Foundational Step Shows Quantum Computers Can Be Better Than the Sum of Their Parts
Pobody’s nerfect—not even the indifferent, calculating bits that are the foundation of computers. But JQI Fellow Christopher Monroe’s group, together with colleagues from Duke University, have made progress toward ensuring we can trust the results of quantum computers even when they are built from pieces that sometimes fail. They have shown in an experiment, for the first time, that an assembly of quantum computing pieces can be better than the worst parts used to make it. In a paper published in the journal Nature on Oct. 4, 2021, the team shared how they took this landmark step toward reliable, practical quantum computers. In their experiment, the researchers combined several qubits—the quantum version of bits—so that they functioned together as a single unit called a logical qubit. They created the logical qubit based on a quantum error correction code so that, unlike for the individual physical qubits, errors can be easily detected and corrected, and they made it to be fault-tolerant—capable of containing errors to minimize their negative effects. This is the first time that a logical qubit has been shown to be more reliable than the most error-prone step required to make it.
Remote Quantum Systems Produce Interfering Photons
Scientists at the Joint Quantum Institute (JQI) have observed, for the first time, interference between particles of light created using a trapped ion and a collection of neutral atoms. Their results could be an essential step toward the realization of a distributed network of quantum computers capable of processing information in novel ways.
Second annual trapped-ion conference comes to UMD
The University of Maryland will host the 2nd North American Conference on Trapped Ions (NACTI) from July 22-26. This year’s conference comes two years after the inaugural meeting, which was held on the Boulder, Colorado campus of the National Institute of Standards and Technology (NIST). More than 230 students and researchers from around the globe, all working on the science of trapped atomic ions, will attend five days of sessions at the Edward St. John Learning & Teaching Center on campus at UMD.