Repurposing Qubit Tech to Explore Exotic Superconductivity

The established knowledge and technical infrastructure from decades of quantum research are allowing researchers to harness quantum technologies in unexpected, innovative ways and creating new research opportunities. In a paper published in the journal Nature Physics, a collaboration between theorists at JQI and experimentalists at Harvard University presented a technique that repurposes the technology of superconducting circuits to study samples with exotic forms of superconductivity. The collaboration demonstrated that by building samples of interest into a superconducting circuit they could spy on exotic superconducting behaviors that have eluded existing measurement techniques.

New Design Packs Two Qubits into One Superconducting Junction

Quantum computers are the basis of a growing industry. However, their technology isn’t standardized yet, and researchers are still studying the physics that goes into quantum devices. Even the most basic building blocks of a quantum computer—qubits—are still an active research topic. In an article in the journal Physical Review A, JQI researchers proposed a way to use the physics of superconducting junctions to let each function as more than one qubit.

Particle Physics and Quantum Simulation Collide in New Proposal

Zohreh Davoudi is collaborating with experts in quantum computing technologies to ensure that the relevant problems in her fields of nuclear and particle physics are poised to reap the benefits when quantum simulations mature. Davoudi along with JQI Fellow Alexey Gorshkov and other colleagues proposed a quantum simulation that might be possible to implement soon. They proposal involves using superconducting circuits to simulate a simplified model of collisions between fundamental particles called quarks and mesons (which are themselves made of quarks and antiquarks).

Bus Service for Qubits

Qubit-based computing exploiting spooky quantum effects like entanglement and superposition will speed up factoring and searching calculations far above what can be done with mere zero-or-one bits. To domesticate quantum weirdness, however, to make it a fit companion for mass-market electronic technology, many tricky bi-lateral and multi-lateral arrangements---among photons, electrons, circuits, cavities, etc.---need to be negotiated.