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We present an algorithm utilizing midcircuit measurement and feedback that prepares Dicke states with
polylogarithmically many ancillae and polylogarithmic depth. Our algorithm uses only global midcircuit
projective measurements and adaptively chosen global rotations. This improves over prior work that was
only efficient for Dicke states of low weight or was not efficient in both depth and width. Our algorithm can
also naturally be implemented in a cavity QED context using logarithmic time, zero ancillae, and atom-
photon coupling scaling with the square root of the system size.
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The controlled preparation of entangled states is a central
goal in quantum science, with broad implications for tasks
in quantum information, sensing, and many-body physics.
Dicke states are a particularly important and well-studied
class of entangled state [1], where the weight-w Dicke state
consists of a symmetric superposition of n qubits with a
fixed number w of spin flips. Such states are total angular
momentum eigenstates, feature prominently in the study of
superradiance in quantum optics [1], and also appear in
condensed matter as ground states of paradigmatic models
for quantum magnetism [2—4].

In recent years, Dicke states have gained prominence
as a versatile resource for quantum information science,
particularly for quantum sensing where they can achieve
Heisenberg-limited scaling while offering robustness against
erasures and other specific types of decoherence compared
to Greenberger-Horne-Zeilinger states [5—13]. Dicke states
have also been proposed as key components of quantum
optimization algorithms [14—18], various quantum memory
and error correction applications [19,20], and algorithms for
preparing the ground states of integrable quantum systems
[21]. Beyond this, Dicke states have also emerged as a
practical test bed for wide-ranging applications, including
quantum tomography [22] and quantum networking [23],
owing to their high symmetry and multipartite nature.

Yet, despite their theoretical simplicity, efficient prepa-
ration of Dicke states, particularly on noisy intermediate-
scale quantum devices [24] remains an outstanding chal-
lenge and a roadblock to their widespread application.
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Existing protocols for preparing Dicke states include both
abstract circuit-based approaches [14,25-34] and more
practical, tailored approaches for current and near-term
experiments [8,13,23,35-49]. While some existing meth-
ods achieve low depth for low-weight states, efficient
preparation of arbitrary-weight states, especially those with
near-maximal entanglement (w &~ n/2), remains elusive. In
particular, prior circuit-based approaches require either
depths of Q(n!'/*) or otherwise use polynomially many
ancilla qubits to achieve logarithmic depth across all
weights [30,50].

Here, we develop an algorithm to prepare arbitrary-
weight Dicke states, guided by nascent experimental capa-
bilities, namely, midcircuit collective J, measurements and
global rotations, that provably achieves both polylogarith-
mic depth and ancilla count for the first time. Prior work in
cavity quantum electrodynamics has explored how such
measurements may be heralded by cavity photons or be used
in continuous-measurement-and-feedback schemes to gen-
erate complex many-body entangled states [46,52-60].
Using these ideas, we propose a constant-time implementa-
tion of a J, measurement in cavity systems. In the circuit
model, this measurement can be implemented in polylogar-
ithmic depth [31,61,62], adding only minimal overhead.

The algorithm is conceptually simple. Starting from the all
spin-up state, we identically rotate each spin, followed by a
collective J, measurement, which projects onto a Dicke state.
If we measure the desired weight w, we are done. If we
measure some other w/, we rotate again by some angle
conditioned on w’, perform another measurement, and repeat
until we obtain w. The choice of rotation angles is motivated
by an intuitive geometric phase-space representation on the

© 2026 American Physical Society
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collective Bloch sphere. We demonstrate that only logarith-
mically many iterations of measurement and feedback suffice
to prepare any desired Dicke state, with a rigorous proof for
the presumable worst case of w = n/2. We also demonstrate
the robustness of our algorithm to typical error sources
relevant for cavity-based measurement schemes.

Beyond its efficiency, our algorithm’s conceptual sim-
plicity and natural suitability for atom-cavity systems opens
the door to implementation in near-term quantum sensors.
Cavity-based sensors have already harnessed entangled
spin-squeezed states for metrological quantum advantage
[63], while also demonstrating pioneering studies at the
forefront of precision metrology and fundamental science
[64]. Our algorithm thus offers a pathway toward further
improvements in sensitivity for such fundamental studies
[65-70], where w = n/2 Dicke states offer even greater
enhancements to sensitivity, close to the ultimate limits
imposed by quantum mechanics.

