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Autonomous quantum memories are a
way to passively protect quantum informa-
tion using engineered dissipation that cre-
ates an “always-on” decoder. We analyze
Markovian autonomous decoders that can
be implemented with a wide range of qubit
and bosonic error-correcting codes, and
derive several upper bounds and a lower
bound on the logical error rate in terms of
correction and noise rates. These bounds
suggest that, in general, there is always
a correction rate, possibly size-dependent,
above which autonomous memories exhibit
arbitrarily long coherence times. For any
given autonomous memory, size depen-
dence of this correction rate is difficult to
rule out: we point to common scenarios
where autonomous decoders that stochas-
tically implement active error correction
must operate at rates that grow with code
size. For codes with a threshold, we show
that it is possible to achieve faster-than-
polynomial decay of the logical error rate
with code size by using superlogarithmic
scaling of the correction rate. We illustrate
our results with several examples. One ex-
ample is an exactly solvable global dissipa-
tive toric code model that can achieve an
effective logical error rate that decreases
exponentially with the linear lattice size,
provided that the recovery rate grows pro-
portionally with the linear lattice size.

One of the biggest challenges in quantum com-
puting is the problem of noise. Any realistic qubit
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architecture is prone to dissipation due to interac-
tions with the environment, leading to errors and
subsequent loss of quantum information. Tra-
ditional error correction strategies have focused
on manual periodic error detection and correc-
tion [1, 2]. In recent years, however, there has
been a surge in autonomous “hardware” meth-
ods designed to compensate for noise using en-
gineered dissipation [3, 4, 5, 6, 7]. Several dissi-
pative quantum memories have been successfully
implemented, in particular using various bosonic
codes? |9, 10, 11, 12, 13, 14, 15|, but they have
not been fully exploited for error correction in real
many-body systems consisting of several qubits or
qudits.

A topic closely related to dissipatively stabi-
lized quantum memories is self-correction [16],
a process in which the propagation of errors is
naturally limited without performing active error
correction. An example of self-correction in the
classical world is the storage of information in
magnetic hard drives. Here, classical information
is encoded in a ferromagnet by its collective spin
magnetization, and errors resulting from sponta-
neous individual spin flips become energetically
unfavorable and are therefore eliminated by a lo-
cal thermalization process. This mechanism en-
sures a memory lifetime that scales exponentially
with system size [17, 18].

The principle of classical self-correction can
be extended to quantum systems, such as those
stabilized by frustration-free Hamiltonians [2].
For example, the four-dimensional toric code [19]
demonstrates a finite-temperature topological or-
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der that naturally protects quantum information
[20, 21, 22|. Unfortunately, several no-go re-
sults preclude local frustration-free Hamiltonians
from achieving self-correction with a constant er-
ror rate in two dimensions [23, 24, 25, 26| and
for some three-dimensional models [27, 28, 29].
Such studies are also hampered by broad chal-
lenges associated with quantum complexity [30,
31, 32, 33|.

The use of dissipative processes to aid or induce
self-correction in quantum systems continues to
be actively studied. In some cases, it is possible
to show numerically that lower-dimensional sys-
tems can still offer quantum memory times that
grow with system size [34, 35, 36, 37, 38, 39]. It
is also possible to establish general rules and con-
struct examples of memory whose performance
is provably suppressed by increasing the recov-
ery dissipation strength [40, 41]. However, there
is currently no unified approach that allows gen-
eral conclusions to be drawn about scalability of
a generic memory performance, and there are no
universal bounds on the aid that a dissipative pro-
cess can provide.

Continuing existing line of work [40, 41], we de-
rive a general non-perturbative bound (see The-
orem 1), valid for a wide class of autonomous
quantum memories and restricted by only a few
intuitive assumptions. This bound expresses the
logical error rate of a dissipative memory in terms
of the noise-to-recovery ratio — the ratio between
the benevolent recovery dissipation rates and the
strength of any malevolent noise. The core idea is
to use the resummation of Dyson’s perturbative
expansion, which allows one to derive the logi-
cal error in the late-time limit. We show that,
as soon as the noise-to-recovery ratio is less than
a critical value, autonomous memory can achieve
lifetimes that grow exponentially with the inverse
noise rate. At the same time, this general bound
promises an exponentially small logical error rate
only if the recovery rate grows with system size.

To understand better the results of Theorem 1,
we specialize our analysis to a subclass of dissipa-
tive memories that we call global decoders. This
specific model represents an oversimplified recov-
ery process that takes any error state directly into
the codespace. Although this model is techni-
cally different from many dissipative memories
that use the gradual relaxation of error states into
the codespace, it serves as an exactly solvable ex-

ample of decoding dynamics. As we will show be-
low, it also saturates the logical error rate bound
established in Theorem 1.

Our global decoder model can be seen as an au-
tonomous version of active error correction with
the assumption that rounds of error correction
essentially “take zero time” (cf. [42]). We com-
press syndrome extraction, any classical post-
processing involved in decoding, and the corre-
sponding recovery operation into a pre-compiled
procedure—in the form of a series of jump oper-
ators—that is implemented instantaneously and
autonomously. As such, the model can be seen
as an idealized form of autonomous correction for
which local syndrome measurements, efficient de-
coders, and recoveries are implemented instanta-
neously at random times.

Our global decoder assumption, while seem-
ingly unphysical, demonstrates that autonomous
memories, including those utilizing seemingly
limitless resources, do not guarantee performance
comparable to active error correction. We find
that the assumption of immediate system-wide
corrections does not automatically yield memory
times that scale exponentially, or even polyno-
mially, with system size. For multi-qubit sys-
tems undergoing Pauli noise, we show that mem-
ory lifetime scales exponentially only with the
ratio of two values: the code distance multi-
plied by recovery process rate and the total er-
ror rate (i.e. sum of error rates for each phys-
ical qubit)—see Theorem 2 and the discussion
around it. Thus, even if the code distance grows
linearly with system size (as in the case of asymp-
totically good quantum low-density parity-check
(QLDPC) codes [43, 44, 45]), the correction rate
must grow with system size to yield system-size
growing memory lifetime. By providing a lower
bound derived for a stabilizer code with Pauli
noise under a few reasonable assumptions, we also
show that this scaling cannot be improved in this
scenario.

The conclusion implied by the bounds de-
scribed above is that it is impossible to obtain a
global decoder with either exponential or polyno-
mial lifetime using our seemingly powerful engi-
neered dissipation with a constant recovery rate.
This result illustrates that the details of the re-
covery process matter, and the simple fact that it
has dissipative gap—i.e. it gets the system into
the codespace in finite time—alone is not enough
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for a scalable dissipative memory.

It is noteworthy that the global decoder model
combined with Pauli noise is an example of a
Poissonian process. Such Lindbladian dynam-
ics can be represented as a sum of independently
sampled stochastic trajectories, including error
and recovery quantum channels. This represen-
tation allows us to bound the performance of the
global decoder by counting the trajectories that
lead to a logical error. This representation also
provides a simple intuitive picture of the complex
noisy dynamics. This idea may also be useful
to obtain bounds on the relaxation time for per-
turbed local Lindbladians [22], which would oth-
erwise typically require detailed balance, among
other assumptions [46, 20, 47, 48].

The rest of the manuscript is organized as fol-
lows. In Section 1, we introduce the model of a
dissipative memory and, in particular, the global
decoder. Then, in Section 2, we provide a logi-
cal error bound for general dissipative memories
that satisfy a few assumptions. To improve this
result, in Section 3 we introduce the Poisson er-
ror model, which, in the presence of the global
decoder model, provides a better bound on the
logical error probability obtained by counting the
stochastic trajectories. In Section 4, we provide
an upper bound on the performance of the global
decoder with Poisson noise. To justify the tight-
ness of this result, in Section 5 we derive a lower
bound on the logical error probability for a special
case of models with Pauli noise. In Section 5, we
derive the asymptotic late-time behavior of the
process using this stochastic trajectory represen-
tation. Finally, in Section 7 we present several
examples and study them numerically. A sum-
mary of the results can be found in Table 1.

1 Model

Our model of an autonomous quantum memory
consists of three ingredients: a noisy quantum
system, a codespace, and a recovery map.

Noisy system. We consider a noisy quantum
system with Markovian noise [49] and accessible
Hilbert space H of dimension D. The evolution
of the system, in the absence of external control,
is characterized by the Lindblad master equation
[50, 51]

d
—p=AL 1

where p is the density matrix of the system, A is
the noise rate, and Lg is the error Lindbladian
that takes the form

N
1
Lp= Z Au (EMPEL - i{ELEm P}) (2)
p=1

Here, {Eu}ﬁ;l are error operators and A, > 0
are real weights satisfying >°, A, = N.

We choose error operators to be sufficiently
general to encompass both noise models in many-
body systems, for which the Hilbert space H has
a tensor-product structure, as well as in bosonic
modes [9, 10, 11, 12, 13, 14, 15|, for which H
is embedded in a single countably infinite space.
As such, the error jump operators E, should be
interpreted as the generators of error combina-
tions, or strings, that constitute our model’s er-
ror set. The accumulated error operators are
K, = K, ... K,, labeled by all possible error
sequences p = (pi1,...,pr), where k > 1, and
the elementary errors in the sequence are

K,€{E,...,Ex,ElE1, ... E{EN} . (3)

The set of elementary errors includes quadratic
combinations of jump operators, such as EZLEH,
manifested in the last term of the Lindblad equa-
tion. When we decompose the Lindblad evolu-
tion into many stochastic trajectories, this term
of the Lindblad equation characterizes the error
accumulated between the error jumps. It is im-
portant to note, however, that these quadratic
errors loose their relevance for unitary error op-
erators F,. In these situations, quadratic errors
become trivial and should be ignored.

In the case of qubit codes, the error jump op-
erators I, are often Pauli operators acting on
a single or a few qubits, while the K, are ten-
sor products of such operators. In this scenario,
many error sequences are equivalent since, for ex-
ample, two Pauli errors cancel each other out,
Ez = I. Therefore, we count only unique errors
as part of the full set of K. In another exam-
ple of a bosonic mode [9, 10, 11, 12, 13, 14, 15|
undergoing photon loss, the only jump operator
E,, is the bosonic annihilation operator, and K,
are powers of that operator and its adjoint, the
creation operator. In all cases, the length of pu,
denoted as |u|, provides an upper bound on the
number of resulting accumulated errors and quan-
tifies their potential severity. We will sometimes
refer to |pu| as the weight of the error.
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Logical error bound Statement Noise Decoder

Upper bound* Theorem 1  General Strictly error-reducing
Upper bound* Theorem 2  Poissonian Global

Upper bound Theorem 3  Uniform Pauli Global

Early-time upper bound Theorem 4  Poissonian Global

Lower bound* Theorem 5  Pauli Global for stabilizer codes

Table 1: Summary of results. The notions of logical error, strictly error-reducing decoder, and global decoder are
explained in Section 1. The notion of Poisson noise is discussed in Section 3, the definition of Pauli noise is given in

Section 4.1. The asterisk denotes main results.

Codespace.  We consider a logical quan-
tum information encoded in the ¢g-dimensional
codespace C C H. We further assume that C is
a quantum code with error radius ¢, defined as
the largest number for which all errors of weight
£ and below are correctable. In particular, a code
with error radius ¢ satisfies the Knill-Laflamme
condition [52]

PK}K,P = C,P
such that

(4)

Vp,v |, vl < ¢,

where C,,, are constants, and P is the projector
on the codespace. At the same time, there exist
one or more errors of weight 41 such that, when
added to the above set of correctable errors, they
violate Eq. (4). For example, qubit codes un-
dergoing Pauli noise with distance d have error
radius £ = | (d — 1)/2| with respect to local Pauli
noise. On the other hand, bosonic rotation codes
[53] undergoing photon loss and being able to de-
tect S photon losses have an error radius of |.S/2]
with respect to loss errors.

Recovery process. We consider the au-
tonomous recovery process described by the mas-
ter equation

d

o= "Lr(p), (5)

where L is the Lindbladian generator of the re-
covery dynamics. For this work, we specialize to
a class of maps that can be described as decoders
by making three major assumptions.

First, we assume that the recovery dynamics
has a certain non-zero convergence rate, i.e. that
the solution p(t) := e“Rt(p) has a well-defined
limit poo := limy_oo p(t) that generally depends
on p(0), and there exist both time-independent
rate Kk > 0 and a parameter 0 < x < oo such that

VpeN,t>0: 1p(t) = pooll1 < xe™ ", (6)

where we denote N = {p € End(H) : p > 0, Trp =
1} to be the set of all positive semidefinite opera-
tors with unit trace and || A4]|; := Tr VAT A is the
trace norm. The x parameter plays the role of an
effective correction rate. For example, this condi-
tion holds for systems that exhibit a generalized
notion of the rapid mixing condition [54, 55| ap-
plied to states that share the same fixed point,
ie.
Vp,0 €N poo =00, t >0
lp(t) — o)l < xe ™,

where k is a constant and parameter x is either
a constant or depends at most polylogarithmi-
cally on the dimension of the Hilbert space D
(for finite-dimensional systems). For the sake of
generality, we will keep arbitrary xy = x(D) < oo
as a function of D, although the result we present
is primarily relevant to systems where it is a con-
stant, x = O(1). As we will see below, for such
cases, the ratio of the correction rate to the noise
rate determines the ability of the decoder to coun-
teract the noise.

The second assumption implies that the dy-
namics described in Eq. (5) constitute a legiti-
mate recovery process. This statement imposes a
condition on the late-time recovery map, defined
as R := limy_,o exp(Lrt), requiring it to correct
all errors within the error radius ¢, i.e.,

R(KupoK}f) o po, (8)

where Ng = {p | Tr(p) =1, p > 0,p € End(C) &
0} is the set of density operators in the codespace
C. Here, End(C) & 0 denotes the space of op-
erators with range and support in the subspace
C C H. In other words, any state affected by
a correctable error is restored to the codespace
without introducing any logical errors.

The third assumption requires that the decoder
process be strictly error-reducing. This means

(7)

Vpo € No, |pl, V| < 4,

Accepted in {Yuantum 2025-04-06, click title to verify. Published under CC-BY 4.0. 4


https://errorcorrectionzoo.org/c/qecc
https://errorcorrectionzoo.org/c/bosonic_rotation

(@) )

~
0
N

[y

codespace

NN

codespace !

fidelity

time

1;%;

Figure 1: Autonomous error correction. The horizontal lines in (a) and (b) represent different error subspaces
in the Hilbert space H, including the codespace C. (a) General model of strictly error-reducing autonomous error
correction: the correction process causes transitions between error states, lowering the effective error weight until
the system reaches the codespace. No transition to larger-weight errors allowed. (b) Global decoder: the recovery
process causes transitions directly into the codespace. (c) Starting with an arbitrary initial state, the fidelity (i.e. the
probability of being in the codespace) in the absence of error processes approaches one with rate «, for both general

and global decoders.

that any recovery operation performed at inter-
mediate times does not increase the weight of the
error state (see Fig. 1la). In other words, for all
t > 0, there exists a representation

exp(Lat)(KupoKf) = 3 ap v () K po K,
u'v’

(9)
where a0 (t) = 0 if [p!| > |p| or V'] > |v|.
This idealization may technically exclude certain
high-performing decoders that might increase the
error weight, even in negligible subsets of error
configurations. Nonetheless, it enables us to de-
rive our main result presented in Theorem 1.
Note that the right side of Eq. (9) may admit
multiple representations in terms of error opera-
tors and different coefficients a,,, ;.. This arises
because two distinct operators K, and K,/ can
have the same action on the code space, i.e.,
Kulo) o< Kylo) for all 1) € C. It suffices
that at least one such representation satisfies the
condition mentioned above. Starting from any
initial state p(0) = po, the evolution to time ¢ > 0
under the Lindbladian satisfying the first condi-
tion in Eq. (6) can be formally written as

p(t) = e " Ki(po) + (1 — e "™ )R(po),

where K; := e (exp(Lgt) — (1 — e ")R) repre-
sents the early-time evolution and whose action
can always be bounded as

IKe(p) 11 = 11poc + € (p(t) — poc) |11
< lpsolls + €™|[p(t) — poolls < x +1,
(11)

where we used the contraction property in
Eq. (6).

