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Nano-patterning has been shown to be a powerful tool for manipulating the vibrational modes
of elastic structures, with applications such as optical-mechanical mode coupling. Inspired by these
recent developments in phononic band engineering, we propose a nano-patterning scheme to enhance
the superconducting transition temperature Tc in phonon-mediated nano-film superconductors, such
as aluminum. Using the finite element method, we simulate the lattice vibrational modes of nano-
patterned films within the Debye model. Our results show that periodic nano-patterning softens
the lattice vibrational modes compared to bulk films. It also increases the density of states at high
energies, resulting in a couple of percent enhancement in Tc. Moreover, we investigate connections to
Weyl’s law and provide an experimental design prescription to optimize nano-patterning for further
enhancement of the superconducting transition temperature.

Introduction— Over the past couple of decades, there
has been tremendous progress in modifying phononic band
structures using nano-fabrication and nano-patterning
techniques [1–9]. Periodically applied defects of certain
shapes induce modifications in lattice vibrations, which
in turn lead to the formation of phononic crystals.
Similar to the manipulation of light in photonic crystals,
this advancement opens new possibilities for precisely
controlling phonon modes as desired [1]. A hallmark
example of nano-patterning applications is the emergence
of optomechanical crystals, where optical and mechanical
mode coupling is enhanced using nano-scale periodic
structures. Another example is the use of this technique
to produce phononic band gaps in solids, which can sup-
press thermal vibrations and mitigate noise and dephasing
in various physical processes [10–12]. It can also be used
to control and engineer the heat capacity and thermal
conductance of a material. Depending on the patterning
design, thermal conductance can be either suppressed
or enhanced [13–15]. The ability to manipulate lattice
vibrations through two-dimensional periodic patterning,
enabling control over physical properties such as optome-
chanical coupling, heat capacity, thermal conductivity,
and thermal noise, highlights the broad applicability of
nano-patterning techniques.

On another front, numerous experimental studies have
demonstrated that granular superconductors, as well as
thin films, often exhibit an enhanced superconducting
transition temperature Tc [16–20]. This enhancement is at-
tributed to the inherently disordered nature of granular su-
perconductors. Specifically, the chaotic geometry of these
grains has been shown to strengthen the effective electron-
phonon coupling, thereby leading to a higher Tc [21]. This
shows how nano-scale geometric features can enhance the
transition temperature of elemental superconductors.

Motivated by such progress in nano-patterning and
recent developments in the understanding of granular
superconductors, it is intriguing to question whether mod-
ification of phononic band structures via nano-patterning
can have an appreciable effect in phonon-induced super-

conductivity. Since nano-patterning length scales are
usually lower bounded by 10nm, such schemes can only
affect the low-energy acoustic phonons and naively one
would expect that such patterning can not lead to any
measurable effects. In this Letter, we investigate this
question by examining the effect of nano-patterning on the
lattice vibrational modes of elemental superconductors.
To be concrete, we consider aluminum phononic band
structure of a bulk nano-film and study its modification
in the presence of nano-patterning within the Debye
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FIG. 1. (a) The schematic shows an aluminum nanofilm
with circular holes of radius R being periodically patterned
inside unit cells of side length L. (b) The enhancement
in transition temperature as a function of the scaling fac-
tor η for the two base geometries (L,R) = (5 nm, 1.5 nm)
and (L,R) = (5 nm, 2.25 nm). The perimeter-squared-to-area
ratios for them are L2/A = 4.95, 21.97, respectively, where
L = 2πR,A = L2 − πR2. The base geometries are scaled
such that (L,R) → (ηL, ηR). We observe an optimal scaling
factor η for each hole radius R, for which the sample exhibits
the highest enhancement in transition temperature. This max-
imum enhancement in transition temperature is higher for the
geometry with greater perimeter-squared-to-area ratio. The
gray dashed area represents the region where the size of the
corresponding unit cell would be comparable to the supercon-
ducting coherence length ∼ 100nm, hence, the unit cell aver-
aging scheme to obtain Eq. (10) would break down. The two
dotted points at the beginning of each curve represent the Tc

values of unscaled geometries, i.e., η = 1, with transition tem-
peratures of Tc/T

bulk
c = 1.033 for the blue curve (R = 1.5 nm)

and Tc/T
bulk
c = 0.972 for the orange curve (R = 2.25 nm).
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model. We study changes in the phononic density of
states and demonstrate that nano-patterning softens the
low energy phonon modes. Moreover, despite considering
large-length-scale nano-patterning, we demonstrate that
it can influence the entire phonon spectrum and observe
an increased density of states at high energies for the
patterned cases compared to the bulk, as predicted by the
well-known Weyl-Vasilev law [22, 23]. We benchmark our
findings for the density of states per unit area against the
predictions of this law and further explore its connection
to chaotic grains. We then use these results to evaluate
the Eliashberg function for both bulk and patterned
samples and demonstrate that, for appropriate length
scales, the high energy enhancement of this function in the
patterned case can be used to obtain an enhancement of
∼ 6% in Tc. It is worth emphasizing that the appropriate
length scale can be determined by plotting the transition
temperature as a function of the scaling factor η, i.e.,
(L,R) → (ηL, ηR), as shown in Figure 1. This allows
us to identify the value of η for which Tc is maximized.
Lastly, we propose a recipe to leverage the implications
of Weyl-Vasilev law for optimizing fabrication patterns to
further enhance the superconducting transition tempera-
ture.