Preliminaries—Dicke states have a convenient represen-
tation in terms of angular momentum eigenstates, where the
n qubits are viewed as spin—% particles. Let S; be the angular
momentum operator for the kth qubit, and let J = > 7, S,
be the total angular momentum operator. The Dicke states
|j, m) are the simultaneous eigenstates of J*> and J, with
quantum numbers j = (n/2) and me{—j,—j + 1, ..., j},
respectively. The Dicke state |j,m) is a uniform super-
position of states with fixed z magnetization m or,
equivalently, strings of n = 2j bits with Hamming weight
w = j —m. These states are invariant under permutations
of the qubits.

We assume the following primitives for our model of
computation: (1) prepare |0)®" states on demand, (2) per-
form collective rotations (uniform single-qubit gates) about
the y axis, and (3) perform J, measurements. Note that both
collective rotations, expressed via the unitary e=’», and J,
measurements preserve the total angular momentum J2,
leaving the quantum number j = (n/2) fixed.

Below, we present an experimental setup where a
collective J, measurement can be implemented in O(1)
time, independent of n. Even without access to collective
measurements, we can implement a J, measurement in the
ordinary circuit model, where such a measurement is
equivalent to a projective Hamming weight measurement,
with only polylogarithmic overhead in n. One approach is
to set [log(n)] + 1 ancillae to be the measurement register
and accumulate the Hamming weight into those qubits.
Reference [61] gives an implementation of this in O(log?n)
depth with no additional ancillae.

Algorithm—Our goal is to prepare the Dicke state |}, m,)
for a desired target value of my,, starting from the initial
product state |j,j) =|0)®". The basic algorithm is to
perform a uniform rotation e~*s for some angle 6 and
measure J,. If m = m, is measured, we are done; otherwise,
we iterate this procedure, choosing subsequent rotation

angles 6 based on the prior outcome of the measurement
of J,.

A natural strategy is to adaptively choose the rotation
angles 6 to maximize the overlap of the current state with
the target Dicke state on each iteration of the algorithm.
Since both the initial state and the state following each
collective J, measurement are of the form |[j, m), we let
0 =0, ,, where 0, , approximately maximizes the
quantity

| n (O, ) |* =] Gy e Omends jom) 2 (1)

where dJ, ,»(0) are known as elements of the Wigner d
matrix.

To specify a suitable set of angles 6,,, ,, and to understand
the properties of our algorithm, we find it useful to first
visualize the Dicke states in terms of their phase-space
distributions. In particular, consider the Husimi Q distribu-
tion Q(0, ¢) = |(y|0, ¢)|?/x for a state |y), where |0, ¢) =
e~i#:e=197y|j j) is a coherent spin state oriented along an
axis n with polar and azimuthal angles 6 and ¢, respectively
[71]. We can thus geometrically map the Q distribution for
a state onto the surface of a collective Bloch sphere with
radius j. The Q distribution for the Dicke state [y) = |j, m)

is  0,(0.¢) = (1/7) (}.ﬁ;ﬂ ) cos2U+m)(9/2)sin2-m) (0/2).

On the collective Bloch sphere surface, as j — oo, these

correspond to narrow horizontal rings of radius r, =

\/j> —m? located at a height m above the equator for
m # |j|; for m = =+, this instead corresponds to a narrow
Gaussian distribution at either pole [72,73]. For a uniform
rotation of | j, m) via e=’», the Q distribution undergoes the
analogous rotation on the collective Bloch sphere. This
results in a “tilted ring” distribution, where the normal vector
to the plane of the ring forms an angle 0 to the z axis.

Within this geometric picture, a reasonable choice of
angle 0, ,, is one that maximizes the overlap of the O
distributions of the rotated state and the target Dicke state in
the limit of large j. This maximum occurs when the
corresponding ring distributions intersect at a point sharing
the same tangent vector, as shown in Fig. 1. This condition
is met for rotation angle

em,,m = arcsin [(mrm, - mtrm)/r%]' (2)

This offers an analytically simple choice of angle for our
algorithm, without the need to resort to numerical opti-
mization of Eq. (1). In the End Matter, we argue that our
algorithm and choice of angle in Eq. (2) generically prepare
arbitrary target Dicke states in time O[log (j — |m,|)]. In
particular, we predict that the running time decreases with
increasing |m,|, which is consistent with numerical calcu-
lations discussed below.