(10)

Most of our results concern the special case of
global decoder models, which is a special case of
the model in Eq. (10) where we additionally re-
move any partial recovery, i.e. we assume K; = 7.
In this case, the Lindladian for the recovery pro-
cess is given by

Lr=r(R(p) = p),
p(t) = e po+ (1 — e ™) R(po).

In this model, the recovery dynamics return error
states directly to the codespace (see Fig. 1b). The
recovery R may act non-locally in order to recover
information into the codespace in one step. The
definition of the dissipative gap remains the same
for both general and such global decoders (see
Fig. 1c). Note that since in this case ||| =
|Z|| = 1, the results for the global decoder can be
compared to the general case above by effectively
taking x = 0.

The primary distinction between global de-
coders and the broader category of decoders
satisfying Eq. (8) lies in the applicability to real-
world decoders. This broader class of decoders
may include decoders for bosonic codes (in the
case of an ideal implementation), as implemented
in Ref. [15]. At the same time, it may be dif-
ficult to construct a decoder for qubit systems
that is both local and consistent with Eq. (8).
However, local decoders, such as those based on
the sweep rule [56], must satisfy these conditions
with an error that decreases rapidly with code
size. The rationale is that even though the sweep
rule may locally produce more physical errors,
the likelihood that these operations will increase
the total number of errors is exponentially small
in the number of physical qubits. To prove such

(12)
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a fact, it is necessary to exploit the properties
of a particular decoder. This aspect allows a
direct comparison between the general case and
local decoders. In contrast, global decoders
are fundamentally different from local decoders
in their approach: they map error states to
the codespace in a single step. Although this
one-step requirement complicates the practical
implementation of global decoders, the simple
mathematical framework of this model provides
broader possibilities for analytical exploration.

Logical errors and critical error rate. The com-
bination of the recovery process and the error
process results in a dynamical equation that de-
scribes the autonomous quantum memory:

d

—p=L(p) :== Lr(p) + ALE(p).

dt (13)

Our goal is to explore the performance of such a
quantum memory. In particular, we aim to find
a regime where, in the presence of noise (A > 0),
the probability of a logical error after recovery
for a family of codes with increasing ¢ vanishes
polynomially or exponentially in the limit £ — co.

As a measure to quantify logical errors, we con-
sider the trace distance as a function of time be-
tween two initially orthogonal logical pure states
in the codespace. Let G be the set of all
pairs of orthogonal states in codespace, G =
[(0), [n)) ¢ Itbo), 1) € C, (oliér) = O} Given
this setup, we proceed to define an error measure
as
5(t) =1 Womg(exp(cw [Po], exp(£L)[P1])

(14)
where Py = |¢0) (Yo, P1 = [¢1)(¢1], and T'(p, o)
is the trace distance. *

The error measure §(t) vanishes if and only if
there exists a recovery map that always returns
the logical qubit to its initial, error-free configura-
tion. However, such a map may be complex and
a priori unknown. As an alternative, we define a
simpler logical error measure that quantifies our
ability to recover information using the recovery
map R based on the fidelity of recovery starting

“The trace distance is the maximum probability of dis-
tinguishing between two quantum states and is expressed
as T(p,0) = 3|lp — oll1, where [|A[|; := TrVATA is the
trace norm.

from a pure initial state:

€(t) =1 = min_ Tr (|40} {wolR exp(L)[to) (v ).
(15)

where the minimum is taken over pure states in
the codespace.

For a single logical qubit, the two error mea-
sures () and €(t) are related by (see Appendix
A)

5(t) < 2¢(t) . (16)

We will focus below on the measure €(t) in
Eq. (15). However, some results also apply to
d(t) (see Theorems 1 and 4 below). Strictly
speaking, both measures 0(t) and €(t) are
functions of the recovery map R and the noise
process, as well as the corresponding rates. For
simplicity, we omit explicit dependence on these
parameters in our notations.

2 General bound for strictly error-
reducing decoders

In this section, we present a result that shows
that autonomous memories always exhibit ex-
ponential memory lifetimes for sufficiently small
noise rate. To do this, we must first introduce
a parameter that quantifies the strength of the
noise. We first introduce the correctable error
space E consisting of the range of error states
[Ywu) < Kyulw), where |w) € C denotes the set of
q mutually orthogonal codewords arbitrarily cho-
sen in the codespace C, ¢ is the dimension of the
codespace, and K, are errors of weight less or
equal to ¢ that satisfy the condition in Eq. (4).
This subspace satisfies C C E C H. Then we can
introduce ||Lg||1-1,e as the contraction norm of
the superoperator Lg over the subspace E, i.e.

1££(0)lx

o, @ 47

€8l = O€End(E)a0
where End(E) @ 0 denotes the space of operators
with range and support in the subspace E C H
and || - ||1 is the trace norm. By definition, for
finite systems this norm is bounded by the full
norm, i.e. [[Lglis1e < [|Lellisin = [LEl1-1
The norm ||Lg|1—1,e could remain well-defined
even if the norm ||Lg|/1—1 becomes unbounded
for systems with a formally infinite Hilbert space
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dimension, e.g. in the bosonic codes. However,
for systems with bounded local Hilbert space,
such as qubits on a lattice, the difference between
these norms is less significant, so one could re-
place ||Lgl1-1.e by ||LE|[1—1 below without los-
ing the essence of the result. In particular, for
single-qubit noise, both norms are expected to be
bounded and to have the same linear scaling with
the number of physical qubits n.

Then we can write our first result as the fol-
lowing theorem:

Theorem 1. For an arbitrary error model in
Eq. (2) and recovery map in Eq. (10) satisfying
the assumptions outlined in Egs. (6), (8) and (9),
the error rate is bounded by

t),0(t) <
((0,60) < — ;
+1
< 1 ((x+l)AHﬁEHH1,E> ot
x+1 K
1
=~ gt ,
X+1
(18)
where 1 = (x + DA|LEe|151e/k, Fi(z) =

z2g(l,z) —Lg(L+1,2) < z and g(¢, z) is the regu-
larized lower incomplete Gamma function [57].

To prove this result, we use Dyson’s pertur-
bative expansion of the evolution superoperator
with A as a small parameter. We show that the
first £ perturbative terms in the series vanish, and
use a re-summation of the remaining terms to
obtain a non-perturbative expression. The proof
can be found in Appendix B. Note that this re-
sult holds not only for finite-dimensional systems,
but also for certain (infinite-dimensional) bosonic
systems where E is a finite subspace. This bound
can be seen as a generalization of the model-
specific bound proposed in [41], which essentially
describes the special case in Eq. (12) (see next
section for better bound for this case). In con-
trast, the bound in Eq. (18) holds for any recov-
ery dissipation that satisfies the criteria listed in
the previous section. It also captures nonlinear
early-time error scaling.

For short times, defined as xt < 1, the special
function has polynomial scaling Fy(xt) ~ (kt)+1,
and the error bound scales as e(t) = O(((x +
DA LE|l151,6t)"th). This reflects the fact that,
in this limit, the error is described by perturba-
tion theory and the lowest non-vanishing terms

/41
1 ((X+1)A||£E||1—>1,E> Fg(%t)

are of order £ + 1. In contrast, in the non-
perturbative regime st > 1, the logical error
bound grows linearly and its rate is proportional
to 1, where n = (x+1)A||Lg||1-1,e/. There-
fore, this rate is exponentially suppressed in £ if
the noise is small enough that n < 1.

Let us analyze this suppression for certain
multi-qubit codes for constant recovery rate x and
prefactor y. In multi-qubit systems, the Lindblad
operators are expected to satisfy the symptotic
equivalence || Lg|151e < [[LElli»1 ~ cn in the
limit of large n, where the dimensionless multi-
plication factor ¢ reflects the rate of local error
processes. One can also find QLDPC codes, such
as those defined on expander graphs [43, 44, 45],
whose radius is proportional to the number of
qubits, such that £ > an for some a < 1. As
a result, the logical error rate is I' := §(t)/t <
(br/ro)**'k, where r = A/k is a renormalized
noise to recovery ratio and 19 ~ «a/(x + 1)c in
the limit of large n. Unlike in active error cor-
rection, the logical error rate bound does not be-
come arbitrarily small for ever-increasing ¢. In
fact, for small r < 1, the bound has its mini-
mum at ¢ ~ rg/er, where e is the base of the
natural logarithm. This dependency is shown in
Fig. 2(a). The minimum logical error rate bound
is

Fmin = O (/ﬂe_”’/’”) , r=A/RK. (19)
This is the minimum error rate bound for fixed
k. Therefore, we show that, for constant k,
there exists a universal upper bound on the er-
ror rate that is sufficiently smaller than the orig-
inal error rate A once r < rg. In this regime,
a small improvement in the error rate A yields,
at least, an exponential improvement in the log-
ical error rate bound, see Fig. 2(b). This is a
universal “soft threshold” result applicable to au-
tonomous error-correcting codes based on linear-
error-radius QLDPC codes.

Of course, we know that this bound is not tight:
for some autonomous codes we can have arbitrar-
ily small errors for some A/k below the threshold
[20, 21, 22]. However, our result suggests that, in
general, to get such unbounded error reduction,
we must have k « [|[Lg|151,€, ie., growing with
system size. In fact, by considering a particular
example below in Section 5, we show that this
scaling condition cannot be relaxed in general.
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Figure 2: Logical rate for generic qubit-based models. (a) The logical rate as a function of the error radius for
different values of the noise-to-recovery ratio r. The function has a minimum for fy,;, = O(ro/r), the positions
of the minima are shown as the dotted black curve. (b) The minimum logical error rate ratio as a function of the

noise-to-recovery ratio, see Eq. (19).

3 Global decoders and a Poissonian
noise

In this section, we derive tighter bounds than
the generic-decoders bound in Eq. (18) by focus-
ing on global decoders in Eq. (12) and specializing
to unitary error jump operators (including Pauli
noise). Such bounds allow for a better grasp of
the capabilities of a recovery rate x that is sub-
linear in the number of qubits.

Definition 1 (Poissonian noise). The error
model is Poissonian if the error operators in
Eq. (2) are unitary, i.e. they satisfy ELEH =1,
where I is the identity matriz.

We refer to this dynamics as Poissonian as it
maps directly to a Poissonian point process [58].
While this restriction still covers generic Pauli
noise for qubit, modular-qudit [59], and Galois-
qudit codes |60, 61], it does not include processes
such as photon loss or additive Gaussian white
noise applicable to bosonic codes.

Assuming Poissonian errors, we can rewrite the
Lindblad equation in Eq. (13) as

N
%p =L(p) =7 pu(Eulp)—p),  (20)
n=0

where

E.(p) = R(p) pu=0
a EupEj, >0

and v =K+ NA, pg = K£/7, and puso = A\ A /7.
Notably, parameters p, are positive, satisfy the
normalization condition >, p, = 1, and can
therefore be treated as probabilities.

The analytical solution of Eq. (20) can be ob-
tained from the exponentiation of £ and the
consequent decomposition of the exponent using
Taylor series, which takes the form of a sum of
multiple stochastic trajectories:

N
exp(Lt) = e "exp (’yt Z pu5u>
(21)

pu=0

= Z p(“? t)glh

pneF

where the set F' includes individual trajectories p
of any length, including consequent errors and re-
coveries, and £, = &, o---0&,, is the trajectory
map, where o denotes the composition of super-
operators (we omit it below). The probability of
a trajectory of error weight |u| = k occurring at
time t has the form

1 _
p(p,t) = —(v) e M puy b, (22)

k!
where probabilities p, are defined below Eq. (20).
It is easy to confirm that, for a given ¢, the prob-
abilities p(u,t) for any time ¢ sum to one. As a
result, we can interpret the dynamics as a homo-
geneous Poisson point process, in which error and
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recovery events occur at random times following

a Poisson distribution with average spacing v~ .

4 Upper bounds for global decoder
with Poissonian noise

In this section, we first present a rigorous up-
per bound on the error measure €(t) for n-qubit
codes subject to Poissonian noise (Theorem 2).
We then present two other upper bounds that
give a better estimate of the logical error rate
in more specific settings (Theorem 3 and Theo-
rem 4).

Many of the quantum error-correcting codes
can still reliably store the logical information
when they are subjected to much larger noise
than allowed by the Knill-Laflamme condition
in Eq. (4). This is due to the existence of a
error threshold of the codes. To account for
the improved error tolerance beyond the Knill-
Laflamme condition, we introduce the tolerable
error weight.

Definition 2 (Tolerable error weight). Con-
sider a family of n-qubit error-correcting codes
for increasing n. Fach code has a codespace C,
code distance d = d(n), an error channel £ and
a recovery map R. We say that the code family
has a tolerable error weight h if h = h(n) is an
integer-valued function such that, for any |¢) € C
and non-negative integer k < h, the following in-
equality holds:

REF(|0) (@])— (1 = &) (1] > 0, (23)

where ¢ = 2-UD s independent of |¢)). Let G
be the set of all possible constants f such that
h(n) = | fn] is a tolerable error weight. We say
that the code family has a threshold f. if f. =
sup G > 0.

The inequality in Eq. (23) means that the
eigenvalues of the operator on the left side of
the inequality are non-negative. Since REF is
a quantum channel, this inequality is equivalent
to the statement REF|)(v| = (1 — &)[W) (Y| +
> i pilti) (W] for some |¢;) € C and p; > 0 that
satisfy >, p; < €. In other words, for any initial
logical state, the error occurs with £-small proba-
bility. By this definition, an n-qubit code with a

threshold can recover the encoded quantum infor-
mation with arbitrary precision, even if it is sub-
jected to a large number of k < h error channel
rounds. Examples of error-correcting codes that
have a threshold against single-qubit Pauli noise
include the repetition code and many quantum
stabilizer codes such as the toric code and color
codes. For all codes, error weights below error
radius ¢ are by definition tolerable.

With the concept of tolerable error weight, we
are now ready to state the upper bound for sys-
tems subject to Poissonian noise.

Theorem 2. Consider a family of n-qubit error-
correcting codes for increasing n. Fach code has a
codespace C with code distance d = d(n), a Pois-
sonian noise model {E,}, a recovery map R and
a tolerable error weight h = h(n) with respect to
the total error channel £ = %Zﬁle Eu. Then
there exists a small parameter &€ = 27D gych
that the logical error probability for the global de-
coder in Eq. (35), for any t > 0, satisfies
NA \"
<1 en(-1—gva (25
e(t) <1—exp(—(1-¢) T NA
—f(k+ NA)t).
(24)

We provide a proof of the theorem in Ap-
pendix D. Similar to the asymptotic estimate in
Section 5, the proof utilizes the Poissonian pic-
ture.” It uses the fact that the dynamics of the
system is an ensemble average over trajectories
where the single-shot recovery and the errors hap-
pen stochastically. Along a given trajectory, the
occurrence of a recovery event resets the system
back to the codespace. If no more than h errors
take place between any such consecutive resets,
the recovery is almost guaranteed to send the sys-
tem back to the correct codeword (up to a small
failure rate £). We can therefore obtain an upper
bound for the logical error probability by lower
bounding the probability of trajectories consist-
ing of only such faithful resets.

It is worth noting that this bound holds for a more
generic class of errors: instead of requiring EEEM =
1 for all p, the jump operators only have to satisfy
Zu ELE‘L = N. This class of errors also has the same
convenient properties as the Poissonian model (21). Thus,
the bound also applies in situations involving non-unitary
errors such as those described by Pauli ladder operators
o = (X £iY)/2, provided >, ELE.=N.
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Consider an ideal recovery map that corrects
only errors within the error radius, i.e. a tolerable
error weight h = £ and £ = 0. It therefore follows
that

NAt ) R

e(t) <1—exp <_(1—|-I€/]VA)Z

This result can be compared to Eq.(3) in [41]. A
notable difference is that the current logical er-
ror bound in Eq. (25) remains meaningful even
for NA/k > 1 in the regime ¢ > 1. This up-
per bound is also shown in Fig. 3 along with the
others.