Geometry and Phonon Model—To this end, we consider
two scenarios: (1) a bulk two-dimensional aluminum nano-
film, and (2) the same sheet of aluminum, nano-patterned
with periodically arranged holes of circular shapes, as il-
lustrated in panel (a) of Fig. 1. To analyze the phonons,
we use the Debye model implying a linear spectrum with
cut-off. We adjust this cut-off when we pattern and call it
νD henceforth. Moreover, we ensure the hole features are
much greater than the atomic scales [24–26]. The linear
equation reads as:

ρ∂2t ui =
∑
jkl

Cijkl∂j∂kul. (1)

Here, ρ is the density of aluminum, u⃗ stands for the local
lattice displacement, and Cijkl represents aluminum’s stiff-
ness tensor. Essentially, it is a fourth-rank tensor that con-
nects the stress and strain within a linear elastic medium.
In the isotropic case, this tensor can be represented as:

Cijkl = λLδijδkl + µL(δikδjl + δilδjk) (2)

where λL and µL are the first and second Lamé param-
eters. For the second case, where holes are patterned in
a periodic order, proper boundary condition at the hole
boundary must be implemented to determine the phonon
modes of Eq. (1). This condition, which is called free sur-
face boundary condition, represents that the normal forces,
both shear and compression, vanish at the boundary of
aluminum and vacuum:∑

jkl

dSjCijkl∂kul = 0 ∀i ∈ 1, 2 (3)

where dS⃗ is the normal differential length element around
the hole boundary. Accompanied by Eq. (1), this boundary

condition is sufficient to determine the spectrum of vibra-
tion modes. We used COMSOL Multiphysics to perform
our finite element method simulations, solving Eq. (1) and
its associated boundary conditions.

As well known for eigenvalues of Laplace operator, the
boundary condition affects the asymptotic behavior of the
density of states. In particular, Weyl’s law establishes pos-
itive/negative correction for Neumann/Dirichlet boundary
conditions, respectively [22]. Weyl’s law has been explored
for Eq. (1) with the free surface boundary condition, and
the phonon spectrum exhibits a positive correction to the
phonon density of states per unit area in a chaotic grain
relative to the bulk case [22, 23, 27]:

N (ν)−Nbulk(ν) =
βpL
2Acs

ν, (4)

where N (ν) is the number of states per unit area with
energy below energy hν for the grain, and Nbulk(ν) is
the corresponding quantity for the bulk geometry. Here,
βp is an analytical constant with a value of βp = 2.085
for aluminum [27]. L represents the perimeter of the
grain, and A denotes its area. cs is the transverse sound
velocity of aluminum, and ν is the cyclic frequency at
which N is evaluated. In this work, we numerically
demonstrate that the same expression holds for our
periodically patterned hole geometry. Specifically, in
our geometry Eq. (4) holds with L being the perime-
ter of the circle patterned inside the unit cell, and A
denotes the area of the unit cell excluding the area of
the circle. Applying the Migdal-Eliashberg theory, we
further show that this positive correction to the density of
states can enhance the Eliashberg function and effective
electron-phonon coupling. This, in turn, leads to an en-
hancement of the superconducting transition temperature.

Electron-Phonon Coupling—Having discussed the effect
of nano-patterning on the phonon spectrum, we move on
to addressing how this modification can be incorporated
into the electronic aspect of the system. To achieve this,
we need to introduce a model that captures the coupling of
electrons to the lattice vibration modes. The simplest and
most practical model for this purpose is the Hamiltonian
introduced by Fröhlich [28–30]:

H =
∑
lq⃗

El,q⃗a
†
l,q⃗al,q⃗ +

∑
k,σ=↑,↓

ξk⃗ψ
†
σk⃗
ψσk⃗

+g
∑

σ=↑,↓

∫
χ(r⃗)ψ†

σ(r⃗)ψσ(r⃗)dr⃗, (5)

where the first two terms represent the free Hamiltonians
of the phonons and electrons, respectively, while the last
term describes the coupling between them. g represents
the electron-phonon coupling strength, and χ(r⃗) is defined
as [29]:

χ(r⃗) =
∑
lq⃗

∇ · V⃗l,q⃗√
2El,q⃗

(al,q⃗ + a†l,−q⃗), (6)
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where El,q⃗ and a†l,q⃗(al,q⃗) are the phonon energy and cre-

ation (annihilation) operator of the lth band with Bloch
wave vector q⃗, i.e. qx, qy ∈ [−π/L, π/L] . ξk⃗ is the elec-
tron’s dispersion and ψ†

