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Non-equilibrium critical scaling and
universality in a quantum simulator

Arinjoy De 1,7,9 , Patrick Cook 2,3,9, Mostafa Ali2, Kate Collins 1,
William Morong 1,8, Daniel Paz2, Paraj Titum1,4, Guido Pagano 5,
Alexey V. Gorshkov 1, Mohammad Maghrebi2 & Christopher Monroe1,6

Universality and scaling laws are hallmarks of equilibrium phase transitions
and critical phenomena. However, extending these concepts to non-
equilibrium systems is an outstanding challenge. Despite recent progress in
the study of dynamical phases, the universality classes and scaling laws for
non-equilibriumphenomena are far less understood than those in equilibrium.
In this work, using a trapped-ion quantum simulator with single-spin resolu-
tion, we investigate the non-equilibrium nature of critical fluctuations fol-
lowing a quantum quench to the critical point. We probe the scaling of spin
fluctuations after a series of quenches to the critical Hamiltonian of a long-
range Isingmodel. With systems of up to 50 spins, we show that the amplitude
and timescale of the post-quench fluctuations scale with system size with
distinct universal critical exponents, depending on the quench protocol.While
a generic quench can lead to thermal critical behavior, we find that a second
quench fromone critical state to another (i.e. a double quench) results in a new
universal non-equilibrium behavior, identified by a set of critical exponents
distinct from their equilibrium counterparts. Our results demonstrate the
ability of quantum simulators to explore universal scaling beyond equilibrium.

In recent years, substantial theoretical1–4 and experimental5,6 progress
has been achieved in understanding emergent behavior of isolated
quantum systems out of equilibrium. In this context, non-equilibrium
many-body systems can be investigated by measuring quantum
dynamics after a quench7, namely after a change of the Hamiltonian
parameters that is much faster than the typical energy scales in the
system—which is routinely performed in AMO (atomic, molecular, and
optical) systems.

Althoughquenchdynamicsare extremely complex ingeneral, one
would expect that macroscopic observables, after a short time,
become insensitive to the microscopic details8. In particular, in the
vicinity of a phase transition, the dynamics should give rise to universal

critical behavior which leads to scale-invariant spatio-temporal corre-
lations with universal exponents9. Notably, we show that non-
equilibrium critical phenomena can emerge in the context of quench
dynamics in one-dimensional systems with long-range interactions. In
general, universal non-equilibriumphenomena are relevant far beyond
the scope of AMOand condensedmatter physics, including chemistry,
biology, and even sociology10. Examples ranging from glassy transi-
tions seen in polymers, colloidal gels, and spin glasses11 to symmetry-
breaking transitions in the Universe after the ‘Big Bang’12 all exhibit
non-equilibrium critical behavior.

The unprecedented degree of control over quantum systems in
platforms such as trapped ions13,14, ultracold atoms15,16, nitrogen-
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vacancy centers17, superconducting circuits18,19 and others20–22 has
made it possible to probe fundamental questions about non-
equilibrium many-body physics including prethermalization23,24,
many-body localization25,26, discrete time crystals17,27, and dynamical
phase transitions5,6. For example, universal scaling aroundnon-thermal
fixed points has been observed with Bose-Einstein condensates that
exhibit self-similar behavior; these observations are however, not
related to an underlying critical behavior28–32. In contrast, the work
reported here is fundamentally tied to the existence of a phase tran-
sition and extends the remarkably rich domain of critical phenomena
in equilibrium to far-from-equilibrium dynamics.

In this work, we investigate the critical behavior in the vici-
nity of a dynamical phase transition in quench dynamics. An
immediate challenge is that a quantum quench generically leads
to thermalization33, thus the resulting critical behavior is effec-
tively thermal34,35. While this is the case in a quench from a gap-
ped initial state, a quench from a gapless state (e.g., the critical
point of the Hamiltonian) could lead to genuinely non-thermal
critical behavior9,36–38 (see the schematic picture in Fig. 1a). We
attribute these features to the behavior of the soft mode35. Spe-
cifically, we find that a generic quench from a gapped initial state
excites this mode and heats it up, resulting in effective thermal
behavior. In contrast, a critical-to-critical quench leads to over-
heating of the soft mode, giving rise to novel non-equilibrium
critical behavior.

