An automata-based approach for quantum circuit/program verification

We present a new method for analyzing and identifying errors in quantum circuits. In our approach, we define the problem using a triple {P}C{Q}, where the task is to determine whether a given set P of quantum states at the input of a circuit C produces a set of quantum states at the output that is equal to, or included in, a set Q. We propose a technique that utilizes tree automata to represent sets of quantum states efficiently, and we develop algorithms to apply the operations of quantum gates within this representation.

A General Quantum Duality for Representations of Groups with Applications to Quantum Money, Lightning, and Fire

Aaronson, Atia, and Susskind established that swapping quantum states |ψ〉 and |ϕ〉 is computationally equivalent to distinguishing their superpositions |ψ〉 ± |ϕ〉. We extend this to a general duality principle: manipulating quantum states in one basis is equivalent to extracting values in a complementary basis. Formally, for any group, implementing a unitary representation is computationally equivalent to Fourier subspace extraction from its irreducible representations.

The Weak Generalized Bunching Conjecture

There has been interest in the dynamics of noninteracting bosons because of the boson sampling problem. These dynamics can be difficult to predict because of the complicated interference patterns that arise due to their indistinguishability. However, if there are unobserved, hidden degrees of freedom, the indistinguishability can be disrupted in the observations. The generalized bunching probability is defined to be the probability that noninteracting bosons undergo linear optical evolution and all arrive in a subset of sites.

GKP Codes: A Rosetta Stone for Quantum Error Correction

In recent years, the use of Gottesman-Kitaev-Preskill (GKP) Codes to  implement fault-tolerant quantum computation has gained significant traction and evidence for their experimental utility has steadily grown.  But what does it even mean for quantum computation with the GKP code to be fault tolerant?  In this talk, we discuss the structure of logical Clifford gates for the GKP code and how their understanding leads to a classification of the space of all GKP Codes.

Stabilization of cat-state manifolds using nonlinear reservoir engineering

Reservoir engineering has become valuable for preparing and stabilizing quantum systems. Notably, it has enabled the demonstration of dissipatively stabilized Schrödinger’s cat qubits through engineered two-photon loss which are interesting candidates for bosonic error-corrected quantum computation. Reservoir engineering is however limited to simple operators often derived from weak low-order expansions of some native system Hamiltonians. In this talk, I will introduce a novel reservoir engineering approach for stabilizing multi-component Schrödinger’s cat states.

Exponential Quantum Space Advantage for Approximating Maximum Directed Cut in the Streaming Model

While the search for quantum advantage typically focuses on speedups in execution time, quantum algorithms also offer the potential for advantage in space complexity. Previous work has shown such advantages for data stream problems, in which elements arrive and must be processed sequentially without random access, but these have been restricted to specially-constructed problems [Le Gall, SPAA `06] or polynomial advantage [Kallaugher, FOCS `21]. We show an exponential quantum space advantage for the maximum directed cut problem.

Quadratic lower bounds on the stabilizer rank: A probabilistic approach

The approximate stabilizer rank of a quantum state is the minimum number of terms in any approximate decomposition of that state into stabilizer states. We expect that the approximate stabilizer rank of n-th tensor power of the “magic” T state scale exponentially in n, otherwise there is a polynomial time classical algorithm to simulate arbitrary polynomial time quantum computations.  Despite this intuition, several attempts using various techniques could not lead to a better than a linear lower bound on the “exact” rank.

Quantum Spin Chains and Symmetric Functions

I’ll tell you how quantum spin chains, some of the simplest quantum mechanical systems, encode a number of solutions to problems in representation theory, combinatorics, and algebraic geometry. This is revealed by the quantum integrability of the spin chains and the theory of (quantized) symmetric functions. This suggests a program to uncover the computational complexity of these computational problems, informed by the physics of 1d quantum integrable systems. 

ATL 3100A and Virtual Via Zoom

Tailoring Fault-Tolerance to Quantum Algorithms

The standard approach to universal fault-tolerant quantum computing is to develop a general-purpose quantum error correction mechanism that can implement a universal set of logical gates fault-tolerantly. Given such a scheme, any quantum algorithm can be realized fault-tolerantly by composing the relevant logical gates from this set. However, we know that quantum computers provide a significant quantum advantage only for specific quantum algorithms.