Below, we consider two additional bounds for
Poissonian noise that work for more specific set-
tings. In the first bound, we assume that the
noise is Pauli noise. The second bound is less
tight but applies to all types of Poissonian noise
and works better for early times.

4.1 Upper bound for uniform Pauli noise

The upper bound can be further improved for
the system consisting of many qubits. In these
systems, a stronger result can be obtained if we
restrict the errors to Pauli noise (see definition
below) and assume that the rate is uniform. This
model is one of the standard error models consid-
ered in practical quantum computation.

Definition 3 (Pauli noise). Consider a system
consisting of qubits. The channel £(-) =3, E, -
E,, is defined as Pauli noise if E,, C P, where P is
the set of generalized multi-qubit Pauli operators.

An example of a Pauli noise model is depo-
larizing noise, where the errors at each location
1 are described by three Pauli jump operators,
Esit1 = Xi, E3i12 = Y;, and E3;y3 = Z;, where
i =0,...,n — 1. Another example is dehasing
E;, = Z,.

To incorporate the error threshold while ex-
ploiting the simple structure of Pauli noise, we
consider a subset of codes subject to uniform
Pauli noise, i.e., in Eq. (2) A\, = A, for all u, 1/,
and have a tolerable error weight as defined be-
low.

Definition 4 (Tolerable error weight for
uniform Pauli noise). Consider the conditions

of Definition 2 and additionally assume that er-
ror channel £ is Pauli noise. Then we say that
the code family has a tolerable error weight h for
uniform Pauli noise if h = h(n) is an integer-
valued function such that, for any |¢) € C and
non-negative integer k < h, the following inequal-
ity holds:

R ([} () —(1 = ) (| > 0,

where ¢ = 2N s independent of |1). Here,
Qo = T is the identity channel and Qr(-) =

\Sihz{u}kesk E{u}k(')E}M}y where Sy is the set
of all the possible k distinct error indices and

By = Hpeguy Bu-

(26)

We expect many common error-correcting
codes, such as quantum stabilizer codes, to have
a tolerable error weight for uniform single-qubit
Pauli noise. As a consistency check, if a code
family is subject to uniform Pauli noise and has
a tolerable error weight for uniform Pauli noise,
then it has a tolerable error weight according to
Definition 2.

Since Pauli operators mutually commute or an-
ticommute and their square is identity, two iden-
tical errors in the sequence cancel each other out.
This fact means that some of the physical error
sequences with length greater than h may not
contribute to the logical error due to such can-
cellation. This allows us to improve the upper
bound, which leads to the following theorem.

Theorem 3. Under the conditions of Theorem 2
and consider a code family that is subject to Pauli
noise model with uniform rates, i.e. in Eq. (2)
Ap = Ay for all p, 1/, and has a tolerable error
weight h(n) for uniform Pauli noise, the logical
error in Eq. (15) satisfies

e(t) <1— exp(—(1 —E)NAsyt — E(r + NA)t),

(27)

where s1 is the solution to the recurrence relation

v v

Sy = Nplsvfl‘f'(l - N> P1Sv+1, S0 =0, Spy1 =

(28)

withpy = NA/(k+NA) andv € {0,1,2,--- ,h+
1}.

The proof is similar to that of Theorem 2 and

is given in Appendix E. The recurrence relation

corresponds to a classical random walk, where a
left or right move corresponds to an application
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Figure 3: The results for a Poissonian error model. The bounds and estimates for the logical error €(t) for a code
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bound in Eq. (29) is shown as a dotted red curve, the bound in Eq. (35) with p(t) evaluated numerically is shown as
a blue curve, and its estimate in Eq. (41) is shown as a dashed black curve. Panel (a) plots the linear scale, while

panel (b) plots the logarithmic scale.

of an error operator that increases or reduces the
weight of the resulting total error4. Note that
the recurrence relation Eq. (28) always has a so-
lution. This can be obtained by first initializing
the recurrence with sg = 0 and s; = 1, and then
dividing the resulting sequence {s,} by spy1 (to
satisfy the boundary condition s, = 1).

We analyze the recurrence relation in Eq. (28)
numerically. In particular, we compute s; for
different x and A, also varying N up to 107 (see
Appendix E for the numerical results). We have
the following empirical observations:®

1. For 0 < h/N < 1/2, we find that
logsy ~ —x for N> 1.
2. For h/N = 1/2, we find that logs; ~

—4x log N for N> 1.
For generic codes satisfying h/N < 1/2, the

4Here, we count the error weight after cancelling all
the repeating errors in a jump trajectory described by a
string of elementary errors (Eq. (3)).

“Here we use ~ to denote asymptotic scaling with re-
spect to a small/large parameter, and o« as a standard
notion of proportionality (i.e., difference by a constant fac-
tor).

Pauli-noise bound in Theorem 3 yields an error
rate lower than that of the general-noise bound in
Theorem 2. In the special case when h/N = 1/2,
Theorem 3 predicts a memory lifetime that in-
creases as N®/4A=1 when k > 4A. This case
applies, for example, to the classical repetition
code subject to the single-qubit bit-flip noise or
the surface code subject to only qubit-erasure
noise [62] or only Pauli-Y noise [63]. While
the bound in Theorem 1 fails to capture it, The-
orem 2 predicts an unbounded lifetime as N — oo
when k > 4A.

The result of Theorem 3 also holds when the
jump operators are not Pauli operators but Pauli-
type, i.e., they only satisfy Eﬁ =Tland E By =
+E, E, for all p, pi, but not necessarily £, € P.
For example, we can consider a noise model where
at each qubit the error is described by the same
single Pauli jump operator, i.e. for a site 7 the
error operator is E; = ¢; X; + ¢,Y; + ¢, Z; where
CzyCysc; € R and 2 —i—cfj—kcg =1.

4.2 Upper bound tight for early times

Applying the bound we found in Eq. (24)
for early times indicates that e(t) O(t).
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However, numerical simulations shown in Fig. 5
suggest that linear scaling is only relevant
at late times. Below, we establish a comple-
mentary bound e(t) = O(tt') that confirms
the slower-than-linear growth at early times.
This bound also applies to the trace distance 6(¢).

Theorem 4. Assuming global decoder in Eq. (12)
and any Poissonian noise model in Eq. (21), the
logical error rate is bounded as

(0.50) < 7 n/?VA)eJFl Fi((s+ NAY),
(29)

where Fy(x) is defined in Theorem 1.

The proof of this result can be found in Ap-
pendix F. It follows the same steps as the proof of
Theorem 1, with a slightly different resummation
procedure made possible by the Poissonian error
assumption. Since [[Lgllis1 < N for L that
consists of N independent processes with unitary
jumps, this yields a bound that improves on The-
orem 1 by a factor at most ((x+1)(1 —I—NA//{))Z
for the case of a Poissonian error model.

The result from Theorem 4 provides an accu-
rate scaling for the logical error at early times,
while also capturing the error rate at later times.
In the limit z — 0, we observe the scaling Fy(z) ~
1. On the other hand, when z > 1, this func-
tion behaves as Fy(x) ~ x. This means that the
error rate at early times grows as €(t) ~ (tNA) !
and saturates to a linear rate. In the late-time
regime, the logical error satisfies

NA NAt

/+1
e(t) < (HNA) (s + NAY = Ty

(30)

Thus, this bound is consistent with the Taylor
expansion of the bound in Eq. (25) if the logical
error rate is small. It is also illustrated in Fig. 3
along with the bounds we derived previously.

5 Lower bound: stabilizer global de-
coder with Pauli noise

The above upper bounds on the logical error
rate scale no faster than N exp(—ck/A) in the
recovery rate k. However, this does not rule out
the possibility that global decoders may be able
to suppress errors more efficiently. Using the ex-
ample of qubit stabilizer codes [64, 2| subject to

Pauli errors, we show below that this is generally
not the case. We derive a lower bound on the
error rate that decreases exponentially with the
recovery-to-noise ratio k/A, and is independent
of the number of qubits n. In other words, it is
impossible to reduce the logical error rate to zero
in the n — oo limit while maintaining a constant
recovery rate. This result shows that the upper
bounds we derive for general and global decoders
are tight: to improve them, we need to add con-
ditions that would exclude global decoders, or at
least exclude the assumptions we use below.

To prove the lower bound, we make the
following two additional natural assumptions:

e Assumption 1. In the absence of recovery,
the noise process Lg generates a nonzero
probability of a logical flip, i.e.

an(r) =Tt (\1><1|7eeﬁm|o><0|)> a, (31)

where 7 > 1, x 1/A and a € (0,1) are size
independent parameters, Lp is the noise
generator, |w) are the logical states.

This assumption ensures that the noise
model is sufficiently powerful. The thresh-
old time 7. determines the time after which
the logical information is no longer perfectly
recoverable. In Fig. 4(a) we illustrate this
property by plotting «,(7) for different
system sizes of the 2D toric code (see
Section 7 for a definition). In this plot, one
can clearly observe the threshold time 7
after which the logical state appears highly
mixed after the recovery map for any code
size.

e Assumption 2. The recovery map R and to-
tal Lindblad operator £ = Lr+ ALp satisfy

Tr [|0) (0 Re“™[0)(0]]
< Tr[|0)¢0] (Re)™ [0)(0]]
(32)

for any time ¢ > 0 and integer m > 0.

This assumption states that interleaving the
noisy evolution with more recovery opera-
tions is more effective than not doing it. We
illustrate this property in Fig. 4(b) for the
2D toric code. Specifically, we plot both the

Accepted in {Yuantum 2025-04-06, click title to verify. Published under CC-BY 4.0. 12


https://errorcorrectionzoo.org/c/qubit_stabilizer

(@5 (b) 10°

V..,
VG,
% Vv,
0.4 - AT
"V
= g ., Vg,
£ <] Ve
S 0.3 S 10714 o v
g > %e. 5%,
e 5}
s > . .
o 0.2 1 5 %
= 9]
o« l.h.s. (n=32)
0.1 10-24 ¥+ rhs.t=0.07 '*-.,.
3% rhs. t=0.17 “a e,
O+ rhs.t=0.34 w
0.0 ¢ ..
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.0 0.2 0.4 0.6 0.8 1.0

Time T Total time, mt

Figure 4: Logical error after recovery for 2D toric code. Here, we put A = 1 and consider only bit-flip errors
E, = X,,, where u enumerates the physical qubits. We utilize the recovery map R, based on the minimum-weight-
matching algorithm (see Section 7 for details). (a) The flip probability a,,(7) in Eq. (31) in the absence of recovery
(k = 0) for a different number of spins on a square lattice. Dots represent numerical data for the L x L lattice
(the total number of qubits n = 2L? given in the legend), lines are smooth interpolations. For times larger than
7. ~ 0.115, marked by a dashed line, the logical flip probability is always nonzero, approaching the value of 0.5 for
large codes. (b) Comparison of the recovery probabilities for n = 32 qubits and x = 0 in two cases: (i) a single
recovery at the end, as given by the left-hand side of Eq. (32) (orange dots), and (ii) repeated recoveries, as given by
the right-hand side, for different times ¢ (dotted curves) and different numbers of recoveries m (white triangles, stars,
and pentagons). For all parameters, repeated recoveries in case (ii) perform better than applying the final recovery

only in case (i). We also numerically verified, but not included here, Assumption 2 for cases when x # 0.

right-hand side and the left-hand side of this
inequality for different times ¢ and integers
m. Notably, this inequality holds even at
times ¢t > 7., when the average probability
of errors for each physical qubit exceeds the
code threshold. While we do not generally
expect good performance from the decoder in
this case, the toric code demonstrates some
improvement even above the threshold.

Given these assumptions, we can show the ex-
istence of the minimal logical error rate.

Theorem 5. Consider an n-qubit quantum sta-
bilized code, the noise process Lg in Eq. (2) with
rate A where {E,} represent Pauli noise accord-
ing to Definition 3, and the recovery process Lr
in Eq. (12) generated by the recovery map R with
rate k > 0, which together satisfy Assumptions 1
and 2. Then the logical error at t > 0 satisfies

(1) > 1 (1~ exp(~Aeat)),

_ klog(l —ae™") (33)

AN —
off KTe + log 2
A proof for the bound is given in Appendix.
Note that 7. o« 1/A by Assumption 1. In the
limit A < K, we have
a

Aeff ~ —e
Te

—KTe

(34)

Suppose 7. = ¢/A, for some constant ¢ > 0,
the effective error rate is Aeg = O(Ae=/3) as
A — 0. This result shows that the lower bound
on the logical error rate decreases exponentially
with the ratio of the recovery rate to the error
rate. However, it also follows that under the as-
sumptions in Egs. (31,32) (which we have ver-
ified for the 2D toric code, but expect to hold
more generally), it is impossible to obtain a quan-
tum memory with either exponential or polyno-
mial lifetime using only a constant recovery rate.
Some careful readers may notice that Theorem 3
suggests that the repetition code subject to a sin-
gle type of Pauli noise has a memory lifetime that
grows polynomially with system size. This is not
inconsistent with the lower bound. One can ver-
ify numerically that assumption 1 is violated by
the repetition code, i.e., the timescale 7. for logi-
cal information corruption under purely noisy dy-
namics grows with system size.

6 Asymptotic error estimate: global

decoders with Poissonian noise
The derivations in the previous sections estab-

lished several general upper and lower bounds
for the performance of global decoders combined
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values of ¢ as a function of A. The curves show the asymptotics of the form €(t) = (c,A)**1¢, where ¢} = 2.57,
¢y = 9.51, and ¢§ = 28.54. This agrees with the theoretical bound in Eq. (18) when taking into account that

ILEll1=1e > Ce > ¢, ¢, where Cp := \/’Iﬁr <|O>(O\£TE£E|O)(O|>, |0) is an ¢-dependent codeword in Eq. (54), and
C1 = 6.50, Ca = 24.5, and C5 =~ 61.0.

with Pauli noise. This naturally leads to the ques- than the characteristic recovery time. We use

tion: Is it possible to distill the essence of these
derivations into a single approximate formula de-
scribing the logical error of global decoders? This
section aims to provide the reader with such a
simplified expression, valid for times much longer

the Poisson picture of many “faithful” trajecto-
ries and estimate the number of trajectories that
avoid logical errors. From this estimate we de-
rive a practical expression for the rate of logical
errors.
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First, we specify such trajectories using the fol-
lowing definition:

Definition 5. We say that a trajectory p =
(f1, ..., 1q) of weight q is faithful if it contains
no error subsequence of length m > £, i.e. a sub-

sequence {fig, ..., Pk+rm—1} Satisfying pigpr; > 0
foralll<k<qg—m+1.

In other words, faithful trajectories contain no
uninterrupted error sequences of length greater
than ¢. The total probability of faithful trajec-
tories provides a lower bound on the probability
that no logical error occurs (see the lemma be-
low).

In passing, it is important to note that in gen-
eral not all trajectories that are not faithful con-
tribute to the logical error. For example, a se-
quence of more than ¢ Pauli errors does not con-
tribute to a logical error if it can be reduced to a
weight less than ¢ by canceling identical errors.
However, since we are only aiming for an the
bound on the logical error, one can exclude these
trajectories from consideration and still keep the
bound valid.

Let the full set of faithful trajectories be de-
noted by G. Then the logical error probability is
bounded as:

Lemma 1. For a Poissonian error process in
Eq. (21), the error in Eq. (15) satisfies

ety <p(t):= > p(ut),  (35)

peF\G

where F'\ G stands for trajectories that are not
faithful.

The proof of this lemma can be found in Ap-
pendix C. This lemma allows us to derive the up-
per bound of the logical error Eq. (35) by the
fraction of faithful trajectories. For example, for
small codes, one could evaluate p(t) numerically
by sampling the trajectories and counting the
faithful ones directly. For example, the result for

a code with ¢ = 6 is shown in Fig. 3. More gen-
erally, an approximate analytical formula for this
result is given below.

