Integrated quantum photonic technologies hold a great promise for application in quantum information processing. A major challenge is to integrate multiple single photon sources on a chip. Quantum dots are bright sources of high purity single photons, and photonic crystals can provide efficient photonic platforms for generating and manipulating single photons from integrated quantum dots. However, integrating multiple quantum dots with photonic crystal devices still remains as a challenging task due to the spectral randomness of the emitters. Here, we present the integration of multiple quantum dots with individual photonic crystal cavities and report quantum interference from chip-integrated multiple quantum dots. To solve the problem of spectral randomness, we introduce local engineering techniques for tuning multiple quantum dots and cavities. From integrated quantum dot devices we observe indistinguishable nature of single photons from individual quantum dots on the same chip. Therefore, our approach paves the way for large-scale quantum photonics with integrated quantum emitters.
Abstract
Year of Publication
2017
DOI
10.1117/12.2269172
Group