We now focus on the specific case of m, =0, corre-
sponding to the Dicke state with maximal interspin
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A geometric representation of our algorithm using the Husimi Q distribution for the Dicke states, represented as rings on the
collective Bloch sphere. For each iteration i, the algorithm rotates the current state (depicted by the lighter ring) |j,

m;) by angle 6,

about +y, so that the resulting (darker) ring is tangent to the ring of the target Dicke state, maximizing their overlap. For a target m, = 0,
the corresponding ring lies at the Bloch sphere equator. We project with a J, measurement and repeat until we measure the desired state.

entanglement and which exhibits the worst-case perfor-
mance over all choices of m,. Then Eq. (2) reduces to
0, =6y, =arcsin(m/j). The transition probabilities
Prob[m — m'] = |d’, m
uring |j, m') after rotating by 6,, from state |j, m) and are
plotted in Fig. 2. We see in Fig. 3(a) that our choice of 6, is
numerically close to the optimal ;, that maximizes Eq. (1).

As shown in Fig. 2 and its inset, there are some m
for which |}, (6,,)> <
probability of reaching the m = 0 state with the optimal
rotation than if we start over with m = j and rotate by
(/2). In these cases, we choose to reset all qubits to |0)
and restart from m = j. Empirically, we observe this to
hold for |m| = j3/*. Though there is negligible difference in
the numerical run-time, we include this reset whenever
|m| > j'/? for ease of the formal proof in Supplemental
Material [74].

Run-time analysis—In this section, we sketch our proof
of the run-time for m, = 0. The full calculations are
provided in Supplemental Material [74]. We consider each
iteration of global rotations and J, measurements to take
unit time.

(6,,)|? are the probabilities of meas-

|d{;‘ (6;)|%; i.e., we have a lower

1072

1073

FIG. 2. For j =50 and m, = 0, transition probability matrix
Prob[m — m'] of the base algorithm without resets, which
is symmetric about the origin, i.e., Prob[-m — —m'] =
Prob[m — m']. Inset: transition probabilities for the m’ = 0 slice,
which shows that for some m it is more advantageous to
reset to m = j.

Theorem 1—The Dicke state
expected O(log j) time.

At a high level, our strategy is to show that, for some
constant exponent @ > 0, the expectation value (|m()|*) over
random measurement outcomes decays to 0 exponentially in
time ¢. This means that, given any &€ > 0, we can achieve
(|m(£)|*) < & within logarithmic time. Since the values of m
are discretized, if (|m(#)|*) < e, then the probability of being
in the m = O state after ¢ steps is Prob[m(r) = 0] > 1 — ¢, as
shown in Supplemental Material [74].

First, we show that starting from the initial m = j state, we
can obtain |m| < \/j in expected O(1) time. This follows
since the measurement outcomes are binomially distributed
around m = 0, and we obtain a measurement within a
standard deviation with constant probability. As such, we
introduce an additional reset step into the algorithm that
takes any transient state with |m| > /j back to |j,j),
without impacting the scaling of the final run-time. We
therefore utilize a proxy variable M := min(|m|, /j + 1).
This still has the desirable property that if (M (7)*) < &, then
the probability of reaching m = 0 after O(¢) steps is at
least 1 —e.

In what follows, we show that it takes O(log j) steps to
reach a state with | < m < +/J. As it takes O(1) time to go
from a state with m < +/j to the target m = 0, we thus
prove that the overall run-time of our algorithm is O(log j).
Using asymptotic expansions we derive for the Wigner
d-matrix elements when 1 < m < /j, we prove that there
exists a constant ¢ < 1 such that, for every m, we have
Sam |dfn,,m(9m)|2(M”/M”’) < ¢, where M’ is defined as
a proxy for m’ analogous to M (see Supplemental Material
[74] for details). This implies that [(M(z+ 1))/
(M(1)*)] < ¢ for each 1, so (M(1)*) < c'"(M(0)*) =
c'(v/j + 1)*. Therefore, for any desired € > 0, we can
attain (M(1)*) < e with

) can be prepared in

_alog(y/j+ 1) 4 log(1/e)
N log(1/¢)

= O(logj)  (3)

steps, as claimed.