Results
We probe the post-quench dynamics of a transverse-field Ising chain
with tunable power-law interactions. The Hamiltonian of the model is

represented as (ℏ = 1):

H = �
XN
i < j

Jijðγxσx
i σ

x
j + γ

yσy
i σ

y
j Þ+Bz

XN
i

σz
i , ð1Þ

where σx, y, z
i are the Pauli matrices acting on the i’th spin. Jij is the

interaction strength between ions i and j, Bz is the global transverse
magnetic field and N is the number of spins. The coefficients
(γ x, γ y) ∈ [0, 1], and only one of them is non-zero during a single
quench (Methods). The interaction strength falls off approximately
following apower-lawof the form Jij ~ J/∣i− j∣p, where J>0 is the effective
interaction strength and p represents the range of interaction13. The
exponent p was tuned to be at 0.89 for all the experiments and all
system sizes (Methods). We note that, for large system sizes, the
interactionmatrix elements deviate from a simple power-law behavior
and exhibit faster decay at longer distances (see Supplementary
Information (SI), Sec. VII.B). In order to maintain a well-defined
thermodynamic limit, here onwards, we refer to the interaction after it
is Kac-normalized asJ = 1

N�1

P
i, j Jij

39. We encode the quantum spins in
the ground state hyperfine manifold of the 171Yb+ ions, where ∣ #�z �
j2S1=2, F =0,mF =0i and ∣ "�z � j2S1=2, F = 1,mF =0i, and we perform
high-fidelity state preparation and site-resolved detection using state-
dependent fluorescence (Methods)40.

The transverse-field Ising model exhibits a ground-state phase
transition from a disordered paramagnet to a magnetically ordered
state. As the ratio of Kac-normalized effective interaction field (J γx) to
the transverse magnetic field (Bz) is varied across the critical point
J γx=Bz = 1, the average in-plane magnetization ( σxh i) changes from
zero (disordered phase) to a non-zero value (ordered phase) in a

Fig. 1 | Critical quench dynamics. a Disorder-to-order phase transitions emerge
even in the non-equilibrium setting of quench dynamics, and exhibit critical
behavior at the transition. The ordered and disordered phases are shown in thick
and thin lines, respectively, and the arrows indicate a quench to the critical point.
While a quench from a gapped initial state (top panel) to the critical point (red
circles) generically leads to effective thermal behavior, a quench from a gapless
state (bottom panel), corresponding to a distinct critical point, gives rise to non-
equilibrium criticality. bGround-state phase diagram with Ising interaction along x
or y direction. J γx, y=Bz is the ratio of the Kac-normalized effective interaction
strength J γx, y to the transverse field strength Bz (see text). The phase boundary is

shown in gray dashed lines, with red and green circles indicating the critical points
where the quenches are performed. c The experimental sequence starting with all
spins initialized along ∣ #�z . The first quench is appliedwith interactions along the x
direction, and the evolution is measured by projecting the spins along x. For the
second quench, both the interaction and measurement bases are switched from x
to ydirection. In the double-quenchexperiment, the secondquench is applied after
evolving under the first quench, but no measurement is performed before the
second quench. The curved lines illustrate the long-range interaction among all the
spins where the opacity reflects interaction strengths that weaken with distance.
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second-order phase transition (Fig. 1a). By performing quenches to
various values of J γx=Bz , we identify the critical point of this phase
transition and observe the characteristic divergent fluctuations. We
report that, after a single quench fromagapped initial state, the critical
behavior and exponents are effectively thermal; see Fig. 1a (top panel).
In contrast, the scenario in Fig. 1a (bottom panel) involves preparing a
critical initial state, which is experimentally challenging. Instead, we
show that a sequence of quenches to multiple critical points (Fig. 1b)
achieves the same objective and leads to non-equilibrium critical
behavior.

