Restoring Order

Every electrical device, from a simple lightbulb to the latest microchips, is enabled by the movement of electrical charge, or current. The nascent field of ‘spintronics’ taps into a different electronic attribute, an intrinsic quantum property known as spin, and may yield devices that operate on the basis of spin-transport.

A cold-atom ammeter

In certain exotic situations, a collection of atoms can transition to a superfluid state, flouting the normal rules of liquid behavior. Unlike a normal, viscous fluid, the atoms in a superfluid flow unhindered by friction.

Stirring-up atomtronics in a quantum circuit

Atomtronics is an emerging technology whereby physicists use ensembles of atoms to build analogs to electronic circuit elements. Modern electronics relies on utilizing the charge properties of the electron. Using lasers and magnetic fields, atomic systems can be engineered to have behavior analogous to that of electrons, making them an exciting platform for studying and generating alternatives to charge-based electronics.

The First Controllable Atom SQUID

PFC supported scientists at JQI have created the first controllable atomic circuit that functions analogously to a superconducting quantum interference device (SQUID) and allows operators to select a particular quantum state of the system at will.

By manipulating atoms in a superfluid ring thinner than a human hair the investigators were able for the first time to measure rotation-induced discrete quantized changes in the atoms’ state, thereby providing a proof-of-principle design for an “atomtronic” inertial sensor.