030601-3



PHYSICAL REVIEW LETTERS 136, 030601 (2026)

—
Y
=
—
O
~

—
()
-

w
(=]

151 . e J

m B ¢ Oy
N
20 4 " gm N
A Naive

—
o

e »

Average no. steps

A

‘.

-
-'.".

102
J

100 10"

FIG. 3.

% 101
f=9
[
S n n e, W3
e g 5 . j=.32() " ., TuE
oo a S L5 =100 -
n = = .
g J =32
: : <ol = J=10 , , .
10° 104 0.0 0.2 0.4 0.6 0.8 1.0
my/j

(a) For j = 50 and m, = 0, comparison of our chosen angles #,, = arcsin(m/j) and the numerically computed angles 6}, that

maximize the overlap probability in Eq. (1). (b) Expected running time for preparing the m, = 0 state with various algorithms. Our
algorithm with 6, (blue circles) exhibits similar logarithmic scaling as compared to using the numerically optimized angles ;, (purple
squares), both of which are exponentially faster than the polynomial running time with a naive approach of resetting at every step (red

triangles). (c) Expected run-time of our algorithm, without resets, for arbitrary target states

the preparation time decreases monotonically with |m,|.

Numerics—Our algorithm can be understood as a dis-
crete-time Markov chain with 2j + 1 states corresponding
tome{—j,—j+ 1,...,j}. The transition probabilities can
be arranged into a stochastic matrix P, where P, is the
probability of transitioning from the ath to the bth state.
A visualization of P is shown in Fig. 2.

This is an absorbing Markov chain with the single
absorbing state m = 0. The average number of steps
before absorption can be calculated directly from P [82].
Figure 3(b) numerically compares the performance of
our algorithm with variations in the choice of angles. In
particular, our geometrically motivated angles 6,, =
arcsin(m/ j) perform slightly worse than the optimal angles
05, but exhibit the same logarithmic scaling for the
expected number of steps, with a relatively small constant
prefactor, outperforming the naive approach of resetting
after every step if unsuccessful.

Finally, in Fig. 3(c), we examine the preparation of Dicke
states with arbitrary m,, utilizing our choice of angles 6,,, ,,
in Eq. (2). For various fixed j, we observe that this choice of
angle results in an average number of steps strictly less than
that required for the m, = 0 case. We argue in the End Matter
that this behavior is expected and that the corresponding
average number of steps scales as O[log (j — |m,])].

Experimental  considerations—Collective ~Hamming
weight measurements may be directly implemented on
an ensemble of n atomic qubits in which one of the two
qubit states is coupled to a single-mode cavity. We
illustrate this by considering three-level atoms as depicted
in Fig. 4(a), with states {|0), |1), |e)}, where |0) and |1)
are the computational subspace and the cavity dispersively
couples |1) to |e), i.e., with a large detuning between the
cavity frequency and the atomic transition frequency be-
tween |1) and |e). Collective J, rotations on the [0) — [1)
transition are straightforwardly performed via, e.g., varia-
ble-time microwave or optical pulses on neutral atomic
qubits. [53,56,63,83-87]. In the rotating frame of a bare
cavity photon (at laboratory frame frequency w,), the
atom-cavity interaction Hamiltonian is

J,m,) using the angles in Eq. (2). In all cases,

4)

where a' (a) creates (annihilates) a cavity photon, 2g is the
single-photon Rabi frequency, §; is detuning of the kth
atom from the cavity, and P; = 1[I —2(S;),]. For our
application, we set all detunings to be equal, i.e., (¢?/5;) =
y for all k for some constant y. Thus, the total cavity shift
is A, = yP, where P = >, P, and the laboratory frame
cavity transmission spectrum is T(w) = {k*/[4(w —
w, — A,)? + «%]}, where « is the cavity linewidth and @
is the angular frequency of the cavity probe.