We exploit the fact that errors and recoveries
are independent stochastic processes. Then, for
any trajectory of time ¢, the probability of m re-
coveries is equal to R(m,kt), where R(m,z) =
x™e~" /m! (see Eq. (22)). Let us condition on the
event that m corrections occur during the time
period t. The probability that a logical error oc-
curs between the start of the dynamics and the
first correction is given by

b= /O Ldtir(tD)s(t), (36)

where 7(t1|t) is the conditional probability that
the time of the first recovery event in a random
sequence is t1, conditioned on the total evolution
time ¢, and s(¢1) is the probability that the error
process during the interval [0, 1] does not result
in an error weight greater than ¢. These proba-
bilities are defined as

o kexp(—kty)
m(ta|t) == T oxn(—rt) exp(—;t)’
¢ (37)
s(ty) = Z R(m, NAty).
m=0

Similarly, the probability of a logical error occur-
ring during the gap between the (i — 1)-th and
i-th corrections, given that previous corrections
occurred at times tq,...,t,_1, is

= TR s, (39
0

Finally, the probability that a faithfulness viola-
tion will occur during the time between the last
correction and the end of the dynamics is simply

Pm+1 =S (t — i@') . (39)

j=1

Since the events described above are independent,
the total probability of obtaining a non-faithful
trajectory is then given by
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p(t) =13 R(m,t) /0 Cdtor(ta)s(t) /0 T (bt — 11)s(t)

m=0

=S
/ L T (tm
0

In the asymptotic limit, where xt > 1, a heuristic
estimate can be made for the probability outlined
in Eq. (40). First, we extend the upper limits of
all integrals to infinity. This extension is justi-
fied because the function 7(t;|7) vanishes quickly
for kt; > 1, making the effect of the finite upper
limit of the integration effectively negligible. For
similar reasons, it is permissible to set the condi-
tioned times 7 — oo in w(t;|7), since this func-
tion tends to saturate for large values of k7. Fi-
nally, we ignore the relatively small contribution
of P11 compared to the cumulative contribution
of the previous terms. This approach results in
the expression

[ee] 00 m
p(t) ~1-— Z R(m,t) (/ dT7T(7'|OO)S(T))
m=0 0
=1 — exp(—Acst),
(41)
where the effective logical error rate is

K

Aeg = —————. (42)

T )

Let us examine the above expression from the
standpoint of memory lifetime for multi-qubit
codes. Assuming that each qubit is subject to at
least one type of error, the number of elementary
error processes grows with the number of qubits
n,ie. N =0(n).

Using the asymptotic behavior in Eq. (42), we
then get the scaling (for a constant A):

kexp(—O(kl/nA))
AW {K(Z)_e(z)

n

K
K

where all parameters, i.e. k = k(n), £ = {(n),
must be treated as functions of the number of

®Here and below we use the family of “big-O"
Bachmann-Landau notations: o(f(z)) (dominated by
f(z)), O(f(x)) (bounded from above by f(x)), O(f(z))
(bounded from below and above by f(z)), Q(f(x))
(bounded from below by f(z)), and w(f(z)) (dominates
f(z)). More about definitions can be found in Ref. [66].

t— it]) s(tm)s (t — i%‘) R
s =1

qubits n. For the case of the two-dimensional
toric code [67], the radius satisfies £ = ©(y/n),
so the effective rate is suppressed in number of
qubits if the recovery rate scaling satisfies k =
w(v/n).

The result we presented above can be improved
for certain families of codes and recovery maps
defined on n qubits. In this case we consider that
the code has a tolerable error weight h = h(n), see
Definition 1. This means that the subsequence of
errors of length || < h is at most 27D where
d is the code distance. This allows us to improve
the upper bound in Eq. (43) by replacing ¢ with h
and taking into account the exponentially small
contribution in d coming from trajectories that
contain logical errors,

s(t) = Eh: R(m, NAt) — 27D (44)

m=0

This improvement grants us a stronger estimate
for the logical error in the form

K
Aot =
(1+~x
In a similar fashion to the analysis in Eq. (43),

if a code family has a tolerable weight h > ¢, we
can use Eq. (45) to derive the bound

i +27%d)  (45)

Ao = ﬁexp<—@(ﬁh/nA)>—|—2_Q(d), Kk =o(n).

(46)
For example, the toric code has a threshold error
weight h = ©(n), which leads us to the error rate
Aeg ~ exp(—0O(k/A)). Thus, a constant  yields
a constant memory time, while k ~ log(n) yields
a polynomial memory time.

These results are non-perturbative in A, as per-
turbation theory would predict that the logical
error rate scales as order O(A") for some w > 1.
We demonstrate this difference between our treat-
ment and perturbation theory using the example
of the toric code in Section 7.

The difference in performance between au-
tonomous global decoders and conventional ac-
tive quantum error correction, which relies on
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syndrome measurement and subsequent correc-
tion [1], may seem unexpected. In the traditional
method, it is usually sufficient to maintain a con-
stant ratio between the single-qubit error rate A
and a fixed inverse time scale 7! between re-
coveries to achieve exponential lifetime. Indeed,
if nTA < h, the probability of accumulating more
than h errors becomes exponentially small in n.
The main difference between the two cases, stem-
ming from our interpretation of autonomous re-
covery as a stochastic process, is that the time T'
between two consecutive recoveries is not fixed for
the autonomous case and is instead determined
by the Poisson distribution. Due to this fact, even
for large k, the probability that nAT > h is con-
stant as a function of system size, although it is
exponentially small in K/A. Therefore, increas-
ing the system size alone does not increase the
lifetime of the logical qubit.

7 Examples of autonomous codes

Finally, we provide a few examples of au-
tonomous codes generated from global decoders
of existing quantum codes. We start with qubit
stabilizer codes. Our global recoveries are differ-
ent from local decoders |21, 68, 69, 22| in that
jump operators of the latter apply recovery steps
only on geometrically restricted regions.

The codespace C of an [[n, 1, d]] stabilizer code
is formed by the +1 eigenstates of n — 1 mutu-
ally commuting Pauli operators S, that satisfy
S2 =1, [Sa, S5] = 0 for all a, 8. The traditional
recovery map includes two steps. In the first step,
we measure all stabilizer generators Sy, project-
ing the state into a subspace of mutual eigenstates
with corresponding eigenvalues s, = 1. This
procedure is equivalent to applying a projection
operator

f[ (14 5050). (47)

Next, we apply the corresponding recovery uni-
tary C(s), which is a product of individual Pauli
operators, depending on the (n — 1)-dimensional
vector of outcomes s = {s,}. We can make a
decision on the recovery using an algorithm or
simply a lookup table that pairs every stabilizer
configuration with its corresponding recovery.

In the autonomous regime, we propose to im-
plement these recoveries using the continuous

process, which combines both procedures:

Rip) = D AspAl (48)

562371

where the jump operators are defined as

As = C(s)P(s) = PC(s). (49)
Here P is the projector onto the codespace, and
the last equality follows from the fact that C(s)
commutes (anticommutes) with the stabilizer S,
if 5o =1 (—1):

w1 s) -

1

3
|

—

1
3 <1 + Sa>0(s)
C(s).

Q
Il

(50)

For these stabilizer recovery models, we use sim-
plistic Pauli error operators E,, € {X;,Y;, Z;} in
Eq. (2), which act with the same rate A on each
qubit i (i.e., we set all A, = 1).

In the simplest example, we consider an au-
tonomous stabilizer decoder based on a five-
qubit code. This distance d = 3 code
protects one logical qubit using five physical
qubits and is stabilized by four operators S, €
{XZZXI1,IXZZX,XIXZZ, ZXIXZ}, where
I, X, and Z are respectively the identity and
the X- and Z-Pauli operators acting on the cor-
responding qubit of the system. We illustrate
the performance of this code in Fig. 5(a). As
can be seen from the figure, the upper bound
in Eq. (29) accurately describes the error rate in
such a model.

Another example is the two-
dimensional toric code. This code is defined
on a two-dimensional square lattice with L x L
plaquettes and periodic boundary conditions,
where physical qubits are situated on the edges.
The stabilizers are divided into two groups. One
group includes all products of four Z operators
acting on edges s adjacent to a vertex (“stars"),
which we denote as A; = [[;c, Z;- The other
group consists of all products of X operators
acting around a square p (“plaquettes"), which
we denote as B,. The codespace consists of the
ground states of the operator

==Y A, - B, (51)

relevant
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Using measurements of each group of stabilizers
separately, it is possible to independently correct
errors in the X and Z bases even if both of them
are present in the system. To construct the re-
covery operator R, we use the minimum-weight-
matching algorithm [65], which suggests the re-
covery unitary C(s) for each vector of measure-
ment outcomes s. We compare the rate of logi-
cal error with the prediction given by the upper
bound from Theorem 2. In particular, Fig. 5(b)
shows how the logical error depends on the linear
size L of the lattice. It can be seen that the upper
bound correctly predicts the performance of the
code.

Additionally, we compare our results with the
predictions of perturbation theory for the au-
tonomous toric code model. First, we find the so-
lution of the spectral problem exactly for a Lind-
bladian with no noise (A = 0). This solution
has a 4?-dimensional steady-state manifold that
is separated by a dissipative gap x from the rest
of the eigenstates. The steady states are super-
positions of four toric-code ground states. The
rest of the eigenstates have the same eigenvalue
k. Using this exact solution, we use perturba-
tion theory to determine how the eigenvalues of
steady states are perturbed by noise. The real
part of the lowest-order perturbation can be used
as an estimate of the logical error rate.

Notably, as we show in Appendix H, when & is
a system-size independent constant, the leading-
order contribution from perturbation theory di-
verges as L approaches infinity. If the recovery
rate scales with L as k = koL for some constant
ko > 0, the leading-order contribution from per-
turbation theory scales as

e(t) =0 (IiotL2 (m)m) (52)

ERQ

in the limit L — oo. This still provides a bet-
ter estimate than that for the general recovery
process in Theorem 1, which requires x ~ L2
to ensure exponential suppression of the logical
error rate. As a comparison, we can apply the
asymptotic result obtained in Section 5 to the
autonomous toric code by setting N = n = 2L?
and h = 2fL? for some constant f > 0 that indi-
cates the finite threshold of the toric code. The
error rate given by Eq. (45) is

€(t) = O (rotLe fmob/2) (53)

which suggests a non-perturbative contribution
at A = 0. Indeed, we see that, although the
perturbation result does capture the exponential
suppression of the error rate as L approaches
infinity, for small A it overestimates the er-
ror rate compared to the asymptotic behaviour.
This example highlights the importance of non-
perturbative approaches in estimating the mem-
ory lifetime for an autonomous error-correcting
code.

Finally, we consider an example of a code that
cannot be understood in terms of Pauli errors.
An example of such a code is the binomial code
[70] defined for the space of a quantum harmonic
oscillator, H = {|n)p,n > 0}. The transitions
between quantized oscillator levels are induced by
the creation operator a! and the annihilation op-
erator a such that af|n)g = /n + 1|n + 1)p and
aln)p = v/n|n—1)p. The codewords of the bino-
mial code of distance d = 2¢ + 1 are

(%j 1) 152 + 1)) 5.

(54)
The binomial code tolerates single-photon pro-
cesses as well as dephasing, with elementary er-
rors generated from the set E, € {a,a',ala},
where weights A\, = 1/3 are the same for each
channel type in Eq. (2). The recovery map R
is defined using the procedure in Appendix A.
Fig. 6 shows that the logical error rate of the code
decreases exponentially with the code radius, for
different values of /.

[0,2¢+1]

0= >

s€even,odd

8 Summary and outlook

We derived the universal dependence of the
logical error of a global quantum decoder on er-
ror model parameters. Under general assump-
tions, we found that global decoders provide vi-
able error suppression. We also developed crite-
ria under which the lifetime of the memory can
be extended indefinitely by increasing the system
size. To achieve this, decoders must operate at
a rate that grows with system size. While this
growth can be mild—polynomial suppression can
be achieved with logarithmic rates—it shows that
a constant dissipative gap of the recovery proce-
dure is not sufficient to ensure a quantum mem-
ory whose lifetime grows indefinitely with system
size. It also means, contrary to what one might
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naively imagine, that autonomous decoders can-
not be perceived or constructed as stochastic ver-
sions of traditional error correction protocols. In
fact, the structure of the correction map (e.g.,
represented by K; in Eq. (10)) plays an impor-
tant role in existing autonomous decoders [21].

Another motivation for studying non-local
dissipative processes is to see if they exhibit
threshold-like behavior. While we do not gener-
ally observe sharp features like this in our analyt-
ical analysis of Poissonian models, it is possible
that a transition could occur for a more general
type of noise model that becomes weaker as sys-
tem size increases.

In the future, we could use similar techniques
to study local decoders. For example, we could
try to prove analytically that there is a threshold
for autonomous models based on existing cellular-
automata decoders such as sweep-rule decoders
[56] or local decoders motivated by the ther-
malization of physical Hamiltonians [22]. An-
other interesting direction is to improve the up-
per bound derived in Theorem 1 by adding con-
ditions that exclude the case of global decoders.
This would allow us to avoid the limitations im-
posed by the lower bound in Theorem 5. Fi-
nally, we hope that the techniques can yield even
stronger results for more concrete models such as
bosonic codes. Using the structure of the codes,
e.g. thresholds of sweep decoders [56], one can de-
rive stronger bounds that will demonstrate the ul-
timate scalability of autonomous quantum mem-

Appendices

ories.
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Appendix A: Recovery map R and error measures

Let us explicitly construct the recovery map and proving some of the code properties. To do so, we
first consider the error operators F, = >, u’, K., where uq, are matrix elements of the unitary u
that diagonalizes the matrix C in Eq. (4), i.e. C' = u!Cu, where C' = diag{d,} and d, are eigenvalues
of C. The action of these operators is orthogonal in the codespace, i.e.

PFIFsP = dodusP, (55)

where P is the projector to the codespace C. Next, we can use the polar decomposition

FoP = Uy\ PFLF,P = \/d,U,P, (56)

where U, are unitary operators.

Next, our goal is to write down the explicit expression for the recovery operator R and connect it
to the properties of the error operators it guarantees to correct. To do so, we follow the steps of the
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standard textbook procedure, e.g. see Ref. [71] chapter 10.3. We start with the most general form
D2—1
R(p)= 3 RapRl, (57)

a=1

where R, are Kraus operators satisfying >°, R, R, = I and D is the dimension of the Hilbert space.
The condition in Eq. (8) implies that for any 3, 5 we have

R(FppFl) =Y taptify,y R(KupK],) o (58)

At the same time, the right hand side of this expression takes the form

D?-1 D?-1
R(FspF},) = Z RoFspFl RY, = \/dsds Y PRaUsPpPU}RLP o p. (59)
a=1

This condition implies that for any 8 such that dg > 0, there exist complex numbers ¢, such that
PR,UP = c,gP. (60)

For the case of degenerte spectrum dg, there is more than once choice of R, that satisfies this condition.
Since all these choices generate the same map R, without the loss of generality, we can choose

R, = PU], a=1,...,Ng, (61)

where R, is defined only for operators F,, with d, > 0. Here N¢ represents the total number of such
F,. Then, we can construct the recovery map as

Ne
1
= Z RapR(Tx + 6Tr (pPL)U(p)v (62)
a=1

where o(p) = Po(p)P is certain density function that may depend on p, ¢ is the codespace dimension,
and P, = I — Y, Rl R, defines the projector on the subspace of “undecidable" error states. These
error states are created by errors that do not obey the Knill-Laflamme condition.

