Ions sync up into world's first time crystal
Consider, for a moment, the humble puddle of water. If you dive down to nearly the scale of molecules, it will be hard to tell one spot in the puddle from any other. You can shift your gaze to the left or right, or tilt your head, and the microscopic bustle will be identical—a situation that physicists call highly symmetric.That all changes abruptly when the puddle freezes. In contrast to liquid water, ice is a crystal, and it gains a spontaneous rigid structure as the temperature drops. Freezing fastens neighboring water molecules together in a regular pattern, and a simple tilt of the head now creates a kaleidoscopic change.In 2012, Nobel-prize winning physicist Frank Wilczek, a professor at the Massachusetts Institute of Technology, proposed something that sounds pretty strange. It might be possible, Wilczek argued, to create crystals that are arranged in time instead of space. The suggestion prompted years of false starts and negative results that ruled out some of the most obvious places to look for these newly named time crystals.Now, five years after the first proposal, a team of researchers led by physicists at the Joint Quantum Institute and the University of Maryland have created the world's first time crystal using a chain of atomic ions. The result, which finally brings Wilczek's exotic idea to life, was reported in Nature on March 9.