Photon-counting calibrations
From NIST-PML — Precise measurements of optical power enable activities from fiber-optic communications to laser manufacturing and biomedical imaging — anything requiring a reliable source of light. This situation calls for light-measuring (radiometric) standards that can operate over a wide range of power levels.
Currently, however, different methods for calibrating optical power measurements are required for different light levels. At high levels, existing radiometric standards employ analog detectors, diodes that generate a current proportional to the incident light intensity, but become imprecise at low levels. Low-power detectors, by contrast, very accurately measure discrete (usually very small) numbers of photons, but cannot handle light at higher levels. Because of the incommensurate scales and incompatible technologies, comparison between the two kinds of measurements isn't easy, resulting in long calibration chains to span the difference.
Linking standards for widely different powers requires extending the dynamic range of detection to cover the region between the two measurement regimes. There are two options for bridging this gap: a "top-down" approach using analog detectors and a "bottom-up" method that starts with counting individual photons.
Exploring the second option, a team of scientists from NIST's Physical Measurement Laboratory (PML) has demonstrated a technique for extending the range of photon-counting detectors by employing optical attenuators, devices that block controlled fractions of incoming light. The results, recently published in Optics Express, could lead to improved standards to cover a much wider range of optical power.