Using the relation in Eq. (64), let us show first that R? = R. In order to do this, we express

Vp: R3(p Z RoRgpRLR], + = Zﬁ (RapRLP1)P
*p=l (63)
1 Do 1
+ ;Tr (pP1) > RoPR], + 5 Tr (pPL)Tx (PPL)P.
a=1

The first term in Eq. (63) can be simplified using that correction Kraus operators satisfy

RoRg = PULPU} = —PFPU} = 6,0R;, (64)

1
Vda
where we use index 0 to enumerate the “trivial” error, i.e. Fy = I and dy = 1. The last term vanishes
due to the orthogonality of the spaces represented by the operators P and P, i.e. PP, = 0. This
property follows from the transformation

1
PLP=P =3 R\RaP=P=3 U,PUP=P=3% ——F.PF[P =P - d—OFOP =0,  (65)

In a similar way, we express the second term as

Tr (RapRI PL) = Tr (Ul pU, PP, P) = 0. (66)
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Finally, the third term can be simplified using the expression

Do Do Do 1
PRl = tpU.P=S —PFIPF.P=P
ZR R} Z:PUQPUP Z daPFaPFP P (67)
a=1 a=1 a=1
Thus, we arrive at
1
Vp: R Z RoRgpRLR], + Tr (pPL)P = R(p). (68)
af=1

showing that the recovery map is an idempotent operation.
Finally, using the structure of the Kraus operators in Eq. (62), we can derive its action on error
states as

VpeL(C): R(FapF}) = Z PUIF,pFiU,P = Z PFTF wPpPF}F, P, (69)
=1 =1 dy
where L(C) is the space of linear operators on the codespace C. Using the Knill-Laflamme condition,
we get the expression

Dy
YpeL(C):  R(FapF}) =Y dydaydsyp = dadasp. (70)
v=1
Transforming back to the error basis consisting of individual errors, we get

VpeL(C): R(KupK)) = Cupp. (71)

This relation is important: we will use it for proving the properties of the recovery map in Appendix
B.

Next, we present a proof of the relationship between the trace distance and the fidelity measures of
logical error, defined in Eqgs. (14) and (15). In particular, we show that

o(t) < 2¢€(t). (72)
The first step is to utilize Holder’s inequality, namely
1
7 ((exp(L0l0) (ol, exp(LOle1) 1] ) = 5 Tr (Q exp(LH)dpo), (73)
where dpg = |vo){(Wo| — |¥1)(¥1], and @ is any Hermitian operator of unit spectral norm. It is
convenient to choose Q = RIdpg, where R1 is the adjoint to the recovery operator R. Then
1
T (exp(L0lwo) (ol exp(£) 1) (¥a]) = STr (9p0R exp(Lt)dpo ). (74)

Next, using the fact that [19) and |i1) are orthogonal states in the codespace C, we can rewrite the
r.h.s. of this inequality using |¢o) (0| + [¢1) (1| < I, where I is the identity operator. This leads us
to

T (exp(L0lwo) (wol, exp(£e) ) (¥a]) = Tr (o) (o R exp(£0)lwo) (ol )

+ T ([0) (9 R exp(£8) 1) (9 ]) -

where we used the condition Tr (R exp(Lt)p) = Trp = 1 valid for any density matrix p since both
exp(Lt) and R are trace preserving maps. Incorporating this inequality into the definition of 6(¢), we
get

(75)

S(t)<2- mn_ (Tr (v (ol R exp(£8) o) (o) + Tr (|w1><¢1|nexp<£t>|wl><w1|)) -

<2(1- min T ([ebo) (Yol R exp(£2) o) (tho]) ) = 2¢(b).

[0

This concludes our proof.
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Appendix B: Proof of Theorem 1

This appendix contains the proof of Theorem 1. In the first step of the proof, we show that the error
measures in Eqgs. (15) satisfy

1
£),0(t) <1— = in  Tr(Qexp(Lt)dpo), 77
€(t),0(t) 3 ool in r (Q exp(Lt)dpo) (77)

where dpg := |1o) (10| — |11) (11| and Q = RT(|vho) (¥ho| — |41 (¥1]), similar to the notation we used in
Appendix A. The inequality for §(¢) follows directly from its definition in Eq. (14) and the property
in Eq. (73). To prove this inequality for €(t), we notice that

1 -
3 e ™ @O0 = | min (T (o) 4ol R exp( L)) o)

T (Jun) (0 [Rexp(£O) ) (wn])) -1 (78)
< min_ Tr ([o) (ol R exp(£t) o) (vl )= 1 — e(t),

~ Jpo)eC
where we used the fact that Tr(|11)(Y1|Rexp(Lt)[11)(¢1]) < 1. This expression leads us to the
inequality in Eq. (77) for e(¢).
Next, it is convenient to switch to the imaginary frequency space t — s and write this inequality
using the inverse Laplace transform .Z~! as

Tr (Q(9_1£5p0> ] . (79)

where (s—L£)~! is called the resolvent of £. To further analyze this expression, we use the decomposition
L =kLpr+ ALE, where L and L are defined in Egs. (2) and (5), respectively. With error rate A
as a small parameter, we are using Dyson’s series

€(t),6(t) <1 — ~min.2!
2 po

1 1 > 1>T

s—ﬁzs—£R§)<A£Es—£R

(80)

To simplify calculations, we can use diagrammatic notation to represent different superoperators. We
introduce the following notation:

1 1 1
== ALg =Q, §Tr (Odpy) = (0O). (81)

I= - =
Qe O, s—L_ 5% s—Lpr ’

The notation A ® B* stands for the matrix representation of the superoperator, which acts as A from

the left and as B from the right, i.e. (A ® B*)(p) = ApB'. Consequently, Q ® I corresponds to the
left multiplication with the operator ). Using this notation, the Dyson’s series in Eq. (80) can be
expressed as an infinite sum of diagrams,

222 = — | —=Q— } —Q—Q— + —R—=—Q—Q=——+.... (82)
At the same time, the error expression in Eq. (79) takes the diagrammatic form
1 1 1
e(t),8(t) <1 - 53 Tr Q—Eapo =1— ¢ (O=e=). (83)
S —_—
Using Dyson’s expansion and the diagrammatic representation, we can now rewrite the term on the

right as
: (O=22)= (O0=)+(0=0=) +(0=0=0—) +(0—0=0=—0=)+ . . .. (84)
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It can be further simplified once we take into account the fact that recovery dynamics preserves the
states in the codespace, which means Lrdpg = 0. Therefore,

1 1

dpo = —dpo. 85
s—Ln Po = 20Po (85)

This property allows us to rewrite

1 1 1 1
(Daee)= " + g<|:|=®>_|-g<|j=®=®>-|-g<|:|=®=®=®>—|— e (86)
Next, we use the decomposition

exp(Lrt) = Wi+ (1 — e "R, (87)

where we defined W, := e~ *'K;. This operator, similar to exp(Lgt), satisfies the property in Eq. (9),
ie.
W MPOKT Z b/,u/ v’ ;L POKT (88)
uv’
where by, o (t) = 0 if [p'| > |p] or [v| > |v|. Indeed,

Wi(KupoKJ) = exp(Lrt)( uPOKT) (1 - e ™ R(KppoK})

- Z v ( — Cupdp (9} 00 ’{@})KM’POKL, (89)
wv’

where we used Eq. (71). In the space of imaginary frequencies, the same expression takes the form

—

R,  W,= LW, (90)

S

- _
s—Lp s(s+ k)

This expression can also be written in diagrammatic form

K —~
= = -, 77?, — 5 W - 91
— | 8(8 n H) —_— s ( )
Now let us consider the terms from the second to the ¢th (containing k operators Lg, where 1 < k < /),
and rewrite it by expanding the last term

(=0=8...0=0)= ([(—g=1...0=8—) + ((—g=0... =8 —>).
—r— —— S—

(92)
0<k<t k=1 k1

Then we take the first term on the right and decompose the double line next to the arrow again, which
gives us

(O=0=8...0=0)= (=8==8...8=0—0——) + ((=8=1...=8—>0—=)
—_— —_—— —_——
0<k<t k-2 k-2 (93)
+(=8—8...0—=9—Q).
—_——

k—1

Repeating this procedure with the first term several times until all double lines are decomposed, we
get

(0==8...0=0)=(0—8—=1...0—8) + (—8—=0...0—=.)
0<k<t k k
k (94)
+ ) (==...0=0—>8—=...0—).
m=1

k—m m

The right-hand side of this equation contains k + 2 terms. Our goal is to show that the right-hand side
of this expression vanishes. We do so by using the following Lemma.
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Lemma 2. For any k satisfying 0 < k < ¢ and any superoperator O, we have

Tr (ORLE(WsLE)"16py) = 0,

— (95)
Tr (ORWsLE) 3po) = 0.
In diagrammatic form this is
(O—0—=...0—) =0, (O—>—0—-...0—) = 0. (96)
— —
k k
Proof. . We express the action of the Lindblad generators in a more explicit form:
Vi € My: Lp [KuoK]] :Z<E KoK, Bl - f{ETEM,K Pk, })
" T (97)
= Z Ly v KuvpK,,,
v eMpi

where My, = {p : |p| < k} is a set of trejectories of length smaller than k and L, 1,/ are certain real
coefficients. At the same time, according to the strict error-reducing condition in Eq. (9), we get

Vi, p' € My : exp(ERt)[ KupK], } S Ruwaw () KupK),. (98)

v.w' €My

Next, we use the definition of V/VS in Eq. (90) and W, in Eq. (87), as well as the property in Eq. (71)
to show that

Vo € Mo W [KupK),| = $<exp(£Rt) [KupK),| = (1— e ™R [KupK],] >
= Y $<R,L,,L/7uuf(t) - (1= G_Ht)Cu'u%u%’u’)KuﬂKlf (99)
v,w'eMy
= > Wuwww K, pK],,
v, eMy

where Wy, 1, (s) are elements of a given real-valued matrix function of s. Using Egs. (97) and (99)
we get for any p in the codespace we have

ﬁE(Ws['E)kilp = Z Ap,u v/ KupK 2]

v,w' €My (100)
WSEE(WsﬁE)kilp: Z Buu vv! Kp,PK Iy
v,v'eMjy,

where we use the notations for the matrices A(s) := L(W(s)L)*~! and B(s) := (W(s)L)*. It is
important to note that, as the action of any Linbladian operator must return traceless operators,
these operators must satisfy

Vp,k>0: Tr(LeV,Lp) 1p)=0, TrW.Lr(W.Lg)"p)=0. (101)

The second inequality follows from the first, if we consider that W; = e " K;, K; preserves the trace,
and that for any traceless operator O we have

Tr[ZWi(0)] = £ TrW(0)] = L e "' Tr[K(0)] = £ e "' Tr[0] = 0. (102)
Thus, for any p, the conditions in Eq. (100) satisfy

> AT (KwpKf) =0, > BuuTr(KupK},) =0. (103)
m.p' EMc m.p' EMc
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where we dropped the functional dependendency on s for simplicity. Now we can express the portion
of the expression inside the trace in Eq. (106) using the property of the recovery operator in Eq. (71):

RLEWiLp) opo= Y. AuwR(Kudpokl,)

w.p' €M
=0p0 Y. AuwCuwu=0p0 Y. Auw(0lK|,K,l0)=0 (104)
m,p'€Mc m,p'€Mc
=6p0 Y. AuuwTr(Kw|0)(0|K],) =0.
p,p' €Mc
Similarly,
RWS,CE(WS,CE)IC_I(S/)O = Z B““/R(K”(SpoKL/)
wp'€Mc
=dp0 D BuwCuu=0dpo ) Buu’m’KL/KMO) =0 (105)
p,p' €M p,pu' €M
=6p0 Y. BpuwTr(Kw|0){0|K)) = 0.
w.p' €M

Thus, both expressions in Eq. (106) vanish and this leads to the statement of the Lemma. To prove
the last statement, we first write the diagram in symbolic form:

(O—0——-8...0))= A;Tr (ORLEWsLE) 5p0),
: AR (106)
(0O—>—g—..0—g)=—T (OROW,LE) 6p0).
k
This expression concludes out proof. O

As a result of this Lemma, all terms on the right-hand side of Eq. (94) vanish immediately. To show
that the first term must vanish, we can use the definition of the operator @ below Eq. (77) and rewrite

O—&") = ((0po @ [)—>—0—1...0—a). (107)
k

Therefore we have

([—8=s...=8)=0.

(108)
0<k<¢
Following the removal of the vanishing terms, we obtain the series
1 1 1 1
<|:|.u.¢>: - + g<|:|=®=® . ®=®>+E<D=®=® . .®=®>+;<|:|=®=®. . .®=@>—|— e (109)
N —— N —— N —2
{+1 L+2 £+3
This expression can be compacted again using Eq. (82) to obtain
1 1
(Guan)= |+ (Dreag=e._e=g) (110
—_——
L+1
The rest of the proof uses this expression iteratively. As the first step, we rewrite Eq. (110) as
1 1 1
(De2e)= — + (O=22g—=0 . ..8—8—8)+ _(D=2<g=8...&=8—>®). (111)
—_—— —_—

12 l
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The last term vanishes as a result of Lemma 2. To see this, we set
0 =02220=Q...8=R (112)
—_——
¢
and apply Lemma 2 for the case k = 1. Then, we rewrite the remaining terms as

1

1
<|j.e.e.e>: 7—|-7<|:|.an.e®=,_,=®—®>. (113)
S S T
Next we repeat the procedure in Eq. (111): we apply the decomposition = = —+— for the rightmost
resolvent,
1 1 1
<|:‘_¢_¢_¢>: *—l—*<Dm®=---=®—®—®>+*<Dm®=~--=®_’®—®>- (114)
5 5 -1 § -1

and, using Lemma 96 for k = 2, show that the last term vanishes, therefore

<Dm>=%+§<[]m®=...=®—®—®>. (115)
-1

We repeat these two steps £ — 2 more times to get

(Daee)= % + %(Dwea—@. ). (116)
eyl

As the next step, we take the inverse Laplace transform of the last term using the property that applies
to any two analytic functions/operators g; and go and their Laplace transforms §; and go,

t
27 31(5)32(9) = [ dtor(t)galt — ). (117)
Applying this formula £ times, we get generalized expression for ¢ operators g1, . . ., g¢ and their Laplace
transforms gy ... gsy1,
.,S,”’l[gl(s) e §g+1(8)] = T/ dty...dteg: (tl)gg(tg - tl) - gg+1(t - tg). (118)

where we defined the time-ordered exponential as

t t1 tp—1
T/dtl...dtk:/ dt, dtz..-/ dt. (119)
0 0 0

Using this definition, we translate the diagrammatic terms in the second term of Eq. (116) back into
mathematical operator notation, yielding

1 1
27 (Deesg—. . .e—g)= JA'IT / dtodty ... dtgTr Qe LWy, 4y . Wi i, Lidpo )

S
{41

1
> —§A”1T / dtodty . .. dtel|eS O ( Q)| LEWhy—t, - .- Wi—t, LESpol1

1
Z —5A£+1T/dtodt1 NN dtg”ﬁEWtQ_tl NN Wt—tgﬁE(spOHI-
(120)
Our next goal is to find an appropriate bound for the expression under the time-ordered integrals. Let

No={p: Tr(p) =1, p>0,p € End(C) ® 0} be the set of density operators in the codespace. Then
we can prove the following lemma.
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Lemma 3. For all p1,p2 € Ng and 75 > 0 for all j € {1,...,L}, we have

k

|LEWn L ... Wa Lu(p1 — p2)ll, < 2exp (—nzn) A+ DLl e (120)
j=1

Proof. We first introduce the set of density operators with an error weight of at most j. For any
integer j > 0, this set is defined as

Nj:=qp= Z ap KpupoKy, : p >0, Tr(p) =1, apw € C, po € End(C) @0 (122)
[,L7V€Sj

where, as before, Ky, = [],¢,, K, represents the composite error, S; := {p:lp|<jvVvpep: K, eE}
denotes the set of errors with length at most j, and E := {E,, E1E, : a € {1,...,N}} is the set of
error operators. Naturally, for all j > 0, the inclusions No C N; C N hold.