To ensure that all possible Hamming weights are
accessible by a single monochromatic probe of the cavity,
we require that the maximum total cavity shift is suffi-
ciently small, i.e., yn < k. This determines the atom-cavity
detuning J;. We then probe on the side of the transmission
peak, as depicted in Fig. 4(a), taking w — w,. = /2, to
yield a Fisher information of Z(A,) = [x?/(k*/2 — kA, +
A2)?] for a single photon. The Cramér-Rao bound then
gives Var(A,) > [I/Z(A,)] = [(k/2) = A, + (AZ/x)]* ~
x> for any unbiased estimator A, of A,. Averaging over
N photons and taking P = (A,/y) gives Var(P)~
(1/N)(x/y)?>. We ensure that this variance is O(1) by
taking N ~ (k/y)? o n* photons.

This scheme is straightforward, and the assumption of
small total cavity shift is easy to satisfy experimentally.
However, the number of photons required is quite large
because the differential signal between possible Hamming
weight measurements is, by assumption, small.

It is more experimentally advantageous to maximize the
differential signal regardless of atom number, maximizing
the resolvability of neighboring Hamming weights.
Therefore, we may place the cavity on resonance with
the [1) <> |e) transition, which yields the bare cavity
transmission spectrum if all atoms are in |0) and vacuum
Rabi spectra with splitting 2g, /7 for Hamming weights n;.
The task of Hamming weight measurement is then the task
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FIG. 4. Two schemes to experimentally implement Hamming
weight measurements, illustrated for n = 8 qubits. (a) Probe on
the side of fringe in the dispersive cavity regime, with photon
counting in transmission to determine cavity shift magnitude.
Inset: level diagram for our detection scheme. (b) Probe simulta-
neously at each possible resonance frequency in the resonant
cavity regime, with heterodyne transmission detection to deter-
mine which frequency tone transmits.

of determining which of the possible spectra is realized by
the cavity.

To this end, we propose a multichromatic probe laser
with a spectral peak at each of the possible vacuum Rabi
resonances, as depicted in Fig. 4(b), and power in each peak
chosen to yield equal transmitted photon number. In the
fully resolved limit, this laser probes each Hamming weight
possibility in a time and with a number of transmitted
photons that is independent of the total atom number. The
frequency of the cavity transmission signal, which carries
the desired Hamming weight information, may be revealed
using standard optical heterodyne techniques.

The principal cost of this scheme is the requirement that
the atom-cavity coupling g is Q(+/n), to be able to resolve
neighboring peaks that are g /n — gvn — 1 ~ g//n apart.
Additionally, while not a fundamental limitation, the num-
ber of tones and bandwidth to produce the multichromatic
probe laser and perform optical heterodyne measurement
scale linearly with . This scheme is also robust to a finite
photon collection efficiency, as well as to imperfections due
to a finite cooperativity; see Supplemental Material for
details [74].

Outlook—We have shown an algorithm for preparing
Dicke states with depth and width polylogarithmic in the
number of qubits. The algorithm is compatible with
existing experimental platforms, using only sequences of
global single-qubit rotations and collective Hamming
weight measurements. While our proposed implementation
of Hamming weight measurements relies on uniform
detunings across the atom ensemble, a natural extension
is to relax the assumption that all atoms couple to the cavity
equally, allowing for a richer class of measurements.

For example, we might extend our protocol by probing at
the midpoint frequency to obtain a superposition of Dicke
states |j, m) + |j, —m), which have metrological applica-
tions [88].

Practically, the compatibility with near-term cavity
systems and relatively small number of iterations can

enable further improvements in sensitivity for emerging
entanglement-based sensors, advancing the forefront of
precision probes for fundamental science and metrology
[63,64]. Combined with our proposed measurement
scheme, this also offers a key benchmark for shallow-
depth adaptive circuits in these systems.
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End Matter

Geometric argument—In this End Matter, we give the
details of a geometric argument that Algorithm 1, as
described in the main text, reaches the |j,m,) Dicke
state in O[log(j — m,)] iterations. For completeness, we
also include the pseudocode for Algorithm 2, which is
the specialization of Algorithm 1 for m, = 0 with the
additional reset condition and whose run-time is proven
in Supplemental Material [74].

