QCVV: Making Quantum Computers Less Broken

Abstract: Quantum computing hardware capabilities have grown tremendously over the past decade, as evidenced by demonstrations of both quantum advantage and error-corrected logical qubits.  These breakthroughs have been driven, in part, by advances in quantum characterization, verification, and validation (QCVV).  I will discuss how QCVV provides a hardware-agnostic framework for assessing the performance of quantum computers; I will describe in detail how specific QCVV protocols (such as gate set tomography and robust phase estimation) have been used to characterize and sig

How to relate quantum position verification to information-theoretic cryptography, and new steps towards practical implementation

Abstract: The task of quantum position verification (QPV) deploys quantum information with the aim to use a party's position as a cryptographic credential. One well-studied proposed protocol for this task, f-routing, involves a mixture of classical information and a single quantum bit that has to be routed somewhere as a function of the classical information.

Dynamic codes and quantum computation

Abstract: I will review the concept of Floquet quantum error-correcting codes, and, more generally, dynamic codes. These codes are defined through sequences of low-weight measurements that change the instantaneous code in time and enable error correction.  I will explain a few viewpoints on these codes, including state teleportation and anyon condensation, and will explain how to implement gates purely by adjusting the sequences of low-weight measurement.

One-shot quantum information theory and quantum gravity

Abstract: The unification of quantum mechanics and gravity is a major outstanding goal. One modern approach to understanding this unification goes by the name ``holography’’, in which gravity can be understood as an emergent description of some more fundamental, purely quantum mechanical system. In this talk I will describe some recent results in holography that elucidate how this emergence works. A starring role will be played by one-shot quantum information theory.

Unifying non-Markovian characterisation with an efficient and self-consistent framework

Abstract: Noise on quantum devices is much more complex than it is commonly given credit. Far from usual models of decoherence, nearly all quantum devices are plagued both by a continuum of environments and temporal instabilities. These induce noisy quantum and classical correlations at the level of the circuit. The relevant spatiotemporal effects are difficult enough to understand, let alone combat. There is presently a lack of either scalable or complete methods to address the phenomena responsible for scrambling and loss of quantum information.

Classical and quantum codes, 2d CFTs and holography

Abstract: There is a rich connection between classical and quantum codes and holographic correspondence connecting 2d CFTs and abelian 3d Chern-Simons theories. In the 3d language the codes emerge as a way to parametrize condensable anyons. Upon condensation 3d topological field theory gives rise to 2d CFT at the boundary. This provides a way to construct 2d CFTs from codes - the so called "code CFTs." This construction of code CFT has a natural interpretation in terms of a CSS quantum code (defined in terms of the original classical code, defining the CFT).

The cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource counts

Abstract: I will discuss recent advances in improving and costing quantum algorithms for linear differential equations. I will introduce a stability-based analysis of Berry et al.’s 2017 algorithm that greatly extends its scope and leads to complexities sublinear in time in a broad range of settings – Hamiltonian simulation being a boundary case that prevents this kind of broad fast-forwarding. I illustrate these gains via toy examples such as the linearized Vlasov-Possion equation, networks of coupled, damped, forced harmonic oscillators and quadratic nonlinear systems of ODEs.

Local Hamiltonian Problem with succinct ground state is MA-Complete

Abstract: Finding the ground energy of a quantum system is a fundamental problem in condensed matter physics and quantum chemistry. Existing classical algorithms for tackling this problem often assume that the ground state has a succinct classical description, i.e. a poly-size classical circuit for computing the amplitude. Notable examples of succinct states encompass matrix product states, contractible projected entangled pair states, and states that can be represented by classical neural networks. We study the complexity of the local Hamiltonian problem with succinct ground state.

Resource theory of quantum thermodynamics: State convertibility from qubit cooling and heating

Abstract: Thermodynamics plays an important role both in the foundations of physics and in technological applications. An operational perspective adopted in recent years is to formulate it as a quantum resource theory. I will begin with a quick introduction to the general framework of quantum resource theories, in particular motivating it and explaining why the convertibility of resourceful states is at its core.

Measurement Quantum Cellular Automata and Anomalies in Floquet Codes

Abstract: Quantum measurements are critical to virtually any aspect of quantum information processing--for example: quantum error correction, distillation protocols, or state preparation.  We discuss the evolution of quantum information under Pauli measurement circuits.  We define "local reversibility" in context of measurement circuits, which guarantees that quantum information is preserved and remain "localized" after measurement.  We find that measurement circuits can exhibit a richer set of behaviour in comparison to their unitary counterparts.  For example, a