Sprinkling Spin Physics onto a Superconductor

JQI Fellow Jay Sau, in collaboration with physicists from Harvard and Yale, has been studying the effects of embedding magnetic spins onto the surface of a superconductor. They recently report in paper that was chosen as an "Editor's Suggestion" in Physical Review Letters, that the spins can interact differently than previously thought. This hybrid platform could be useful for quantum simulations of complex spin systems, having the special feature that the interactions may be controllable, something quite unusual for most condensed matter systems.

On-chip Topological Light

Topological transport of light is the photonic analog of topological electron flow in certain semiconductors. In the electron case, the current flows around the edge of the material but not through the bulk. It is “topological” in that even if electrons encounter impurities in the material the electrons will continue to flow without losing energy.

Spin Diagnostics

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring the relaxation time -- different materials return to equilibrium at different rates; this is how contrast develops (i.e. between soft and hard tissue). By comparing the measurements to a known spectrum of relaxation times, medical professionals can determine whether the imaged tissue is muscle, bone, or even a cancerous growth.

Making Quantum Connections

In quantum mechanics, interactions between particles can give rise to entanglement, which is a strange type of connection that could never be described by a non-quantum, classical theory. These connections, called quantum correlations, are present in entangled systems even if the objects are not physically linked (with wires, for example). Entanglement is at the heart of what distinguishes purely quantum systems from classical ones; it is why they are potentially useful, but it sometimes makes them very difficult to understand.

Rajibul Islam awarded Distinguished Dissertation Award

Rajibul Islam was recently awarded UMDs Distinguished Dissertation Award for his thesis work on quantum magnetism with ions in Chris Monroe's Trapped Ion Quantum Information group. According to the graduate school's website, "The Distinguished Dissertation Award recognizes original work that makes an unusually significant contribution to the discipline.

Turning on Frustration

Frustration crops up throughout nature when conflicting constraints on a physical system compete with one another. The way nature resolves these conflicts often leads to exotic phases of matter that are poorly understood. This week’s issue of Science Magazine features new results from the research group of Christopher Monroe at the JQI, where they explored how to frustrate a quantum magnet comprised of sixteen atomic ions – to date the largest ensemble of qubits to perform a simulation of quantum matter.

A One-way Street for Light

Transistors, resistors, capacitors, and diodes. All of these are examples of common electrical circuit elements that can be found on a computer motherboard, for instance. Billions of transistors make up a processor, with each one being less than 100 nanometers in size. This is more than 10 times smaller than the diameter of a blood cell.