Quantum Gases Keep Their Cool, Prompting New Mysteries

Quantum physics is a notorious rule-breaker. For example, it makes the classical laws of thermodynamics, which describe how heat and energy move around, look more like guidelines than ironclad natural laws. In some experiments, a quantum object can keep its cool despite sitting next to something hot that is steadily releasing energy. A new experiment led by David Weld, an associate professor of physics at the University of California, Santa Barbra (UCSB), in collaboration with JQI Fellow Victor Galitski, shows that several interacting quantum particles can also keep their cool—at least for a time.

Bilayer Graphene Inspires Two-Universe Cosmological Model

Physicists sometimes come up with crazy stories that sound like science fiction. Some turn out to be true, like how the curvature of space and time described by Einstein was eventually borne out by astronomical measurements. Others linger on as mere possibilities or mathematical curiosities. In a new paper in Physical Review Research, JQI Fellow Victor Galitski and JQI graduate student Alireza Parhizkar have explored the imaginative possibility that our reality is only one half of a pair of interacting worlds. Their mathematical model may provide a new perspective for looking at fundamental features of reality—including why our universe expands the way it does and how that relates to the most miniscule lengths allowed in quantum mechanics. These topics are crucial to understanding our universe and are part of one of the great mysteries of modern physics.

JQI Grad Student Wins UMD Three-Minute Thesis Competition

JQI graduate student Jacob Bringewatt is one of four post-candidacy student winners in the campus-wide portion of the UMD Three-Minute Thesis (3MT) competition. Each of these four winners received $1000. Each will be further evaluated by the UMD Graduate School, and one will be selected to represent the university in an international 3MT competition.

New Perspective Blends Quantum and Classical to Understand Quantum Rates of Change

There is nothing permanent except change. This is perhaps never truer than in the fickle and fluctuating world of quantum mechanics. The quantum world is in constant flux. The properties of quantum particles flit between discrete, quantized states without any possibility of ever being found in an intermediate state. How quantum states change defies normal intuition and remains the topic of active debate—for both scientists and philosophers.

JQI Fellow Kollár Awarded Sloan Research Fellowship

JQI Fellow Alicia Kollár has been awarded a prestigious 2022 Sloan Research Fellowship. This award is given to early career researchers by the Alfred P. Sloan Foundation to recognize distinguished performance and the potential to make substantial contributions to their field. Each fellowship provides $75,000 to support the fellow’s research over two years.