Then, to establish the result of the Lemma, we first demonstrate that

Vp1,p2 € Nj,  3Cj,p1,p5 € Njpr: WrLp(pr — p2) = e " Cj(py — pa), (123)

where C; < (x + 1)||[LEl151E-
Next, we define similar sets of general Hermitian operators that are not subject to any constraints
on their eigenvalues,

0;:=20= > auK,MK,: O=0"Tr(0)=0,au €C, M € End(C) &0 ;. (124)
,u,,VES]'

Using the definition in Eq. (124) and the fact that Lindbladian L is trace preserving, we express
the action of the Lindbladian as

1 1
Lolpr—p)= Y au Z(EQKHMK,T,E; ~ 5P B K MK - iKuMKlELEa)
n,vES; Q@
= Y buKuMK] € 0j41,

eSS

(125)

where M € Og and by, are certain coefficients that linearly depend on a, .
Then we note that, for any traceless Hermitian operator from O;, we can express it in the form

1
YO € Oj, E|,01,p2 S Nj : 0= 5”0”1(,01 — pg). (126)

In fact, any Hermitian operator can be written as O = Ay —A_, where AL > 0 are positive semidefinite
operators. Therefore, the trace norm of the operator O can be written as

J0]ly = T (A1) + Tr (A-). (127)

Thus, the zero trace condition leads to Tr (A4) = Tr(A_) = %HO”I and, consequently, to Eq. (126),

where we define py 2 := A4 /Tr(A+). Since Trp;2 =1 and p1 2 > 0, they belong to N;.
Thus, using Eq. (126), we get

1
Vo1, p2 €Ny Fpy b €Njia s Le(pr = p2) = 5l1Le(o1 = p2)ll (o1 = p2). (128)
A similar statement holds for the action of the considered pair of superoperators
Vp1,p2 € Nj : Wr(pr—p2) =e " Y K (K, MK})
HvESs (129)
=e 7 Z cuwK MK}, € 0,
u,IJGSj
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where we used the definition W; = e¢™"7K; and the property in Eq. (9); here c,, are also certain
coefficients that linearly depend on b,,. Combining the results of Eqs. (126) and (125), we obtain
that, for all pi, p2 € Nj, there exist pairs pf, p5 € N1 and p, p5 € N1 such that

1 1
WrLEe(p1 — p2) = §||13E(Pl — )1k (p1 — p3) = §\|£E(f01 — p2) 1 W+ (p] — p3)

1 _
=2 "ILs(pr = p2) LK~ (P = p2) Il (PT = p2)-
(130)
To bound this parameter, we note that, for all p1, p2 € N;, we have p; — p2 € O; C End(E) & 0 for all

k < ¢, where E is the subspace of correctagble error states (see definition at the beginning of Sec. 2).
Therefore, by definition of error-space-restricted contraction norm || - |11, in Eq. (17), we get

Vi<t pi,p2€Nj: [[Le(pr — p2)lli < 2[|Lellis1E. (131)

Using the definition of the map K; below Eq. (10), we obtain

Ki(p1 — p2) = R(p1 — p2) + €™ (eﬁRt(Pl —p2) — R(p1 — Pz))

(132)
= p3° = p3° + " (p1(t) — p3°) — ™ (pa(t) — p5°),

where, as before, we denote p° := R(pp). Using the main assumption in Eq. (6), we arrive at the
following bound:

Vorp €N [[Kilor — po)lla < 1165 — 5%l + e llon () — ¥l + el pa(t) — p°s

(133)
<P = 2l +2x < 2(x +1).

Combining Eq. (130) with Eqgs. (131) and (133) we get the statement in Eq. (123).
By applying Eq. (123) sequentially ¢ times while using values 7; for j = {1,...,¢} instead of 7, we
find that there exist p, p5 € Ny such that

k
W, Lg ... W Lu(p1 — p2) = exp (—/{Zq) C* (o, — ph), (134)

Jj=1

where C := (Cp...Cy_1)"/* < (x + 1)||LEg|l1-1e. Finally, by applying £z on both sides of Eq. (134),
taking 1-norm, and using Eq. (131), we arrive at the statement of the Lemma. O

From this Lemma, we conclude that there exist p/, p5 € N such that

,11 B 1 1 —1 1
27 (psge. 0me)> (A DILee) 2T G )
Jr

where the last term represents the convolution of ¢ exponential functions with two identities, which
can be expressed using the special functions mentioned in the statement of this Theorem,

z—l{w}: Fg(/ﬂf). (136)

Finally, combining Eqs. (79) and (116), we arrive at

IR 1 ((X+1)|’»CE|1—>1,EA>E+1
€(t),d(t) <1 n%nf (= >§x+1 - Fg(ﬁt). (137)

This expression concludes our proof.
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Appendix C: Proof of Lemma 1

This appendix contains the proof of Lemma 1. To express the logical error, we first consider the
trajectory decomposition in Eq. (21). This allows us to derive the bound

e(t)y=1- n}%n Z p(p,t) = = max z (1 —Tr (poRé’“po)) (138)
MEF
where the minimization/maximization is over pure states pg in the codespace C. Next, we can express
any faithful trajectory p € G as
RELR = REWLRE, - En, R, (139)
where w1 have length at most ¢ and contains only errors, i.e. (ug); > 0 and |pug| < €. Then
VpeG: REWo=RELRP) =RELRpy = (RELR)(REWR) ... (REL,, R)(po), (140)
where p,,, are error subsequences. For any state p, we have
REunR(p) = R(Ep, R(P)E,,.) = Cpapapin R(p) = (01 EL,,, Eun|0)R(p) = R(p), (141)

where we used Eq. (71) and the fact that the sequence u,, has weight smaller than the radius ¢ and,
thus, satisfies Knill-Laflamme condition. Thus, for any faithful trajectory we have

'R,gp,po = R(po) = P0- (142)
Finally, using the fact that maximum over pg is taken over a pure states, we get
VueG: Tr(poREupo)=Trp§ = 1. (143)

Combining this expression and the definition of the Heaviside function, we find from Eq. (138) that

€(t) < max Z (s, )(1 —Tr (pgé’upo)>+max Z p(u,t)(l —Tr (,005“,00)) (144)
o HEF\G po neG

The last term vanishes due to Eq. (143). Taking into account the fact that 1 — Tr (poﬁppo)g 1, we get

(< Y plu. (145)

pneF\G

This concludes our proof.

Appendix D: Proof of Theorem 2

This appendix contains the definition of the threshold and the proof of Theorem 2.
Recall that, for a Poissonian noise channel, the error jump operators satisfy ny:l ELE = NI. The
Lindbladian can be written in a similar form as Eq. (21)

d o 1 1
Lp=—p=r(R(p)—p)+A3 (EMPE,Z — 5Bl Eup - 2PEZEM>
= (5 +NA) (po (Eo(p) — p) +p1(E1(p) — p)), (146)
where the recovery & = R and the error process &;(+) = % M EM()EL have probabilities pg = &
and p; = ,{fﬁ, respectively. Using a Taylor expansion, we get
NA
exp(Lt) = e TN exp [ (k 4+ NA)E Z Puép Z Pk L)) HRtNA) - (147)

ne{0,1}
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where the channel P (k) is defined as P(k) = (po&o +p1&1)* = > fa} ParPas * * *Par€ar Eas - - - Eay, and {a}
is a set of all possible binary (jump) sequences of length k with a; € {0,1} labeling the recovery and
error channels. This is an alternative form of Eq. (21). Using the definition of the error measure €(t)
[Eq. (15)], we find that, for an initial pure state po in the codespace, we have

t(k+ NA .
Zpe = )) (s +NA) (148)

where pe(k) = 1 — ming, 3 ra) PayPas * * * Pay Tr [00REey Eay - -+ Eaypo].  For integers k > 1,h > 1, a
sequence a = (aq,...,ar) has an error weight of at most h if it contains no more than h consecutive
error jumps. Let {ap} be the set of all jump sequences of length k with an error weight of at most h.
Since {ap} C {a}, it follows that

H’;ll’l Z PaiPas " * 'pakTr [pORgalgag o gakPO] < Héln Zpalpag ' ‘pakTr [pORgalgag e gakp0]~ (149)
{an} {a}

where here and below we assume that we are minimizing over py = |g) (1|, which are pure states in
the codespace, [1y) € C.. To establish an upper bound on €(¢), let h be a tolerable error weight for the
code satisfying Eq. (23). Let z > 0 denote the number of zeros in the sequence aj = (aj, a2, - ,ag).
Then

a1y Eap = EORE™ - RE, (150)

where 0 <m; < hfori=0,...,zand 2+ Y ;_om; = k. Let us rewrite

Tr[poRE™ -+ RE " RE po] = Tr [poRE™ - - - RE* ™ (RET po — (1 — &) po)]
(1= )T [poRET -+ REP ). (151)

By the definition of threshold, it follows from Eq. (23) that the first term on the right-hand side of
Eq. (151) is non-negative. Therefore, if m, > 0, then

Tr [poRE -+ RE T RE po] = (1 — &) Tr [poRE™ - RE " po. (152)
If m, = 0, we have instead
T [poRET™ - REPVREM™ po) = Tr [poREM™ -+ RET™" po). (153)

Inductively, we know that after z 4+ 1 steps, the exponent of the factor (1 — &) will be equal to the
number of non-zero m;’s in the jump sequence. We therefore find that

Tr [poRE™ -+ RE T RE™ po] = (1= )FTV2 > (1 - ¢)F, (154)

where we obtained an upper bound on the number of non-zero m;’s by setting m; = 1 for all ¢ in the
relation z + >-7_;m; = k. The number of non-zero m;’s is thus less than or equal to (k + 1)/2.
Now we are ready to prove the following Lemma:

Lemma 4. Assume an n-qubit code family with increasing n and a tolerable error weight h = h(n)
with respect to the error channel £(-) = « Z E,( )EL Then there exists € = 2~ such that

k
pe(k) <1-[(1-¢) (1-pf™)]", (155)
where p; = Hfﬁ and k > 0.

Proof. The equality trivially holds for k& = 0. We therefore consider the case k > 1. To establish an
upper bound on this probability, we use Eq. (149) and Eq. (154) to obtain

pe(k) <1 —min > ParPas Py Tr [p0REay Eay -+ Earpo] <1 = (1= €)* Y Paypay -+ Pay-  (156)
{an} {an}
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We want to show that

( h+1) {Z}palpa2 C - Pay - (157)
ap

To show this, we note that, for a given jump sequence ay, its probability in Eq. (157) takes the form
ParPas *** Pay, = PY Popy*Po -+ P1, (158)

where z + >°7_;m; = k and each integer satisfies 0 < m; < h. Each jump sequence a; is uniquely
labelled by m(ay) = (mg, m1,---,m;). We can establish the desired lower bound by noting that,
when pg # 0,

h k ho h h '
(1—pth [Z()pipo] => > - Z Pi popitpo -+ P po

11=012=0 1=0

k h k—z—1
= ppopi™ [ > plPO] x [Zpipo]
=0 m first k£ factors =0
k
<> ppop!po - P
z=0 m

Z PayPas -~ Day, - (159)
{an}

In the second line, the sum is over m = (mg, my,--- ,m;), where 0 < m; < h and z+ Y ;_oym; = k.
In going from the first line to the second line, we re-write the sum in the first line using the following
steps: we fix the first k factors in each term and sum over the rest of the possible factors. Then we
take the sum over all possible first k factors (i.e. Z];:O > ). The inequality in the third line follows

—z—1

from [Zﬁﬁ;ﬁlz p’{po} [Z?:O pﬁpo] * < 1, which trivially holds for z < k—1. When z = k and pg # 0,
we have m; = 0 for all ¢ due to the constraint z+ 3 ;_,m; = k. Therefore, the two factors cancel, and
the inequality becomes an equality. When pg = 0, we can directly verify that Eq. (159) also holds.
This concludes the proof of the lemma.

0
If we substitute Eq. (155) into Eq. (148), we get
Zp t(s + NA)] o t(k+NA)
h+1
/1+ NA

< o o o —t(k+NA)

T p (o (2, s

+
:1—eXp(—(1—f)(/€+ (K,—i-NA) /i—l-NA))
NA \"

which proves Theorem 2.

We would like to conclude this Appendix with a side remark on the definition of the tolerable
error weight and the threshold. In Definition 2, instead of Eq. (23), we can also consider a natural
alternative condition on the measure of fidelity:

T [pRETP > 1—€  p= )], (161)
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for £ € [0,1] and 0 < m < h. This condition is necessary but not sufficient for Eq. (23) to hold. For
instance, a pure logical state [¢)') with a small logical rotation from the original logical state [¢)) can
satisfy Eq. (161) but will fail to satisfy Eq. (23). Note that Tr [pRE™p] = F(p, RE™p)?, where the
fidelity between two quantum states p, o is defined as F(p,o) = Tr (y/pY/20p'/2). For any quantum
state v, we have |[71]

F(p,0) > F(p,7)F(7,0) = /1= F(p,7)%\/1 ~ F(v,0)2. (162)

The fidelity measure also satisfies joint concavity |[71]

F (Zm%me) > ZPiF(PmGi), (163)

where p;’s form a probability distribution over quantum states p;,o;. For a generic mixed state in
the codespace p = a|y) (Y| + (1 — a)|p)(¢], with a € [0,1] and |¢), |¢) € C, it follows from the joint
concavity that

F(p.RET'p) > aF (py RET py) + (1~ ) F(ps, RET'pg) > /T, (164)

where py = |¢)(¢| and py = |¢)(¢|. The last line follows once the integer m satisfies 0 < m < h.
For convenience, let us denote M, = [[i_yRE™. Using inequality (162) and the fact that
V1= F(po, M.pp)? <1, we can deduce that, if m, > 0,

F(po, M:po) > F(po, Mz—1p0) F'(M:—1p0, Mzpo) — \/1 — F(M_:-1p0, M:po)?
> 1-— gF(p()aMz—lpO) - \/57 (165)

where the last line follows from F(M,_1pg, M.po) > /1 — & when setting p = M,_1po in Eq. (164).
We also have F(pg, M.po) = F(po, M:—1po) if m, = 0. From Eq. (165), we note that

V1= EF(po, Mo_1po) — /€ > /1= EYAF (pg, M_1p0) — /€ (166)

for 0 < & < 1. Applying the inequality inductively, similarly to the inductive derivation of Eq. (154),
we have

/
1—(1- 61/4)k ] > (1- 51/4)’“/2 _ et/ (167)

—ioan -

The second inequality follows from the use of Bernoulli’s inequality /1 — &1/4 < 1 4 ¢1/4 /2. Since
F(po, M.po) > 0, this implies

Flpo, Mapo) > (1— V4" - /2

k
F(po, Mzpo)® > (1 - €/1)" —agt/t. (168)
To bound Eq. (148), we note that

pe(k) =1- Hl%n Zpalpag o 'pakTr [pORgalgag ce 5%/)0]

{a}
=1- H}%analp@ - pap F(po, M=po)?
{a}
1/4 (1 _ c1/4\F
S 1+4§ (1 € ) Zpalpag"'pak
{a}
<144eV4 - (1—51/4)k(1—p?“)k, (169)
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where z denotes the number of 0’s in the jump sequence a, and we used Eq. (157) in the last line.
Substituting this into Eq. (148), we get a modified Theorem 2 based on this alternative definition of
the tolerable error weight and the threshold:

NA

e(t) <1+4Y* —exp <—NA(1 — W4 (m

)ht—§1/4(/<;+NA)t>. (170)

Note that &, and hence the contribution §1/ 4 is exponentially small in the distance of the quantum
codes. For codes with a large enough distance, the bound yields qualitatively the same scaling of the
error rate as Eq. (160) as the code distance increases.

Appendix E: Proof of Theorem 3

This appendix contains the necessary assumptions and the proof of Theorem 3. In particular, we
consider a noise model where the error jump operators satisfy EZ =1 and E,E, = £E,E, for all
i, ¢’ This noise model is a special case of a Poisonnian noise model. We will assume exactly the same
setup as in the previous appendix, i.e. Egs. (146) and (148). We prove an error bound for the class
of n-qubit error-correcting codes C that have a varying distance d = d(n) and a tolerable error weight
h(n) tailored for this particular noise model (see Eq. (172) for a precise definition).