We begin with a single quench sequence where all the spins are
initialized in the ∣ ## ::: #�z state, which is the gapped ground state of
the initial Hamiltonian in the absence of the Ising interaction (SI
Sec. III). Then the spin system is evolved after an interaction quench of
the form Eq. (1), in which γx = 1, γy = 0 (Fig. 1a). We measure the total
spin Sx =

PN
i σ

x
i =2 projected along the direction of interaction (here

along x) and calculate the net correlator defined as

C2
x

D E
= S2x
D E

� Sx
� �2

: ð2Þ

We characterize the dynamics through the net correlator since the
Ising symmetry of the Hamiltonian and the initial state implies that the
average magnetization along the x direction remains zero at all times.
The definition of C2

x

D E
further removes any bias of the average mag-

netization due to imperfect single-qubit rotations in the experiment. In
the Supplementary Fig. 1, we report the post-quench evolution of
C2
x

D E
=N2 with 10 ions. The observed net correlator increases in

amplitude and exhibits slower dynamics as Bz is swept from larger to
smaller values, consistent with numerical simulation that includes the
decoherence effects of the experiment. This behavior hints at a
continuous dynamical phase transition3.

Equilibrium phase transitions are commonly identified by defin-
ing an order parameter that acquires a nonzero value as the system
transitions from the disordered to the ordered phase. Analogous to
equilibrium phases, one may consider the in-plane magnetization to
identify a dynamical phase transition. Using a mean-field analysis to
compute the long-time average of the magnetization, we can identify
Bz
c=J = 1 as the dynamical critical point of the disorder-to-order phase

transition, which coincides with the ground-state critical point (SI
Secs. III & V). While magnetization remains zero for our chosen initial
state, we instead consider the temporal maximum of the net corre-
lator, M2 = maxt C2

x

D E
=N2

h i
, as a proxy for the order parameter; the

maximum is chosen to find a large signal in spite of decoherence.
In Fig. 2, we show M2 as a function of the scaled magnetic field

strength Bz=J . While there is no sharp transition for finite system
sizes (N = 10, 15, 20), the order parameter clearly shows an inflection
point around Bz=J � 1 and a peak at small Bz, indicating
the onset of ordering. Notably, the observed order parameter quali-
tatively follows the mean-field prediction in the ordered phase,
M2 / ðBz=J Þð1� Bz=J Þ; see the dashed line in Fig. 2. Moreover, one
caneven capture thefinite-size corrections by consideringfluctuations
at finite system sizes. The solid lines in Fig. 2 depict the function
describing the finite-size corrected order parameter, which has the
critical point and an overall scale asfit parameters. The inferred critical
values are well in agreement with the mean-field prediction (SI
Secs. IV.A & IV.C). Having identified the dynamical critical point, the
immediate questions are: What is the nature of the critical behavior at
the phase transition, and does it genuinely go beyond the equilibrium
paradigm?

As a first step toward answering these questions, we experimen-
tally scale up the single quench experiment to systemsizes up toN= 50
ions and observe the net correlator which, at the critical point, char-
acterizes critical fluctuations. As we calibrate the quench Hamiltonian
parameters to be at the (mean-field) critical point for all the system
sizes, within our experimental uncertainty, we see that the fluctuations

grow and evolvemore slowlywith increasing system size, indicating an
emergent universal critical behavior (Fig. 3a). We identify similar
behavior by a numerical simulation of the quench dynamics with
experimental spin-spin coupling parameters for system sizes up to
N = 25 (Supplementary Fig. 3), the maximum number of spins that can
be simulated using available computational resources. Such critical
behavior leads to scaling relations which are independent of micro-
scopic length/time scales41. Using scaling analysis, we find the net
correlator satisfies the functional form given by9