σ(r⃗) is the creation operator of an
electron at position r⃗. Mediated by phonons, the electrons
experience an attractive potential, which pairs them up
into the superconducting state below the superconducting
transition temperature [31]. To find the critical tempera-
ture, we apply Migdal-Eliashberg theory, and estimate its
solution for the transition temperature using McMillan’s
formula, where we perform the Fermi surface averaging of
the phononic propagator [32]:

kBTc =
hΘ

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
. (7)

Here, kB and h are the Boltzmann and Planck constants,
respectively. µ∗ is a parameter representing the Coulomb
repulsion, for which µ∗ = 0.1 is a good approximation [33,
34]. It is worth noting that we do not take the effect of
nano-patterning on µ∗ into account. λ and Θ are defined
through electron phonon spectral function as the following:

λ(ν) = 2

∫ ν

0

α2F (ν′)

ν′
dν′, (8)

ζ(ν) =
2

λ(νD)

∫ ν

0

α2F (ν′)dν′, (9)

where λ = λ(νD),Θ = ζ(νD), and νD is the Debye cut-
off frequency of the system in consideration. The electron
phonon spectral function (Eliashberg function), α2F (ν), is
the weight through which Θ and λ are defined. It plays a
key role in the determination of the transition temperature
of superconductors, and provides a detailed description of
the interaction between electrons and phonons, which is
essential for accurately modeling superconducting proper-
ties [35]. For the particular periodic geometry considered
in this work this function reads as:

α2F (ν) = g̃
∑
ml

∫
d2q

1

2El,q⃗

|αl,q⃗(K⃗m)|2δ(hν − El,q⃗)

|q⃗ + K⃗m|
√
1− |q⃗+K⃗m|2

4k2
F

,

(10)

where we have defined:

g̃ =
g2N(0)

4π2kF
. (11)

Here, El,q⃗ is the phonon energy of the lth band at Bloch

wave vector q⃗, and K⃗m = 2π
L (mxx̂ + my ŷ) with mx,my

being arbitrary integers. kF denotes the electronic Fermi
wave number and N(0) is the electronic density of states

at the Fermi surface. αl,q⃗(K⃗m) are the Fourier coefficients

of the periodic Bloch amplitude of the ∇ · V⃗l,q⃗ function,

where V⃗l,q⃗(r⃗) is the full phonon wave function of the lth

band at Bloch wave vector q⃗. A detailed derivation of
spectral function for our patterned geometry is provided

in appendix A. We determine g̃ by applying Eq. (10) to
the bulk geometry, extracting the parameters required for
McMillan’s formula, and fitting Tc to match the known
transition temperature of bulk aluminum. Finding g̃ en-
ables us to calculate the corresponding parameters for the
patterned geometry, evaluate its transition temperature,
and compare it with the bulk value.

Results and Conclusion— We begin the discussion of
the results by benchmarking the modification of the den-
sity of states per unit area against the implications of
Weyl-Vasilev law for high energies [22, 27]. In partic-
ular, as shown in panel (c) of Fig. 3, we have plotted
N (ν) − Nbulk(ν) as a function of frequency. The linear-
ity of this plot and its slope show good agreement with
the analytic prediction of Eq. (4) at high energies, and
the geometry with a greater perimeter squared-to-area ra-
tio exhibits a higher enhancement of the density of states
per unit area. This increase for high energies translates
to an enhancement in the Eliashberg function at the same
energy region as well, since both are affected by the same
geometric factors. To be more precise, the density of states
and two-point correlation functions of the eigenstates for
the patterned geometry deviate from their bulk counter-
parts. Since the patterned geometry considered in this
work is chaotic, the correction to these is comprised of two
terms: a smooth (monotonic) term and a highly oscilla-
tory term. The highly oscillatory contribution is sensitive
to the nature of classical dynamics for a system whose
classical counterpart is chaotic [36, 37]. This term is re-
sponsible for the oscillations observed in the density of
states and Eliashberg function in this work. On the other
hand, using the principles of random matrix theory and
quantum chaos, one can show that the high energy part
of the monotonic term in the cumulative Eliashberg func-
tion experiences a linear correction in frequency relative
to the bulk case—similar to that of the cumulative density
of states. This results from the fact that the high energy
phonons can be modeled with a superposition of random
and uncorrelated plane waves, entering from different di-
rections with the same wavevector magnitude [38, 39] (see
appendix B for further details).

As evident from the behavior of λ(ν) and the Eliashberg
function in panels (a) and (b) of Fig. 4, there is a com-
petition between low-energy suppression and high-energy
enhancement. The high-energy enhancement arises from
the linear increase in both the cumulative Eliashberg func-
tion and the density of states relative to the bulk case at
high frequencies [36–38]. Specifically, shapes with a higher
perimeter to square root of area ratio exhibit a greater lin-
ear slope in the high-energy limit of the Eliashberg func-
tion as well. On the other hand, a smaller effective area,
L2 − πR2, leads to a more extended low-energy suppres-
sion across the energy spectrum. These two effects com-
pete, ultimately determining whether the electron-phonon
coupling is enhanced or suppressed.

