High-resolution imaging technique maps out an atomic wave function

JQI researchers have demonstrated a new way to obtain the essential details that describe an isolated quantum system, such as a gas of atoms, through direct observation. The new method gives information about the likelihood of finding atoms at specific locations in the system with unprecedented spatial resolution. With this technique, scientists can obtain details on a scale of tens of nanometers—smaller than the width of a virus. The new experiments use an optical lattice—a web of laser light that suspends thousands of individual atoms—to determine the probability that an atom might be at any given location. Because each individual atom in the lattice behaves like all the others, a measurement on the entire group of atoms reveals the likelihood of an individual atom to be in a particular point in space. Published in the journal Physical Review X, the technique (similar work was published simultaneously by a group at the University of Chicago) can yield the likelihood of the atoms’ locations at well below the wavelength of the light used to illuminate the atoms—50 times better than the limit of what optical microscopy can normally resolve. 

Researchers see signs of interactive form of quantum matter

News from NIST Researchers at JILA have, for the first time, isolated groups of a few atoms and precisely measured their multi-particle interactions within an atomic clock. They compared the results with theoretical predictions by NIST colleagues Ana Maria Rey and Paul Julienne and concluded that multi-particle interactions occurred. "This experiment demonstrates a remarkable ability to both measure and calculate the quantum properties of just a handful of atoms held in single optical lattice cells,” says Julienne, who is also a JQI Fellow. "This type of setup is a superb platform for precision measurement and for controlling many-particle quantum dynamics and entanglement, with applications to few-body physics, many-body physics, and quantum information.” The advance will help scientists control interacting quantum matter, which is expected to boost the performance of atomic clocks, many other types of sensors, and quantum information systems. The research is published online in Nature.

JQI scientists Monroe and Gorshkov are part of a new, $15 million NSF quantum computing project

NSF has announced a $15 million award to a collaboration of seven institutions, including the University of Maryland. The goal: Build the world’s first practical quantum computer. "Quantum computers will change everything about the technology we use and how we use it, and we are still taking the initial steps toward realizing this goal," said NSF Director France Córdova. "Developing the first practical quantum computer would be a major milestone. By bringing together experts who have outlined a path to a practical quantum computer and supporting its development, NSF is working to take the quantum revolution from theory to reality."Dubbed the Software-Tailored Architecture for Quantum co-design (STAQ) project, the effort seeks to demonstrate a quantum advantage over traditional computers within five years using ion trap technology. The project is the result of a National Science Foundation Ideas Lab—a week-long, free-form exchange among researchers from a wide range of fields that aims to spawn creative, collaborative proposals to address a given research challenge. The result of each Ideas Lab is interdisciplinary research that is high-risk, high-reward, cutting-edge and unlikely to be funded through traditional grant mechanisms. JQI Fellow Christopher Monroe will lead the team developing the hardware. JQI Fellow Alexey Gorshkov will be involved in the theory side of the collaboration. Text for this news item was adapted from the Duke University and NSF press releases on the award.  

JQI Fellows Edo Waks and Ian Spielman Receive PECASE Award

JQI Fellows Edo Waks of the University of Maryland (UMD) and Ian Spielman of the National Institute of Standards and Technology (NIST) are among 85 scientists and engineers nationally to receive this year's Presidential Early Career Awards for Scientists and Engineers (PECASE). The PECASE Award is the highest honor bestowed by the U.S. government on outstanding scientists and engineers beginning their independent careers.