C2
x

D E
=N1 +α1 f

J t1
Nζ 1

� �
, ð3Þ

where the exponent α1 characterizes the amplitude scaling of fluc-
tuations with system size and ζ1 describes the dynamical scaling. We
verify that the scaling relation and the experimentally-obtained
exponents α1 = 0.42 (14), and ζ1 = 0.19 (8) (see Fig. 3b), are consistent
with the results of the exact simulation (see Supplementary Fig. 3). The
procedure to determine exponents that yield the best collapse of the
data is detailed in the SI Sec. VIII. Remarkably, the above exponents are
also consistent with mean-field exponents at the thermal phase
transition9α1 = 1/2, ζ1 = 1/4 (SI Sec. IV.B). Additionally, we fit the
maximum amplitude of fluctuations against Nα1 to obtain the
exponent α1 = 0.50(4) (see the inset of Fig. 3b) which is in excellent
agreement with that of thermal equilibrium. Indeed, it is expected that
the latter procedure leads to a more precise exponent α1 since the
dynamical features aremore susceptible todecoherence. Note that the
numerically obtained exponents do not account for decoherence due
to the limitations of numerical methods for the system sizes
considered here (Methods).

An effective thermal critical behavior is to be expected in quench
dynamics if a phase transition exists34,35, but this typically requires
higher dimensions or, in this case, long-range interactions. The
emergence of the thermal critical exponents does not mean that the
system has thermalized. In fact, long-range interacting systems often
exhibit prethermalization for a long window in time24,42,43. Instead, the
thermal exponents should be attributed to the effective thermalization
of the soft mode35. This can be understood through a Holstein-
Primakoff transformation that maps spins to bosonic variables,
σx
i ! 1ffiffiffi

N
p ðai +a

y
i Þ, a mapping that is valid near a fully polarized state

along the z direction. The lowest energy excitation of the system
corresponds to a collective excitation of a bosonic mode, character-
ized by the operator a ≡ ∑iai, which becomes gapless (softens) at the
phase transition. The total spin can be then described as Sx !

ffiffiffiffi
N

p
x

where x ~ a + a† may be interpreted as the position operator of a
harmonic oscillator with a characteristic frequency Ω which
vanishes at the phase transition. Applying the equipartition theorem,
limt!1Ω2hx2it � Teff at long times, we find that the gapless mode is
described by a finite effective temperature (SI Secs. IV.A & V.A). In fact,
identifying 〈x2〉 ~ Nα and Ω ~ N−ζ, the equipartition theorem reveals that
the effective temperature obeys the scaling relation Teff ~ Nα−2ζ. Now,
with α → α1 = 1/2 and ζ → ζ1 = 1/4, the effective temperature becomes a
constant independent of system size, consistent with thermal equili-
brium behavior. Finally, we note that while the description of the soft
mode in terms of the spin operators takes a more complicated form
due to the experimental interaction matrix, our scaling analysis
remains valid (see SI Secs. V & VI).

To break away from the effective thermalization, we nowconsider
the scenario in Fig. 1a. (bottom panel) where the initial state is gapless
(i.e., critical) itself. However, realizing sucha scheme in experiment can
be challenging as it requires high-fidelity adiabatic preparation of the
non-trivial critical state prior to the quench. In this work, we instead
modify this scheme by applying a sequence of critical quenches.
While the resulting critical behavior from multiple quenches is not
quantum in nature, due to the over-heating of the soft mode, the
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prethermalization of our quantum system is crucial to evade therma-
lization and hence identify genuinely non-equilibrium behavior44.

Experimentally,wefirst performa single quench (γx = 1, γ y=0) to a
critical point and evolve until the fluctuations reach their first maxima.
Then we switch the interaction from the x to the y-direction (Fig. 1c) to
apply a second quench, i.e. we make γ x = 0, γ y = 1 (Methods). The
intermediate evolution after the single quench brings the system to a
critical state when the second quench is applied. Upon the second
quench, the dominant fluctuations form along the y-direction and in
Fig. 4a, we show the unscaled fluctuations (hC2

yi=N) for system sizes up
to 50 ions. These fluctuations also obey the scaling relation in Eq. (3),
butwith the replacementC2

x ! C2
y , t1→ t2 (timeafter the latest quench)

and with a new set of exponents α2 and ζ2 identifying a new universal
critical behavior. We find the optimal collapse for α2 = 0.63(33) and
ζ2 = 0.10(17) (Fig. 4b).We verify that exact numerical simulation results
in very similar critical exponents (Supplementary Fig. 4). Notably,
these exponents are also in good agreement with the analytical values
α2 = 3/4 and ζ2 = 1/8 obtained for the infinite-range LMGmodel (see SI
Sec. IV.D), underscoring the universal character of the observed critical
behavior. Finally, we remark that the effective temperature now scales
as Teff � Nα2�2ζ 2 , which shows a nontrivial scaling with system size,
underscoring a dramatic departure from equilibrium critical behavior.
Such non-equilibrium criticality generally emerges upon a quench
from a gapless state, and can be attributed to the over-heating of the
soft mode9,36–38 (see SI Sec. IV).

