J.
H.
Kim
Richardson, C. J. K., Leavitt, R. P., Kim, J. H., Waks, E. ., Arslan, I. ., & Arey, B. . (2019). Origin of spectral brightness variations in InAs/InP quantum dot telecom single photon emitters. Journal of Vacuum Science & Technology B, 37. http://doi.org/10.1116/1.5042540
Kim, J. H., Richardson, C. J. K., Leavitt, R. P., & Waks, E. . (2017). Two-Photon Interference from Multiple Solid-State Quantum Emitters. In .
. Y. Kim, K. ., Richardson, C. J. K., Waks, E. ., & Kim, J. H. (2021). Temporal shaping of single photons by engineering exciton dynamics in a single quantum dot. Apl Photonics, 6. http://doi.org/10.1063/5.0045241
Kim, J. H., Aghaeimeibodi, S. ., Richardson, C. J. K., Leavitt, R. P., Englund, D. ., & Waks, E. . (2017). Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. Nano Letters, 17, 7394–7400. http://doi.org/10.1021/acs.nanolett.7b03220
Kim, J. H., Aghaeimeibodi, S. ., Richardson, C. J. K., Leavitt, R. P., Englund, D. ., & Waks, E. . (2018). Hybrid Integration of Solid-State Quantum Emitters with a Silicon Chip. In .
Kim, J. H., Aghaeimeibodi, S. ., Richardson, C. J. K., Leavitt, R. P., & Waks, E. . (2018). Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. Nano Letters, 18, 4734–4740. http://doi.org/10.1021/acs.nanolett.8b01133
Kim, J. H., Cai, T. ., Richardson, C. J. K., Leavitt, R. P., & Waks, E. . (2016). Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 3, 577–584. http://doi.org/10.1364/optica.3.000577
Kim, J. H., Richardson, C. J. K., Leavitt, R. P., & Waks, E. . (2016). Two-Photon Interference from the Far-Field Emission of Chip-Integrated Cavity-Coupled Emitters. Nano Letters, 16, 7061–7066. http://doi.org/10.1021/acs.nanolett.6b03295
Kim, J. H., Richardson, C. J. K., Leavitt, R. P., & Waks, E. . (2017). Quantum dots in photonic crystals for integrated quantum photonics. In (Vol. 10345). http://doi.org/10.1117/12.2269172
Kim, J. H., Richardson, C. J. K., Leavitt, R. P., & Waks, E. . (2017). Semiconductor Quantum Networks Using Quantum Dots. In .