We let m; > 0 without loss of generality as the m, <0
case is symmetric via a global flip. For simplicity, we do
not include a reset condition analogous to that in
Algorithm 2, as it is not needed for our geometric argument.

We describe the expected behavior within the geometric
picture, whose relevant quantities are shown in Fig. 5(a).

ALGORITHM 1.

Preparation of arbitrary

The strategy is similar to the proof of Theorem 1. First, we
use the geometric model to derive a coarse-grained
expression for the transition probabilities in the large-;j
regime. Within this model, we compute the transition

ALGORITHM 2. Preparation of the m, = 0 Dicke state using
global rotations and J, measurements.

1: Initialize 2j qubits each to [0), m = j
2: while m # 0 do

3: Rotate by exp(—i0mJy)

4: m <— measure .J,

5: if |m| > /7 then

6: | Reset all qubits to |0), m = j

J,m,;) Dicke state using global rotations and J. measurements.

. Initialize 25 qubits each to |0), m = j
while m # m; do

Wb

m <— measure J,

L Rotate by exp(—ilm, mJy), where 0, m = arcsin [(mrm, — mirm) /8]

030601-7


https://doi.org/10.1038/s41586-021-04349-7
https://doi.org/10.1038/s41586-021-04349-7
https://doi.org/10.1103/PhysRevD.94.124043
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1038/s41567-017-0042-3
https://doi.org/10.1126/sciadv.aau4869
https://doi.org/10.1088/1361-6633/aab409
https://doi.org/10.1038/s41586-019-0972-2
https://doi.org/10.1038/s41586-019-0972-2
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.24.2889
https://doi.org/10.1103/PhysRevA.49.4101
https://doi.org/10.1103/PhysRevA.49.4101
http://link.aps.org/supplemental/10.1103/9gjk-rgql
http://link.aps.org/supplemental/10.1103/9gjk-rgql
http://link.aps.org/supplemental/10.1103/9gjk-rgql
http://link.aps.org/supplemental/10.1103/9gjk-rgql
http://link.aps.org/supplemental/10.1103/9gjk-rgql
https://doi.org/10.1142/9789814415491_0005
https://doi.org/10.1137/1.9780898719260.ch2
https://doi.org/10.1137/1.9780898719260.ch2
https://doi.org/10.1007/978-88-7642-520-2_2
https://doi.org/10.1007/978-88-7642-520-2_2
https://doi.org/10.1103/PhysRevLett.104.073604
https://doi.org/10.1103/PhysRevLett.104.073604
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1103/PhysRevA.70.052324
https://doi.org/10.1103/PhysRevA.70.052324
https://doi.org/10.1073/pnas.0901550106
https://doi.org/10.1073/pnas.0901550106
https://doi.org/10.1038/nphys698
https://doi.org/10.1038/nphys698
https://doi.org/10.1038/s41567-022-01678-w
https://doi.org/10.1103/PhysRevX.12.021028
https://doi.org/10.1103/PhysRevA.105.032618
https://doi.org/10.1103/PhysRevLett.132.150606
https://doi.org/10.1103/PhysRevLett.132.150606
https://doi.org/10.1103/dttc-ksdn
https://doi.org/10.1103/dttc-ksdn
https://doi.org/10.5281/zenodo.17517248

PHYSICAL REVIEW LETTERS 136, 030601 (2026)

FIG. 5. (a) Geometry of the (rotated) Dicke states, idealized as
rings on the collective Bloch sphere, corresponding to the large-
J limit of the Husimi Q distribution. We show the ring
corresponding to |j, m) (green) before (dotted) and after (solid)
a rotation by an angle 8,, ,,. We also show the ring for the
corresponding target state |j,m;) (purple). Other variables m’
and a used in our calculation of the probability distribution
function are shown in red. (b) A two-dimensional cross section
of a Dicke ring with the relevant parameters for calculating arc
length.

probabilities Prob[m — m'| as the overlap of the Q dis-
tribution ring of |j, m’) with the rotated ring from |j, m).
Then we show that, for some constant a > 0, the expected
deviation ((m' — m,)*) decays exponentially in time. The
conclusion then follows in the same manner.