Let Qp = Z be the identity channel. For k£ > 1, we also define Q(-) = @ 2o {ureSk E{“}k(')E}u}k’
where Fyy = [],¢ (uy En and the set Sy is the set of all possible distinct & error indices. Note that
Q1 = &1, where &(+) = + > Eﬂ()EL is the total error channel defined in the Lindbladian in Eq. (146)
and N is the total number of error jumps in the Lindbladian.

Let us consider the channel Q]f . The product expands into a convex combination of terms that
contain a different number of E,’s. Since the channel is symmetric under permutation of the error
indices, all the terms with the same number of E,’s will have the same coefficient. In particular, this
implies that, for any integer k£ > 0,

k
ot => Qi (171)
i=0

where r; > 0 and ), 75 = 1.

We consider the class of n-qubit error-correcting codes C with a varying distance d = d(n) that
satisfy the following: There exists an integer-valued function h = h(n) > 0 such that for £ < h and
any |¢) € C, the following holds:

RQk|1) (4] = (1 =) (| = 0, (172)

where & = 274 and is independent of |1). Such code family is said to have a tolerable error weight
with uniform Pauli noise. It follows that

k
RO (] = 3 reRQu[b) (1] > (1 — &)[) (]. (173)
=0

Note that h(n) is a tolerable error weight for C. For example, if we let h = ¢, where ¢ is the error
radius satisfying d = 2¢ + 1, then we have £ = 0. Moreover, if there exists a constant f > 0 such that
nf < h for all n, then for £ < nf, the code we consider has a threshold according to Definition 2. This
set of codes is not very restricted and contains commonly known examples, e.g. the quantum stabilizer
codes subject to single-qubit Pauli noise.

We now proceed to prove Theorem 3. We first prove the following lemma:

Lemma 5. Assume an n-qubit code family with increasing n and a tolerable error weight h = h(n)
with respect to the error channel defined above. Then p.(k) in Eq. (148) satisfies

pe(k) <1—[(1—&) (1 —pis1)]", (174)
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where € = 2724 qnd s; is the solution to the recurrence relation

v v
—P1Sy—1 + (1 — *) DP1Sv+1, S0 =0, Spy1 =1, (175)

TN N

NA

Proof. Our goal is to lower-bound the contribution ming, > ray Pa;Pay * - - Pa,, It [Pp0REa,Eay - -+ Eay, o)
contained in p.(k) (defined below Eq. (148)), where {a} is the set of length-k trajectories a =
(a1,a2,- - ,a) with the labels a; € {0,1}. For a given jump sequence a, we can write

ParPas *** Pay T [PoREa, Eay - - Eay po] = (P1) (popy™) - - - (pop**) Tr [poRE™ - - - RE™* po],  (176)

where z denotes the number of 0’s in the sequence a = (a1, --- ,ax) and z + Y .;_,m; = k. Note that
the sequence a is also uniquely labelled by m(a) = (mg, my, -+ ,m.). We use Eq. (171) to decompose
the error subsequence

(P1") (popy™) - - - (popy™* ) Tr [poRE™ - - - RE™ po]

mo mi
= <p71no Z Tm()l'o) <p0p71nl Z Tm1i1> e <p0p1 Z rmzzz> pORQlQRQ’Ll te RQZpo]

i0=0 i1=0 i:=0
min{h,mo} min{h,m} min{h,m}
> (1-¢)* (pﬁno > ngig) (pop?“ > rmuj) <pop§”Z > Tmz)
i0=0 i1=0 i=0
min{h,mo} min{h,m1} min{h,m.}
=(1-9" > Yoo > 0 Tmgio) (o1 i) - (DoY) - (177)
i0=0 i1=0 i.=0
In the second line, we restricted the sums and used the fact that
Tr [p0RQisRQiy - - RQi.po] > (1 —&)F, (178)

which follows from Eq. (172) using the same reasoning as the one used to derive Eq. (154).

To proceed, we note that the decomposition in Eq. (171) can be interpreted as a random-walk
process that either creates or annihilates an error at each step. Each jump randomly applies one of
the N different errors. The same error cancels with itself if it is triggered an even number of times.
Let v be the number of physical errors at the current configuration (i.e. £y “}|Q’Z)><¢’E~J{ru} with a subset
of error indices satisfying [{x}| = v and some fixed reference logical state |¢))). The next jump has a
probability of 1 —wv/N to create a physical error or a probability of v/N to cancel a physical error. At
each step, the number of physical errors will be updated accordingly. For example,

20 =1-~.g+1.- Y"1 o, (179)

N N
where Qs(-) = m DD I EMEM/(-)ELEL. That is, when applying Q; twice, there are two
possible paths for the errors: (i) The first jump creates an error, and the second jump cancels the

created error; (ii) The first jump creates an error, and the second jump creates another error. Similarly,
we have Q2091 = %Ql + %Q:},. This leads to three paths:

1 N-1 2 N-1 N-=-2
=1-—-1- 1- 1-——  ——— - Q3. 1
Q1919 N 91+ ~N N - Q1+ ~ N Q3 (180)
The three terms correspond to the three possible paths when applying Q; three times. This suggests

that each coefficient 7; in Eq. (171) takes the form

Tmi = Z g(’UO,’Ul) "'g(Umfl,'Um), (181)
{v(m,i)}
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where {v(m,i)} is the set of all paths that lead to i physical errors when Q; is applied m times.
Here v(m,i) = (vo,v1,v2, - , U ), where v; is the number of physical errors after the j-th jump. By
definition, vy = 0 and v, = i. The coefficient g(v;_1,v;) is the probability that v; errors are present
after the j-th jump, conditioned on the presence of v;_; errors after the (j — 1)-th jump. Explicitly,

we have, for 7 > 1,
Vj—1

N if Vj —Vj—1 = —1,
Vi1,Vi) = _ 182
9(vj-1,v;) {1”]* if v; — v = 1. (182)

The goal is to lower-bound the contribution ming, 3 ray PaiPas * * * Pa, It [P0REa,Eay - - - Eappo] from
Eq (148). Summing over all possible length-k trajectories {a} is the same as summing over {m(a)},
which labels each trajectory in {a} uniquely by the integer sequence (my, - -+ ,m,). Summing Eq. (177)
over {m(a)} and using Eq. (181) leads to

min{h,mo} min{h,m1} min{h,m,}
Z > Yoo D (i) oy i) - (POPY i)
(a)}  i0=0 i1=0 i.=0

min{h,mo} min{h,m} min{h,m}

PN DD D P VD DEED DD

{m(a)} i0=0 i1=0 =0 {v(mo,io)} {v(mi,in)}  {v(mziz)}
mo mi mz
(H p19(vj-1, Uj)) Do (H p19(vj-1, Uj)) po- (H p19(vj-1, Uj))
j=1 j=1 j=1
Z mm{imo} mln{iml} min{imz} Z Z Z
m(a) i0=0 i1=0 i2=0  {vp(mo,io)} {vh(mi,i1)} {vh(mz2)}
mo mi mz
(H P19(vj-1,v; >p0 (H plQ(”j—la”j)) po-- (H Plg(vj—l,vj)> ; (183)
=1 j:l Jj=1

where in the last inequality we restrict the sum to the subset {vj(m,7)} C {v(m,i)} of paths along
which the number of physical errors v always satisfies v < h. Each term in the sum is a product of k
jump probabilities for a random-walk trajectory specified by the sequence (vj,(mo,ig), -« , Vih(mz,iz)).
To proceed, let us now define a random walk according to the rules in Eq. (181): Given a configuration
with v physical errors, the random walk updates with one of the three stochastic jumps:

1. With probability p1(1 — &), v = v+ 1.

2. With probability p1 5, v — v — 1.

3. With probability pg, the process terminates and returns success.

After the first jump of the walk, two more termination checks (note that these are not counted as
jumps) are done before each future stochastic jump is taken:

4. If v = 0, the process terminates and returns success.

5. If v = h 4+ 1, the process terminates and returns failure.

This random walk is always initialized in a configuration with zero physical errors, and the walk
terminates with probability one (non-terminating trajectories have an infinite number of steps and
therefore a probability of zero). To establish a lower bound for Eq. (183), we consider a stochastic
process ®(k) of k consecutive independent random-walk processes defined above. The stochastic
process ®(k) returns success if all k random walks return success. By definition, ®(k) contains at least
k jumps before it is terminated. Furthermore, we note that the set of all possible first k£ jumps of a
successful ®(k) is the same as the set of trajectories in Eq. (183).

Namely, any trajectory specified by (vp(mo,ig), - ,Via(m.,i,)) in Eq. (183) is a valid trajectory
for the first k£ jumps in a successful ®(k), and any possible set of first k& jumps taken by the process
can be specified by some (vp(mo,io), - ,Vvr(ms,i,)). To see this, suppose we have a trajectory
for the first k jumps for a successful ®(k). Since no more than h physical errors can be generated
by the trajectory, we can find all the subsequences of jumps separated by a recovery (termination
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with a success) and define the corresponding v (m,i) for each subsequence. Conversely, if we have
some (vp(mo,i0), -+, Vp(mz,i,)), we can identify all the subsequences of jumps separated by the
termination steps 3 and 4 of ®(k), with each subsequence belonging to one of the independent random
walks in ®(k). We therefore have a one-to-one map between the two sets of trajectories. It follows
that they are the same set.

This identification leads to the lower bound

min{h,mo} min{h,m1} min{h,m.}

ZZZ~-ZZZ

m(a)}  i0=0 i1=0 1:=0  {vip(mo,io)} {va(mi,i1)}  {va(mz,iz)}
mi mz
(H plg(vj—bvj)) Do (H p1g(vj—1,vj)> po- - <H p1g(vj—1,vj)>
j=1 j=1 j=1

min{h,mo} min{h,m1} min{h,m_}
Z PN DD D DD DD D
(@)} =0 i1=0 iz=0  {vn(mosio)} {vi(mii1)}  {vh(m:.iz)}

Pr (®(k) returns success|First k& jumps)

x (ﬁ p1g(vj—1avj)> Po (ﬁ Plg(Uj—lavj)> po-- (mH plg(vj—lavj)>

j=1 j=1 j=1
= Pr (®(k) returns success) , (184)

where the conditional probabilities are the success probability of ® (k) conditioned on its first k£ stochas-
tic jumps.

To solve for Pr(®(k) returns success), we only need to solve for the success probability of each
random walk. Let us now consider a generalized random walk that follows the same rules but can start
from initial configurations with any number of physical errors. Let s, be the conditional probability
that, when initialized in a configuration with v € [1, h] physical errors, the random walk terminates
with failure. For mathematical convenience, we also define sp = 0 and spy1 = 1. The probability s,
for v € [1, h] can be solved from a recurrence relation

v v
Sy = Nplsv_l + (1 — N) P1Sv+1, S0 =0, spe1 = 1. (185)

Recall that s is the failure probability conditioned on an initial configuration with one physical error.
To get the failure probability, we need to multiply s; by p;—the probability of creating one error from
a zero-error configuration. Therefore, the failure probability for a single random walk starting from a
zero-error configuration is p1s;. The success probability for the random walk and ®(k) are therefore
(1 —p151) and (1 — pys1)¥, respectively. This provides a lower bound for the contribution

Hfl)én meptm ’ 'pakTr [p0R5a15a2 ’ Sakpﬁ] [(1 - 5)(1 - plsl)]k . (186)
{a}
This yields the desired bound stated in the lemma. ]

Plugging the bound on p(k) from Eq. (174) into Eq. (148), we arrive at the desired bound in
Theorem 3.

To understand the behaviour of the improved bound (Theorem 3) compared to the one given by
Theorem 2, let us solve for s; numerically. We consider the ratio of error rates appearing in the two

theorems: s1/ (n+NA) , where h = fN with f € (0,1/2]. We split the scenarios into two cases:

(i) f < 1/2. We evaluate the ratio for f = 0.4 and 0.45 for different N and different noise rates x/A.
In Fig. 7, we show the numerical results for f = 0.4. For f = 0.45, the plots look qualitatively the
same.

(ii) f =1/2. The numerical results are shown in Fig. 8.

From these numerical results, we arrive at the empirical observations presented in the main text.
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Error-rate ratio
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Figure 7: Numerical solutions to the error-rate ratio s;/ (m) for h = 0.4N. (a) The log-log plot shows the ratio

as a function of N for different k/A. We see that the ratio for different x/A eventually saturates to a constant at
large N. (b) The semi-log plot shows the saturated ratio as a function of x/A with a fitted line —0.4957x/A+0.0005.

FN
Since limy o (Kfﬁ) = e~ T%/A for any constant f, the linearity of the plot of the saturated ratio suggests
that s; has the form logs; ~ —k/A at N — oo.
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Figure 8: Numerical solutions to the error-rate ratio 51/(

NA
k+NA

h
) for h = N/2. (a) The log-log plot shows the

error-rate ratio as a function of N. We see in this case the ratio is steadily converging to 0 at NV — oo. The linearity
of the convergence suggests algebraic decay as a function of N with different exponents. (b) The plot, on a linear
scale, shows the fitted exponents obtained by a linear fit to the straight lines in the error-ratio plot (a). A linear fit to
the exponents yields —0.24956x/A — 0.00707 ~ —x/(4A). We therefore deduce empirically that the ratio behaves
as ~ 1/N*/(42) a5 N — oo,
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Appendix F: Proof of Theorem 4
This appendix contains the proof of Theorem 4. The proof of this theorem partially uses the proof
of Theorem 1. We start with Eq. (110) which takes the form
1 1
(ess)= |+ {omemg=e .o=s) (187)
—_——
41

Next, we recall that the Poissonian error generator takes the form ALg(p) = NA(E(p) — p), where
E(p) =Nt 25:1 EupEL is the error superoperator. Let us use the notation

NAE = o, NAZ =o. (188)

where Z is the identity superoperator. Then, we can state the following diagrammatic relation (see
Eq. (81)):
®=e—o0. (189)

Using the decomposition in Egs. (91) and (189), we have

1 1 1 1
(Om=e)= S+ g<|:|»w=®=®. : .®=®—o>—g<|:|zrm®=®. : .®=®—o>+;<|:|m®=®. =) —>®).

)4 l l
(190)
Taking into account that W, = e *'Z for global decoder, the first terms can be rewritten as
1
—(2229=0...@=0—0)= ——— ([12220=R...8=Qxe). (191)
S T S(S + K/) ﬁf_/

Using Eq. (108), we can rewrite the second term as

1 NA NA
—(Or22@=0...@=Q—0)= —— ((2220=R...@=Q)= ——— ((*22@=1...9=g). (192)
s — s(s+ k) — s(s+ k) %,—/Hl

The last term in Eq. (190) vanishes due to Lemma 96.
By combining these results, we reach the conclusion that

1 1 NA
=+ —(O02223=Q. .. - (Oe== L. R=R). 1
<D-¢-¢-¢> S + 5(5 + /Q) < _z@‘> S(S + l{) < @,_) ( 93)
¢ L+1
Subsequently, by utilizing Eq. (110), we can express
1 1
S(Deeeg=8 .. 8=8)= (D==2)——. (194)
—_——
{41
After rearranging the terms, we obtain
<|:|w><1+ va )—1(1+ va >+ ! (C—8==....8==.) (195)
s+r/) s s+r/ s(s+kK) g T8

Lastly, by dividing both sides of the equation by (1 4+ NA/(s + k)), we arrive at

1

1
<Dm>_§+s(s~l—/<a+NA)

(Do 9=0...0=x). (196)
L

By repeating this procedure ¢ times, we obtain the expression

e L1
{ >_5 s(s+k+ NA

)£<DMQZ+1>. (197)
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The explicit form of the inverse Laplace transform of this equation can be obtained as
1
L7 HDeese ) = 5(NA)‘“Tr [Q exp(ct)g“l(ap)]. (198)

As € and exp(Lt) are completely positive trace-preserving (CPTP) maps that do not alter the matrix
norm, we can put a lower bound on

Tr [Qexp(L)E™ (3p)| = Tr [Qexp(£)E™ (J0)(0])| ~Tr [Qexp(£t)e™ ! (1) (1])|

(199)
> —2(Ql = —2.
Thus we get
2 (Danae ) > —(NA)TH. (200)
Then we derive the bound
1
7 >1— (NA)FL gt : 201
(Dass)> (NA) $2(s+k+ NA) (201)
Taking the inverse Laplace transform, we get
(), 8(t) < L F((s+ NAY). (202)
’ = (14 r/NA)HT

This expression concludes our proof.