For the two specific patterned geometries considered
in Fig. 2, (L,R) = (5 nm, 1.5 nm) (blue) and (L,R) =



4

(a) (b)

FIG. 2. (a) The e−1/λ(ν̄)/e−1/λbulk function for the unpatterned sample and the patterned samples with two different radii,
R = 1.5 nm and R = 2.25 nm, are plotted in black, blue, and orange, respectively, as a function of the dimensionless frequency
ratio ν̄ = ν/νD. The inset represents the difference of the blue and orange curve from the black in the entire domain of the plot.
As it is more clear from the difference plot, the blue curve ends up having a larger Eliashberg parameter λ than that of the bulk
case λbulk, while the orange does not show a sensible increase in this parameter compared to the bulk. (b) The corresponding
ζ(ν̄)/Θbulk function for each of the geometries discussed in panel (a) are plotted as a function of dimensionless frequency ratio
ν̄ = ν/νD. Once again, the inset represents the difference of the blue and orange curve from the black. Both of the curves have a
smaller average frequency Θ = ζ(νD) than that of the bulk.

(5 nm, 2.25 nm) (orange), whose enhancements in Tc cor-
respond to the blue and orange dots in panel (b) of Fig. 1,
the following observations can be made: For the blue curve
(L,R) = (5 nm, 1.5 nm), despite the low-energy suppres-
sion, the high-energy enhancement dominates, resulting
in an increase in the transition temperature. However, for
the orange curve (L,R) = (5 nm, 2.25 nm), low-energy sup-
pression prevails, leading to a decrease in transition tem-
perature. Nevertheless, in what follows we show that scal-
ing the size of the unit cell and circle proportionately can
suppress the low-energy decrease in these functions and
leverage the high-energy increase in them to enhance the
transition temperature. Scaling to larger geometries can
reduce the energy interval over which the mentioned low-
energy decrease suppresses the Eliashberg function. This
results in an overall enhancement of Tc for both geometries,
with the geometry having a greater perimeter-squared-to-
area ratio showing an advantage due to a faster increase
of the Eliashberg function at high energies.

We continue the discussion of the results with a
brief explanation of our scaling scheme. The linearity
of the phonon equations implies that N (ηL, ηR, ν) ∼
N (L,R, ην). Assuming 1/kF is much smaller than the
other length scales in the problem, it also follows that
α2F (ηL, ηR, ν) ∼ α2F (L,R, ην). This approach enables
us to determine the density of states per unit area and the
Eliashberg function for scaled geometries without the need
to repeat the full phononic band structure simulation (see
appendix B for further details). As an example, consider-
ing the two scaled geometries with (L,R) = (15nm, 4.5nm)
and (L,R) = (15nm, 6.75nm), we obtain the modified pa-

rameters λ/λbulk = 1.011, Θ/Θbulk = 0.987, νD/ν
bulk
D =

0.992 for the former case and λ/λbulk = 1.019, Θ/Θbulk =
0.972, νD/ν

bulk
D = 0.979 for the latter. These ratios trans-

late to an enhancement of δTc/Tc = 4.2% and 6.3% in
the transition temperature for the two scaled geometries,
respectively. A plot of transition temperature enhance-
ment as a function of scaling factor is included in panel
b of Fig. 1; i.e. the geometry is scaled with a factor η
such that (L,R) → (η × L, η × R). This plot shows that
there exists an optimal scaling factor η for any base geom-
etry for which Tc is maximized, and the geometry with a
higher perimeter squared-to-area ratio has a greater max-
imum enhancement. Having said that, it is clear that
circles are not the best choice of patterning in terms of
getting a greater transition temperature, and shapes like
fractals that have higher perimeter-squared-to-area ratio
would give even higher enhancement in Tc.

However, it is crucial to consider that the fineness of the
features in the geometry must not fall below the atomic
scale of the underlying material. Due to computational
complexities we do not include more complex shapes in
the current work. Nevertheless, the goal of this Letter is
to illustrate the trend in Tc enhancement and to demon-
strate the significant role that nano-patterning plays in
improving the superconducting transition temperature of
2D materials, such as aluminum nano-films.