Experimental decoherence causes the observed fluctuations to be
damped for both single and double quenches. We see that the
unscaled 50 ion fluctuations after the double quench are significantly
damped (Fig. 3a). Themajor sources of decoherence, which scale with
the system size, remain within acceptable thresholds for system sizes
N < 50, but these errors start to dominate for N ≥ 50 (“Methods”). This
effect ismore adverse for the double-quench sequence than the single-
quench, since the former involves longer evolution under two quen-
ches. For completeness, we have included all the 50 ion data in Fig. 4a,
c, but excluded it in determining the best collapse exponent. Fitting
the maximum amplitudes of the fluctuations to Nα2 yields exponent
α2 = 0.69(9), with tighter error bounds (Inset Fig. 4c). Errors in iden-
tifying the peak fluctuation result in erroneous switch time between
the two quenches, contributing to imperfect exponents. This effect
can be reproduced in the simulation with exact experimental para-
meters, and correction for such errors in further simulations results in
exponents that are well in agreement with the analytically predicted
non-equilibrium values (SI Sec. VII.D).

Discussion
In this work, we have demonstrated the ability to identify, both
numerically and experimentally, the dynamical critical point of a
disorder-to-order phase transition in a 1D transverse-field Ising model.
We have observed the non-equilibrium critical behavior upon single
and double quenches with up to 50 ions and extracted the universal
scaling exponents, which agree with the predictions of numerical

Fig. 2 | Phase transition from order parameter. We report scaled maximum net
correlatorM2 =maxt ½hC2

xi=N2� as a function of Bz=J for system sizes N = 10, 15, 20.
The solid lines are obtained by fitting the experimental data to the finite size cor-
rected order parameter (Eq. (28) of SI), which has the critical point as a fit para-
meter. The extracted values are 0.83 (19), 0.88 (6), 1.01 (9), respectively for
N = 10, 15, 20; the difference from the predicted critical point Bz=J = 1 is due to
finite-size effects and experimental imperfections. For simplicity, we use the pre-
dicted critical value for studies in Figs. 3, 4. The dashed line represents the mean-
field solution with an inflection point at Bz=J = 1. For the comparison of the
experimental data against decoherence-free numerical simulation, see Supple-
mentary Fig. 2. The error bars are statistical fluctuations around the mean value.

Fig. 3 | Unscaled (a) and scaled (b) fluctuations after a single quench. a We
report experimental critical fluctuations with system sizes up to N = 50 ions. We
obtain the critical scaling exponents (α1, ζ1) by optimizing the weighted Euclidean
distance between each of the curves to get the best collapse for the experimental
(b) data [see main text for details]. We observe remarkable similarity between the
exponents found in the experiment and simulations (see Supplementary Fig. 3),
highlighting the universality of the exponents despite experimental imperfections
as well as finite-size effects. Comparing the decoherence-free numerical simulation
in Supplementary Fig. 3 with the experimental data, we note that the fluctuations in
the experiment are reduced due to decoherence and imperfect detection fidelity;

