment. The native time-dependent
Hamiltonian describing the spin-phonon coupling in
trapped-ion platforms is given by the anti-Jaynes-
Cummings Hamiltonian in Eq. (15), which is realized
by driving the first blue side-band transitions of a sin-
gle set of transverse or longitudinal motional modes.
The site- and mode-dependent amplitudes are Aik =
ηkbikΩi/2, where ηk is the Lamb-Dicke parameter of
mode k and bik is the site-dependent orthonormal mode-
participation matrix. The parameters ηk, bik, and
phonon-mode frequencies ωk depend on the ion trap-
ping potential [23, 100]. To program the evolution to
the desired wave packet from a chosen target mode, the
site-dependent Rabi frequency is chosen to be

Ωi = 2Ω0
ψg

i (x0, k0)
ηkbikt

. (35)

In the numerical simulations shown in Fig. 3(c-e), we
have set Ω0 = π/(2T ) MHz, where T is the prepara-
tion time in microseconds. Furthermore, the parame-
ters ηk ≈ 0.08, ωk, and bik are used assuming 171Yb+

ions and a combination of quadratic and quartic electro-
static trapping potentials in the axial direction that ren-
ders the spacing between the center ions nearly equidis-
tant [89]. The ωk and bik values used in the 15-ion
and 27-ion systems (corresponding to N = 13 and
N = 25 simulations) are shown in Fig. 6. In trapped-
ion experiments, the tunable parameter Ωi is typically

of the order ≲ 1 MHz. Preparation times shown in
Fig. 3(c-e) for N = 13, 23 correspond to Ωi values
in the range 0.1 − 10 MHz. Here, we have estimated
Ωi ≈

√
Nπ/(ηT ), where we have used bik = O(1/

√
N).

Therefore, a range of required Rabi frequencies are fea-
sible in current experiments.
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