Light Synchronization Technique Heralds a Bright New Chapter for Small Atomic Clocks
Humanity’s desire to measure time more and more accurately has been a driving force in technological development, and improved clocks and the innovations behind them have repeatedly delivered unexpected applications and scientific discoveries. For instance, when sailors needed high precision timekeeping to better navigate the open seas, it motivated the development of mechanical clocks. And in turn, more accurate clocks allowed better measurements in astronomy and physics. Now, clocks are inescapable parts of daily life, but the demands of GPS, space navigation and other applications are still motivating scientists to push timekeeping to new extremes.
Enhanced Frequency Doubling Adds to Photonics Toolkit
The digital age has seen electronics, including computer chips, shrink in size at an amazing rate, with ever tinier chips powering devices like smartphones, laptops and even autonomous drones. In the wake of this progress, another miniature technology has been gaining steam: integrated photonics. Photons, which are the quantum particles of light, have some advantages over electrons, the namesakes of electronics. For some applications, photons offer faster and more accurate information transfer and use less power than electrons. And because on-chip photonics are largely built using the same technology created for the electronics industry, they carry the promise of integrating electronics and photonics on the same chip.
The Secrets Atoms Hold, Part 1: Search for Dark Matter
In this episode of Relatively Certain, Dina Genkina sits down with JQI Adjunct Fellow Marianna Safronova, a physics professor at the University of Delaware, and JQI Fellow Charles Clark, an adjunct professor of physics at UMD and a fellow of the National Institute of Standards and Technology, to talk about how precision measurements with atoms might shed some light on matter that’s otherwise dark.