however, aswecan see from the scaleddata, the scaling collapse is still observed for
all the system sizes. In the insetb,wefindconsistent scaling exponents byfitting the
maximum values of the fluctuation (dots) to a power-law fit to Nα1 (solid lines).
Although this method does not capture the full evolution, we get excellent
agreement of exponents for both the simulation and the experiment. The data
points from numerical simulation (in green) do not account for decoherence,
resulting in higher peak values as compared to the experimental values (see Sup-
plementary Fig. 3). In Supplementary Fig. 3b, we present numerical simulations of
critical dynamics for N = 10 and 15, incorporating decoherence effects. The error
bars of the experimental data are statistical fluctuations around the mean value.
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simulation of up to 25 spins. A high level of experimental control was
achieved by realizing self-similar interaction matrices across different
system sizes, which is essential for experimentally identifying and
characterizing the critical points of a phase transition. While the decay
of experimental spin-spin interactions deviates from the exact power-
law models with p < 1 (see SI Sec. VII.B), the resulting universal critical
behavior follows the latter models closely, a feature that is also
reflected in the spin-spin correlation function (see SI Sec. VII.C). Fur-
thermore, we theoretically predict that the observed double-quench
critical scaling is only the first in an infinite hierarchy of universal cri-
tical behaviors that emerge in a sequence of multiple quenches (SI
Sec. IV.D), an exciting direction to investigate in the future. Future
work could also explore extensions of our spin-based trapped-ion
simulator to non-equilibrium dynamics that include other degrees of
freedom, such as phonons45.

Methods
State preparation and readout
The quantum simulator used in this experiment is based on 171Yb+ ions
trapped in all three directions in a 3-layer Paul trap46 with transverse
center of mass (COM) mode frequencies ranging from νCOM=
(4.64–4.73)MHz and axial COM mode frequencies ranging from
νx= (0.23–0.53)MHz depending on system size (N = 10 − 50), with axial
frequency being lowered to accommodate more ions in a linear chain.
Before each experimental cycle, the ions are Doppler cooled in all three
directions by a 369.5 nm laser beam, 10MHz red-detuned from the 2S1/2
to 2P1/2 transition.Weuse the same laser to optically pumpall the ions to
initialize them in the low-energy hyperfine qubit state,
∣#z

��2S1=2∣F =0,mF =0
�
with >99% fidelity. In addition to Doppler

cooling, we apply the resolved sideband cooling method to bring the
ions to their motional ground state with > 90% fidelity. After the
Hamiltonian evolution, we apply global π/2 rotations using composite
BB1 pulses to project the spin along the x or y direction of the Bloch
sphere from the z direction. We then measure the magnetization of
each spin using a state-dependent fluorescence by applying a beam
resonant with the 2S1=2 F = 1j i()2F1=2 F =0j i transition. The ions scat-
ter photons if they are projected in the ∣"z

�
state, and appear bright,

while in ∣#z

�
state, thenumberof scatteredphotons is negligible and the

ions appear dark. A finite-conjugate NA = 0.4 objective lens system
(total magnification of 70×) collects scattered 369.5 nm photons and

images them onto an EMCCD camera, which allows us to perform site-
resolved magnetization and correlation measurements with average
fidelity of 97%. No state preparation and measurement (SPAM) cor-
rection has been applied to data presented in this work. More details of
this experimental apparatus can be found in our previous works13,27,47.

Generating XX and YY type Ising interaction
The global spin-spin interaction in the trapped ion system in con-
sideration is generated by applying a spin-dependent force via non-
copropagating 355 nm pulsed laser beams that uniformly illuminate
the ion chain. The pair of beams has a relative wavevector difference
along the transverse motional direction of the ions. These beams are
controlled by acousto-optic modulators which impart beatnote fre-
quencies at νCOM ± μ, and phases (ϕb, ϕr), respectively, where μ is the
symmetric detuning from the COMmode ( ≈ 56 kHz). These two tones
respectively drive the blue (BSB) and red (RSB) sideband transitions,
which, following the Mølmer-Sørensen (MS) protocol48, generate an
effective Hamiltonian

H =
PN
i= 1

PN
m= 1

ηi,mΩi
2 ame

ιδmteiϕM +
�

ay
me�ιδmte�iϕM

i
σϕs
i ,

ð4Þ

where ηi,m is the Lamb-Dicke parameter for ion i andmodem,Ωi is the
Rabi frequency at ion i, ay

m,am are the creation and annihilation
operatorsofmotional quanta formthmotionalmode, δm =μ− νm is the
MS detuning from the mth motional mode frequency νm.
σϕs
i = cosϕsσ

x
i + sinϕsσ

y
i , where the spin-phase is ϕs =

ϕb +ϕr +π
2 and

the motional-phase is ϕM = ϕb�ϕr
2 for the phase-sensitive realization of

the MS scheme49. The unitary time evolution operator under this
Hamiltonian (U(t) ~ e−ιHt) can be foundby taking theMagnus expansion,
which after appropriate approximation, leads to an effective
Hamiltonian13