We begin by computing the arc length of a circular
segment a distance a from the center of a ring of radius r, as
|

shown in Fig. 5(b). This is equivalently described by the arc
length of the circular sector of angular width 6, defined
such that cos(6/2) = a/r. The corresponding arc length is
then s = 2rarccos(a/r), and we have the (unsigned)
infinitesimal arc length

2da

V1=(a/r)?

Now, consider a horizontal ring at height m above the
origin (with radius r,,) and rotated by an angle 6,, ,, about
+y so that the bottom edge of the rotated ring lies at height
my; 0,, ,, 18 defined via Eq. (2). For the differential arc
length of this rotated ring, we have the relation
a=(m'"—m,)/sin6,, , —r,, so

ds = (A1)

2r,,dm’

ds = .
(m, - mt)\/zrm sin eml,m/(ml - mz) -1

(A2)

This expression is defined in the range m, < m’ < m, +
2r,, sin @, ,,.

In the large-j limit, where the Q distribution of the state
e~ Omnty|j m) is well represented by this tilted ring, we
assume that the probability to obtain J, = m’ is propor-
tional to the arc length lying between m’ and m' + dm’.
Properly normalizing, we thus have the continuous prob-
ability distribution function (PDF)

1

p(m',m;m;) =

for m; <m’ < m,+2r,,sin6,, ,, and assume zero proba-
bility for m’ outside this range. We note that, while the
integral of this expression converges, the PDF diverges at m,
and m, + 2r,,. This indicates that the overlap probability is
maximal at these points, and we thus utilize the set of
rotation angles 6, ,, for preparing target Dicke states |, m,).

This offers a coarse-grained way to predict moments of
J,. In particular, Eq. (A3) takes the form of a beta
distribution, with moments

m,+2r,,siné,

(' =m)pm) =

" m! — m,)*p(m’,m;m;)dm’

1

(A4)

_ Bla+1/2,1/2)

(2r,, sin Hm,.m)a
pa

(AS)

for beta function B(x,y) = T'(x)['(y)/T'(x + y) and gamma
function I'(x). Here, ((m' — m,)*/m) is the expectation of
(m' —m,)*, conditional on the previous state being |, m).

Try sin em,,m{[(m/ - mt)/(rm sin em,,m)”z - (m/ - mt)/(rm sin emt,m)}}l/z

(A3)

For 0 < a < 1, we have ((m' —m,)*|m) < c(m —m,)*
for some j-independent constant 0 < ¢ < 1. To see this, we
first note that

’

Bla+1/2,1/2) (Zrm siannm>“ < B(a+1/2,1/2) 5a
b2 - b2

m—m,;

(A6)

using the fact that ry > r,, > r,, forall m such thatm > m,,
m<j. Now let f(a)=In[B(a+1/2,1/2)2%/z]. We
have f"(a) = wW(a + 1/2) —w(a + 1), where
y"W(a) = d") InT(a)/d"Va is the polygamma func-
tion of order n. From the series representation ") (a) =
(1)1 nt 5o (a+ k)~(+1) [90], we see that ') (a) is
strictly decreasing for all a > 0, since w'? (a) < 0. This
implies that f”(a) > 0, so f(a) is convex for a > 0. Now,
f(0) =0and f(1) =0, so for 0 <a < 1 we have f(a) <0
and the right-hand side of Eq. (A6) is strictly upper
bounded by 1. For any fixed a in this range, we may
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therefore select a (j-independent) constant ¢ < 1 such that  ((m —m,)*), < & for some & > 0, this can be achieved in
Eq. (A5) is strictly upper bounded by c¢(m — m,)*.

Thus, ((m’ — m,)*) decays by a factor of ¢ at each step of aln(j—m,) +1n(1/e) A7
Algorithm 1. Let ((m' — m,)*), denote the expectation after "= In(1/c) (A7)
k steps. We initially have ((m' — m,)*), = (j — m,)?, so by
induction ((m' — m,)*), < c*(j — m,)®. Now, if we require  steps, or n = O[log(j — m,)], as claimed.

030601-9



	Efficient Preparation of Dicke States
	Preliminaries
	Algorithm
	Run-time analysis
	Numerics
	Experimental considerations
	Outlook
	Acknowledgments
	Data availability
	References
	Geometric argument