In this work, we focused on simple circular hole pattern-
ing. A clear direction for future work is to optimize the
patterning shape and size to further enhance Tc, using ma-
chine learning techniques [40]. In addition, a more realistic
model for phonons could be developed by accounting for
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FIG. 3. (a) The phononic band structure for both the bulk and
nano-patterned samples, displaying the first 20 bands. Dashed
lines represent the bulk sample, while solid lines correspond to
the sample patterned with circular holes of radius R = 1.5 nm
and a unit cell size of L = 5nm. Nano-patterning is observed
to soften the phonon mode, thereby increasing the phonon den-
sity of states. The inset on the upper right corner illustrates
the Brillouin zone with respect to which the band structure
is plotted. (b) The phonon’s cumulative density of states per
unit area (i.e., the number of eigenstates below a certain en-
ergy) for the bulk sample and two patterned samples with radii
R = 1.5 nm and R = 2.25 nm. The dashed red horizontal line
represents the value that corresponds to the total number of
states per unit area for the bulk case; the Debye energy of the
two other geometries are modified to stay consistent with this
value, i.e., Nbulk(ν

bulk
D ) = N (νD). (c) The difference in cumu-

lative density of states per unit area between the unpatterned
sample and the two patterned samples with the same radii as in
panel b, as a function of frequency. The dashed lines represent
the analytic prediction for high energies based on Weyl-Vasilev
law [27]. The geometry with a higher perimeter-squared-to-area
ratio exhibits a greater enhancement of the density of states per
unit area.

the lattice structure of the underlying material and solving
for the phonon modes. This approach would automatically
handle the Debye cut-off frequency. Other exciting direc-
tions for future research include replacing aluminum with
other phonon-mediated superconductors, such as niobium,
and exploring the potential of inducing superconductivity
in non-superconducting materials.

Acknowledgment— This work was supported by DARPA
HR001124-9-0310.

∗ masoudma@umd.edu
[1] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala,

and O. Painter, Optomechanical crystals, nature 462, 78
(2009).

[2] A. H. Safavi-Naeini and O. Painter, Design of optomechan-
ical cavities and waveguides on a simultaneous bandgap
phononic-photonic crystal slab, Optics express 18, 14926
(2010).

[3] T. J. Kippenberg and K. J. Vahala, Cavity optomechanics:
back-action at the mesoscale, science 321, 1172 (2008).

[4] M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala,

and O. Painter, Modeling dispersive coupling and losses of
localized optical and mechanical modes in optomechanical
crystals, Optics express 17, 20078 (2009).

[5] I. Favero and K. Karrai, Optomechanics of deformable op-
tical cavities, Nature Photonics 3, 201 (2009).

[6] R. H. Olsson and I. El-Kady, Microfabricated phononic
crystal devices and applications, Measurement science and
technology 20, 012002 (2008).

[7] J. O. Vasseur, A.-C. Hladky-Hennion, B. Djafari-Rouhani,
F. Duval, B. Dubus, Y. Pennec, and P. Deymier, Waveg-
uiding in two-dimensional piezoelectric phononic crystal
plates, Journal of applied physics 101 (2007).

[8] K. Gu, C.-L. Chang, and J.-C. Shieh, Design and fabrica-
tion of 2d phononic crystals in surface acoustic wave micro
devices, in ASME International Mechanical Engineering
Congress and Exposition, Vol. 4224 (2005) pp. 593–596.

[9] S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt,
and A. Adibi, Evidence of large high frequency complete
phononic band gaps in silicon phononic crystal plates, Ap-
plied Physics Letters 92 (2008).

[10] O. Florez, G. Arregui, M. Albrechtsen, R. C. Ng, J. Gomis-
Bresco, S. Stobbe, C. M. Sotomayor-Torres, and P. D.
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[22] H. Weyl, Über die asymptotische verteilung der eigenwerte,
Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Physikalische Klasse 1911, 110
(1911).

[23] D. G. Vasil’ev, Asymptotic behavior of the spectrum of
a boundary value problem, Trudy Moskovskogo Matem-
aticheskogo Obshchestva 49, 167 (1986).

[24] L. D. Landau, L. Pitaevskii, A. M. Kosevich, and E. M.
Lifshitz, Theory of elasticity: volume 7, Vol. 7 (Elsevier,

mailto:masoudma@umd.edu


6

2012).
[25] F. W. Hehl and Y. Itin, The cauchy relations in linear elas-

ticity theory, Journal of elasticity and the physical science
of solids 66, 185 (2002).

[26] J. Marsden and T. Hughes, J., r. mathematical foundations
of elasticity dover publications (1994).

[27] P. Bertelsen, C. Ellegaard, and E. Hugues, Distribution of
eigenfrequencies for vibrating plates, The European Phys-
ical Journal B-Condensed Matter and Complex Systems
15, 87 (2000).

[28] H. Fröhlich, Electrons in lattice fields, Advances in Physics
3, 325 (1954).

[29] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics
(Courier Corporation, 2012).

[30] A. Altland and B. D. Simons, Condensed matter field the-
ory (Cambridge university press, 2010).

[31] L. N. Cooper, Bound electron pairs in a degenerate fermi
gas, Physical Review 104, 1189 (1956).

[32] We use cyclic frequency throughout the work.
[33] P. B. Allen and R. Dynes, Transition temperature of

strong-coupled superconductors reanalyzed, Physical Re-
view B 12, 905 (1975).

[34] W. McMillan, Transition temperature of strong-coupled
superconductors, Physical Review 167, 331 (1968).