H =
X
i, j

Jijσ
ϕs
i σϕs

j : ð5Þ

In the far detuned limit (δm ≫ ηΩ), where the virtual couplings to the
phonon modes are sufficiently suppressed, the analytical form of the

Fig. 4 | Unscaled (a) and scaled (b) fluctuations after a double quench. aWeplot
the unscaled fluctuations along y direction at the predicted critical points for sys-
tem sizes of N = 10--50 ions. The second quench is applied when the fluctuations
following the first quench reach their maxima and the time t2 is counted after the
second quench. b We apply the same scaling collapse technique as for the single
quench to find the best scaling exponents (α2, ζ2) for the experimental data. See
Supplementary Fig. 4 for numerical simulations of the data. We observe that the
critical fluctuations do not monotonically grow for increasing system sizes, as

would be expected from the scaling relations. This effect can be attributed to the
imperfect switching time between the first and second quench; a nearly perfect
collapse can be reproduced numerically using the precise switch times (SI
Sec. VII.D). We also report exponents found by a power-law fit of the maximum
fluctuationswhich agreemorecloselywith the analyticalprediction (Inset b.).While
determining the experimental critical exponents, we have excluded 50 ion data
(gray) [see main text for details]. The error bars of the experimental data are sta-
tistical fluctuation around the mean value.
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Ising coupling between ions i and j is given by13

Jij =Ω
2
νR

X
m

bimbjm

μ2 � ν2m
� J

ji� jjp , ð6Þ

where νR = hδk2/(8π2M) is the recoil frequency, and bim is the eigen-
vector matrix element of the i-th ion’s participation in the m-th
motional mode (∑i∣bim∣2 = ∑m∣bim∣2 = 1),M is themass of the single ion. J
is the effective interaction strength obtained by a power-law fit of the
interactionmatrix elements, and J/2π rangeswithin (0.25 to 0.4) kHz in
the experiment for different system sizes. If we set ϕr = 0, ϕb = π, then
ϕM =π/2 andϕs=π, whichmakes theHamiltonianof Eq. (5) an effective
σxσx interaction. We can change this phase by changing the input
waveform to the acousto-optic-modulator. Similarly, we set
ϕr = 0, ϕb = 0 to obtain an effective σyσy interaction. In the double
quench experiment, we switch these waveform phases to switch
between interactions along different Bloch sphere directions.

We further apply a commonoffset of 2Bz to the frequencies of BSB
and RSB tones which in the rotating frame of the qubit, results in an
effective transverse field term BzPN

i σ
z
i in the Hamiltonian of Eq. (5)13.

The magnetic field strength Bz is chosen such that Bz ≪ δm for the
rotating frame approximation to be valid.

The approximate power law exponent can be theoretically tuned
within the range 0 < p < 3. However, in this experiment, we kept the
exponent ≈0.89 for all the system sizes by tuning the axial trap fre-
quency (νx) and motional detuning (μ). We also note that the experi-
mental interaction matrix deviates from a pure power-law decay to an
exponential decay at large distances, especially for large system sizes
(SI Sec. VIII). In principle, one can tune this exponent by changing only
thedetuning (μ) (see Eq. (6)), but changing the axial trap frequency (νx)
for different system sizes results in more self-consistent scaling of the
exact spin-spin coupling matrix50. We remark that maintaining a self-
similar interaction matrix can also be achieved with individual optical
control over all the ions51, but it is beyond the scope of this experi-
mental setup, which features global optical control.

