Unveiling the Universe: In 4 New Studies, NIST Explores Novel Ways to Hunt Dark Matter
Scientists have been searching for dark matter with no success for more than 30 years. JQI and other NIST researchers are now exploring new ways to search for the invisible particles. In one study, a prototype for a much larger experiment, researchers have used state-of-the-art superconducting detectors to hunt for dark matter. The study has already placed new limits on the possible mass of one type of hypothesized dark matter. Another NIST team has proposed that trapped electrons, commonly used to measure properties of ordinary particles, could also serve as highly sensitive detectors of hypothetical dark matter particles if they carry charge.
A Billion Tiny Pendulums Could Detect the Universe’s Missing Mass
Researchers at JQI and their colleagues have proposed a novel method for finding dark matter, the cosmos’s mystery material that has eluded detection for decades. Dark matter makes up about 27% of the universe; ordinary matter, such as the stuff that builds stars and planets, accounts for just 5% of the cosmos. (A mysterious entity called dark energy, accounts for the other 68%.)
The Secrets Atoms Hold, Part 1: Search for Dark Matter
In this episode of Relatively Certain, Dina Genkina sits down with JQI Adjunct Fellow Marianna Safronova, a physics professor at the University of Delaware, and JQI Fellow Charles Clark, an adjunct professor of physics at UMD and a fellow of the National Institute of Standards and Technology, to talk about how precision measurements with atoms might shed some light on matter that’s otherwise dark.