Probing Quantum Anomalous Hall States in Twisted Bilayer WSe2 via Attractive Polaron Spectroscopy
Moire superlattices in semiconductors are predicted to exhibit a rich variety of interaction-induced topological states. However, experimental demonstrations of such topological states, apart from MoTe2 superlattices [1–8], have remained scarce [9, 10]. Here, we report the first optical detection of quantum anomalous Hall (QAH) states in twisted WSe2 homobilayer (tWSe2). Specifically, we employ polarization-resolved attractive polaron spectroscopy on a dual-gated, 2degree tWSe2 and observe direct signatures of spontaneous time-reversal symmetry breaking at hole filling ν = 1.
Quantum Information RIT Talks
Talk 1: Quantum Wave Atom Transforms
Marianna Podzorova - CS Grad Student
Certified Randomness from a Trapped-Ion Quantum Processor
Abstract: Recently, an experiment using a quantum processor realized a protocol for ‘Certified Randomness’, generating remotely verifiable randomness appealing for applications involving mutually untrusting parties. This protocol builds on the success of pushing the ability of quantum computers to perform beyond-classical computational tasks and leverages the classical hardness of sampling from random quantum circuits to certify 70 kbits of entropy against a realistic adversary using best-known attacks.
Origin of edge states in 𝛑-conjugated systems revealed by explicit Clar models
Edge states—localized electronic states at the boundaries of a material—are often attributed to structural defects or topological features in crystalline solids. In finite 𝜋-conjugated systems such as graphene nanoribbons, boron nitride, and short segments of single-walled carbon nanotubes, these edge states can lead to electron scattering and fluorescence quenching. Computational studies have shown that certain chemical modifications, such as tailored edge-passivation and fullerene-end capping, can suppress these states.
Polarization-Preserving Quantum Frequency Conversion for Trapped-Ion Quantum Networking
While trapped ions are well-developed technologies for both quantum computation and simulation, incorporating them into nodes of a quantum network typically requires quantum frequency conversion (QFC). QFC extends the network's operating range given that most atomic ions emit polarization-entangled photons in the visible or near-infrared wavelengths.We demonstrate two-stage, polarization-preserving QFC for shifting Ba+ single photons upwards of 375 THz to the telecom O-band for quantum networking.
Origin of edge states in 𝛑-conjugated systems revealed by explicit Clar models
Abstract: Edge states—localized electronic states at the boundaries of a material—are often attributed to structural defects or topological features in crystalline solids. In finite 𝜋-conjugated systems such as graphene nanoribbons, boron nitride, and short segments of single-walled carbon nanotubes, these edge states can lead to electron scattering and fluorescence quenching. Computational studies have shown that certain chemical modifications, such as tailored edge-passivation and fullerene-end capping, can suppress these states.
Probing Quantum Anomalous Hall States in Twisted Bilayer WSe2 via Attractive Polaron Spectroscopy
Abstract: Moire superlattices in semiconductors are predicted to exhibit a rich variety of interaction-induced topological states. However, experimental demonstrations of such topological states, apart from MoTe2 superlattices [1–8], have remained scarce [9, 10]. Here, we report the first optical detection of quantum anomalous Hall (QAH) states in twisted WSe2 homobilayer (tWSe2).
Polarization-Preserving Quantum Frequency Conversion for Trapped-Ion Quantum Networking
Abstract: While trapped ions are well-developed technologies for both quantum computation and simulation, incorporating them into nodes of a quantum network typically requires quantum frequency conversion (QFC). QFC extends the network's operating range given that most atomic ions emit polarization-entangled photons in the visible or near-infrared wavelengths.We demonstrate two-stage, polarization-preserving QFC for shifting Ba+ single photons upwards of 375 THz to the telecom O-band for quantum networking.
Certified Randomness from a Trapped-Ion Quantum Processor
Recently, an experiment using a quantum processor realized a protocol for ‘Certified Randomness’, generating remotely verifiable randomness appealing for applications involving mutually untrusting parties. This protocol builds on the success of pushing the ability of quantum computers to perform beyond-classical computational tasks and leverages the classical hardness of sampling from random quantum circuits to certify 70 kbits of entropy against a realistic adversary using best-known attacks.
World Quantum Day AMA
JQI is hosting it's fourth annual World Quantum Day AMA. Join us on r/AskScience with your questions!
Our post is available here: https://www.reddit.com/r/askscience/comments/1jywddb/askscience_ama_series_we_are_quantum_scientists/.