Appendix G: Proof of Theorem 5

Let us first consider the logical bit-flip probability in the presence of the recovery process. Let F(©)
be the subset of trajectories (see Eq. (21) and below for informal definition) without any recovery
events (i.e. u # 0), a subset of all possible trajectories F. From the Poissonian picture in Eq. (21), we
derive that

Tr [|1)(1/Re“T10) (0] = Tr [[1)(1|R <Z p(uﬁ)&) 10){0]]

pneF

>Te[[DAR| D plp,7)EL | 10)(0]]
peF)

—nnar( Y pn | [ Y 2B e ) ool

/J,EF(O) HEF(O) Z;},’EF(O) p(l"’lu T)

= e "TTr [|1) (1| ReFET|0)(0]] > an(T)e ™™ > ae™"7, (203)

indicating a non-vanishing error probability. Here, we used Assumption 1 and the normalization

o R NA )n [T(H + NA)]n —7(k+NA) _ _—kT
%O)p(uﬂ') = ZO (H TNA o e =e . (204)
[ n=

Using Assumption 2 with corresponding Eq. (32), we then impose a lower bound on the logical error
measure by considering the dynamics interleaved with the recovery map at every time interval of length
7. Let the parity superoperators be X(p) = XpX and Z(p) = ZpZ, where X and Z are the logical
operators. For stabilizer codes, these operators are Pauli strings that commute with the stabilizers.
Also, the recovery R can be written in terms of projectors onto Pauli stabilizer configurations followed
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by Pauli strings that fix the stabilizer configuration (see Section 7 for an explicit expression). Thus,
these superoperators satisfy [R, X] = [R, Z] = 0. Similarly, for Pauli errors &,~9, we have

X&u(p) = X(EupEy) = E,X(p)E, = EuX (p) (205)

and similarly for X — Z. As a result, the parity operators are conserved during the dynamics, i.e.
[X, 5] = [Z,e] = 0. To analyze the logical error rate of our system, we limit our attention to
the initial state |0)(0]. This state is an eigenvector of the parity operator Z with eigenvalue +1. Its
eigenvalue is a good quantum number with respect to the noise, meaning that no off-diagonal matrix
elements (such as [0)(1|) will be created during the evolution. Combining this with Eq. (203), we have

a 1
Re“T|0){0] = pol0}{0] + pr[1) (1], Ge™™ <p1 <, (206)

where pg = 1—p; and here and below we have chosen 7 = 7.+log 2/k such that ae™"" = ae™" /2 < 1/2.
By applying X' to both sides of Eq. (206), we learn that

Re“TIL) (1] = po|1)(1] + p1[0)(0]. (207)

Using simple linear algebra, we find:

(ReE7)™ 0)(0] = 5 (1 4+ (1= 2p1)™) J0)40] + 5 (1 — (1= 2p1)™) [1) {1 (208)

[\.')M—t

This yields
m 1 1
Te[|0)(0|R (e“7R) ™ 0)(0]] < 5 T ol —ae™ )", (209)

For a total time ¢t = m7, we use Eq. (32) from Assumption 2 and arrive at the following bound,

% - %(1 —ae™")!T < 1= Tr[|0)(0]Re0)(0]] < €(1). (210)

(1-

To make this bound comparable to previous results, we rewrite this inequality as e(t) > %

exp(—Aen(t)t)), where the effective logical error rate is

klog(l — ae™"7e)
kTe +log2

Aeir(t) = —% log(1 — 2¢(t)) > —% log(1 — ae™"™) = — (211)

This condition concludes our proof.

Appendix H: Dissipative toric code

In this appendix, we closely examine the Lindblad operator for the autonomous decoder based on
the two-dimensional toric code as described in Section 7. We demonstrate that, in the absence of noise,
the recovery Lindblad operator in Eq. (12) is exactly solvable. We use these solutions to perturbatively
derive the spectral gap of the full operator.

For simplicity, we will limit our analysis to the case in which only star excitations are allowed, i.e.,
no plaquettes are excited. Despite this, we emphasize that our main conclusions should hold in the
presence of both types of excitations. We will consider noise models where the eigenvalues of B, are
always good quantum numbers, and focus our attention on the gauge sector where B, = +1 for all
p, i.e., the subspace that contains the ground states. The reduced Hilbert space will consist of states
that have an even number of star excitations. We choose the following labeling convention for states
that span the reduced Hilbert space:

0,0:0) = [T(1 + A)vac),  [r.5:0) = (92)"(9,)°10,0:0),  [r.s.k) = ([[2), Irs.0), (212)

i
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where A; represents different star operators, |vac) is the ground state of all Z; operators: Zj|vac) =
[vac); r, s € 0,1 label different topological sectors; g, /y = Whor/vert X 18 a product of X operators along
a string (on the dual lattice) that wraps around the horizontal /vertical direction of the torus. It is easy
to check that |r, s;0) are orthogonal ground states of H (they are +1 eigenstates of all the A; and B)).
Excited states |r, s, k) are labeled by k. For a system with L x L stars, k is an L?-dimensional vector
that labels the excited stars with 1 and de-excited stars with 0. Excited eigenstates are defined by
applying strings of ([ Z) operators on the ground state via the smallest number of Z operators. When
there are multiple minimal-weight excitation operators, then a ([] Z), operator is chosen arbitrarily
from the various options.
We consider the following recovery map:

Rp) =Y Kok, K= ([][%), Po (213)
k

where Py = I1;(1+(—1)% A;) is a projector onto a given star configuration k, and ([ Z),_ is an operator
that “fixes” the error using the minimal number of Z operators. In other words, Ky|r, s;k) = |r, s;0).
Note that the number of star configurations is 2L2*1, which means that the number of dissipators scales
exponentially with system size. Note also that the dissipators are non-local, i.e. they have support
on the full lattice. Nevertheless, there is still a notion of locality: The dissipators fix star errors via
strings of Z operators which minimize the total path length between excited stars, a process known as
minimal weight matching.

One can easily check that arbitrary superpositions of toric code ground states are the only steady
states of the system. It is thus clear that this idealized limit hosts a qudit steady-state structure.
We now ask how stable this degeneracy is with respect to dephasing perturbations, which act on each
physical qubit, i.e. how quickly do “coherences” decay in the presence of dephasing. To this end, we
introduce the following dissipators on each edge of the lattice:

E,=2,. (214)

Let us reformulate the question more precisely. We begin by noting that the jump operators { Kx, £, }
commute with By, and hence indeed it makes sense to focus on the gauge sector with B, = +1 for
all p. Even within this gauge sector, we can further partition the subspace into different “topological
sectors”. Let us define the following projection operators:

Py = Z|T,S;k><’l“,5;k|, (215)
k

where r,s € 0,1 and P, projects states into topological sector r,s. We now note that all of the
dissipators commute with P.;. Thus these projectors are “strong symmetries” of the Lindbladian |72],
and hence there exists a basis where the Lindbladian in Eq. (13) is be block-diagonalized and consists
4% = 16 different blocks:

L= Diag[ﬁo,(), Eo’l, £072, N £3’3], (216)

where the numbers 0 to 3 label four different topological sectors of the bras and kets accoding to the
convention (r =0,s=0) -0, (r=1,s=0) =1, (r=0,s=1) =2, (r=1,s=1) — 3. In words,
the Lindbladian Lo acts on operators where both ket and bra belong to the same topological sector
r = 0,5 = 0; on the other hand, £y acts on operators where the ket belongs to sector r = 0,s = 0,
while the bra belongs to sector r = 1, s = 0. Operators belonging to different topological sectors evolve
independently.

We now show that, in the absence of dephasing (A = 0), the model is exactly solvable, meaning that
we can write down exact expressions for the right and left eigenoperators of the Lindbladian in each
topological sector and its spectrum. Let us define right and left eigenoperators of the Lindbladian:

Ly q(Tpgm) = AmPp gm; El,q(lpvq;m) = Anlp.gim, (217)
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where p, ¢ label the topological sector, and m represents different eigenvalues within a given sector (it
turns out that the spectrum is the same in all sectors in this limit, so we suppress the topological labels
on A).

For A = 0, each topological sector has exactly one eigenvalue of zero: Ag = 0. One can show that
the corresponding eigenoperators are

Tog0 = D;ONG 0L, lpgo =D Ipik) (g k|. (218)
k

This ensures that arbitrary superpositions of toric code ground states are indeed steady states of the

model:
3

3
) = clp;0),  LIV)W[)=0, VY o> =1. (219)
p=0

p=0

The full Lindbladian £ therefore has 4> = 16 eigenvalues of zero. In a slight abuse of notation, we
shall call this a “qubit steady state structure”. (Rather than a qudit steady state structure.)

We now turn to “diagonal” eigenoperators which come with a decay rate: Ay = —k. The corre-
sponding eigenoperators are

gk = |D;K)(g; k| — |p;0)(g; 0], lpax = [P k) (g; K. (220)

It is clear that tr[rp 4.k] = 0 and tr [l; ¢k pgk] = 1, which are necessary conditions.
Finally, we turn to off-diagonal eigenoperators which come with a decay rate: Ay = —k. The
corresponding eigenoperators are:

Tpgk k' = |p; k> <q; k/|a lp7q;k,k’ = |p; k> <q; k/’ (221)

In this case, the right and left eigenoperators happen to be identical.

Perturbative results

Having found the exact expressions for all of the right and left eigenoperators of the Lindbladian
in the absence of dephasing A = 0, we would now like to use perturbation theory to examine the
effects of small dephasing A > 0. In particular, we would like to know the fate of the qubit steady
state structure, i.e. whether the Lindbladian with weak dephasing has 16 eigenvalues of zero in the
thermodynamic limit.

The Lindbladian can be block diagonalized into different topological sectors (see Eq. (216)) even
in the presence of dephasing. Note that all operators with non-zero trace must belong to one of the
diagonal sectors £, ,, while the off-diagonal sectors act on operators with zero trace. Since it is possible
to initialize a valid (traceful) density matrix in each of the diagonal sectors L, 4, we know that (even
in the presence of dephasing) each of these sectors must have an eigenvalue of zero corresponding to
the steady state in each topological sector. The full Lindbladian £ is thus guaranteed to have at
least four eigenvalues of zero even in the presence of Z-dephasing. The off-diagonal sectors £, , are
not guaranteed steady state solutions in general. However, from the exact diagonalization above, we
know that, in the absence of dephasing, these sectors will have an eigenvalue of zero, since arbitrary
superpositions of toric code ground states are stable (e.g. £(|0;0)(1;0]) = 0). We wish to understand
how the decay rate of these off-diagonal coherences scales with system size in the presence of dephasing;
in particular, we would like to know if the decay rate scales to zero in the thermodynamic limit.

Let us specialize to an off-diagonal sector £, , (we shall suppress the topological indices henceforth)
and examine the shift to the eigenvalue Ay = 0 via perturbation theory. The corrections (up to third
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order) read

AW = (1| L o), (222)
=3 LIl E100) _ 2 ((11221r0) ~ Gl r?) (223)
ol LM 7my ) Ly 1L |7y ) Ly | £ |7 (Lol L )m) (L | L |7
= mlzaéOmzzaéo " |A01—A1|)(|A0 2—><A 2|) = o ngo " (1|\0 _><Am)2| : (224)
L (12 1ro) — 300l ro) Lol £ o) + 20001 ro)?) (225)
where we use the shorthand (I|£|r) = tr [IT£/(r)], and
L'(p) =D (ZipZi — p) (226)

i

is the dephasing perturbation. We have simplified some of the general expressions by noting that the
relevant excited eigenvalues are all A,;, = —x and Ag = 0. Examining the expressions for the eigenvalue
shift, it is clear that, if (Io|(£")*|ro) = 0 for all <y, then JA®) =0

One-dimensional system.—Let’s consider a 1 x L lattice where L = 2j+1,j € Z, such that L is odd.
We define two different toric code ground states via |2;0) = X1|0;0), where X7 is a global loop on the
dual lattice in the vertical direction (in this case, the vertical direction has length 1 so the global loop
is a single operator). We define the right and left eigenoperators in the unperturbed limit:

ro=12;0)(0;0[,  lo=> [2k)(0:K]|. (227)
k
We next define the perturbation
L
L'(p)=Z(p)—Lp,  Z(p) = ZipZi, (228)

where Z; act only on the horizontal edges of the lattice.
Consider the first term in the perturbation theory:

tr [I§.£'(ro)] = >~ 0210, k)(2; k| (2(]2,0)(0,0]) — L[2,0)(0,0])] (229)
k
= —L+ Y (2;k|Z(]2,0)(0,0])[0, k)] (230)
k
= -L+L=0. (231)

To order a, we find

) ol =30 () (0 Y (2 K2(12,0)(0,0) 0., (22)
=0 k

where we have introduced the binomial coefficient. We now note that, for i < j,

> (2:;k|2(]2,0)(0,0[)|0, k) = L, for: i < j. (233)
k
This implies
tr 15 (L)% (ro)] = L2Z< ‘Z ) (-1)*""1" =0,  for: a <3, (234)
=0
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where we have used a property of binomial coefficients.
We need to be careful at order &« = j + 1. In this case,

> (2:k|Z2711(]2,0)(0,0[)|0, k) = L/T! — 2 (f") : (235)
” !

The term with the factorial is counting the number of configurations with j 4+ 1 excited edges which
have a logical error after applying the recovery jump operators Ly. This implies

, L!
P o) = -2 (). (236)
4!
This is the lowest-order non-trivial recovery.
This implies that the contribution to the eigenvalue at this order is

L ANL2
Ak =—2 () <> O((A /)71, 237
where we have used j+1 ~ L/2. We note that this term blows up in the thermodynamic limit L — oo,
since the factorial term grows faster than the exponential term decays. One way to remedy this is
to increase the dissipation linearly with the system size: k = kgL. Then the thermodynamic limit is

well-defined: L/
1 = 2
155 ((L/z)! KoL 0 (238)

for A/kp < 1 such that the recovery to the eigenvalue goes to zero in the thermodynamic limit.
Two-dimensional system.—A similar analysis can be done for a 2D system on an L x L lattice. We
consider a perturbation

212
L'(p) = Z(p) —2L%p,  Z(p) =) _ ZipZi, (239)
i=1
where Z; act on each of the 2L? edges of the lattice.
Again, the lowest-order contribution comes at order j + 1:
T pngi+l L
tr [lg(L) ™ (ro)] = —2L ) (240)

where this factor basically counts the number of configurations with j + 1 excited edges, which have a
logical error after applying the recovery jump operators Ly.
The recovery to the eigenvalue at this order is

=2 (i) (2) o) )
" /2! \ s " '

Again, this term blows up in the thermodynamic limit L. — oo, since the factorial term grows faster
than the exponential term decays. One way to remedy this is to increase the dissipation linearly with
the linear system size: kK = koL. Then the thermodynamic limit is well-defined:

L AN\
Jfim L (W) (m) =0 (242)
for A/kp < 1 such that the recovery to the eigenvalue goes to zero in the thermodynamic limit.

In conclusion, we have shown that the dissipative toric code with single-shot recovery jumps will
host a qubit steady state structure in the presence of dephasing perturbations if the strength of the
recovery process scales with the linear system size. Moreover, our analysis suggests that any local
perturbation will not destroy the qubit steady state for such a system. As we discuss in the main text,
the perturbative analysis also misses a non-perturbative contribution for the system’s lifetime, which
will result in a quantitatively different scaling dependence on A.
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