Quantum Gases Won’t Take the Heat

The quantum world blatantly defies intuitions that we’ve developed while living among relatively large things, like cars, pennies and dust motes. The quantum behavior of dynamical localization bucks the assumption that a cold object will always steal heat from a warmer object. Until now, dynamical localization has only been observed for single quantum objects, which has prevented it from contributing to attempts to pin down where the changeover occurs. JQI researchers and colleagues have investigated mathematical models to see if dynamical localization can still arise when many quantum particles interact. To reveal the physics, they had to craft models to account for various temperatures, interaction strengths and lengths of times. The team’s results, published in Physical Review Letters, suggest that dynamical localization can occur even when strong interactions are part of the picture.