Experimental error sources
One of the main challenges in scaling up the system size is to maintain
the fidelity of the quantum simulation experiments. Among various
sources of decoherence in the trapped-ion platform, such as stray
magnetic and electric fields, mode frequency drifts, off-resonant
motional excitation, spontaneous emission, and additional spin-
motion coupling that causes the evolution to depart from ideal
simulation13. One such important source, which becomes significant in
the large system size limit, is the off-resonant excitation of the
motional modes causing residual spin-motion entanglement50,52. In
order to trap longer linear chains while maintaining the same inter-
action profile, we need to operate at a lower axial confinement which
can become as low as ~200Hz for N = 40–50. At such low axial con-
finement, the trapped ions are more susceptible to electric field noise
and background collisions53. The conventional laser cooling methods
start to become inefficient in cooling the ions to theirmotional ground
states, and as a result, errors due to phonon evolution get introduced
in theHamiltonian evolution. To the lowest order, such an error can be
modelled as an effective bit flip error during measurement50. Addi-
tional cooling methods such as EIT (electromagnetically induced
transparency) cooling54 and sympathetic cooling53 would be useful in
mitigating the effects of such errors.

Another source of bit-flip error is imperfect detection. Off-
resonant pumping from the detection beam limits our detection
fidelity to about 98%. When a large number of ions are trapped in a
linear chain, ions near the center of the chain are closer together than
the ones at the edges. A randombit-flip error can be introduced due to
leakage of light from neighbouring ions, which might cause a dark ion

to appear bright and vice versa. More details about various noise
sources in this apparatus can be found in previous works47,50,55.

Modeling decoherence
To account for the most relevant source of experimental dissipation,
we consider an effective model that incorporates bit-flip errors in the
dynamics. In this model, the density matrix evolves in time under the
Lindblad master equation as

dρ
dt

= � i½H,ρ�+ κ
XN
i= 1

ðσx
i ρσ

x
i � ρÞ, ð7Þ

where the single bit-flip rate κ is chosen such that the numerically
obtained net correlators hC2

xi best fit the experimental data.
For simplicity, we have chosen the bit-flip rate to be uniform
across the chain. In the simulations, we numerically calculate
the dynamics under Eq. (7) using experimental Hamiltonian para-
meters and the best-fit value of κ=J for a given Bz=J . For N = 10,
we find the best fit at Bz=J = 0:21, 0:50, 0:87, 1:00, 1:50, 1:93½ � to
be κ=J = 0:057, 0:036, 0:089, 0:085, 0:067, 0:045½ �, respectively. For
N = 15, and Bz=J = 1, we have κ=J =0:024. In Supplementary Fig. 1, we
present the experimentally observed dynamics (represented by dots)
of the net correlator after a single quench along with their numerical
simulation (represented by solid lines) with 10 and 15 ions. In the
subfigure a (10 ions), different colors indicate different values of the
quench parameter Bz=J . In subfigure b, we show the quench to
Bz=J = 1 for N = 10 and 15. As shown in Supplementary Fig. 1, the
numerical simulations show good agreement with the experimental
data, capturing the damping rate as well as the frequency of the
underdamped oscillations. The numerical results for 10 ions are
obtained under the exact time evolution of the Lindblad master
equation using QuTiP’s implementation56. Simulations for systems
with 15 ions are obtained using the Monte Carlo wave function
method57. This method can, in principle, be used to simulate larger
system sizes. However, optimizing the decoherence rate in order to fit
the experimental data requires a large number of these simulations,
thus limiting our ability to simulate larger system sizes.

Jackknife error estimation
In the experiments reported in this work, we repeat the experiment
and measurement sequence 400 times to reduce the quantum pro-
jection noise. To estimate the standard errors of the two-body corre-
lators,wehave implemented a Jackknife resampling technique58. In this
method, we construct a distribution of net correlators by randomly
sampling 399 experimental runs, each time leaving out only one run.
We then calculate the variance of the distribution, which corresponds
to the standard error of the net correlator.

Data availability
All key experimental data supporting the findings of this study are
provided in the main text and Methods. The raw datasets are available
from the corresponding authors upon request for purposes of aca-
demic replication and review. Access is limited due to the large size
and specialized formatting of the data, which requires additional
processing to ensure correct interpretation.

Code availability
The code used for analyses is available from the corresponding author
upon request.
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