Exponentially Reduced Circuit Depths Using Trotter Error Mitigation
Abstract: Product formulae are a popular class of digital quantum simulation algorithms due to their conceptual simplicity, low overhead, and performance which often exceeds theoretical expectations. Recently, Richardson extrapolation and polynomial interpolation have been proposed to mitigate the Trotter error incurred by use of these formulae. This work provides an improved, rigorous analysis of these techniques for the task of calculating time-evolved expectation values.
Exponentially Reduced Circuit Depths Using Trotter Error Mitigation
Lunch will be served.
Abstract:
Quantum Simulation of Spin-Boson Models with Structure Bath
Abstract: The spin-boson model, involving spins interacting with a bath of quantum harmonic oscillators, is a widely used representation of open quantum systems that describe many dissipative processes in physical, chemical and biological systems. Trapped ions present an ideal platform for simulating the quantum dynamics of such models, by accessing both the high-quality internal qubit states and the motional modes of the ions for spins and bosons, respectively.
Polynomial-Time Classical Simulation of Noisy IQP Circuits with Constant Depth
Abstract: Sampling from the output distributions of quantum computations comprising only commuting gates, known as instantaneous quantum polynomial (IQP) computations, is believed to be intractable for classical computers, and hence this task has become a leading candidate for testing the capabilities of quantum devices. Here we demonstrate that for an arbitrary IQP circuit undergoing dephasing or depolarizing noise, whose depth is greater than a critical O(1)threshold, the output distribution can be efficiently sampled by a classical computer.
Polynomial-Time Classical Simulation of Noisy IQP Circuits with Constant Depth
Sampling from the output distributions of quantum computations comprising only commuting gates, known as instantaneous quantum polynomial (IQP) computations, is believed to be intractable for classical computers, and hence this task has become a leading candidate for testing the capabilities of quantum devices. Here we demonstrate that for an arbitrary IQP circuit undergoing dephasing or depolarizing noise, whose depth is greater than a critical O(1)threshold, the output distribution can be efficiently sampled by a classical computer.
Career Nexus - Developing an Elevator Pitch
An elevator pitch is a very short conversation starter. You use it to introduce people to you and your work in a range of settings, both formal and informal. In this interactive workshop, you'll learn more about elevator pitches and how to compose and refine one based on your work and your audience. The session will include time to draft, practice, and revise an elevator pitch. Come ready to think, write, and talk!
Simulating Meson Scattering on Spin Quantum Simulators
Studying high-energy collisions of composite particles, such as hadrons and nuclei, is an outstanding goal for quantum simulators. However, the preparation of hadronic wave packets has posed a significant challenge, due to the complexity of hadrons and the precise structure of wave packets. This has limited demonstrations of hadron scattering on quantum simulators to date. Observations of confinement and composite excitations in quantum spin systems have opened up the possibility to explore scattering dynamics in spin models.
Near-optimal simulation of quantum field theory
Ab initio simulations of the Standard Model will require thousands of qubits and millions of gates. Developing efficient quantum simulation algorithms for such settings, which will only be feasible in the era of fault-tolerant quantum computing, necessitates principles entirely different from those used in the near term.
Theory of quantum circuits with Abelian symmetries and new methods for circuit synthesis with XY interaction
In this talk, I will first provide an overview of an ongoing project on symmetric quantum circuits and then discuss two related recent results from this year. The overarching goal of this project is to investigate the properties of quantum circuits constructed from k-local gates that all respect a global symmetry, such as U(1) or SU(d). It turns out that general unitary transformations respecting a global symmetry cannot be realized by composing local gates with the same symmetry, which contrasts with the universality of 2-local gates in the absence of symmetries.
Steane Error Correction with Trapped Ions
Quantum states can quickly decohere due to their interaction with the environment and imperfections in the applied quantum controls. Quantum error correction promises to preserve coherence by encoding the state of each qubit into a multi-qubit state with a high-degree of symmetry. Perturbations are first detected by measuring the symmetries of the quantum state and then corrected by applying a set of gates based on the measurements.