Trapped ions and superconductors face off in quantum benchmark
The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from different technologies.The team, working with JQI Fellow Christopher Monroe and led by postdoctoral researcher Norbert Linke, sized up their own small-scale quantum computer against a device built by IBM. Both machines use five qubits—the fundamental units of information in a quantum computer—and both machines have similar error rates. But while the JQI device relies on chains of trapped atomic ions, IBM Q uses the movement of charges in a superconducting circuit.
Beating the heat
Harnessing quantum systems for information processing will require controlling large numbers of basic building blocks called qubits. The qubits must be isolated, and in most cases cooled such that, among other things, errors in qubit operations do not overwhelm the system, rendering it useless. Led by JQI Fellow Christopher Monroe, physicists have recently demonstrated important steps towards implementing a proposed type of gate, which does not rely on super-cooling their ion qubits. This work, published as an Editor’s Suggestion in Physical Review Letters, implements ultrafast sensing and control of an ion's motion, which is required to realize these hot gates. Notably, this experiment demonstrates thermometry over an unprecedented range of temperatures--from zero-point to room temperature.
$31M Grant Targets Quantum Computing’s Error Control Challenge
A team of researchers led by Duke University and the University of Maryland has been tapped by the nation’s “Q Branch” to take quantum computing efforts to the next level using one of the field’s leading technologies—ion traps.
Interacting Ion Qutrits
In quantum mechanics, symmetry describes more than just the patterns that matter takes — it is used to classify the nature of quantum states. These states can be entangled, exhibiting peculiar connections that cannot be explained without the use of quantum physics. For some entangled states, the symmetry of these connections can offer a kind of protection against disruptions. Physicists are interested in exploring these classes of protected states because building a useful quantum device requires its building blocks to be robust against outside disturbances that may interfere with device operations.
Recently, JQI researchers under the direction of Christopher Monroe have used trapped atomic ions to construct a system that could potentially support a type of symmetry-protected quantum state.
Tightening the Bounds on the Quantum Information 'Speed Limit'
If you’re designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but JQI physicists have narrowed the theoretical limits for where that “speed limit” is. The work implies that quantum processors will work more slowly than some research has suggested. The work offers a better description of how quickly information can travel within a system built of quantum particles such as a group of individual atoms. Engineers will need to know this to build quantum computers, which will have vastly different designs and be able to solve certain problems much more easily than the computers of today. While the new finding does not give an exact speed for how fast information will be able to travel in these as-yet-unbuilt computers—a longstanding question—it does place a far tighter constraint on where this speed limit could be.
Modular Entanglement Using Atomic Ion Qubits
JQI researchers, under the direction of Christopher Monroe have demonstrated modular entanglement between two atomic systems, separated by one meter. Here, photons are the long distance information carriers entangling multiple qubit modules. Inside of a single module, quantized collective vibrations called phonons connect individual qubits. In the latest result, one module contains two qubits and a second module houses a single qubit. This work was published in the journal Nature Physics, along with two related results that appeared in the Physical Review journals.
The two-by-one qubit entanglement is an experimental result that follows the theoretical design by Monroe and collaborators on building a modular universal quantum computer, published earlier in 2014.
Making Quantum Connections
In quantum mechanics, interactions between particles can give rise to entanglement, which is a strange type of connection that could never be described by a non-quantum, classical theory. These connections, called quantum correlations, are present in entangled systems even if the objects are not physically linked (with wires, for example). Entanglement is at the heart of what distinguishes purely quantum systems from classical ones; it is why they are potentially useful, but it sometimes makes them very difficult to understand.
How do you build a large-scale quantum computer?
How do you build a universal quantum computer? Turns out, this question was addressed by theoretical physicists about 15 years ago. The answer was laid out in a research paper and has become known as the DiVincenzo criteria [See Gallery Sidebar for information on this criteria]. The prescription is pretty clear at a glance; yet in practice the physical implementation of a full-scale universal quantum computer remains an extraordinary challenge.
Turning on Frustration
Frustration crops up throughout nature when conflicting constraints on a physical system compete with one another. The way nature resolves these conflicts often leads to exotic phases of matter that are poorly understood. This week’s issue of Science Magazine features new results from the research group of Christopher Monroe at the JQI, where they explored how to frustrate a quantum magnet comprised of sixteen atomic ions – to date the largest ensemble of qubits to perform a simulation of quantum matter.
Quantum Dot Commands Light
If you could peek at the inner workings of a computer processor you would see billions of transistors switching back and forth between two states. In optical communications, information from the switches can be encoded onto light, which then travels long distances through glass fiber. Researchers at the Joint Quantum Institute and the Department of Electrical and Computer Engineering are working to harness the quantum nature of light and semiconductors to expand the capabilities of computers in remarkable ways.