[35] S. K. Bose and J. Kortus, Electron-phonon coupling in
metallic solids from density functional theory, Vibronic and
Electron-Phonon Interactions and Their Role in Modern
Chemistry and Physics , 1 (2009).
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Appendix A: The derivation of Eliashberg function

In the absence of translation invariance, the phonon
propagator and the two body electron-electron interaction,
which is mediated by phonons, are not necessarily func-
tions of coordinated difference. Therefore, we can write the
following general form for the phonon mediated electron-
electron interaction:

D(r, r′; ϵn) = g2
∑
lq⃗

1

2El,q⃗
ϕl,q⃗(r⃗)ϕ

∗
l,q⃗(r⃗

′)
2El,q⃗

E2
l,q⃗ + ϵ2n

(A1)

Here, g is a dimensionful constant determining the
electron-phonon coupling strength, El,q⃗ is the energy of
the lth band with Bloch wave vector q⃗, and ϕl,q⃗(r⃗) is the
divergence of the corresponding phonon wave function:

ϕl,q⃗(r⃗) = ∇ · V⃗l,q⃗(r⃗), (A2)

where V⃗l,q⃗s are the full phonon wave functions for lth band
and Bloch wave vector q⃗. Using Bloch’s theorem we can
write the function ϕl,q⃗(r⃗) in the following form:

ϕl,q⃗(r⃗) = φl,q⃗(r⃗)e
iq⃗r⃗. (A3)

Once again, q⃗ is the Bloch wave vector in the first Brillouin
zone, and φl,q⃗(r) is the periodic amplitude that can be
expanded in the Fourier basis:

φl,q⃗(r⃗) =
∑
m

αl,q⃗(K⃗m)eiK⃗m.r⃗. (A4)

Here, K⃗m = 2πmx

L x̂+
2πmy

L ŷ with mx,my being arbitrary
integers and L being the side length of the unit cell. Sub-
stituting this in the phonon propagator and expressing it
in terms of the relative r⃗− r⃗′ = ℓ⃗ and center of mass coor-
dinates R⃗ = r⃗+r⃗′

2 yields:

D(R⃗, ℓ⃗; ϵn) = g2
∑
lq⃗

1

2El,q⃗
ϕl,q⃗(r⃗)ϕ

∗
l,q⃗(r⃗

′)
2El,q⃗

E2
l,q⃗ + ϵ2n

= g2
∑

lkmm′

1

E2
l,q⃗ + ϵ2n

αl,q⃗(K⃗m)α∗
l,q⃗(K⃗

′
m)

ei[q⃗+
1
2 (K⃗m+K⃗m′ )]·ℓ⃗ei(K⃗m′−K⃗m)·R⃗. (A5)

This expression does not have translation invariance, but,
averaging over the unit cell removes the dependence on
center of mass coordinate R⃗ and the result is only a func-
tion of difference. This is a justified step due to the fact
that superconducting coherence length is much larger than
the unit cell size that we are considering in this work. Per-
forming the integration over R⃗ then yields:

D̄(ℓ⃗, ϵn) = g2
∑
lq⃗K⃗m

1

E2
l,q⃗ + ϵ2n

∣∣αl,q⃗(K⃗m)
∣∣2ei(⃗⃗q+K⃗m).ℓ⃗

=
∑
k⃗

D̄(k⃗, ϵn)e
ik⃗.ℓ⃗, (A6)

where k⃗ = q⃗+K⃗m is the momentum that electrons gain via
scattering off of phonons. We use this result and combine
it with the already existing expression for the Eliashberg
function in the literature [35], to get the Eliashberg func-
tion for our geometry:

α2F (ν) = g̃
∑
ml

∫
d2q

1

2El,q⃗

|αl,q⃗(K⃗m)|2δ(hν − El,q⃗)

|q⃗ + K⃗m|
√
1− |q⃗+K⃗m|2

4k2
F

,

(A7)

where:

g̃ =
g2N(0)

4π2kF
. (A8)

Here, kF is the Fermi wave vector, and N(0) is the
electronic density of states at the Fermi surface. We
evaluate the above expression by solving for the phonon
spectrum using COMSOL Multiphysics to obtain Vl,q⃗(r),
and then taking the Fourier transform of its divergence to
find αl,q⃗(K⃗m).
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Appendix B: Numerical fitting for high energy part of
α2F (ν), λ(ν)

Following arguments from random matrix theory and
quantum chaos, we aim to justify the linear behavior of the
Eliashberg function at high energies. To analyze the high-
energy behavior of the monotonic part of the Eliashberg
function, we start from the following expression:

α2F (ν) =

g̃
∑
l,q⃗

∫
d2k

⟨ϕl,q⃗(R⃗+ ℓ⃗/2)ϕ∗l,q⃗(R⃗− ℓ⃗/2)⟩R⃗(k⃗)δ(hν − Elq⃗)

