The First Controllable Atom SQUID
PFC supported scientists at JQI have created the first controllable atomic circuit that functions analogously to a superconducting quantum interference device (SQUID) and allows operators to select a particular quantum state of the system at will.
By manipulating atoms in a superfluid ring thinner than a human hair the investigators were able for the first time to measure rotation-induced discrete quantized changes in the atoms’ state, thereby providing a proof-of-principle design for an “atomtronic” inertial sensor.
First Observation of the Hall Effect in a Bose-Einstein Condensate
National Institute of Standards and Technology (NIST) researchers have observed for the first time the Hall effect in a gas of ultracold atoms. The Hall effect is an important interaction of magnetic fields and electric current more commonly associated with metals and semiconductors. Variations on the Hall effect are used throughout engineering and physics with applications ranging from automobile ignition systems to fundamental measures of electricity.
A Magnetic Approach to Lattices
JQI experimentalists under the direction of Ian Spielman are in the business of using lasers to create novel environments for neutral atoms. For instance, this research group previously enticed electrically neutral atoms to act like charged particles moving in magnetic and electric fields. The behavior of particles in strong electromagnetic fields, along with arbitrary control of the said fields, is central to both condensed matter physics, and quantum information science.