2kElq⃗

√
1− k2

4k2
F

,

(B1)

where ⟨·⟩R⃗ represents a center-of-mass unit-cell average,

and ⟨·⟩R⃗(k⃗) is the corresponding Fourier transform with

respect to ℓ⃗ at wavevector k⃗.
We then use the random plane wave approximation (also

known as Berry’s conjecture in the quantum chaos litera-
ture) to express the divergence of the wavefunction (ϕl,q⃗)
at high energies as a superposition of plane waves with
random and uncorrelated amplitudes [38, 39]. This leads
to the following ensemble average:

⟨ϕl,q⃗(R⃗+ ℓ⃗/2)ϕ∗l,q⃗(R⃗− ℓ⃗/2)⟩R⃗(k⃗) ≃ Γl,q⃗ |⃗k|δ
(
|⃗k| −

Elq⃗

ℏcp

)
,

(B2)

where the overline indicates ensemble averaging, cp is the
longitudinal sound velocity, and Γl,q⃗ is a parameter that
determines the density of states for longitudinal phonons
at high energies.

Substituting this into the expression for the Eliashberg
function gives:

α2F (ν) ∝ 1√
1− π2ν2

c2pk
2
F

dN∥

dν
, (B3)

where N∥(ν) is the cumulative density of states of longi-
tudinal phonons, and cp is corresponding sound velocity.
At high energies, N∥(ν) deviates linearly with frequency
from the bulk behavior. Assuming 1/kF is much smaller
than other relevant length scales, we find that the correc-
tion to the cumulative Eliashberg function at high energies
relative to the bulk is linear in frequency [21, 36–39]:∫ ν

0

[
α2F (ν′)− α2Fbulk(ν

′)
]
dν′ = sν + r,

where s is the slope of the linear correction, and r is the
y-intercept.

Consequently, the high-energy part of λ(ν) − λbulk(ν)
is expected to exhibit logarithmic behavior. In panels (a)
and (b) of Fig. 4, we plot these deviations from the bulk
values along with their numerical fits. The slope of the
linear fit and the parameters of the logarithmic fit were
extracted using numerical fitting packages.

Alternatively, one could use the Green’s function ap-
proach outlined in the literature [36, 37] to analytically

(a) (b)

FIG. 4. (a) The difference in the Eliashberg function between
the bulk and patterned samples with radii of R = 1.5 nm and
R = 2.25 nm, as a function of frequency. The high-energy re-
gion of both curves exhibits linear behavior, with the slope de-
termined via numerical linear fitting. This linear fit is utilized
to estimate the Eliashberg function for similarly scaled geome-
tries, i.e., geometries where all lengths are scaled while keeping
their ratios fixed. (b) The difference in λ between the bulk and
patterned samples, with radii of R = 1.5 nm and R = 2.25 nm,
plotted as a function of frequency. Given the linear behavior
of the difference in the Eliashberg function at high energies
in panel a, the high-energy part of both curves in this plot is
expected to exhibit logarithmic behavior. The dashed green
curves represent the logarithmic numerical fit. Like in panel a,
these fits are used to estimate λ for scaled geometries where all
lengths are increased proportionally while keeping their ratios
fixed.

derive the slope. However, to keep the math simple, we do
not include it here.

In fact, the cumulative Eliashberg function∫ ν

0
α2F (ν′) dν′ and λ(ν) both exhibit a positive high-

energy correction relative to the bulk in the patterned
samples. As shown in Fig. 4, the geometry with a larger
perimeter-squared-to-area ratio displays a greater increase
in both functions at high energies. The numerical fits
(green dashed curves) allow us to extrapolate these
functions and find the corresponding values at any higher
energy of interest. These values are used to find the
Eliashberg parameters of scaled geometries. By scaling
to larger geometries, the enhancement of these functions
at high energies can be leveraged to counteract the low
energy suppression.

Appendix C: Downward energy level shift induced by
patterning

According to Weyl’s law for our chaotic system, the den-
sity of states at high energies deviates from the bulk coun-
terpart by a constant term. This results in a uniform
downward shift of the high-energy spectrum on average,
i.e.,

Epatterned
l,q⃗ ≃ Ebulk

l,q⃗ −∆E.
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To demonstrate this, we begin with the following generic
expression for the cumulative density of states:

N (ν) =
1

(2π)2

∑
l

∫
BZ

Θ(hν − Ebulk
lq⃗ +∆Elq⃗) d

2q

=Nbulk(ν) +
1

(2π)2

∑
l

∫
BZ

d

hdν
Θ(hν − Ebulk

lq⃗ )∆Elq⃗ d
2q,

(C1)

where we have Taylor-expanded the Heaviside function to
linear order in ∆Elq⃗ to extract the leading-order correc-
tion.

Assuming a constant energy shift at high energies
∆Elq⃗ = ∆E, the expression simplifies to:

N (ν) = Nbulk(ν) +
d

hdν
Nbulk(ν)∆E. (C2)

Using the known bulk expression Nbulk(ν) = πν2

c2s
(1 +

1/κ2), where κ = cp/cs is the ratio of longitudinal to trans-
verse sound velocity, we arrive at the Weyl’s formula for
the patterned geometry at high energies. This justifies the
assumption of a constant energy shift. Equating the pro-
portionality factors gives:

∆E =
hcsβpL

4πA(1 + 1/κ2)
. (C3)

The energy spectrum of the patterned system is softened
at low energies, meaning each level is shifted downward on
average. This energy shift saturates to the above value as
we move to higher-energy bands. Roughly speaking, this
can be viewed as a mapping from a given patterned state
to a higher-energy bulk state. Given the monotonically in-
creasing behavior of the cumulative density of states and
cumulative Eliashberg function in the bulk, this mapping
explains the enhanced values of these functions in the pat-
terned system relative to the bulk. Thus, even though
the enhancement in the Eliashberg function and density
of states due to Weyl’s law becomes prominent at high
energies, the effect originates from modifications to the
spectrum at low energies.

That being said, adopting a more realistic lattice model,
which modifies the Debye phonon spectrum, would not
eliminate the enhancement of the Eliashberg parame-
ters—hence, the observed increase in Tc remains robust.

Appendix D: Numerical implementation details

We performed the phonon simulations using COMSOL
Multiphysics, within the Solid Mechanics module in a two-
dimensional (2D) geometry. The Eigenfrequency study
type was used to compute the vibrational modes. For
both the patterned and unpatterned (bulk) cases, we con-
structed a square unit cell of aluminum. In the patterned
case, a circular hole of the desired radius was created
within the unit cell. A physics-controlled mesh was ap-
plied, with the mesh resolution chosen based on the geom-
etry and the relevant energy scales of the problem.

TABLE I. Material parameters and values used in COMSOL
simulations

Parameter Value/Type
Elasticity module (E) ≃ 70 GPa
Poisson ratio ≃ 0.33
Unit cell length (L) 5 nm
Patterned hole radius 2.25 nm, 1.5 nm
Aluminum density ≃ 2.7 g/cm3

Tc of bulk aluminum ≃ 1.2 K
Lattice model Isotropic

To account for the periodicity of the system, we imposed
Floquet periodic boundary condition in COMSOL Multi-
physics (Bloch theorem is applied) which allows specifying
the Bloch wavevector in the Brillouin zone and run the
simulation for that specific value. The simulations were
repeated for a range of two-dimensional (2D) Bloch mo-
mentum values to compute the phonon spectrum through-
out the entire Brillouin zone.

For the patterned case, the boundaries around the hole
were set to free surface boundary condition, corresponding
to zero net force on the boundary points.
The numerical values used in our simulations and calcula-
tions are listed in TABLE I.

Appendix E: Brillouin zone mesh convergence

We have already discussed that the highly oscillatory
behavior observed in the Eliashberg functions, λ, and the
density of states originates from the chaotic nature of the
system. To verify that these features are not numerical
artifacts arising from insufficient meshing in our finite el-
ement method simulations, we perform convergence tests
using two different Brillouin zone meshes.

Figure 5 shows the difference between the cumulative
Eliashberg functions for the two patterned cases relative
to the bulk case:∫ ν

ν0

[
α2F (ν′)− α2Fbulk(ν

′)
]
dν′. (E1)

Here, ν0 is an arbitrary reference frequency from which the
cumulative integral is computed. In these simulations, we
impose Floquet-periodic boundary conditions on the unit
cell, which ensures that the wavefunctions satisfy Bloch’s
theorem. We then compute the phonon spectrum for dif-
ferent Bloch momenta across the Brillouin zone. By re-
peating the simulation at each q-point and collecting the
resulting data, we obtain the Eliashberg function and the
phonon density of states. While increasing the mesh den-
sity in the Brillouin zone improves resolution, it also signif-
icantly increases the computational cost due to the need
to sample the entire zone. To check mesh adequacy, we
choose a high-frequency interval beginning, for example,
at ν0 ≃ 7.73THz and perform the phonon simulations ac-
cordingly. It is worth noting that the specific choice of ν0
does not carry any physical significance; any other high-
frequency reference point could equally be used.
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As shown in Fig. 5, increasing the number of q-points
does not significantly change the integrated Eliashberg
function, which confirms the validity of the original mesh
used in our main simulations.

(a) (b)

FIG. 5. (a) Comparison of cumulative Eliashberg functions
relative to the bulk for two Brillouin zone meshes, for the ge-
ometry (L,R) = (5 nm, 1.5 nm). The blue solid line represents
results obtained using an 80 × 80 q-point mesh, while the or-
ange dashed line corresponds to 160 × 160 mesh. (b) Same
comparison for the (L,R) = (5 nm, 2.25 nm) geometry. In both
cases, the reference frequency is ν0 ≃ 7.73THz, and the results
demonstrate convergence with respect to Brillouin zone sam-
pling.
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